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Abstract: This paper presents an analysis of the calls made to the Portuguese National Health Contact
Center (SNS24) during a three years period. The final goal was to develop a system to help nurse
attendants select the appropriate clinical pathway (from 59 options) for each call. It examines several
aspects of the calls distribution like age and gender of the user, date and time of the call and final
referral, among others and presents comparative results for alternative classification models (SVM
and CNN) and different data samples (three months, one and two years data models). For the task of
selecting the appropriate pathway, the models, learned on the basis of the available data, achieved F1
values that range between 0.642 (3 months CNN model) and 0.783 (2 years CNN model), with SVM
having a more stable performance (between 0.743 and 0.768 for the corresponding data samples).
These results are discussed regarding error analysis and possibilities for explaining the system
decisions. A final meta evaluation, based on a clinical expert overview, compares the different choices:
the nurse attendants (reference ground truth), the expert and the automatic decisions (2 models),
revealing a higher agreement between the ML models, followed by their agreement with the clinical
expert, and minor agreement with the reference.

Keywords: clinical triage; clinical pathways; SNS24; data analysis; machine learning; support-vector
machines; deep neural networks; explainability

1. Introduction

The Portuguese National Health Contact Center, called SNS24, is a national telephone
and digital public service in Portugal, supplied by trained nurses, that delivers clinical
services for citizens.

When receiving a call, and according to the citizen’s medical history and self-reported
symptoms, the nurse selects the most appropriate clinical pathway. This pathway leads
to five possible final referrals: transference to Poison Information Center (PIC), transfer-
ence to the National Medical Emergency Institute (INEM), clinical assessment in hospital
emergency or at a primary health care unit, and self-care.

During the triage, nurses ensure that the main symptoms reported are registered and
considered for the correct choice of the clinical pathway, which, in place, determine the
final referral. As other triage protocols such as the Manchester Triage System [1], these
pathways use a risk-averse system prioritisation. For this reason, SNS24 service has an
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important role in the National Health Service since allows a close connection with citizens
in their home places and, according to their symptoms, a specialist analysis upon their
clinical situation and decision about the most appropriate referral.

Clinical pathways are developed by health professionals and approved by the General
Directorate of Health (DGS). During the period of this study, the number of existent clinical
pathways was 54, ranging from “Cough” or “Abdominal Pain” to “Allergy”.

The SNS24 Scout.AI project aims at applying Artificial Intelligence methodologies in
the construction of decision support tools to help nurses in selecting the most appropriate
clinical pathway and to support DGS in the process of optimising the design of clinical
pathways and respective referrals.

This study presents the work developed during the second year of the project, which
extends and elaborates on previous experiments using three years of receiving calls, in
a total of around 2,577 millions of records. In [2], a preliminary study using different
text representations and shallow ML classification algorithms is presented while in [3] a
thorough analysis of Deep Neural Network (DNN) models is exposed. Both studies use a
subset of data composed of 3 months calls (with around 270,000 records).

Differently from these previous works, the current one presents a detailed charac-
terisation of the data, a comparison between both approaches along with a new com-
prehensive analysis of the results, regarding errors per class, model explainability and a
meta-evaluation made by an clinical expert.

The main contributions of this paper are summarised as follows:

• a characterisation of 3 years SNS24 calls;
• a thorough comparison of different Machine Learning models to select the most

appropriate clinical pathway;
• a comprehensive analysis of the results including classification and execution time

performance, per class error analysis, explainability of decisions and experts’ meta-
evaluation.

The rest of the paper is organised as follows: in Section 2, the related work is discussed,
and, to support the choices of the conducted experiments, the machine learning models
that have been usually employed and evaluated in clinical decision support systems are
pointed out; Section 3 presents the materials and methods: the data, the features used, the
prediction techniques and how experiments were organized; Section 4 presents the results,
first giving an overview of the main findings regarding the data analysis to help better
understand the problem, then evaluating the prediction models; Section 5 looks deeper
into the results reported, presenting an error analysis, discussing how decisions are made
for some specific examples through the use of an explainability method, and providing a
meta evaluation performed by domain specialists; and finally, conclusions are presented in
Section 6.

2. Related Work

Machine Learning (ML) and Natural Language Processing (NLP) have recently shown
important progress in applications such as clinical decision support systems by improving
the quality of information processing from clinical narratives [4–9].

In the literature we find approaches to health care data that are based on unsuper-
vised ML models. Funkner et al. [10], propose a data-driven prediction model of clinical
pathways for patient staying at hospitals: patients are clustered according to their move-
ments (clinical paths) in a hospital; then, a decision tree is used to explore the existing
diversity of patients’ clinical pathways. In [11], Simulation Modeling and ML are used
for the purpose of designing pathways and evaluating the return on investment, having
a elderly hip-fracture care scheme as use case. Almeida et al. [12] exploit the historical
component of the patient trajectory to improve the performance of clinical decision support
systems; by automatically extracting information from patient medical notes they aim to
assimilate detailed relevant patient information and provide recommendations during
clinical treatments.
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Our approach, on the other hand, considers supervised models for the task of text clas-
sification. In this type of task, different paradigms and algorithms are often considered [13],
and there is an objective way of measuring systems accuracy.

Traditional approaches usually represent text as a bag-of-words, using a specific
weighting scheme, with the most used one being TF-IDF (Term Frequency—Inverse Docu-
ment Frequency); a possible generalization is using bags of n-grams. More recently, word
embeddings [8] are being used to represent text, where each word is represented by a vector
(of a specific size) instead of a number.

As commonly known, each particular problem and dataset may have a preferred
model, with no optimal general algorithm choice [14]. In this way, there are many works
comparing approaches and experiment designs. One example is Mascio et al.´s work [15],
where alternative classification algorithms and various word representations are compared
regarding applications involving clinical texts.

Support Vector Machines (SVM) and Deep Learning (DL) architectures usually present
the best evaluation results [6,7,16] on evaluations performed on clinical decision support
problems [17]. One known difference between these two approaches is that using ML
methods (such as SVM) often requires feature engineering efforts, as these features are
not learned automatically in the process. On the other hand, DL based methods have
shown powerful feature learning capabilities. The literature presents many comparisons of
these two types of approaches. Baker et al. [18] deal with text classification on a cancer
dataset. They showed that a Convolution Neural Network (CNN) model, with fine-tuned
hyper-parameters, initialisation and training process, achieved better performance than an
SVM model based on engineered features.

Flores et al. [19] present extensive comparisons of alternative models, such as active
learning, SVM, Naïve Bayes, and a BERT classifier applied to biomedical datasets. They
found that the active learning approach reduced the number of training examples necessary
for achieving the same performance of the other classifiers. Other experimental results [20]
show that Bidirectional Encoder Representations from Transformers (BERT) models did
not achieve better performance when compared to CNN and Hierarchical Self Attention
Networks (HiSAN) models.

Besides making efficient predictions, it is very important to analyse the data and
explain the predictions made by the algorithm, particularly in this area of application [21,22].
In a different way from what was found in the literature, this work presents a detailed
analysis of the data, since it is useful to better understand the characteristics and the issues
regarding the learned models. Data analysis is also important for the clinical team to find
(new) insights from the phone calls received along the years and the way those calls are
being handled.

Regarding the classification task, and following the tendencies seen in the related
work, this work presents a comparative study of the two most evident methods found in
the literature: SVM and CNN. Moreover, a detailed analysis of the results, explainability of
the models, and a meta evaluation of errors are presented.

3. Materials and Methods

This section introduces the materials, including a characterisation of datasets, and the
methods: the conducted data analysis, the prediction task and the experiments organisation.

3.1. Materials

The datasets used in these experiments correspond to the information collected from
the phone calls of triage type received by the SNS24 line throughout different periods of
time. These records include personal data (such as age, gender, encrypted primary care
unit, county and district of the call, between others), call data (start and end date/time,
initial intention, comments, contact reason, clinical pathway and final disposition, between
others) and triage agent encrypted id and decisions.
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The data, provided by SPMS (Serviços Partilhados do Ministério da Saúde), the public
business entity which provides specific shared services in the health area to establishments
and services of the Portuguese National Health Service (SNS), was anonymised and the
study protocol was approved by the competent ethics committee.

3.1.1. Three-Month Data

The three-month data, available in the beginning of the project and used on previous
studies, included a total of 269,663 records dated from January to March 2018. It was
composed of 18 different attributes and 53 clinical pathways.

For building the dataset, clinical pathways with less than 50 instances were removed
from the original data, resulting in a dataset with 269,654 instances and 51 clinical pathways
for classification.

3.1.2. Three-Year Data

The three-year data, a superset of the three-month data, was made available later
and comprised records dated from January 2017 to December 2019. It was composed of a
total of 64 attributes and examples from 54 pathways from the 59 possible ones. A similar
procedure was performed by removing pathways with less than 100 instances, resulting in
a dataset of 53 different pathways with a total of 2,577,517 instances.

The proportion of observations per clinical pathway is diverse, ranging from 10.68%
for “Cough” to 0.01% for “Heat-related problems”; 4 clinical pathways have proportions
above 5%, and 25 have less than 1%. The possible clinical pathways and the corresponding
number of calls (in each of the three years of study) are listed in Table A1 in Appendix A.

3.1.3. Features under Analysis

Besides “Contact Reason”, previous studies considered other available information
(age, time and day of the week of the call, and comments) for building classification
models but no better results were obtained. Building upon those results, the classification
models will consider only the “Contact Reason” attribute and the corresponding clinical
pathway (selected by the nurse). “Contact Reason” is a medium length text attribute,
written in Portuguese by the technician who answered the call, containing the most relevant
information about the patient’s condition; it is composed of a maximum of 25 words and the
average number of words is 8.27. Table 1 presents a few examples of the “Contact Reason”
attribute (the original Portuguese text is written in italics following the corresponding
translation to English) and the corresponding clinical pathway (one for each of the 10 most
common pathways).

Table 1. One example of the “Contact Reason” for each of the 10 most common clinical pathways.

Contact Reason Clinical Pathway

Rinorreira transparente, tosse produtiva e febre há 3d.
Transparent rhinorrhea, productive cough and fever 3d. Cough

Dor Abdominal e nauseas há 15 dias, agravamento hoje
Abdominal pain and nausea for 15 days, worse today Nausea and vomiting pr.

Dor supraumbilical há cerca de alguns dias
Supraumbilical pain for about a few days Abdominal pain

Congestão nasal há 24 h.
Nasal congestion for 24 h. Oropharynx problem

Foliculite purulenta face, tronco, braços e pernas desde 3ª feira
Purulent folliculitis face, corpo since Tuesday Rash
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Table 1. Cont.

Contact Reason Clinical Pathway

desde dia 21 tosse seca provoca o vomito, mialgias
since the 21st dry cough causes vomiting, myalgias Flu syndrome

Sangue nas fezes e diarreia ha 5 h
Blood in stool and diarrhea for 5 h Diarrhea

Lombalgias e hematuria há 72 h.
Low back pain and hematuria 72 h ago. Urinary problem

Episódios de febre e extremidades cianosadas há 18 h
Episodes of fever and cyanotic extremities for 18 h Body temp. change pr.

Dor na região costal algumas vezes
Pain in the rib area sometimes Chest pain

The following attributes were further considered to characterize the population using
the SNS24 service: gender, age, date and time of the call, district of the call, and final
referral.

3.2. Methods

As mentioned before, the present work builds upon the 3 years data, including a
detailed characterisation of the data and a comparison between SVM and CNN enlarged
models including a comprehensive analysis of the model performance, errors per class,
model explainability and a meta-evaluation made by an clinical expert.

3.2.1. Data Characterisation

Carefully analysing the data is useful not only to understand the profile of the calling
citizens but also for the SPMS team to get new insights over the phone calls received
along the years and the way those are being handled. Thus, it was agreed to analyse the
following information: distribution of calls per clinical pathway, per gender, per relation
of the caller with the citizen, per district, per age of citizen (general and for the 10 most
frequent pathways), per hour of the day, day of week and month of year (general and for
the the 10 most frequent pathways). Moreover, an analysis of the distribution of referrals
per pathway was also done.

3.2.2. Pathway Prediction

SNS24 calls are received by nurses that, after an initial assessment (pre-triage) that
enables the detection of emergent situations, follow predefined clinical pathways. The
outcome of a pathway is a referral (transference to PIC, transference to INEM, clinical
assessment in hospital emergency or at a primary health care unit and self-care) that can be
changed by the nurse.

Self reported symptoms and signs, as well as relevant information provided on medical
history are considered for the selection of the most appropriate clinical pathway. This choice
is extremely relevant since it should have the discriminant capability for not sending to
Hospitals Emergency situations of low clinical risk and, most importantly, ensure safety by
identifying all situations that demand urgent medical contact.

Since, in the course of a call, nurses need to choose a specific clinical pathway, this
problem can be seen as a multi-class classification task where the “Clinical pathway” is the
class to be predicted.

The “Contact Reason” text was processed to get 2 different representations aiming to
weight the importance of a word in the prediction task: the traditional TF-IDF represen-
tation (which determines the importance of a word in the text within the corpus) and a
locally trained word embedding (word embeddings map the words into a low-dimensional
continuous space encoding their semantic and syntactic information by assuming that
words in similar contexts should have similar meanings [23]).
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The ML algorithms chosen to build the prediction models were SVM and CNN. This
selection was made considering the previous work developed over a 3 month data period.
In [2] Random Forests, SVM with linear and RBF kernels SVM and Multinomial Naïve
Bayes were tested with different text representations (TF-IDF with different n-grams and
BERT [24] and Flair [25] embeddings); linear SVM with Flair embedding model reached
the highest performance. In [3], a comparison between several DNN architectures (CNN,
RNN and Transformers, namely BERTimbau Base BERT model for Portuguese [26], based
architectures) was made using locally trained word embeddings with a 200-dimension
vector; the transformers based architecture reached the best performance. The RBF kernel
SVM algorithm and the CNN based architecture were chosen for this work because they
presented the best compromise between model performance and the time needed to build
the models.

Following the setup from previous experiments, a SVM with standard RBF ker-
nel with default parameters using TF-IDF to represent text [2] and a CNN based ar-
chitecture with locally trained word embeddings [3] were used. The CNN architec-
ture used was a classical convolutional neural network for text classification described
by Yoon Kim [27] and was composed of 4 hidden layers: convolutional, max-pooling,
fully connected and dropout layers. The convolution layer’s settings were as follows:
filters = 128, kernel_size = 3, activation = ‘relu’; the dense layer’s settings were as follows:
batch_size = 128, activation = ‘relu’; the settings of the dropout layer [28] were as follows:
dropout_rate = 0.3; and finally, the ADAM optimizer [29] was selected with patience = 5
and learning_rate = 10−4.

Scikit-learn (v1.2) [30], TensorFlow (v2.2) [31], Pytorch (v1.8) [32] and Python (v3.8) [33]
were the libraries used to build the ML models.

3.2.3. Experiment Organisation

Experiments were set up to assess the impact of larger datasets and older models in
the model performance. For that, the 2019 data was kept for testing and 3 training sets were
built: one with 2017 data, one with 2018 data and one with 2017-2018 data. Moreover, the
3 months models obtained in the previous studies [2,3] were also tested over the 2019 data.

The prediction performance was assessed using balanced accuracy (recall, sensitivity),
precision (positive predictive value) and F1 measures; an analysis of the prediction time of
each model was also made.

4. Results

This section presents and discusses the results obtained concerning the characterisation
of the population that use the SNS24 service and the clinical pathway prediction models.

4.1. Data Characterisation: Main Findings

The origin of the call was studied and Figure 1 presents the number of calls per district
per 100,000 inhabitants. It can be observed that the great majority of calls are made from
the greater Lisbon area (Lisbon and Setubal districts) with a number of calls between 2000
and 2500 per 100,000 inhabitants, followed by the the coastal districts north of Lisbon with
values between 1500 and 2000 calls. In the mainland, 3 inland districts (Brangança, Guarda
and Portalegre) use less the line, with a number of calls ranging 500 and 1000 per 100,000
inhabitants. The citizens living in the islands (Azores and Madeira autonomous regions)
use the phone line even less; one possible explanation for this minor use of the SNS24
phone line is the existence of a similar service run by the regional health authorities.
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Figure 1. Total number of calls per district per 100,000 inhabitants (image generated using https:
//paintmaps.com/, accessed on 9 November 2022).

One important and needed data characterisation is the clinical pathway, being it the
attribute the classification models will aim to predict (known as target class). The proportion
of examples of each clinical pathway on the dataset is presented in Figure 2. As can be
observed, the dataset is very unbalanced, which turns the learning of a classification model
a more complex problem (the absolute numbers are presented in Table A1 on Appendix A).

The most frequent pathway is “Cough” with 10.68% of the calls, followed by “Nausea
and vomiting problems”, “Abdominal pain”, “Oropharynx problem” and “Rash” with
7.44%, 6.26%, 5.08% and 4.86%, respectively. Moreover, the 23 most frequent pathways
account for at least 80% of the calls, with the 7 most frequent ones accounting for around
42.4%; furthermore, there are 25 pathways for which the frequency is less than 1%.

Regarding the caller, Figure 3 shows that about half of the calls is to report a problem
of the callers themselves, followed by calls from the mother of the patient (26%); father
or husband of the patient account for 5% each, whereas caretakers account for 1% of the
callers.

Concerning the citizen gender distribution, the majority is female representing 59% of
the calls. For the age distribution it can be observed that the phone line is mostly used to
attend patients in their first years (up to five years old), followed by young adults, with the
number decreasing for the elderly; this trend is presented in Figure 4.

https://paintmaps.com/
https://paintmaps.com/
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Figure 2. Distribution of calls per clinical pathway.
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Figure 3. Distribution of calls by relation of the caller to the citizen.

Figure 4. Distribution of calls per the age of the citizen.

A similar age distribution analysis was done for the 10 most common pathways; these
were then empirically clustered by similar trends over patient age, having one cluster
following the general trend and 3 others with some differences. The distribution for those
clustered pathways can be observed in Figure 5. The first cluster (top-left) follows the
general trend and includes four pathways: “Cough”, “Nausea and vomiting problems”,
“Rash” and “Diarrhea”; the second cluster (top-right), shows the age distribution for the
“Flu Syndrome”: younger patients are not so frequent, with an increased percentage for
the adults between 30 and 40 years old. “Chest pain” and “Migraine” pathways represent
the third cluster (bottom-left) and have the most dissimilar distribution when compared
to the general age distribution. The final cluster (bottom-right) includes “Abdominal
pain”, “Oropharynx problem” and “Urinary problem” pathways and follow, somehow in a
smoother version, the general trend.
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Figure 5. Distribution of calls per age for the 10 most frequent pathways (clustered by similarity).

A study of the distribution of calls over time, namely hour of the day, day of the week
and month of the year was also made. Figure 6 presents the results (on top, the hour of the
day; on bottom left and right, the day of the week and month of the year, respectively. It can
be observed that dinner time (between 19:00 and 21:00) is the period summing around 20%
of the calls; the value reaches its minimum at 5:00 and increases until 10:00, keeping more
or less steady (with a small decrease) until 15:00, when it starts increasing again until 20:00.

In what concerns the day of the week, Monday and Friday are the weekdays with more
and less calls, with 15.25% and 13.75%, respectively; while the values decrease between
Monday and Friday, Saturday and Sunday receive 14.30% and 14.75% of the calls. The
number of calls around the year ranges between less than 6% in September and 12% in
January, with values around 10% from February to June and around 6% from July to
November; December has a value of around 10.05%.

Figure 6. Distribution of calls per hour of the day (top), day of the week (bottom-left) and month of
the year (bottom-right).
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A study on the distribution of the calls per month per pathway for the 10 most common
pathways was also made; these were empirically clustered by similar trends over time,
having, again, one cluster following the general trend and 3 others with some differences.
The distribution for those clustered pathways can be observed in Figure 7.

Figure 7. Distribution of calls per age for the 10 most frequent pathways (clustered by similarity
over time).

The first cluster is composed by the “Rash”, “Diarrhea” and “Body temperature change
problem” pathways and it follows, more or less, the general trend: decreases until March,
raises until June, decreases in July, keeping steady until September an slowly increasing
until December (except “Diarrhea” that decreases from October to December). “Cough”
and “Nausea and vomiting problems” compose the second cluster and show a somehow
similar behaviour over the year (top-right): the number of calls drops until August, then
the first raises until December while the second has the highest value in October slowly
decreasing until December.

The third cluster (bottom-left) is composed of four pathways: “Abdominal pain”,
“Chest pain”, “Oropharynx problem” and “Urinary problem” and has the following trend:
starting from January the values drop until March, raise until April, decreases until July
and stays steady until December. Finally, “Flu syndrome” composes the fourth cluster
(bottom-right): it has a huge peak in January (with almost 45% of the calls) and drops to
2.5% in April reaching almost 0% in August, starting to raise slowly until November and
having a steep raise in December.

Finally, a study of the distributions of referrals (self-care, primary care unit, emergency
room, INEM, others) per pathway was also made. Figure 8 presents the results for all
pathways. “Chest pain”, “Blood pressure problem” and “Fainting or lipothymia problems”
(not considering “Emergency”) are the pathways with higher percentage of INEM referral
with values around 25% of the calls, while “Vaccination reaction problem”, “Body tempera-
ture change problem”, “Nasal problem”, “Flu syndrome” and “Diarrhea” (not considering
“Asymptomatic contact tracing”) are the ones with higher percentage of self-care referral,
with percentages between around 60% and 75%.
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Figure 8. Distribution of referrals per pathway.

Figure 9 further presents the same analysis but for the 10 most common pathways, ar-
ranging them by the percentage of selfcare referral: “Body temperature change”, “Diarrhea”
and “Flu syndrome” have percentages higher than 50%; “Cough”, “Oropharynx problems”
and “Nausea and vomiting problems” have percentages higher than 30% and lower than
50%; “Abdominal pain” and “Rash” have a similar selfcare of around 23%; “Chest pain”
and “Urinary problems” have selfcare percentages lower than 10%. On the other end,
around 28% of “Chest pain” are referred to INEM and around 60% of “Abdominal pain”
and 50% of “Urinary problems” and “Chest pain” calls are referred to the emergency room.
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Figure 9. Distribution of referrals for the 10 most common pathways.

4.2. Evaluation of Prediction Models

As previously mentioned models were built to assess the impact of larger datasets
and older models in the model performance. Table 2 presents the balanced accuracy of
the models when considering the 1, 3 and 5 most probable clinical pathways (top-1, top-3,
top-5) along with the average time to predict 1000 examples (over 10 runs). The 3 months
models were built and assessed in previous works [2,3].

Table 2. Test set balanced accuracy (top 1, top 3 and top 5 most probable clinical pathways) and
average prediction time (for 1000 examples) of SVM and CNN models with different training sets.

Accuracy Pred Time (ms)

SVM CNN SVM CNN

Training Set Top 1 Top 3 Top 5 Top 1 Top 3 Top 5

3 months 0.743 0.927 0.959 0.631 0.775 0.804 14.82 12.31
2017 0.755 0.932 0.963 0.772 0.931 0.961 54.32 12.41
2018 0.766 0.938 0.968 0.780 0.937 0.964 54.57 12.50

2017–2018 0.768 0.940 0.969 0.782 0.940 0.967 92.48 14.19

Observing the top-1 accuracies, they range from 63.1% and 78.3% for CNN model with
3 months and 2 years data, respectively. It is curious to observe that the lowest and highest
performance were obtained with a deep neural network architecture, which is in accordance
with previous studies: deep architectures are able to achieve higher performances than
other algorithms when a large amount of training data exists, overfitting easily when there
is not enough data. We can also observe that SVM models with different sizes of data
are more stable than CNN ones: the difference in accuracy between the 3 months and the
2017-2018 SVM and CNN data models is 2.5% and 15.1%, respectively.

It is also possible to conclude that adding more data consistently improves the models
and that models built with more recent data are also better. For example, using the
2 previous years increments the accuracy by 0.2% when compared with a model built
with only the previous year (2017–2018 vs. 2018); using a model built with data from the
previous year increments the accuracy by 0.8% (CNN) to 1.1% (SVM) when compared to a
model built with the data from 2 years apart (2018 vs. 2017).

When looking at the model performance considering the 3 most probable pathways
(top-3), SVM is substantially better than CNN for the 3 months model (15.2% higher)
presenting very similar accuracies for the other models (with SVM surpassing CNN in 2017
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and 2018 models by 0.1% and having an equal accuracy for 2017-2018 model). This trend is
also true considering the 5 most probable pathways: SVM is 15.5%, 0.2%, 0.4% and 0.2%
higher than CNN for the 3 months, 2017, 2018 and 2017–2018 models.

Finally, observing the prediction time, and as expected, SVM takes more time to
predict when models are built with more data, with CNN maintaining an almost fixed time
independently of the size of the training set.

Table 3 presents the weighted precision, recall (values are repeated here as they are
usually presented along with precision and F1) and F1 values over the test set (2019 data)
of the 8 trained models (2 algorithms: SVM and CNN; 3 datasets: 3 months, 2017 data, 2018
data and 2017–2018 data).

Table 3. Test set precision, recall and F1 (weighted average) of SVM and CNN models with different
training sets.

SVM CNN

Training Set Prec Rec F1 Prec Rec F1

3 months 0.754 0.743 0.745 0.657 0.632 0.642
2017 0.761 0.755 0.755 0.776 0.772 0.772
2018 0.768 0.766 0.765 0.782 0.780 0.779

2017–2018 0.771 0.768 0.768 0.785 0.783 0.782

Similarly to balanced accuracy (recall), the minimum and maximum precision and F1
values were obtained for the CNN model with 3 months and 2 years data, respectively;
precision range between 65.7% and 78.5%, and F1 between 64.2% and 78.2%. We can also
observe, when comparing CNN and SVM models, the same trend for these measures
(as observed in accuracy): the performance difference between the 3 months and 2 years
models varies between 1.7% (precision) and 2.3% (F1) for SVM while, for CNN, it varies
between 12.8% (precision) and 14% (F1).

5. Error Analysis, Explainability and Meta-Evaluation

This section analyses, from different points of view, the predictions made by the
developed ML models. Namely, it looks into the errors by class, exemplifies how a model
makes its decisions and evaluates the similarity between the clinical pathways chosen
initially by the nurses (and used as ground truth to build and evaluate the models), the
models and a clinical expert.

5.1. Error Distribution by Class

Some disadvantageous facets of the problem at hands are: the unbalanced nature of
the dataset, the considerable number of clinical pathways with pathways sharing common
symptoms as referred by the healthcare experts (for instance, “Abdominal pain”, “Nausea
and vomiting problems” and “Diarrhea”, or “Crying child problem” and “Body tempera-
ture change problem”) and the existence of very short text sequences describing the contact
reason of the call. Upon these conditions, we consider that the results achieved are very
satisfactory.

Table 4 shows the individual precision, recall and F1 values for the 10 most and least
common pathways along with minimum, maximum, average and standard deviation
values obtained for the SVM and CNN 2017-2018 models (Table A2, in Appendix A,
presents the results for all pathways sorted, in descending order, by the pathway support).
As can be observed, there is a huge performance difference between classes: F1 ranges
between 0.000 and 0.931 for CNN and 0.013 and 0.919 for SVM (precision and recall have
similar ranges). As expected, the average performance is higher for 10 most frequent
pathways when compared with the 10 least frequent ones, with F1 equal or above 0.792 and
equal or below 0.395, respectively. Moreover, standard deviation is much higher for the
least common pathways; for example, and for the SVM model, the least common pathways
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have a value of 0.260 while most common pathways present a value of 0.082 (similar trends
are valid for the CNN model and for precision and recall).

Nonetheless, there are pathways, with similar support values, that seem to be much
more difficult to classify than others: for example, while “Emergency” presents an F1
value of 0.140, “Foreign body problem” has an F1 of 0.679 (with support of 3201 and 3220,
respectively); the case is similar, but with a smaller difference, between “Flu syndrome”
and “Diarrhea”, with the F1 values of 0.609 and 0.810 and support of 41827 and 37202,
respectively.

Table 4. Test set precision, recall and F1 of 2017–2018 SVM and CNN models for the 10 most and
least frequent pathways.

SVM CNN

Clinical Pathway Prec Rec F1 Prec Rec F1 Sup

Cough 0.818 0.835 0.826 0.843 0.829 0.836 122,598
Nausea and vomiting 0.779 0.831 0.804 0.803 0.864 0.832 72,311
Abdominal pain 0.771 0.781 0.776 0.807 0.807 0.807 65,419
Oropharynx problem 0.769 0.712 0.740 0.793 0.741 0.766 56,327
Rash 0.875 0.906 0.890 0.888 0.897 0.892 47,756
Flu syndrome 0.586 0.634 0.609 0.562 0.663 0.608 41,827
Diarrhea 0.842 0.780 0.810 0.846 0.826 0.836 37,202
Urinary problem 0.897 0.873 0.885 0.897 0.880 0.888 37,757
Body temp change pr. 0.730 0.764 0.747 0.742 0.762 0.752 34,364
Chest pain 0.836 0.836 0.836 0.847 0.853 0.850 35,393

average (10 most freq) 0.790 0.795 0.792 0.803 0.812 0.807
stdev (10 most freq) 0.088 0.080 0.082 0.096 0.072 0.083

Fainting or lipothymia 0.647 0.688 0.667 0.701 0.720 0.710 3684
Foreign body problem 0.675 0.684 0.679 0.675 0.651 0.663 3220
Emergency 0.437 0.083 0.140 0.413 0.114 0.179 3201
Breastfeeding problem 0.595 0.505 0.547 0.597 0.457 0.518 1579
Asthma or wheezing 0.576 0.257 0.355 0.577 0.275 0.372 1519
Elbow problem 0.565 0.621 0.592 0.664 0.599 0.630 766
Solar exposure pr. 0.565 0.759 0.648 0.585 0.582 0.584 601
Crisis adaptation pr. 1.000 0.006 0.013 0.000 0.000 0.000 313
Measles problem 0.706 0.107 0.186 0.800 0.071 0.131 112
Heat problem 0.333 0.079 0.128 0.000 0.000 0.000 76

average (10 least freq) 0.610 0.379 0.395 0.501 0.347 0.379
stdev (10 least freq) 0.176 0.300 0.260 0.282 0.287 0.280

minimum (full data) 0.333 0.006 0.013 0.000 0.000 0.000
maximum (full data) 1.000 0.922 0.919 0.929 0.932 0.931
average (full data) 0.725 0.671 0.677 0.712 0.674 0.683
stdev (full data) 0.136 0.213 0.199 0.185 0.224 0.212

Figure 10 shows the F1 values vs. the support of the class over the test set for the
2017–2018 SVM and CNN models. It can be observed that, as expected, the class prediction
performance tends to increase with a higher number of examples.

In a few cases, this tendency is interrupted (see Table A2, in Appendix A for the
pathways names): “Geriatric problems” presents a sharp decrease when compared to
pathways with similar support such as “Diabetes problem” or “Finger problem”, with F1
values of 0.460, 0.711, and 0.697 for the SVM model, respectively; the same occurs with
“Nonspecifc problem” when compared to “Blood pressure problem” or “Anxiety problem”
(F1 values of 0.386, 0.780, and 0.735 for the SVM model, respectively) or “Flu syndrome”
when compared to “Diarrhea” or “Urinary problem” (F1 values of 0.609, 0.810, and 0.885 for
the SVM model, respectively). On the other hand, “Solar exposure problem” and “Elbow
problem” present higher performance than pathways with few similar cases. This analysis
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allows us to conclude that despite the number of examples per class, some pathways are
more difficult to predict than others.

1 

Figure 10. Per class performance: F1 value vs. support.

Table 5 presents the confusion matrix between “Cough” and “Flu syndrome”, two
problems that share symptoms using the 2017–2018 models. It can be observed that, for the
CNN model, the number of “Cough” examples misclassified as “Flu syndrome” surpasses
the total for all other pathways (10,636 vs. 10,359), being also true for “Flu syndrome”
examples classified as “Cough” (7157 vs. 6922); for the SVM model this trend is also true for
“Flu syndrome” examples classified as “Cough” (7821 vs. 7484), but there are less “Cough”
examples misclassified as “Flu syndrome” when compared to all other classes (9271 vs.
10,988). Moreover, while SVM classifies more “Flu syndrome” cases as “Cough” (7821 vs.
7157), CNN classifies more “Cough” cases as “Flu syndrome” (10,636 vs. 9271).

Table 5. Confusion matrix for “Cough” and “Flu syndrome” pathways using 2017–2018 models.

SVM CNN

Cough Flu Other Cough Flu Other

Cough 102,339 9271 10,988 Cough 101,603 10,636 10,359

Flu 7821 26,522 7484 Flu 7157 27,748 6922

Other 14,989 9432 991,171 Other 11,728 11,015 994,040

5.2. Explainability

It is well known that explaining a ML model decision is not a straightforward task
(except in very simple models). Presently, there is a considerable effort in the community
to overcome this issue; in that sense, several tools are becoming available.

Some of these tools intend to show the most relevant features contributing to the
decision process, thus providing ways to explain black-box models. ELI5 (v0.13) [34] is
one such tool and was used here to illustrate how we can explain the output produced by
the SVM model. Figure 11 shows the ELI5 output for two examples corresponding to the
following contact reasons:

1. derrame ocular à direita há 2 semanas aprox. e prurido ocular desde ontem
right eye effusion 2 weeks ago approx. and itchy eyes since yesterday
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2. Congestão nasal, tosse com expectoração não eficaz e secreções oculares amarelas há 24 horas
Nasal congestion, coughing ineffective sputum and yellow eye secretions for 24 h

Both texts above were assigned by the nurse to the pathway “Ocular problem”; they
were classified by the SVM model as “Ocular problem” in the first case and as “Cough” in
the second (with “Ocular problem” being the third guess).

Figure 11 shows, for each example, the input words and corresponding weights for
two pathways. For the first example, it shows the pathway chosen by the classifier the
second most probable pathway; for the second example, it shows the pathways chosen by
the classifier and by the nurse (the 3rd most probable one). The green colour signals words
contributing in favour of the pathway; the red colour, against.

Figure 11. ELI5 output for two “Ocular problem” pathway examples: the left example was classified
as “Ocular problem”; the right example was classified as “Cough”.

Looking at the examples and their explanations, it is noticeable that sometimes the
most contributing words have similarities with the pathway name. Nonetheless, there are
also cases in which different terms are chosen as important contributors to the decision.

For the first example (on the left), the most relevant features for classifying it as
“Ocular problem” are: “ocular” (being related to the algorithm denomination), followed by
“secretion” (derrame), “right” (direita) and “itching” (prurido); only 3 words count negatively.
For the second most probable pathway, “Rash”, “itching” (prurido is the word contributing
the most to the class, with six words contributing negatively (being “ocular” one of them).
ELI5 also states that the example has a belonging probability of 99.2% to “Ocular problem”
and of 0.1% to “Rash”.

For the second example (on the right), classified as “Cough” by the ML model with a
probability of 70.1%, “cough” (tosse) is the word with the highest positive weight, followed
by “expectoration” (expectoração) and “nasal”. The pathway chosen by the nurse, “Ocular
problem”, was the 3rd most probable one, with a probability of 4.3% (after “Flu syndrome”
with a probability of 12.6%); for this pathway, “oculars” (oculares), “secretions” (secreções)
and “yellow” (amarelas) have considerable positive weights, but there are 5 words con-
tributing negatively, being “cough” (tosse) and “nasal” the most important ones. Although
contributing negatively, their weights in this pathway are not as large (absolute value) as
the weights contributing positively to pathway “Cough” (for example, −1.118 vs. +9.108
for word “cough”).

From a clinical perspective, the ML model leads to the correct assessment of the clinical
symptoms priority when choosing the algorithm. In the specific case of the second example,
the opinion of clinical expert is that the ocular involvement is most likely due to respiratory
symptoms and consequently, the ML model suggestion of “Cough” is the most adequate
one, despite the choice of the nurse.

When it comes to practice, this kind of analysis should be incorporated in the system
with the explanations about the decisions being presented to the user whenever required.
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Here, one such explainability tool and the explanation for two specific contact reasons were
presented as illustration.

5.3. Meta-Evaluation

This meta evaluation aims at assessing the differences and similarities between the
clinical pathways chosen initially by the nurses (and used as ground truth to build and
evaluate the models), the ML models and a clinical expert.

For this study a total of 200 examples were chosen randomly, 10 for each of the 10 most
frequent and the 10 least frequent clinical pathways. These examples were presented
to a clinical expert and to the 2017-2018 SVM and CNN models. For some examples
(totalling 14), and looking only to the “Contact Reason” information, the clinical expert
was not able to decide the correct pathway, so these examples were not considered for the
analysis. It is important to stress out that by having access only to the “Contact Reason”
text, the clinical expert was not able to consider any other information the nurse had when
attending the call. It is also important to have in mind that, although being specifically
trained for choosing the most suitable clinical pathway, the choice, seen as ground truth
by the ML algorithms, is made by different nurses (for the 3 years it totals 1888 different
nurses) and with a diversity of clinical practice.

Table 6 resumes, per clinical pathway, the agreement between each pair of decisions
(clinical expert, ground truth, SVM and CNN).

Table 6. Agreement between experienced analyst (e), ground truth (g) and SVM (s) and CNN (c) models.

Clinical Pathway Total e-g e-s e-c g-s g-c s-c

Cough 10 2 4 5 5 5 9
Nausea and vomiting problem 9 2 4 3 3 3 8
Abdominal pain 10 5 5 6 6 7 9
Oropharynx problem 9 4 6 7 3 4 9
Rash 8 1 2 3 4 4 7
Flu syndrome 10 3 7 8 4 3 8
Diarrhea 9 1 2 3 4 4 9
Urinary problem 10 7 8 7 9 10 9
Body temperature change problem 10 3 7 7 5 3 7
Chest pain 9 5 7 8 7 6 9

Sub-total (10 most frequent) 94 33 52 57 50 49 84

Fainting or lipothymia 10 3 6 5 5 4 7
Foreign body problem 10 8 6 5 8 7 8
Emergency 7 3 2 2 2 0 6
Breastfeeding problem 10 0 6 7 3 2 9
Asthma or wheezing problem 9 0 6 6 0 0 8
Elbow problem 10 4 2 3 2 3 9
Solar exposure problem 8 6 5 6 4 5 8
Crisis adaptation problem 8 0 6 6 0 0 9
Measles problem 10 0 6 6 0 0 10
Heat problem 10 1 7 6 0 0 8

Sub-total (10 least frequent) 92 25 52 52 24 21 82

TOTAL 186 58 104 109 74 70 166

Observing the total number of agreements one can conclude that, while the agreement
of the ML models is the highest (166), the clinical expert agrees the less with the pathway
chosen by the SNS24 working nurses (58). Moreover, the number of agreements between
both ML models and the nurses or the clinical expert is similar (74 and 70 with the nurses;
104 and 109 with the clinical expert, for SVM and CNN, respectively) but they are higher
with the clinical expert by 30 cases or more.

Looking at the agreements with the clinical expert (columns e-g, e-s, e-c), a conclusion
that stands out is that the agreement with the ML models (columns e-s, e-c) is much higher
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when compared with the agreement with the SNS24 working nurses (column e-g); this is
true for the least and for the most frequent pathways, with the number of agreements more
than doubling for the least frequent pathways (52 for ML models vs. 25 for the nurses).
Moreover, the agreement with the ML models is similar for the most and least frequent
pathways (between 52 and 57). On the other hand, the agreement with the nurses is higher
for the most frequent pathways when compared to the least frequent ones (33 vs. 25).

Although not as important, it is interesting to observe the agreements of the working
nurses with the ML models (columns s-g, c-g). Even if the number of agreements is similar
for both ML models, it more than doubles for the most frequent pathways when compared
to the least frequent ones (50 and 49 vs. 24 and 21 for SVM and CNN, respectively).

Similarly to the agreement with the clinical expert, the agreement between the two
ML models (column s-c) is similar for the most and least common pathways (84 vs. 82).

Looking at individual pathways, it seems that some are easier to distinguish than
others. From a total of 10 examples tagged by the nurses as “Urinary problem”, the clinical
expert agreed on 7 and the CNN on 10; for the 10 examples tagged as “Cough”, the clinical
expert agreed on 2 and both ML models agreed on 5. A similar conclusion can be drawn
from the set of the least common pathways: “Foreign body problem” seems to be a much
easier pathway to be detected (7 and 8 agreements with the ML models and clinical expert)
than the “Elbow problem” (2 to 4 agreements with the ML models and clinical expert).

Finally, it is also interesting to observe that, for the 14 examples where the clinical
expert was not able to choose a pathway, SVM and CNN models always disagreed with
the ground truth but agreed with each other in all but one example. Following, there are
two examples where the ML models although agreeing with each other, disagreed with the
the working nurses:

1. Palpitações, hiperventilação há 1 hora
Palpitations, hyperventilation 1 h ago

2. refere prurido anal há 1 hora
reports anal itching 1 h ago

For first example, nurses chose “Chest pain” and the ML models predicted as being
an “Anxiety problem”; for second example, nurses chose “Rash” pathway, the SVM model
predicted as being a “Stool color change problem” and the CNN as being a “Skin integrity
problem”.

These findings stress the importance of using such a decision support system, since it
can help the attending nurses, when in doubt, to choose a clinical pathway.

6. Conclusions and Future Work

This work presents the analysis of a dataset containing calls received by the Por-
tuguese National Health Contact Center and a comparison of different Machine Learning
approaches to the task of classifying these calls according to their contact reason.

To help further understand the problem, the data was characterised, with its distribu-
tion regarding the classes of health problems and the customer gender and age and living
district being reported. The service seems to have a great impact in child care and young
adults, mainly on coastal districts.

The contact reason of the reported situation serves to help in selecting the pathway
algorithm to be followed by the attendant to reach the appropriate referral between self-
care, clinical assessment at primary care unit or at a hospital emergency if not transferred to
the INEM. The pathway is to be chosen from 59 options so Artificial Intelligence techniques
are applied to accelerate the finding of the best choice.

A comparative analysis among the best options according to the literature was pre-
sented and, on the basis of three years data, different configurations of training sets were
tested. The conclusion is that date proximity along with larger training data are relevant
for producing models with better performance.

The unbalanced nature of the classes normally impacts the generation of the models;
this was confirmed for this problem when analysing performance and frequency. Another
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issue found in the study is the great similarity among symptoms of some pathways, such
as “Cough” and “Flu syndrome”, having a clear negative impact in the performance due to
the difficulty to generalise the fine distinctions among these situations.

Moreover, it was shown that current techniques aiming at explaining ML models
decisions may be applied by providing users with an explanation of the system decision,
an essential feature for AI applications in the health domain.

It is also important to note that the ground truth was considered the right decision,
assuming that the attendant is always correct regarding the chosen algorithm, a situation
that was questioned during the process of meta evaluation. The presented error analysis
enables to stress the importance of having a decision support system to help the attending
nurses decide the best clinical pathway when in doubt.

Regarding the comparison of different classification methods, the best results were
obtained with CNN, with an F1 of 0.782 against a maximum of 0.768 obtained with SVM.
It is known, however, that the computational cost for training DNNs are much higher
than the cost of using SVM. Moreover, the experiments showed that, although both ML
algorithms give an answer within the reasonable time for having the system running in
real time, the SVM model classification time is higher especially for bigger models. There
are issues regarding these choices and their associated carbon footprint [35,36]. No specific
carbon footprint measurements were done in this study but it is known that there is a large
difference in resources consumption between these two approaches. Considering that the
application of these solutions on a daily practice will require a periodical re-training, that is
a relevant factor indicating the one year SVM model as a fair alternative, if a 1.4% reduction
in performance (accuracy, precision, recall and F1) is not crucial.

As future work we intend to investigate other ML algorithms, namely a boosting
ensemble approach like Gradient Tree Boosting [37], since these models generally provide
top accuracies if the parameters are set correctly, and update the models with the calls from
2020 and 2021 when new clinical pathways related to COVID were designed.

On a different line of research, we intend to study the consistency between the clinical
pathway final referrals and the follow-up screening at the hospital emergency or primary
health care unit. Moreover, and since the number and practice of nurses attending the calls
is very diverse, we intend to investigate trends in the nurses selection of clinical pathways.
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Appendix A. Clinical Pathways and Performance of 2017–2018 Models

This Appendix presents details the data made available for this work, namely the
distribution of examples per clinical pathway (Table A1, along with the performance results
per pathway for 2 years models (Table A2).

Table A1. Total and per year clinical pathway distribution.

3 Years 2017 2018 2019

Clinical Pathway abs. % abs. % abs. % abs. %

Cough 275,291 10.68 62,986 9.22 89,707 10.43 122,598 11.86
Nausea and vomiting problem 191,716 7.44 60,116 8.80 59,289 6.89 72,311 6.99
Abdominal pain 161,461 6.26 43,430 6.36 52,612 6.12 65,419 6.33
Oropharynx problem 130,999 5.08 32,850 4.81 41,822 4.86 56,327 5.45
Rash 125,142 4.86 35,691 5.22 41,695 4.85 47,756 4.62
Flu syndrome 109,880 4.26 24,486 3.58 43,567 5.07 41,827 4.04
Diarrhea 98,092 3.81 30,020 4.39 30,870 3.59 37,202 3.60
Urinary problem 91,910 3.57 23,457 3.43 30,696 3.57 37,757 3.65
Body temperature change problem 90,630 3.52 25,335 3.71 30,931 3.60 34,364 3.32
Chest pain 87,098 3.38 22,587 3.31 29,118 3.39 35,393 3.42

Migrain 85,846 3.33 22,799 3.34 28,008 3.26 35,039 3.39
Eye problem 68,546 2.66 18,272 2.67 23,313 2.71 26,961 2.61
Ear problem 66,928 2.60 18,322 2.68 22,058 2.56 26,548 2.57
Pregnancy problem, puerperium 57,781 2.24 15,932 2.33 19,942 2.32 21,907 2.12
Dizziness problem 53,564 2.08 10,848 1.59 19,306 2.24 23,410 2.26
Face problem 52,851 2.05 14,356 2.10 17,555 2.04 20,940 2.03
Skin integrity problem 52,327 2.03 13,396 1.96 17,689 2.06 21,242 2.05
Women’s health problem 51,568 2.00 13,635 2.00 17,251 2.01 20,682 2.00
Head and neck problem 50,916 1.98 13,844 2.03 17,142 1.99 19,930 1.93
Nasal problem 49,464 1.92 12,430 1.82 16,572 1.93 20,462 1.98
Nonspecific problem 48,585 1.88 16,876 2.47 14,881 1.73 16,828 1.63
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Table A1. Cont.

3 Years 2017 2018 2019

Clinical Pathway abs. % abs. % abs. % abs. %

Low back pain problem 48,222 1.87 8766 1.28 16,930 1.97 22,526 2.18
Blood pressure problem 42,491 1.65 11,075 1.62 14,782 1.72 16,634 1.61
Anxiety problem 41,300 1.60 11,321 1.66 14,086 1.64 15,893 1.54
Lower limb—ankle foot 37,583 1.46 10,004 1.46 12,556 1.46 15,023 1.45
Toxic sub ingestion problem 35,355 1.37 10,549 1.54 12,221 1.42 12,585 1.22
Allergy problem 31,034 1.20 7976 1.17 10,435 1.21 12,623 1.22
Lower limb—hip 29,300 1.14 7968 1.17 9350 1.09 11,982 1.16
Upper limb—shoulder collarbone arm 25,469 0.99 6779 0.99 8380 0.97 10,310 1.00
Constipation problem 24,851 0.96 8181 1.20 8260 0.96 8410 0.81
Lower limb—knee 24,700 0.96 6327 0.93 8289 0.96 10,084 0.98
Diabetes problem 23,157 0.90 7139 1.04 7982 0.93 8036 0.78
Crying child problem (0–1 year) 22,068 0.86 6545 0.96 7332 0.85 8191 0.79
Respiratory problem 21,821 0.85 5585 0.82 7528 0.88 8708 0.84
Geriatric problem 21,241 0.82 6688 0.98 6879 0.80 7674 0.74
Stool color change problem 20,723 0.80 3359 0.49 7727 0.90 9637 0.93
Upper limb—wrist hand 17,374 0.67 4665 0.68 5783 0.67 6926 0.67
Finger problem 16,599 0.64 4020 0.59 5593 0.65 6986 0.68
Men’s health problem 16,272 0.63 4258 0.62 5435 0.63 6579 0.64
Vaccination reaction problem 11,073 0.43 3234 0.47 3531 0.41 4308 0.42
Depression problem 10,980 0.43 3315 0.49 3588 0.42 4077 0.39
Burn problem 9287 0.36 2682 0.39 3164 0.37 3441 0.33
Breast problem 8775 0.34 2338 0.34 2980 0.35 3457 0.33

Fainting or lipothymia problem 8500 0.33 1686 0.25 3130 0.36 3684 0.36
Foreign body problem 8479 0.33 2394 0.35 2865 0.33 3220 0.31
Emergency 7272 0.28 1236 0.18 2835 0.33 3201 0.31
Breastfeeding problem 4436 0.17 1323 0.19 1534 0.18 1579 0.15
Asthma or wheezing problem 3618 0.14 904 0.13 1195 0.14 1519 0.15
Elbow problem 1819 0.07 445 0.07 608 0.07 766 0.07
Solar exposure problem 1550 0.06 447 0.07 502 0.06 601 0.06
Crisis adaptation problem 663 0.03 124 0.02 226 0.03 313 0.03
Measles problem 576 0.02 257 0.04 207 0.02 112 0.01
Heat problem 334 0.01 102 0.01 156 0.02 76 0.01

TOTAL 2,577,517 – 683,360 – 860,093 – 1,034,064 –

Table A2. Performance values (precision, recall and F1) for the 2017–2018 SVM and CNN models.

SVM CNN

Clinical Pathway Prec Rec F1 Prec Rec F1 Sup

Cough 0.818 0.835 0.826 0.843 0.829 0.836 122,598
Nausea and vomiting problem 0.779 0.831 0.804 0.803 0.864 0.832 72,311
Abdominal pain 0.771 0.781 0.776 0.807 0.807 0.807 65,419
Oropharynx problem 0.769 0.712 0.740 0.793 0.741 0.766 56,327
Rash 0.875 0.906 0.890 0.888 0.897 0.892 47,756
Flu syndrome 0.586 0.634 0.609 0.562 0.663 0.608 41,827
Diarrhea 0.842 0.780 0.810 0.846 0.826 0.836 37,202
Urinary problem 0.897 0.873 0.885 0.897 0.880 0.888 37,757
Body temperature change problem 0.730 0.764 0.747 0.742 0.762 0.752 34,364
Chest pain 0.836 0.836 0.836 0.847 0.853 0.850 35,393

Migrain 0.735 0.761 0.748 0.801 0.796 0.798 35,039
Eye problem 0.916 0.922 0.919 0.929 0.932 0.931 26,961
Ear problem 0.889 0.844 0.866 0.905 0.867 0.886 26,548
Dizziness problem 0.728 0.727 0.727 0.777 0.807 0.791 23,410
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Table A2. Cont.

SVM CNN

Clinical Pathway Prec Rec F1 Prec Rec F1 Sup

Low back pain problem 0.843 0.812 0.827 0.849 0.842 0.846 22,526
Pregnancy problem, puerperium 0.827 0.693 0.754 0.811 0.700 0.752 21,907
Skin integrity problem 0.665 0.645 0.655 0.656 0.654 0.655 21,242
Face problem 0.736 0.780 0.757 0.725 0.804 0.763 20,940
Women’s health problem 0.796 0.836 0.816 0.804 0.831 0.817 20,682
Nasal problem 0.706 0.730 0.717 0.710 0.757 0.733 20,462
Head and neck problem 0.775 0.811 0.793 0.788 0.826 0.806 19,930
Nonspecific problem 0.346 0.437 0.386 0.375 0.408 0.391 16,828
Blood pressure problem 0.788 0.773 0.780 0.834 0.780 0.806 16,634
Anxiety problem 0.761 0.711 0.735 0.738 0.745 0.742 15,893
Lower limb—ankle foot 0.777 0.760 0.768 0.755 0.787 0.771 15,023
Allergy problem 0.766 0.580 0.660 0.769 0.573 0.657 12,623
Toxic sub ingestion problem 0.836 0.852 0.844 0.842 0.849 0.846 12,585
Lower limb—hip 0.648 0.735 0.689 0.654 0.745 0.696 11,982
Upper limb—shoulder collarbone arm 0.738 0.801 0.768 0.759 0.819 0.788 10,310
Lower limb—knee 0.819 0.692 0.750 0.830 0.692 0.755 10,084
Stool color change problem 0.731 0.754 0.742 0.745 0.703 0.723 9637
Respiratory problem 0.571 0.633 0.601 0.582 0.653 0.616 8708
Constipation problem 0.757 0.779 0.768 0.735 0.832 0.780 8410
Crying child problem (0–1 Year) 0.671 0.493 0.568 0.667 0.498 0.570 8191
Diabetes problem 0.845 0.613 0.711 0.821 0.641 0.720 8036
Geriatric problem 0.447 0.474 0.460 0.453 0.462 0.457 7674
Finger problem 0.664 0.733 0.697 0.689 0.711 0.700 6986
Upper limb—wrist hand 0.724 0.644 0.682 0.757 0.658 0.704 6926
Men’s health problem 0.831 0.797 0.813 0.845 0.794 0.819 6579
Vaccination reaction problem 0.743 0.697 0.719 0.747 0.676 0.710 4308
Depression problem 0.767 0.647 0.702 0.783 0.632 0.700 4077
Breast problem 0.702 0.812 0.753 0.714 0.800 0.755 3457
Burn problems 0.862 0.840 0.851 0.853 0.853 0.853 3441

Fainting or lipothymia problem 0.647 0.688 0.667 0.701 0.720 0.710 3684
Foreign body problem 0.675 0.684 0.679 0.675 0.651 0.663 3220
Emergency 0.437 0.083 0.140 0.413 0.114 0.179 3201
Breastfeeding problem 0.595 0.505 0.547 0.597 0.457 0.518 1579
Asthma or wheezing problem 0.576 0.257 0.355 0.577 0.275 0.372 1519
Elbow problem 0.565 0.621 0.592 0.664 0.599 0.630 766
Solar exposure problem 0.565 0.759 0.648 0.585 0.582 0.584 601
Crisis adaptation problem 1.000 0.006 0.013 0.000 0.000 0.000 313
Measles problems 0.706 0.107 0.186 0.800 0.071 0.131 112
Heat problems 0.333 0.079 0.128 0.000 0.000 0.000 76

minimum 0.333 0.006 0.013 0.000 0.000 0.000
maximum 1.000 0.922 0.919 0.929 0.932 0.931
average 0.725 0.671 0.677 0.712 0.674 0.683
stdev 0.136 0.213 0.199 0.185 0.224 0.212

References
1. Mackway-Jones, K.; Marsden, J.; Windle, J. Emergency Triage: Manchester Triage Group; John Wiley & Sons: New York, NY,

USA, 2013.
2. Veladas, R.; Yang, H.; Quaresma, P.; Gonçalves, T.; Vieira, R.; Sousa Pinto, C.; Martins, J.P.; Oliveira, J.; Cortes Ferreira, M. Aiding

Clinical Triage with Text Classification. In Proceedings of the EPIA Conference on Artificial Intelligence; Springer: New York, NY,
USA, 2021; pp. 83–96.

3. Yang, H.; Gonçalves, T.; Quaresma, P.; Vieira, R.; Veladas, R.; Pinto, C.S.; Oliveira, J.; Ferreira, M.C.; Morais, J.; Pereira, A.R.; et al.
Clinical Trial Classification of SNS24 Calls with Neural Networks. Future Internet 2022, 14, 130. [CrossRef]

4. Kavuluru, R.; Rios, A.; Lu, Y. An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic
medical records. Artif. Intell. Med. 2015, 65, 155–166. [CrossRef] [PubMed]

http://doi.org/10.3390/fi14050130
http://dx.doi.org/10.1016/j.artmed.2015.04.007
http://www.ncbi.nlm.nih.gov/pubmed/26054428


Future Internet 2023, 15, 26 24 of 25

5. Marafino, B.J.; Boscardin, W.J.; Dudley, R.A. Efficient and sparse feature selection for biomedical text classification via the elastic
net: Application to ICU risk stratification from nursing notes. J. Biomed. Inform. 2015, 54, 114–120. [CrossRef] [PubMed]

6. Mujtaba, G.; Shuib, L.; Idris, N.; Hoo, W.L.; Raj, R.G.; Khowaja, K.; Shaikh, K.; Nweke, H.F. Clinical text classification research
trends: Systematic literature review and open issues. Expert Syst. Appl. 2019, 116, 494–520. [CrossRef]

7. Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A survey of recent advances in deep learning techniques for electronic
health record (EHR) analysis. IEEE J. Biomed. Health Inform. 2017, 22, 1589–1604. [CrossRef] [PubMed]

8. Shao, Y.; Taylor, S.; Marshall, N.; Morioka, C.; Zeng-Treitler, Q. Clinical text classification with word embedding features vs.
bag-of-words features. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13
December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2874–2878.

9. Mustafa, A.; Rahimi Azghadi, M. Automated Machine Learning for Healthcare and Clinical Notes Analysis. Computers 2021,
10, 24. [CrossRef]

10. Funkner, A.A.; Yakovlev, A.N.; Kovalchuk, S.V. Data-driven modeling of clinical pathways using electronic health records.
Procedia Comput. Sci. 2017, 121, 835–842.

11. Elbattah, M.; Molloy, O.; Zeigler, B.P. Designing Care Pathways Using Simulation Modeling and Machine Learning. In
Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 1452–1463.
[CrossRef]

12. Almeida, J.R.; Silva, J.F.; Sierra, A.P.; Matos, S.; Oliveira, J.L. Leveraging Clinical Notes for Enhancing Decision-Making Systems
with Relevant Patient Information. In Proceedings of the Biomedical Engineering Systems and Technologies; Ye, X., Soares, F., De Maria,
E., Gómez Vilda, P., Cabitza, F., Fred, A., Gamboa, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021;
pp. 521–540.

13. Aggarwal, C.C.; Clustering, C.R.D. Algorithms and Applications; Springer: New York, NY, USA, 2014.
14. Gómez, D.; Rojas, A. An empirical overview of the no free lunch theorem and its effect on real-world machine learning

classification. Neural Comput. 2016, 28, 216–228. [CrossRef] [PubMed]
15. Mascio, A.; Kraljevic, Z.; Bean, D.; Dobson, R.; Stewart, R.; Bendayan, R.; Roberts, A. Comparative analysis of text classification

approaches in electronic health records. arXiv 2020, arXiv:2005.06624.
16. Stein, R.A.; Jaques, P.A.; Valiati, J.F. An analysis of hierarchical text classification using word embeddings. Inf. Sci. 2019,

471, 216–232. [CrossRef]
17. Kadhim, A.I. Survey on supervised machine learning techniques for automatic text classification. Artif. Intell. Rev. 2019,

52, 273–292. [CrossRef]
18. Baker, S.; Korhonen, A.L.; Pyysalo, S. Cancer Hallmark Text Classification Using Convolutional Neural Networks. In Proceedings

of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016), Osaka, Japan, 11–16
December 2016. [CrossRef]

19. Flores, C.A.; Figueroa, R.L.; Pezoa, J.E. Active Learning for Biomedical Text Classification Based on Automatically Generated
Regular Expressions. IEEE Access 2021, 9, 38767–38777. [CrossRef]

20. Gao, S.; Alawad, M.; Young, M.T.; Gounley, J.; Schaefferkoetter, N.; Yoon, H.J.; Wu, X.C.; Durbin, E.B.; Doherty, J.; Stroup, A.;
et al. Limitations of Transformers on Clinical Text Classification. IEEE J. Biomed. Health Inform. 2021, 25, 3596–3607. [CrossRef]
[PubMed]

21. Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The role of explainability in creating trustworthy artificial intelligence for health care:
A comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 2021, 113, 103655.
[CrossRef]

22. Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary
perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 1–9. [CrossRef] [PubMed]

23. Li, Y.; Yang, T., Word Embedding for Understanding Natural Language: A Survey. In Guide to Big Data Applications; Springer
International Publishing: Cham, Switzerland, 2018; pp. 83–104. [CrossRef]

24. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers); Burstein, J., Doran, C.,
Solorio, T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4171–4186. [CrossRef]

25. Akbik, A.; Blythe, D.; Vollgraf, R. Contextual String Embeddings for Sequence Labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; Association for Computational Linguistics:
Santa Fe, NM, USA, 2018; pp. 1638–1649.

26. Souza, F.; Nogueira, R.; Lotufo, R. BERTimbau: Pretrained BERT models for Brazilian Portuguese. In Proceedings of the 9th
Brazilian Conference on Intelligent Systems, BRACIS, Rio Grande do Sul, Brazil, 20–23 October 2020.

27. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha,
Qatar, 2014; pp. 1746–1751. [CrossRef]

28. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

29. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://dx.doi.org/10.1016/j.jbi.2015.02.003
http://www.ncbi.nlm.nih.gov/pubmed/25700665
http://dx.doi.org/10.1016/j.eswa.2018.09.034
http://dx.doi.org/10.1109/JBHI.2017.2767063
http://www.ncbi.nlm.nih.gov/pubmed/29989977
http://dx.doi.org/10.3390/computers10020024
http://dx.doi.org/10.1109/WSC.2018.8632360
http://dx.doi.org/10.1162/NECO_a_00793
http://www.ncbi.nlm.nih.gov/pubmed/26599713
http://dx.doi.org/10.1016/j.ins.2018.09.001
http://dx.doi.org/10.1007/s10462-018-09677-1
http://dx.doi.org/10.17863/CAM.12420
http://dx.doi.org/10.1109/ACCESS.2021.3064000
http://dx.doi.org/10.1109/JBHI.2021.3062322
http://www.ncbi.nlm.nih.gov/pubmed/33635801
http://dx.doi.org/10.1016/j.jbi.2020.103655
http://dx.doi.org/10.1186/s12911-020-01332-6
http://www.ncbi.nlm.nih.gov/pubmed/33256715
http://dx.doi.org/10.1007/978-3-319-53817-4_4
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.3115/v1/D14-1181


Future Internet 2023, 15, 26 25 of 25

30. Scikit-learn. Available online: https://scikit-learn.org/stable/ (accessed on 7 December 2022).
31. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 7 December 2022).
32. Pytorch. Available online: https://pytorch.org/ (accessed on 7 December 2022).
33. Python. Available online: https://www.python.org/ (accessed on 7 December 2022).
34. ELI5. Available online: https://eli5.readthedocs.io/en/latest/index.html (accessed on 7 December 2022).
35. Dhar, P. The carbon impact of artificial intelligence. Nat. Mach. Intell. 2020, 2, 423–425. [CrossRef]
36. Bannour, N.; Ghannay, S.; Névéol, A.; Ligozat, A.L. Evaluating the carbon footprint of NLP methods: A survey and analysis of

existing tools. In Proceedings of the EMNLP, Workshop SustaiNLP, Online, 7–11 November 2021.
37. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://www.python.org/
https://eli5.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1038/s42256-020-0219-9
http://dx.doi.org/10.1016/S0167-9473(01)00065-2

	Introduction
	Related Work
	Materials and Methods
	Materials
	Three-Month Data
	Three-Year Data
	Features under Analysis

	Methods
	Data Characterisation
	Pathway Prediction
	Experiment Organisation


	Results
	Data Characterisation: Main Findings
	Evaluation of Prediction Models

	Error Analysis, Explainability and Meta-Evaluation
	Error Distribution by Class
	Explainability
	Meta-Evaluation

	Conclusions and Future Work
	Appendix A
	References

