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Abstract: Recent ransomware attacks threaten not only personal files but also critical infrastructure
like smart grids, necessitating early detection before encryption occurs. Current methods, reliant on
pre-encryption data, suffer from insufficient and rapidly outdated attack patterns, despite efforts to
focus on select features. Such an approach assumes that the same features remain unchanged. This
approach proves ineffective due to the polymorphic and metamorphic characteristics of ransomware,
which generate unique attack patterns for each new target, particularly in the pre-encryption phase
where evasiveness is prioritized. As a result, the selected features quickly become obsolete. Therefore,
this study proposes an enhanced Bi-Gradual Minimax (BGM) loss function for the Generative
Adversarial Network (GAN) Algorithm that compensates for the attack patterns insufficiency to
represents the polymorphic behavior at the earlier phases of the ransomware lifecycle. Unlike existing
GAN-based models, the BGM-GAN gradually minimizes the maximum loss of the generator and
discriminator in the network. This allows the generator to create artificial patterns that resemble
the pre-encryption data distribution. The generator is used to craft evasive adversarial patterns and
add them to the original data. Then, the generator and discriminator compete to optimize their
weights during the training phase such that the generator produces realistic attack patterns, while
the discriminator endeavors to distinguish between the real and crafted patterns. The experimental
results show that the proposed BGM-GAN reached maximum accuracy of 0.98, recall (0.96), and a
minimum false positive rate (0.14) which all outperform those obtained by the existing works. The
application of BGM-GAN can be extended to early detect malware and other types of attacks.

Keywords: ransomware; Generative Adversarial Network; minimax loss function; ransomware
detection and prediction; deep learning

1. Introduction

Like other cyberattacks, ransomware attacks target a variety of systems and networks,
including Personal Computers (PCs), mobile devices, Wireless Sensor Networks (WSN),
Vehicular Ad Hoc Networks (VANETs), and the Internet of Things (IoT) [1,2]. Several stud-
ies have been conducted to detect ransomware attacks [3–5]. To detect crypto-ransomware
early, the data collected during the pre-encryption phase of the crypto-ransomware life-
cycle, before the encryption takes place is used [6,7]. The collected data are then used
to train different machine learning algorithms to classify the programs into benign and
ransomware [8]. However, the lack of sufficient data during the early phases of the attack
adversely affects the accuracy of the model due to insufficient attack patterns [9].

Currently, ransomware attacks have targeted many Cyber Physical Systems (CPS),
causing severe disruption of critical services and infrastructure [10,11]. In 2021, the US
faced two significant CPS ransomware attacks on its critical infrastructure. The Colonial
Pipeline, a major fuel supplier for the East Coast, experienced a cyberattack in May, leading
to fuel shortages and panic buying in various states [12]. Then, in June, JBS, the world’s top
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meat supplier, was attacked, prompting plant shutdowns in the US and Australia. This
attack utilized the Ryuk ransomware, demanding millions in ransom. Colonial Pipeline
and JBS suffered significant financial losses, paying ransoms of $4.4 million and $11 million,
respectively [12]. In October 2021, the Czech Republic’s major power company, CEZ, was
attacked with RansomExx ransomware after an intrusion via Winnti malware, causing
power outages. Earlier, in December 2020, a natural gas facility was targeted using the
TrickBot malware variant, prompting a response from the Cybersecurity and Infrastructure
Security Agency (CISA) [10]. These attacks underline the severe consequences of ran-
somware on critical infrastructure, emphasizing the need for enhanced cybersecurity, and
regular system updates, underscoring the significance of addressing vulnerabilities in CPS.

To detect ransomware, research can be grouped into three primary methods: process-
centric, data-centric, and resource-centric [13]. The process-centric method observes run-
ning processes to spot suspicious patterns, utilizing machine learning classifiers like Ran-
dom Forest and Naïve Bayes after gathering behavioral data. However, it often requires
the complete runtime data for detection, making it less suitable for early detection. The
data-centric method focuses on monitoring user data and files for abnormal changes, using
techniques like decoy, entropy, and similarity measures [10]. Despite its intent, it cannot
differentiate between benign program changes and crypto-ransomware actions, leading
to high false alarm rates and compromising some user data before detection, rendering it
ineffective for early crypto-ransomware identification.

The insufficient attack patterns are the main obstacle that degrades the early detec-
tion accuracy of ransomware attacks. Although several studies tried to overcome data
insufficiency by focusing on how to select a subset of features that represent the immature
ransomware attack patterns. Such approach assumes that the significance of those features
remains unchanged. This does not hold as the polymorphic and metamorphic nature of the
attack makes the ransomware generate different patterns every time it receives a new target.
This is especially true during the pre-encryption stage where the goal of ransomware is
to be evasive. Hence, the features become quickly obsolete. GAN has the potential to
overcome the data insufficiency problem by augmenting the real attack patterns with
artificial, yet realistic data. However, the Minimax loss function used by GANS’s generator
and discriminator is unable to estimate the distance between the probability distribution
of real and artificial instances in the pre-encryption data of ransomware attacks. Hence,
there is need for an improvement in the Minimax loss function, which is investigated by
this study. The contribution of this paper is three-fold:

• We propose an enhanced GAN’s generator loss function technique called Bi-Gradual
Minimax, by incorporating a gradual up-weighting coefficient into the probability
estimation calculation, which decreases the distance between the real and artificial
distributions.

• We propose an improved GAN-based data augmentation module by incorporating
the enhanced loss function in (1) into the GAN network, which generates artificial
attack patterns that compensate for pre-encryption data insufficiency.

• We train an early detection model by training an LSTM estimator using the augmented
dataset generated in (2), which improved the detection accuracy during the early
pre-encryption phase of ransomware attacks.

The rest of this paper is organized as follows. Section 2 provides an overview of
the related works. Section 3 details the methodology followed to design and develop the
proposed techniques. Section 4 presents the experimental results, which are analyzed and
discussed and compared with related works. The paper concludes with a summary of the
methods and results as well as suggestions for future work, in Section 5.

2. Related Works

The major obstacle in the early detection of ransomware involves obtaining adequate
data in the pre-encryption stage when the attack is still being set up and has not yet been
executed [1,2]. Addressing this data shortage is crucial, as a sufficient dataset is needed
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for precise early detection. Data augmentation is often used in machine learning solutions
and presents a promising way to tackle this scarcity of data, a problem commonly faced
by malware and ransomware early detection systems. To our understanding, no existing
studies specifically address data augmentation in the pre-encryption stage of ransomware
attacks [10]. Another challenge stems from the ever-changing nature of ransomware, which
complicates the relevancy of features used for detection models [14]. For example, an attack
pattern seen in one ransomware variant at a specific time might be more relevant than
the same pattern displayed by a different variant at another time. This indicates that the
importance of features can vary depending on the ransomware variant and the timing of
the attack. Despite this, current early detection methods often operate on the assumption
that the importance of these features remains constant, leading to “behavioral drift.” This
drift mostly results in detection systems becoming quickly outdated and less accurate
over time.

The Generative Adversarial Network (GAN) has been widely used as an important
component of deep neural networks [15]. The GAN model has gained massive attention
from researchers recently due to its prominent characteristics. It has two main rewards
for machine learning based models: the generality and adversarial [16]. It can generate
new samples that can be used to prevent overfitting and, thus, improve machine learning
performance. Moreover, it can be used to generate adversarial samples that can be used
to improve the discriminability of the model. GAN use alternative training to estimate
the density function over a data distribution using the Minimax algorithm [17]. The
Minimax game algorithm tries to minimize the maximum possible loss which results in
multiple possibilities that can be used to generate new samples. In doing so, GAN projects
the available simple distribution to a much more complex high-dimensional, real-world
data distribution [18]. GAN trains two adversarial networks called the generator and the
discriminator. The generator is trained to map noise samples to synthetic samples with the
goal is to generate new adversarial samples that can mislead the discriminator. Meanwhile,
the discriminator trains to distinguish the real data samples from synthesized samples
that were generated using the generator. GAN creates the new samples by making small
changes to the original samples so as to deceive the detection model gain benefit of the
nonlinear characteristics of neural networks and thus constructs a model that produces
incorrect classification results.

Due to its prominent features, many researchers have applied the GAN algorithm
to improve the classification performance of machine learning algorithms. Moti and
Hashemi [15] proposed a malware detection model for Internet of Things (IoT) using the
Generative Adversarial Network technique and Convolutional Neural Network (CNN).
CNN was used to extract high-level features while GAN was used to generate new malware
samples to mitigate the limitations of availability of insufficient malware samples in IoT.
Li and Zhou [19] utilized GAN to develop a malware detection model-based adversarial
example for the Android platform. Their proposed model called bi-objective GAN can
generate evasive adversarial-example attacks able to fool the firewall and evade detection.
Lu and Li [20] used GAN to improve the classification accuracy of the malware detection by
generating new samples that can mimic realistic-like malware samples as well as the realistic
distribution of data. Zhang and Zhou [17], proposed an improved Monte Carlo tree search
(MCTS) algorithm for generating adversarial examples of cross-site scripting (XSS) attacks.
A reward value is generated by the MCTS to rank the generated adversarial examples.
The GAN algorithm was used to improve the detectability of adversarial examples. A
GAN-based network was proposed to improve classification performance.

The following paragraph explains how GAN works. GAN formulates the adversarial
problem as follows. Let X denote the sample space, x is a benign sample, and g(x) > 0
denotes the classification function when the result is benign. The attacker aims to generate
a malware sample x* that make g

(
x*) > 0. Thus, the aim of the attacker can be formulated

as follows:
x* = argmaxx ĝ(x), s.t.d

(
x, x*

)
≤ dmax. (1)
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The GAN reduces the loss function value V during the training of both generator G
and discriminator D by solving the following optimization function:

min
D

max
G

V(G,D) (2)

where
V(G,D) = Ex[log(D(x))] + Ez[log(1− D(G(z)))]. (3)

The Z denotes the samples from noise distribution. Although the existing GAN has
been effectively used to improve the performance of malware detection models, it does not
fully fit for ransomware early detection due to data insufficiency that makes it difficult to
perceive a clear probability distribution of the data. The unclear probability distribution
prevents the GAN’s generator from creating artificial samples as the discriminator will
discard them due to the large distance between the probability distribution of artificial
data and real data. GAN According to Dumoulin and Belghazi [21] and Uehara and
Sato [22], existing GAN algorithms suffer from a vanishing gradient problem which leads to
instability and model collapse due to the use of predefined adversarial loss function. Haloui
and Gupta [23] used the derived approximation to the Wasserstein distance to improve
the original GAN gradient-based loss function. The improved GAN algorithm is called
WGAN. WGAN relies on the Arjovsky k-Lipschitz continuous function which adversely
reduce the capacity of the discriminator model [24]. Gulrajani and Ahmed [25] anticipated
an enhanced WGAN algorithm that penalizes the norm of discriminator gradients to train
the discriminator network with respect to the sample data. There are several structure GAN
algorithms including fully connected GANs [26], Conditional GANs [27], Convolutional
GANs [28], GANs with inference models [27], and adversarial autoencoders [29]. Most of
these algorithms use the standard loss function which suffers from the vanishing gradient
problem and, thus, leads to instability and model collabs especially when insufficient data
is used for training the classification task. Such limitations hinder the applications of the
GAN algorithm to many challenging domains in cybersecurity such as early detection of
ransomware attacks.

3. The Methodology

Figure 1 explains the architecture of our proposed BGM-GAN algorithm for ran-
somware detection. It consists of three main components: generator, discriminator, and
loss functions. The generator learns artificial ransomware patterns based on feedback
from the discriminator. It always tries to deceive the discriminator so as to identify the
pre-encryption data as benign. Several components are needed for the generator to craft
the artificial patterns, namely random inputs, generator network, discriminator network
discriminator output, and generator loss. On the other hand, the discriminator is a clas-
sifier that distinguishes whether an instance of patterns is real or artificially created by
the generator. The discriminator classification relies on training data coming from two
different sources: real attack patterns and artificial patterns. The real patterns are used as
positive instances whereas the artificial patterns are used as negative instances. The loss
functions reflect the distance between the probability distributions of real and artificial
patterns. In particular, there are two loss functions, one for the generator and the other for
the discriminator. In this study, the Minmax function is used to control the upper limit of
classification error by minimizing the maximum loss. This is suitable for the pre-encryption
data that lack the sufficient attack patterns, where accurate estimation is challenging and
classification error is inevitably high. In the following subsections, the design of the pro-
posed algorithm, including the improved Minmax loss function will be elaborated. We
start with a brief description of the GAN and CNN techniques.
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A. Generative Adversarial Networks:
Generative Adversarial Networks (GANs) have emerged as a groundbreaking devel-

opment in the field of machine learning, particularly in the realm of deep learning. Initially
conceptualized by Ian Goodfellow and his colleagues in 2014, GANs consist of two neural
networks—a generator and a discriminator—that are trained simultaneously through a
form of contest. While the generator strives to produce synthetic data that mimics a given
data distribution, the discriminator aims to distinguish between genuine and synthetically
generated data. This adversarial process leads to the continual refinement of both networks,
enabling the generation of increasingly convincing synthetic data. The versatility of GANs
has made them a subject of extensive research, with applications ranging from image and
video generation to more complex tasks like data augmentation, anomaly detection, and
even cybersecurity applications such as ransomware detection.

B. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have become a cornerstone in the field of

machine learning, particularly for tasks related to image and video analysis. Introduced in
the late 1980s and refined over subsequent decades, CNNs have demonstrated remarkable
efficacy in the classification of visual data. Leveraging a specialized architecture that
mimics the human visual cortex, CNNs are adept at automatically and adaptively learning
spatial hierarchies of features from input images. Their ability to handle complex visual
information has led to state-of-the-art results in a myriad of applications, from image and
video recognition to medical image analysis. As a result, CNNs have become the go-to
algorithm for problems involving such classifications.

3.1. The Improved Generative Adversarial Network Model for Ransomware Early Detection

The proposed algorithm is composed of two main phases: the GAN network and the
early detection phase. The GAN network consists of two components, namely generator
and discriminator. Figure 1 shows the design of the proposed algorithm. The following
subsections explain the two phases.
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3.1.1. Phase 1: The Enhanced Bi-Gradual Minimax Function of the Generative
Adversarial Network

The purpose of GAN is to generate artificial pre-encryption attack patterns based on a
dataset of real ransomware attacks. This will help in compensating for data insufficiency
inherited in the data captured during the pre-encryption phase of ransomware attacks by
augmenting the dataset with fake, yet realistic, samples.

When a sample is fed into the discriminator, it processes the information through
its layers to make a prediction regarding the authenticity of the sample. Specifically,
the discriminator assigns a probability score indicating how likely it believes the sample
to be real rather than synthetic. During the training process, the generator continually
improves its ability to create convincing synthetic data, while the discriminator fine-tunes
its ability to distinguish between real and synthetic samples. This adversarial relationship
between the two networks ensures that, over time, the generator becomes proficient at
producing synthetic samples that are increasingly difficult to distinguish from real data,
thus challenging the discriminator to continually improve its own performance.

Figure 2 shows the GAN architecture consisting of two components, the generator and
the discriminator, that are trained together. The generator is responsible for creating artifi-
cial ransomware instances that resemble the real attacks. The new (artificial) ransomware
instances are then sent to the discriminator that, in turns, tries to identify whether it is
artificial. In this context, the generator tries to fool the discriminator by making the artificial
sample as similar as the real ones as possible. Concretely, the generator creates the patterns
with probability distribution similar to the probability distribution of the real ransomware.
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The discriminator, on the other hand, is optimized to distinguish the real and artificial
attack. If successfully identified, the feedback is sent to the generator, which will readjust its
weights, that helps in creating new instances closer to the real ones. This process continues
iteratively until both generator and discriminator are optimized. The process starts by
feeding the generator with random input from an input vector. Based on this input the
generator crafts an artificial attack pattern, which will then be sent to the discriminator.
The discriminator will make the decision as to whether the data is ransomware or not. If
the decision is correct, the generator is updated to improve its ability to generate more
accurate attack patterns. Likewise, if the decision is wrong, the discriminator is updated to
improve its ability to detect the artificial attack patterns. The process continues until both
generator and discriminator are optimized as shown in the equation (4). At the end of this
phase, a dataset that contains both real and artificial ransomware pre-encryption attacks
instances are created. This dataset is used to train the ransomware early detection module
in the second phase.

The Enhanced Bi-Gradual Minimax Loss Function

In the loss function schemes used by the generator and discriminator in the GAN algo-
rithm, the distance between the probability distributions of real and artificial patterns are
measured. Our proposed Bi-Gradual Minimax loss function improves the original Minimax
function mentioned in Equation (1). Although the loss functions used by the generator and
the discriminator rely on different probability distributions for error calculation, they are
derived from the same formula as Equation (4).

V(G,D) = Ex[∂log(D(x))] + Ez[(1− ∂)log(1− D(G(z)))] (4)

where D(x) denotes the discriminator’s estimate of the probability that real data instance x
is real, G(z) denotes the generator’s output given the noise z, D(G(z)) denotes the discrimi-
nator’s estimate of the probability that a fake instance is real, Ex represents the expected
value over all real data instances, and Ez represents the expected value over all random
inputs to the generator (in effect, the expected value over all generated fake instances G(z)).
The ∂ denotes the gradual coefficient that controls the estimation of probability in both
generator and discriminator. The gradual up-weighting coefficient is introduced by this
study to cater for accurate loss estimation when the pre-encryption data are used to train a
GAN-based early detection model and calculated by Equation (5) as follows:

∂ =
1 + a

R
(5)

where R is the number of real instances, while a is the number of artificial instances
generated so far. As the number of real instances (R) is fixed, the value of coefficient ∂
changes proportionally to the number of artificial instances.

In the beginning when there are no or few artificial samples created, the value of ∂
starts small as the value of R in the denominator is way higher than the value of a in the
numerator. When more artificial instances are generated, the value of ∂ grows. Therefore,
the coefficient dynamically adjusts the upper limit of the error, so it starts low and increases
progressively with the addition of new artificial instances. This helps the loss function
to accurately estimate the probability that a particular instance is artificial even if the
data is limited as in the case of ransomware early detection. The concept is that, in the
early phase of ransomware attack, the distribution of attack patterns is not clear, so the
discriminator tends to reject many samples that are not at enough close proximity to the
real data. Therefore, the ∂ relaxes GAN discriminator’s estimation criteria at the beginning
when sufficient data representing the attack patterns are yet to be collected. When more
artificial attack patterns are generated, the loss function becomes more stringent.

In the Minimax loss function, we incorporated the coefficient ∂ to dynamically adjust
the upper limit of loss estimation. Therefore, the generator can adapt to the high variance
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in the probability distribution of the pre-encryption phase of ransomware attacks. At the
beginning of GAN’s algorithm training, the number of artificial instances is low, which
decreases the weight of the discriminator’s term in the loss function in Equation (1).
Therefore, the total loss will be calculated based on the generator’s term. This gives the
generator more freedom to craft attack patterns that can be accepted by the discriminator.
The intuition is that when the influence of the discriminator’s term in the loss function is
low, the likelihood that it identifies the artificial patterns as real increases. In contrast, when
the number of artificial instances of attack patterns increases, the influence of discriminator
in Equation (1) increases, and the weight of the generator’s term decreases. Hence, the
ability of the discriminator to identify the artificial instances increases.

3.1.2. Phase 2: The Early Detection Module

In this phase, the augmented dataset generated during Phase 1 will be used to train
the ransomware early detection model. The Long Short-Term Memory (LSTM) will be used
to train a detection model. A set of informative features will be selected using the Mutual
information Feature Selection (MIFS) according to Equation (6) as follows:

J(Xk) = I(Xk; Y)− β ∑
XjεS

I
(
Xj; Xk

)
+ γ ∑

XjεS
I
(
Xj; Xk

∣∣Y)
(6)

where I(Xk; Y) is the mutual information between the candidate feature Xk and the class
label Y; I

(
Xj; Xk

∣∣Y)
is the conditional mutual information between the candidate feature

Xk and the feature Xj in the selected set S, given the class label Y; while β and γ are
parameters (coefficients) with values between 0 and 1. The purpose of feature selection is
to reduce data dimensionality, which avoids the overfitting problem that negatively affects
the detection accuracy. By selecting the most relevant features, the model will also generate
less false alarms, which contributes to higher precision as well. Furthermore, reducing
data dimensionality helps to decrease the complexity of the model, which makes it suitable
for real-time scenarios like ransomware early detection. The MIFS will rank the attributes
based on the entropy, such that those with higher entropy value get lower rank. Then, the
MIFS will select n top-ranking features, that will be used as inputs in the LSTM algorithm.

The reason for using LSTM to build the detection module is due to its ability to
remember the previous states, which is important property for ransomware early detection
as it helps in tracking the progression of ransomware behavior during the pre-encryption
phase. Therefore, the LSTM can trace the polymorphic behavior of the ransomware thanks
to the cell state, which provides a bit memory to the LSTM so it can remember the past.
The LSTM network is composed of three types of gates, namely input (Equation (7)), forget
(Equation (8)), and output (Equation (9)):

it = σ(ωi[ht−1, xt + bi]), (7)

i f = σ(ω f [ht−1, xt + b f ]), (8)

io = σ(ωo[ht−1, xt + bo]) (9)

where it, i f , and io represent the input gate, forget gate, and the output gate. During the
model’s training, the LSTM will be trained using the data and selected features. The model
is composed of several layers, namely input, output, and hidden. The number of nodes in
the input layer is determined by the number of features selected by the MIFS. These nodes
will receive data and process them to the hidden layer, after they multiply by the input
weight. The hidden part of LSTM will be constructed using multiple layers. The number of
hidden layers and nodes in each hidden layer will be optimized based on the bias factor
during the training phase as well. In the hidden layers, the data will be processed based on
the activation function used in the hidden nodes. The Relu function (Equation (10)) will
be used as the activation function in all nodes in the hidden layers of LSTM, except the
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layer that precedes the output, where the sigmoid function (Equation (11)) will be used.
The output layer receives the data from the sigmoid functions in the last hidden layer and
determine whether the instance is malicious or normal based on a threshold where values
greater than 0.5 are considered attacks.

R(x) = max(0, x) (10)

∅(x) =
1

1 + e−x (11)

The LSTM model is trained using the 10-fold cross validation method, where data
is divided into two sets: training set and testing set. The training builds the model while
testing evaluates the model’s accuracy. The size of the training set is 90% of the data, and
the testing set is 10% of the data. This process is repeated 10 times and the accuracy of the
model will be recorded. At the end of training/testing process, the averaged accuracy is
calculated, which determines the overall accuracy of the model.

4. Results and Discussion

In this section, the description of our development environment setup is provided
where in the experiments were conducted as well as the dataset used for those experi-
ments. Then, the results of each technique are discussed along with the comparison to
related works.

4.1. Experimental Facilities

Our evaluation was conducted using several Python-based packages including Sklearn
[Version Number: 1.3.1], Pandas [Version Number: 2.1.0], Numpy [Version Number: 1.25.0],
and SkFeature [Version Number: 1.0.0]. TensorFlow [Version Number: 2.3] was used to
build both the generator and discriminator networks of the GAN model. Anaconda
software [Version Number: 3] was used as a Python IDE. Specialized libraries like Keras
simplified the architecture development process, allowing us to focus on optimizing the
model rather than dealing with lower-level details. For data preprocessing and feature
extraction, tools such as scikit-learn, Numpy, and Pandas were utilized.

4.2. Corpus of Crypto-Ransomware Binaries

The corpus of crypto-ransomware binaries used in this study were downloaded from
http://www.virusshare.com (accessed on 14 March 2023) public repository [30–33]. The
corpus consists of 8152 samples. Those samples represent different families such as Cerber,
TeslaCrypt, CryptoWall, Petya, and WannaCry. The samples were collected during the
period from September 2016 to August 2017. In addition, 1000 benign programs were
downloaded from informer.com [32–35], a popular Windows-based applications repository.
Those files are called ransomware binaries, often referred to as Portable Executable (PE)
files. Those PE files are a central focus in the field of malware analysis as they serve as a
common format for executables, object code, and DLLs in Windows operating systems.
When analyzing ransomware, PE files are closely inspected statically or dynamically to
understand the malicious software’s structure, functionalities, behavior, and potential
impact. By dissecting the PE file, we can extract valuable metadata, identify suspicious
or known malicious signatures, and gain insight into the ransomware’s behavior, such as
encryption methods, communication with command and control servers, or persistence
mechanisms. Analyzing these binaries is pivotal in developing countermeasures, creating
detection signatures, and understanding the evolving tactics of ransomware authors. In
this study, the dynamic analysis, which involves executing the PE file as the sandbox,
is adopted.

http://www.virusshare.com
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4.3. Data Engineering

The benign application group consists of file utilities like compression, encryption, and
editing tools, along with office, developer, multimedia tools, drivers, browsers, and games.
Each sample was verified using VirusTotal, which employs 56 anti-virus (AV) programs to
ascertain each sample’s maliciousness, as referenced in multiple studies. Samples identified
as malicious by less than 5 AV engines were disregarded. The benign samples were
only selected if all 56 AV engines marked them as trusted. Both ransomware and benign
software were run and studied in real-time within the Cuckoo Sandbox. Once a sample
was introduced into the analysis machine, the sandbox monitored the resulting process,
recording the APIs into a dedicated trace file for that sample. The information from these
files formed the main body of data.

4.4. Feature Selection

The Enhanced Mutual Information Features Selection (EMIFS) built in our previous
work was used to select the most informative features for the pre-encryption phase of
crypto-ransomware lifecycle. The experiments were conducted using several epochs sets
with different number of features, i.e., 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 features. The
results show the accuracy at different numbers of epochs. The dataset was divided into a
training set and testing set using a 10-fold cross validation approach. The testing set was
then used to determine the classification accuracy of those classifiers.

4.5. Compilation and Comparison of Results

Table 1 shows the accuracy results based on number of epochs. It can be observed that
for the number of epochs less than 90, the classification accuracy increases when the size of
features set increases from 5 to 20 features. However, when the size of features increase, the
accuracy drops again. When the number of epochs increases to 120, the accuracy increases
until the number of features reaches 25. After that, no significant increase was shown. If
the number of epochs increased to 150, 180, and 210, the accuracy increases for the feature
sets 10, 15, 20, and 35. When the number of features increases to 35 and above, the accuracy
does not improve. Similarly, the accuracy when the feature set size is 5 fluctuates between
0.88 and 0.919.

Table 1. Accuracy results of the proposed BGM-GAN based on number of epochs.

Features
Epochs

E30 E60 E90 E120 E150 E180 E210

5 0.890 0.906 0.934 0.932 0.942 0.938 0.926
10 0.908 0.920 0.951 0.935 0.954 0.953 0.957
15 0.898 0.939 0.937 0.944 0.950 0.969 0.961
20 0.915 0.959 0.956 0.954 0.956 0.965 0.962
25 0.910 0.949 0.941 0.973 0.971 0.979 0.969
30 0.927 0.960 0.931 0.963 0.980 0.967 0.967
35 0.936 0.953 0.938 0.970 0.979 0.970 0.981
40 0.937 0.925 0.953 0.971 0.976 0.991 0.986
45 0.939 0.916 0.946 0.984 0.981 0.991 0.992
50 0.938 0.933 0.922 0.989 0.984 0.994 0.995

To show the efficacy of our proposed BGM-GAN techniques, the results were com-
pared with the GAN-based detection model proposed by [36]. Furthermore, the comparison
was conducted using the CNN and DBN models proposed by [37,38]. Moreover, the ex-
periments were conducted using different features set sizes ranging from 5 to 50 and
incremented by 5 features between each of the two consequent sets. The classification
accuracy was used as the measurement of the classification performance. Figure 3 shows
the comparison results between our proposed BGM-GAN and the related techniques. Based
on the comparison results, the proposed BGM-GAN outperforms GAN, CNN, and DBN.
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Figure 3a shows an accuracy comparison of our proposed BGM-GAN with the related
models (standard GAN, CNN, and DBN) across various feature counts, with each model
trained for 30 epochs. Our proposed GAN demonstrates a general increase in accuracy as
the feature count rises, peaking at 45 features with an accuracy of 0.939. There is a slight
dip at 50 features (0.938), but the proposed GAN still displays consistent high performance.
The standard GAN begins at a similar accuracy to our proposed GAN (0.891 at 5 features),
with its highest accuracy achieved at 25 features (0.930). Post this peak, the accuracy
diminishes slightly, reaching accuracy of 0.916 at 50 features. The CNN model starts with
an accuracy of 0.865 at 5 features and reaches its peak accuracy at 30 features (0.929).
Past this point, the model’s accuracy regresses slightly, ending with an accuracy of 0.919
at 50 features. The DBN model, meanwhile, shows less fluctuation. It starts with 0.885
accuracy at 5 features and peaks at 20 and 30 features with an accuracy of 0.914. Thereafter,
it maintains a relatively stable performance, ending with 0.906 at 50 features. In summary,
all models exhibit peaks in performance at different feature counts. Our proposed BGM-
GAN, however, consistently outperforms the others across the range of features, reaching
the highest accuracy of all models at 45 features (0.939), as shown in Figure 3.

Figure 3b shows the comparison of the accuracy of our proposed BGM-GAN and
the related models, standard GAN, CNN, and DBN, when trained for 60 epochs across a
varying number of features. The proposed GAN shows an increasing trend in accuracy
as the number of features goes up to 30, peaking at an impressive 0.960 accuracy. Beyond
30 features, however, its accuracy slightly decreases, with the lowest recorded at 45 features
(0.916), then showing an increase at 50 features (0.933). The standard GAN model shows
fluctuating performance, starting with 0.895 at 5 features and reaching its highest accuracy
at 45 features (0.940). The CNN model exhibits a somewhat inconsistent performance,
beginning with an accuracy of 0.872 at 5 features, peaking at 25 features (0.915), then
experiencing a slight decrease with further increase in features, achieving an accuracy of
0.925 at 50 features. The DBN model starts with 0.894 accuracy at 5 features, peaking twice
at 25 and 35 features with an accuracy of 0.928 and 0.930, respectively. It then shows a dip
at 40 features, and a slight increase to reach 0.922 at 50 features. All models show variations
in performance at different feature counts. Nevertheless, the proposed GAN consistently
outperforms the other models in most feature counts, achieving the highest accuracy of all
models at 30 features (0.960).

Figure 3c illustrates the accuracy comparison between our proposed BGM-GAN and
the related works (standard GAN, CNN, and DBN) across varying numbers of features.
All models were trained for 90 epochs. The proposed GAN exhibits high accuracy starting
from 0.934 at 5 features, peaking at 10 features with an accuracy of 0.951. While there is
a slight decrease in accuracy at 30 features (0.931), it picks up again reaching a second
peak at 40 features (0.953) and then decreases slightly towards 50 features (0.922). The
standard GAN begins with 0.882 accuracy at 5 features and peaks at 30 features (0.927).
Its performance remains fairly stable thereafter, with the final accuracy at 50 features
being 0.927. The CNN model’s performance starts at 0.874 accuracy for 5 features and
progressively increases to reach a peak at 40 features (0.924), and then slightly decreases
at 50 features (0.916). The DBN model exhibits a steady increase in performance, from
an initial 0.884 accuracy at 5 features to its peak at 30 features (0.932). Thereafter, the
accuracy decreases, reaching 0.916 at 50 features. All the models exhibit fluctuations in
accuracy at different feature counts. However, the proposed GAN consistently shows
higher performance in comparison to the other models in most feature counts, reaching the
highest accuracy of all models at 10 and 40 features (0.951 and 0.953, respectively).

Figure 3d displays an accuracy comparison between our proposed BGM-GAN and the
related works (standard GAN, CNN, and DBN), across varying numbers of features. All
models were trained for 120 epochs. Starting with the proposed GAN, it shows a consistent
increase in accuracy with a slight dip at 30 features (0.963), before reaching the highest
accuracy of 0.989 at 50 features. The standard GAN shows fluctuations with its performance
peaking at 35 features with an accuracy of 0.940. However, it ends with a slightly lower
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accuracy of 0.927 at 50 features. The CNN model displays an initial increase in accuracy,
peaking at 25 features (0.940). After this peak, there is a decrease at 30 features (0.915)
followed by a minor increase and a subsequent drop, ending with the accuracy of 0.899 at
50 features. Finally, the DBN model starts at 0.908 at 5 features shows its peak performance
at 35 features (0.946) and then displays a slight decrease, ending with an accuracy of 0.929
at 50 features. The proposed GAN outperforms the other models across the range of
features, achieving the highest accuracy of all models at 50 features (0.989). The standard
GAN, CNN, and DBN models demonstrate fluctuating performance across different feature
counts, with their peak accuracies achieved at 35, 25, and 35 features, respectively.

Figure 3e shows an accuracy comparison between our proposed BGM-GAN and the
related models (standard GAN, CNN, and DBN), across varying numbers of features.
All these models were trained for 150 epochs. The proposed GAN displays a consistent
increase in accuracy, starting from 0.942 at 5 features and peaking at 0.984 at 50 features.
The accuracy dips slightly at 15 features (0.950), then increases consistently, except for a
minor decrease at 40 features (0.976). The standard GAN shows varying performance, with
its highest accuracy achieved at 25 features (0.961) and 50 features (0.945), and the lowest
accuracy at 15 features (0.879). The CNN model exhibits a steady increase in accuracy,
peaking at 45 features (0.949), followed by a substantial decrease to 0.899 at 50 features. The
DBN model displays a somewhat fluctuating performance, beginning at 0.882 for 5 features,
peaking at 35 features (0.944), and ending with an accuracy of 0.930 at 50 features. It can
be observed that the proposed GAN consistently outperforms the other models across the
range of features, achieving the highest accuracy of all models at 50 features (0.984). The
standard GAN, CNN, and DBN models demonstrate variable performance across different
feature counts, with their peak accuracies occurring at 25, 45, and 35 features, respectively.

Figure 3f shows the accuracy comparison between our proposed BGM-GAN and
the related works (standard GAN, CNN, and DBN) over various feature counts. Each
model was trained for 180 epochs. The proposed GAN shows consistently high accuracy.
Starting at 0.938 at 5 features, the accuracy generally increases to reach the highest accuracy
of 0.994 at 50 features. There is a slight dip at 30 features (0.967), but the model then
continues to increase its performance. The standard GAN has some fluctuation, starting
with an accuracy of 0.887 at 5 features, reaching a peak at 20 features (0.939), and ending at
0.930 for 50 features. The CNN model also fluctuates, with its highest accuracy achieved at
30 features (0.952) and the lowest at 5 features (0.882). Its accuracy dips after 30 features
and ends at 0.935 for 50 features. The DBN model starts at 0.892 at 5 features, peaks at
30 features (0.947), then slightly decreases, ending with an accuracy of 0.931 at 50 features. It
can be noticed that the proposed GAN consistently outperforms the other models across the
range of features, reaching the highest accuracy at 50 features (0.994). The standard GAN,
CNN, and DBN models display more fluctuation in their performance across different
feature counts, with the peak accuracies achieved at 20, 30, and 30 features, respectively.

Figure 3g depicts an accuracy comparison between our proposed BGM-GAN and
the related works (standard GAN, CNN, and DBN) for different numbers of features. All
models were trained for 210 epochs. The proposed GAN shows a consistent increase in
accuracy as the number of features increases, beginning at 0.926 at 5 features and reaching
a peak at 0.995 at 50 features, indicating the robustness and efficacy of our proposed model.
The standard GAN, on the other hand, exhibits a fluctuating performance with its highest
accuracy achieved at 30 features (0.979). The accuracy slightly decreases afterwards, but
it still manages to end with a relatively high accuracy of 0.977 at 50 features. The CNN
model starts at 0.905 at 5 features and peaks at 25 features with an accuracy of 0.959.
Thereafter, the accuracy tends to decrease with a minor increase at 40 features (0.967),
finally ending with an accuracy of 0.940 at 50 features. The DBN model starts at 0.927
at 5 features, dips slightly at 10 features (0.897), and then rises steadily till 25 features
(0.950). It further increases to 0.940 at 30 features, then experiences fluctuations, eventually
ending with an accuracy of 0.935 at 50 features. It can be observed that the proposed GAN
outperforms the other models across the feature range, reaching the highest accuracy of all



Future Internet 2023, 15, 318 13 of 18

models at 50 features (0.995). The standard GAN, CNN, and DBN models display variable
performance across different feature counts, with their peak accuracies achieved at 30, 25,
and 25 features, respectively.

Figure 3a–g shows that our proposed BGM-GAN technique achieved detection ac-
curacy higher than the GAN-based model of [36] for all epochs. The proposed technique
also outperformed the accuracy of other deep learning models like CNN and DBN. This is
attributed to the ability of the proposed Bi-Gradual Minimax loss function in estimating
the distance between the probability distributions of real and artificial instances in the
pre-encryption data of ransomware attacks where the data that represent ransomware’s
early behavior is insufficient. This supports our assumption that the existing works failed
to consider the effect of data insufficiency on the generator and discriminator, which makes
them unable to produce artificially realistic metamorphic ransomware samples.

The comparison results shown in Figure 3a–g also show that the accuracy increases
by increasing the number of features up to a certain limit. When the limit is reached,
the accuracy either drops or show no significant improvement. The limit to which the
number of selected features contributes to improving the accuracy varies based on the
number of epochs in each run. For example, when the model is trained using 30 epochs,
the maximum accuracy was achieved when the number of the selected features was 45,
while for 60 epochs the maximum accuracy was achieved using 30 features.

The reason that the accuracy drops when number is the overfitting caused by increased
number of features and number of epochs during model training. When the number of
features increases, the data dimensionality increases as well. Such data dimensionality
negatively affects the accuracy of the detection model. The issue is aggravated when
dealing with data that have insufficient ransomware behavior during the early phases.
Likewise, when the number of epochs during the model’s training increases, the likelihood
that overfitting occurs also increases which makes the loss function unable to accurately
measure the distance between real and artificial patterns. This explains the deterioration of
the accuracy after a certain number of features and epochs.

Likewise, Figure 4a,b show that on average, our proposed BGM-GAN outperformed
the existing techniques in terms of recall and false positive rate, respectively. The compari-
son was carried out by measuring both the recalls and the false positive rate over several
number of epochs using several feature set sizes (as has been done in Figure 3). The average
was taken with respect to the feature set size. The improvement shown by BGM-GAN is
attributed to the ability of the BGM method to capture the early patterns even when less
data are available. This conforms with the results shown in Figure 3. Additionally, Table 2
shows the training time that the BGM-GAN takes per number of epochs. We observed that
the training time was between 2 to 4 milliseconds (ms) per step and around 2 s per epoch.
Therefore, the greater number of epochs the training uses, the more time it takes to develop
the model.
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Figure 3. (a) Comparison of accuracy between our proposed BGM-GAN and the related models,
standard GAN, CNN, and DBN, when trained for 30 epochs across a varying number of features.
(b) Comparison of accuracy between our proposed BGM-GAN and related models, standard GAN,
CNN, and DBN, when trained for 60 epochs across a varying number of features. (c) Comparison of
accuracy between our proposed BGM-GAN and related models, standard GAN, CNN, and DBN,
when trained for 90 epochs across a varying number of features. (d) Comparison of accuracy between
our proposed BGM-GAN and related models, standard GAN, CNN, and DBN, when trained for
120 epochs across a varying number of features. (e) Comparison of accuracy between our proposed
BGM-GAN and related models, standard GAN, CNN, and DBN, when trained for 150 epochs across
a varying number of features. (f) Comparison of accuracy between our proposed BGM-GAN and
related models, standard GAN, CNN, and DBN, when trained for 180 epochs across a varying
number of features. (g) Comparison of accuracy between our proposed BGM-GAN and related
models, standard GAN, CNN, and DBN, when trained for 210 epochs across a varying number
of features.
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Figure 4. (a) Comparison of the averaged recall (true positive rate) between our proposed BGM-
GAN and related models, standard GAN, CNN, and DBN, w across a varying number of epochs.
(b) Comparison of the averaged false positive rate (FPR) between our proposed BGM-GAN and
related models, standard GAN, CNN, and DBN, when trained for 60 epochs across a varying number
of epochs.

Table 2. Training time for various number of epochs.

# of Epochs Total Training Time (Seconds)

30 70 s

60 132 s

90 189 s

120 253 s

150 307 s

180 369 s

210 431 s

To sum up, the novelty of this work lies in addressing the critical challenge of early
detection of ransomware attacks, which is often compromised due to insufficient and
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quickly outdated attack patterns. Unlike previous studies that focused on selecting a subset
of features that quickly become obsolete due to the dynamic nature of ransomware, this
study explores a fundamentally different approach using GAN. The paper introduces an
enhanced loss function for the GAN’s generator by incorporating a gradual up-weighting
coefficient, aimed at minimizing the distance between the real and artificially generated data
distributions. This technique helps our GAN model to create synthetic ransomware samples
that are close to the real attack patterns, overcoming the lack of real attack patterns during
the pre-encryption phase. This enhanced loss function is incorporated into a GAN-based
data augmentation module for generating more representative attack patterns. Notably this
technique improves our measurements across the board. Our model contributes to a more
robust and timely ransomware detection outcome, filling a gap in existing cybersecurity
literature and best practice.

5. Conclusions

In this study, we have introduced the Bi-Gradual Minimax (BGM) loss function, a
novel optimization strategy designed to enhance the performance of Generative Adver-
sarial Networks (GANs) in the context of ransomware early detection. By integrating this
advanced loss function into the GAN framework, we have achieved dual objectives: a
more nuanced minimization of maximum loss for both the generator and the discriminator.
This advancement serves a twofold purpose. First, it enables the generator to craft highly
convincing synthetic patterns that closely mimic the pre-encryption data distribution,
thereby addressing the limitations imposed by data scarcity. Second, it empowers the
discriminator to identify potentially malicious activities more accurately, based on these
refined synthetic patterns. One of the most compelling aspects of the BGM-GAN model
is its synergistic architecture. Improvements in either the generator or the discriminator
contribute reciprocally to the enhanced accuracy of the overall system as shown here in
our results. Furthermore, the gradual up-weighting approach employed by our proposed
method ensures that our BGM-GAN model is particularly effective when data is scarce,
a frequent challenge in the domain of ransomware early detection. Therefore, the BGM-
GAN model not only addresses the issue of data insufficiency but also provides a robust
framework for predicting future ransomware attack patterns with higher accuracy.
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