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Abstract: In the era of the digital economy, blockchain has developed well in various fields, such
as finance and digital copyright, due to its unique decentralization and traceability characteristics.
However, blockchain gradually exposes the storage problem, and the current blockchain stores the
block data in third-party storage systems to reduce the node storage pressure. The new blockchain
storage method brings the blockchain transaction retrieval problem. The problem is that when unable
to locate the block containing this transaction, the user must fetch the entire blockchain ledger data
from the third-party storage system, resulting in huge communication overhead. For this problem,
we exploit the semi-structured data in the blockchain and extract the universal blockchain transaction
characteristics, such as account address and time. Then we establish a blockchain transaction retrieval
system. Responding to the lacking efficient retrieval data structure, we propose a scalable secondary
search data structure BB+ tree for account address and introduce the I2B+ tree for time. Finally, we
analyze the proposed scheme’s performance through experiments. The experiment results prove that
our system is superior to the existing methods in single-feature retrieval, concurrent retrieval, and
multi-feature hybrid retrieval. The retrieval time under single feature retrieval is reduced by 40.54%,
and the retrieval time is decreased by 43.16% under the multi-feature hybrid retrieval. It has better
stability in different block sizes and concurrent retrieval scales.

Keywords: blockchain retrieval; B+ tree; BB+ tree; I2B+ tree

1. Introduction

Blockchain technology originated from the Bitcoin project [1] invented by Satoshi
Nakamoto. This novel decentralized ledger technology has been used and explored in
many fields, such as finance [2], digital copyright [3], supply chain management [4], and
edge computing [5], and has achieved remarkable results.

With the rapid development of blockchain, the blockchain has also exposed some
problems. Because the blockchain data have the append-only characteristic, under con-
tinuous accumulation, they cause enormous storage pressure to the blockchain nodes [6].
According to the data analysis provided by the blockchain explorer website, there are
currently 670,000 blocks in Bitcoin, a total amount of data in the ledger close to 400 GB,
involving 40 million account addresses. Ethereum has 12.24 million blocks. The total
amount of data in the ledger has exceeded 1 TB, affecting 55 million account addresses [1,7].
The impact of a large blockchain ledger is as follows [6].

Each blockchain node needs to store a complete copy of the blockchain ledger data,
and the amount of ledger data puts too much pressure on the node’s storage. At the same
time, thousands of blockchain nodes all need to store ledger data, which can lead to a huge
waste of storage resources.

Too much pressure on a single point of storage can constrain new blockchain nodes
from joining the blockchain network, leading to the centralization of the blockchain system,
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destroying the decentralized nature of the blockchain and directly affecting the scaling of
the blockchain system.

In response to the storage problems arising from blockchain nodes, academics have
proposed storing blockchain data in third-party decentralized storage networks, such as
IPFS, to reduce the storage pressure [8–11]. The core idea of these blockchain storage
solutions is to store the entire block data file to the IPFS network in order to reduce the
storage strain on the blockchain nodes. The blockchain node is only responsible for storing
the block hash and a summary of the transaction records. For acquisition of the block from
the storage network, the blockchain node will utilize this hash and summary to verify the
block data, ensuring that the blockchain is tamper proof.

However, blockchain is a ledger, made up of a combination of blocks, which contains
a portion of the ledger’s transaction records [12,13]. The transaction record is the smallest
unit of the ledger, and the current blockchain transaction can support digital currency
transfer, voucher record, logistics traceability and other kinds of information recording [14].
When the ledger data are stored in a third-party storage network, it raises the blockchain
transaction retrieval problems.

The blockchain transaction retrieval problem is because blockchain nodes no longer
have the complete blockchain ledger data when storing the blockchain ledger in third-party
storage networks [15,16]. When blockchain ledgers are stored in third-party storage net-
works, blockchain nodes no longer have the entire blockchain ledger locally. Consequently,
retrieving blockchain transactions becomes problematic. When users attempt to access the
target transaction record, the blockchain node cannot locate the target block containing the
target transaction. It requires blockchain nodes to regularly obtain the entire blockchain
ledger from the storage network in order to access the transaction, resulting in considerable
communication costs and poor user experience. Therefore, how to retrieve transaction
in a large number of blocks based on the transaction records features becomes the most
important aspect of the blockchain transaction retrieval challenge.

The traditional blockchain transaction retrieval approach [1,6] acquires the target
transaction by traversing the blockchain ledger in local database by transaction hash,
which is inefficient and cannot meet the requirements of transaction retrieval in many
blocks in this scenario. Blockchain retrieval is a novel problem, and academia has also
conducted extensive research on this. The current study mainly includes research on
efficiency optimization of existing blockchain systems, query semantic retrieval function,
and blockchain retrieval method research.

Research on efficiency optimization of the existing blockchain system and query se-
mantic retrieval function includes the following: Li [17] proposes the etherQL system, a
query layer designed on the outer layer of the blockchain. The main idea of the system is
to copy the blockchain data to the external database MongoDB and create the query layer
with the help of the functional interface provided by the external database to realize the
blockchain data query. VQL [18] stores blockchain data based on the external database and
makes the intermediate results verifiable. In response to the shortcomings of hyperledger
fabric in processing temporal data, the processing efficiency is improved by adding copies
and inserting redundant data [19]. By combining the Merkle tree and B+ tree characteris-
tics, the blockchain is upgraded from the traditional hash-based query to the key-based
query [20]. However, this type of research mainly considers the introduction of external
databases or inserting redundant data to improve the retrieval efficiency of the blockchain.
While increasing the extra cost of the system, it does not explicitly enhance the ability of
blockchain retrieval. It only carries out optimization at the application layer and is not
suitable for the needs of this scenario.

Blockchain retrieval method research includes Refs. [21,22]. Ren [21] proposes a
DCOMB (dual combination bloom filter) method that combines the data stream of the
Internet of Things with the timestamp of the blockchain to improve the versatility. Tu [22]
proposes a set of solutions including extracting the account address, establishing an inverted
index between the account address and the block hash, and using the B+ tree to manage it.
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The program achieves good results. However, with the rapid expansion of the number of
account addresses, retrieval efficiency is affected to a certain extent.

In this work, we conducted a study on blockchain transaction retrieval based on
past studies. We focus on analyzing the characteristics of block data, extracting universal
retrieval features, proposing an improved retrieval data structure, and effectively managing
retrieval features to boost retrieval efficiency. The contributions include the following:

• For the blockchain transaction retrieval problem, based on the blockchain data semi-
structured data features, this paper extracts the universal blockchain transaction char-
acteristics, including account address and time, and establishes an efficient blockchain
transaction retrieval system.

• In response to the lack of an efficient search structure, this paper proposes a scalable
and flexible secondary search structure BB+ tree based on bloom filters and B+ trees,
which can effectively manage account addresses. The I2B+ tree is introduced to
establish time retrieval structure, which can efficiently manage the time characteristics
and increase the attributes of blockchain retrieval.

• The experiment results prove that our system is superior to the existing methods in
single feature retrieval, concurrent retrieval and multi-feature hybrid retrieval. The
retrieval time under single feature retrieval is reduced by 40.54%, and the retrieval
time is reduced by 43.16% under the multi-feature hybrid retrieval. It has better
stability in the face of different block sizes and concurrent retrieval scales.

The content of this article is arranged as follows: Section 2 introduces the development
of retrieval data structure, the bloom filter and I2B+ tree. Section 3 introduces the overall
architecture of the blockchain transaction retrieval system, the establishment and update
of the retrieval structure by the new data structure BB+ tree and I2B+ tree, the single-
feature retrieval process, and the multi-feature hybrid retrieval process. Section 4 shows
the performance evaluation results and analysis. In Section 5, the conclusions and future
research are discussed.

2. Literature Review
2.1. Retrieval Structure

Although blockchain retrieval is a brand-new blockchain research direction, the aca-
demic community has conducted a lot of work on the research of the retrieval structure.
We will briefly introduce the current research results in this section.

Retrieval structure, or index structure, academia has conducted a lot of research work,
including the development of retrieval methods and retrieval data structure. The current
retrieval method is mainly established by selecting a suitable data structure for the retrieval
field, establishing a retrieval structure, quickly determining the offset of the retrieved
field through the retrieval structure, and obtaining the complete data through the offset.
Currently, the most widely used retrieval methods include signature files, suffix arrays,
and inverted files [23–26].

• Signature file: Zheng and Faloutsos propose a retrieval technology for text information
retrieval. They use a fixed-width signature and assign bit string to each item in the
text information retrieval system. It requires ample space. So the cost of construction
and update is high.

• Suffix tree and suffix array: Gonnet proposes the suffix tree, and Manber and Myers
offer the suffix array. The suffix array uses less space than the suffix tree, but it takes a
longer time to build. The main advantage of suffix array and suffix tree is that they
support certain searches challenging better than inverted indexes in search phrases
and regular expression searches.

• Inverted files: Inverted indexing is the most commonly used indexing method in
modern search engines [27], whose core idea is to convert document–word information
flow into word–document information. The inverted index table comprises two parts,
namely the index item list and the event table of each index item itself. The index
item contains the collection of all the words that have ever appeared in the document
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collection. The event table of each index item itself includes a list of all documents
in which a particular word has occurred or a pointer to actual data. When retrieving,
according to the user’s needs, the corresponding terms are retrieved in the index
item list, and the information in the event table is obtained. For the realization of the
inverted index, currently, the primary data structures used include hash linked list, B+
tree [26].

The central part of the hash linked list is the hash table. Each hash table entry stores
a pointer, which points to the conflict-linked list. In the conflict-linked list, words with
the same hash value form a linked list. The reason for the conflict-linked list is that two
different words obtain the same hash value. If so, it is called a conflict in the hash method—
the linked list stores word with the same hash value. The hash table is directly accessed
according to the key value, which can quickly support random operations, such as adding,
deleting, updating, checking. And the time complexity is O(1). However, the inverted
index based on this method does not support sequential reading and scanning for the
precise hash index. It is only suitable for a few specific occasions.

B tree is a very classical data structure. The B+ tree is an improvement of the B
tree, which stores all data in leaf nodes and has indexes in non-leaf nodes. It has the
advantages of fast full node scan, stable query speed, and natural sortability, which is widely
used by databases [28]. It supports the deletion, modification, and lookup operation of a
single record, and sequential scanning. To make B+ tree have better retrieval performance
and apply for more scenarios, various experts and scholars have also proposed many
improvement schemes for B+ tree. For example, Rao proposes CSSB+ tree [29]. The
improved data structure makes more effective use of the CPU cache and speed up retrieval.
Kim proposes a new data structure combining CSS and K-ary search [30], which can provide
optimal search. Jin proposes a hybrid storage system index based on the B+ tree [31]. Some
studies propose distributed indexes based on B+ trees, which are highly scalable and fault
tolerant. Wang [32] proposes a tree structure MLB+ tree for fast multi-dimensional range
retrieval, which is composed of several independent B+ trees. This structure can collect
multi-dimensional features. In the scene of blockchain retrieval, the main retrieval features
are account address and time characteristics. Tu [22] realizes a blockchain retrieval system
based on the B+ tree. Compared with the traditional sequential retrieval and redis-based
scheme, the retrieval performance is greatly improved. However, with the rapid increase
in the number of account addresses, the direct use of B+ tree management will result in too
many leaf nodes and a too large retrieval space, which will lead to a significant decline in
retrieval efficiency. At the same time, because of the particularity of the time, it is not easy
to manage the time feature in blockchain retrieval based on the B+ tree.

2.2. Bloom Filter

Bloom proposed the Bloom filter [33] in 1970. It is a probabilistic approximate retrieval
structure that can be used for large-scale data. It can use a small amount of memory space
to quickly and efficiently check whether an object is likely to exist in the set. With the
explosion of data growth, Bloom filters have been widely used in many research fields,
such as databases, distributed systems, and web caches [34], due to their high efficiency,
low utilization of resources, and high flexibility between the bloom filter bits and the false
positives probability. Specific optimization works include network packet filtering [35],
p2p lookup [36], and metadata lookup [37], and many derivative types of Bloom filters,
including counting Bloom filters [38], 2D Bloom filter, multidimensional Bloom filter [39],
and so on.

The Bloom filter’s core structure contains a bit array whose length is m with k hash
functions. All bits in an empty Bloom filter are 0. When adding an element to the Bloom
filter, each hash function maps the element to the bit array, and the bit array corresponding
position is set to 1. When checking whether an element exists, the Bloom filter passes the
element through k hash functions. If any related k positions is 0, the test element is not in
the Bloom filter. As shown in Figure 1, item A sets positions 1, 5, and 6 to 1 through three
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different hash functions, hash1, hash2, and hash3. Item B sets positions 3, 5, and 6 to 1
through hash1, hash2, and hash3. When checking the new item C, the bit array is obtained
through hash1, hash2, and hash3. When the positions set to 1 are consistent, it proves that
the element is stored.
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66

77

88

99

1010
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Item AItem A

Hash1(Item A)

Hash2(Item A)

Hash3(Item A)

Item BItem B

Hash1(Item B)

Hash2(Item B)

Hash2(Item B)

Figure 1. The Bloom filter.

The Bloom filter cannot produce false negatives but may produce false positives. False
positives mean that the Bloom filter seems to store a item that does not actually exist in
the Bloom filter. The k positions indicate whether an element is in the set as described
above. Still, this method may cause the algorithm to mistakenly assume that an element
that is not originally in the set is detected as being in the set. There is a mutually restrictive
relationship between false positives and the Bloom filter bit array. We can see a connection
between the two, whereby increasing the size of bit array in the Bloom filter reduces the
false positives rate:

k =
m

2dlog2 ne ∗ ln 2 (1)

ε =

(
1−

(
1− 1

m

)kn
)k

(2)

where ε is the false positives rate, k is the hash functions number, n is the resolved features
number in the Bloom filter, and m is the Bloom filter bits number.

2.3. I2B+ Tree

I2B+ tree is an improved IB+ tree proposed by Edgar in 2020 [40]. It is an efficient index
structure for time retrieval. It combines B+ tree and interval tree, which can effectively
manage time interval information and retrieve time characteristics. It has good results
and supports range retrieval. Specifically, the I2B+ tree is formed by the expansion of the
B+ tree (n-ary tree). The I2B+ tree includes two types of nodes: internal nodes (its child
nodes are leaf nodes) and leaf nodes (its father nodes are interval nodes). The internal node
stores three tables: one table stores the addresses of its child nodes, the second stores the
ordered node keys, and the last table stores the maximum value. Leaf nodes store ordered
node key pairs and corresponding values. Similar to B+ tree, front and back pointers are
set between leaf nodes and middle layer nodes to support range retrieval see Figure 2.
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Figure 2. The I2B+ tree.

At the same time, to enhance the management of time, the I2B+ tree has two unique
parameters: order and alpha. The order defines the child nodes maximum number that a
node can have. The alpha represents an empirical factor. It affects selecting the separation
point of the leaf node’s child nodes. This parameter adjusts the balance of space and query
time. The bigger alpha value results in a higher split point value. Therefore, fewer time
splits occur, resulting in less storage and lower query efficiency. Compared with IB+, the
biggest difference of the I2B+ tree is that the I2B+ tree increases the front and back pointers
between the non-leaf nodes, which can reduce the spatial fragmentation rate during tree
splitting and enhance the retrieval ability.

3. System Implementation

Blockchain retrieval is a complex retrieval scenario, which requires the retrieval system
to have the characteristics of dynamic updating, fast and stable retrieval. In addition to
a data structure with excellent performance, achieving good retrieval results needs a set
of matching systems. This section introduces the overall architecture of the blockchain
transaction retrieval system, retrieval feature extraction processing, retrieval structure
generation, and retrieval process.

3.1. Blockchain Transaction Retrieval System Architecture

In this section, we introduce the blockchain retrieval system architecture. As shown in
Figure 3, it mainly includes four modules: collection module, retrieval module, blockchain
storage module and retrieval structure maintenance module.

Collection Module

Block 
Collect/Parse

Block Retrieval 
Analysis

Storage Module

Block Storage 
Structure

Time 
Retrieval Tree

Retrieval Structure Maintenance Module

Feature Analysis
Retrieval 
Structure 

Maintenance

ExtractIng  the retrieval  features 

Retrieval Module

Single-Feature 
Retrieval

Retrieval structure
 updating 

Block retrieval analysisIng

Retrieving, locatIng, and obtaining  blocksBlock data storage

Multi-Feature 
Retrieval

Account Address 
Retrieval Tree

Figure 3. Blockchain retrieval system architecture.

Collection Module : The primary responsibility is block collection/parsing and blocks
retrieval analysis. The collection module obtains the block after the upper consensus
module of the blockchain node, verifying that the block and sends the complete block
data to the storage module for storage. At the same time, the block content is analyzed to
extract the characteristic information needed for retrieval. The collection module sends it
to the maintenance module of the retrieval structure to establish or update the retrieval
structure. Block retrieval analysis extracts the retrieval targets and sends the retrieval
features, including the account address and time stamp, to the retrieval module.
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Storage Module: The primary responsibility is to store/obtain the block, and store/
update the retrieval structure. The block data received from the collection module are
stored in a file, which contains a mapping table between block hash and block offset.
Block files can be stored locally or on IPFS. After the retrieval module retrieves the block’s
hash, which contains the transaction record, the system can obtain the block through the
storage module. At the same time, the time retrieval structure and account address retrieval
structure are stored for retrieval by the retrieval module.

Retrieval Structure Maintenance Module: The primary responsibility is to update and
maintain various retrieval structures: update and keep the acquired retrieval feature informa-
tion, including account address and timestamp, for the corresponding retrieval structure.

Retrieval Module: The primary responsibility is to perform single-feature retrieval or
multi-feature hybrid retrieval based on the retrieval feature information to determine the
block that contains the transaction record.

3.2. Retrieval Feature Extraction Processing

First of all, the blockchain retrieval system needs to extract the retrieval features from
the block. Blockchain links block together through hash pointers. The data in the blocks
are semi-structured, and each block consists of a block header and block body. The block
header comprises consensus-related information, including version number, parent block
hash, timestamp, Merkle root, block size, and other information.

The first step is to extract the characteristics, including the transaction timestamp,
sender account address, and receiver account address, and generate the block summary file
shown in Table 1. The block hash is the hash name for the entire block, followed by the
transaction hash for each transaction, the account address of the sender participating in the
transaction, the account address of the recipient participating in the transaction, and the
time when the transaction was created.

The second step is to process these retrieval characteristics. The sender and receiver
account addresses are processed separately for the accuracy of retrieval. The key–value
pairs of the sender’s transaction address and block hash and the key–value pairs of the
receiver’s transaction address and block hash are generated, respectively. These are sent
to the retrieval structure maintenance module to update the account address retrieval
structure. Then, the transaction timestamp in the block and block hash are sent to the time
retrieval structure for updating.

Table 1. Block summary document.

Block Hash

transaction1 hash sender addresses receiver addresses transaction1 creation time
transaction2 hash sender addresses receiver addresses transaction2 creation time
transaction3 hash sender addresses receiver addresses transaction3 creation time
transaction4 hash sender addresses receiver addresses transaction4 creation time

3.3. Retrieval Structure Generation and Analysis

In reviewing previous studies, we have seen a lot of research on optimizing the
retrieval structure, including different retrieval methods and improvements to the B+ tree.
However, these research schemes are not suitable for blockchain retrieval scenarios for the
following reasons: First, the B+ tree structure lacks scalability with the rapid increase in the
number of account addresses. Second, due to the random distribution of block time, it is
difficult for the traditional B+ tree to establish an efficient retrieval structure for the time.

In this section, we propose a novel data structure BB+ tree. This efficient data structure
combines the advantages of the B+ tree and Bloom filter. It also has scalability and fast
retrieval speed. Next, we will sequentially introduce a time and space complexity analysis
of the BB+ tree structure, account address retrieval tree based on the BB+ tree, and time-
retrieval tree based on the I2B+ tree.
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3.3.1. BB+ Tree

The B+ tree is a very classic retrieval structure with the advantages of efficient re-
trieval speed and supporting range retrieval. In the blockchain retrieval scenario, account
addresses and block hashes are treated as key–value pairs and managed through the B+
tree. During blockchain transaction retrieval, the account address is retrieved as the key
value in the B+ tree to obtain the block hash and the corresponding block for the complete
transaction. However, with the rapid growth of the account address, the B+ tree is directly
used to manage the account address retrieval items, resulting in the too-large tree structure
and too-large retrieval space, directly affecting the retrieval time.

Given the deficiency of the B+ tree, we propose a BB+ tree. The BB+ tree has two core
elements: Bloom filter and B+ tree. Then, we will introduce the BB+ tree in detail. We use
the Bloom filter to optimize the B+ tree, mainly because the Bloom filter uses less space and
has fast calculation speed. It can have better scalability and retrieval efficiency when facing
a large number of account address retrieval items.

As shown in Figure 4, the BB+ tree is composed of a two-level structure, where the first
level is the Bloom filter, and the second level is the B+ tree. The first level structure is used
to quickly classify key values and reduce the search space: when a new pair of key–value
enters, the key value is first input into the Bloom filter for calculation. The Bloom filter
will generate an m-bit array. According to the bit array, the key–value pairs are managed
by the subB+ tree corresponding to the input bit array. The second level structure is that
after receiving the key–value pair of the first level structure, the BB+ tree will construct
the subB+ tree according to the key value of the key–value pair to facilitate the key–value
retrieval item. Similar to the B+ tree, the front and back pointers in the BB+ tree are set
between leaf nodes to support range retrieval.

Adr12Adr12 .... Adr13 .. Adr22Adr22 .. Adr23

Adr
111
Adr
111
Adr
112
Adr
112
Adr
113
Adr
113

Adr
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Adr
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Adr
122
Adr
123
Adr
123

Adr
121
Adr
122
Adr
123

Adr
221
Adr
221
Adr
222
Adr
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Adr
223
Adr
223

Adr
221
Adr
222
Adr
223

Adr111Adr111 Blk1Blk1 Blk2Blk2 Blk3Blk3

Adr11

Bloom filter1 Bloom filter2 Bloom filter3

Root

Blk11Blk11 Blk12Blk12

Figure 4. The BB+ tree.

The following is the pseudo-code analysis of the BB+ tree when inserting key–value
pairs in Algorithm 1 and retrieving the key value in Algorithm 2:

3.3.2. Performance Optimization Analysis of BB+ Tree

This section will analyze the time and space complexity of the B+ tree and BB+ tree.
The data structure features of the B+ tree are as follows: internal nodes store corporate

index relations, while leaf nodes store actual data. The retrieval of a key value often
depends on the height of the tree, so the time complexity is

ReadB+ Tree = O(logd n) + s (3)

where d is the order of the B+ tree, the total number of key–value pairs (number of leaf
nodes) is n, and s is the additional query time cost. Although the logarithmic time complex-
ity is excellent, with the rapid expansion of the search space, even logarithmic complexity
cannot guarantee the search speed. Faced with the problem of retrieval space expansion,
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we propose a new structure, BB+ tree, whose time complexity consists of two parts: the
time complexity of the Bloom filter and the time complexity of the subB+ tree, as follows:

ReadBB+ Tree = O(k) + O(logd n/2m) + s (4)

where k is the time required to calculate k hash functions, and m is the number of bit array.
According to formula k in the Bloom filter, there is a relationship between m and n:

k =
m

2dlog2 ne ∗ ln 2 (5)

Substituting the expression of the above equation k into the formula, we can obtain

ReadBB+ Tree =
m

2dlog2 ne ∗ ln 2 + logd
n

2m + s ≈ m
n
∗ ln 2 + logd

n
2m + s (6)

Taking n as the variable, we take the derivative of the time function of BB+ and
compare it with the time function of B+. It can be found that the magnitude of the change
of the BB+ tree is smaller than the derivative result of the B+ tree with the increase in n,
which indicates that the growth rate of the BB+ retrieval time is slower than B+ tree’s time
with the increase in retrieval space.

Read′B+ Tree =
1

n ln d
(7)

Read′BB+ Tree = − m
n2 ln 2 +

1
n ln d

(8)

The space consumption of the B+ tree depends on the number of nodes. In actual
operation, the node’s size matches the size of the disk page (usually 4, 8, or 16 K), so the
size of the B+ tree is multiplied by the B+ tree nodes number and the disk page size. In
addition to the space consumption of the B+ tree, the space consumption of the BB+ tree
structure also includes the space consumption related to the Bloom filter.

Algorithm 1 Insert [k,v] in the BB+ tree

Input: [k,v] a pair of K-V value, a matrix BF[i][j] for bloom filters, i ∈ {0, 1, 2, . . . , I − 1}
and j ∈ {0, 1, 2, . . . , m− 1}, where m is the bloom filter bits size, H is hash functions
number, three seed hash functions h1(x), h2(x) and h3(x)

Output: true or false;
1: h1 ← h1(k), h2 ← h2(k), h3 ← h3(k)
2: Hx = 0;
3: for x = 0 to H − 1 do
4: Hx(k) = (h1 + x ∗ h2 + x2 ∗ h3)mod m
5: Hx = Hx||Hx(k)
6: end for
7: for i = 0 to I − 1 do
8: if ∃i, Hx = BF[i][] then
9: access subB + treei in BB+ tree

10: if reach a leaf node k in subB + treei then
11: update leaf node k with [k,v]
12: else insert a new leaf node k in subB + treei
13: end if
14: else
15: insert Hx in matrix BF[i][]
16: end if
17: end for
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Algorithm 2 Query [k,v] in the BB+ tree

Input: k, the target key, a matrix BF[i][j] for bloom filters, i ∈ {0, 1, 2, . . . , I − 1} and j ∈
{0, 1, 2, . . . , m− 1}, where m is the Bloom filter bits size, H is hash functions number,
three seed hash functions h1(x), h2(x) and h3(x)

Output: a set of value in [k,v]
1: h1 ← h1(k), h2 ← h2(k), h3 ← h3(k)
2: Hx(k) = 0;
3: for x = 0 to H − 1 do
4: Hx(k) = (h1 + x ∗ h2 + x2 ∗ h3)mod m
5: Hx = Hx||Hx(k)
6: end for
7: for i = 0 to I − 1 do
8: if ∃i, Hx = BF[i][] then
9: access subB + treei in BB+ tree

10: if reach a leaf node k in subB + treei then
11: return leaf node k
12: else
13: return k does not exist in subB + treei
14: end if
15: end if
16: end for

SizeB+ tree = SizePage ∗
(

h

∑
level =0

Page level + Page leaves

)
(9)

SizeBB+ tree = Size Page ∗
(

h

∑
level =0

Page level + Page leaves

)
+ n ∗ 1.44 log2(1/ε) (10)

ε =

(
1−

(
1− 1

m

)kn
)k

(11)

where Pagelevel represents this level nodes, and Pageleaves represents the number of leaf
nodes. From the analysis of the above equation, we find that BB+ trees, compared with
B+ trees, provide better retrieval performance in the face of many key values, at the cost
of providing additional storage space to maintain the Bloom filters. However, the Bloom
filter has the advantages of not needing to save original data, occupying less data, etc. One
element in the B+ tree may occupy 4 KB, while one element in the Bloom filter may occupy
4 bits. So the space consumption of the Bloom filter can be ignored when comparing with
the space-occupying capacity of the B+ tree. According to the theoretical analysis of time
consumption and space consumption, the BB+ tree structure has better performance than
the B+ tree structure.

3.3.3. Account Address Retrieval Tree Based on BB+ Tree

In [22], it uses the account address and block hash to establish an inverted index and
introduces a B+ tree to manage an inverted index. However, with the significant increase
in account addresses (the current scale of account addresses can reach millions), facing
the search space rapid expansion, the B+ tree lacks flexibility and expansibility, leading to
the decline in retrieval efficiency. Therefore, this paper proposes a new retrieval structure
BB+ tree. In this section, the blockchain retrieval builds an account address retrieval tree
based on the BB+ tree.

Establish the account address retrieval structure: As shown in Figure 5, when the
retrieved items from the collection module, such as adr111 (corresponding to block1 hash,
block2 hash, and block3 hash), adr112 (corresponding to block4 hash, block5 hash, and
block6 hash) and adr113 (corresponding to block7 hash and block8 hash), appear, the
blockchain retrieval system enters these account addresses into the Bloom filter. For
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example, when adr111 appears, the Bloom filter will computer and classify adr111. If the
result after computing in Bloom filter is 0111, it will enter the subB+ tree corresponding
to the Bloom filter 0111 and establish the retrieval item about this account address in
subB+ tree. If the result after computing in the Bloom filter is 0011, there is no subB+ tree
corresponding to the result after computing in the Bloom filter, and the retrieval system
will update the Bloom filter and establish new subB+ tree. The follow-up work is described
in the previous step.
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Figure 5. The account address retrieval structure based on BB+ tree.

Update the account address retrieval structure: When an update of the original account
address is received, the retrieval items related to an account address in the account address
retrieval structure are updated as shown in the following Figure 6. When the account
address of the account address adr111 is updated, the block containing the account address
is expanded from three to five. Read the retrieval item of adr111 from the retrieval structure,
and add and update the newly added block hash block11 hash and block12 hash to the
retrieval item.
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Figure 6. Updating the account address retrieval structure.

Retrieve in the account address retrieval structure: When the account address retrieval
is performed, the retrieval module analyzes the target account account address. The system
first uses the Bloom filter to distinguish and classify the account address, and enters the
corresponding subB+ tree. Secondly, the retrieval item of the connected account address
is obtained under the subB+ tree, and the block hash containing the account address
is obtained.

3.3.4. Time Retrieval Structure Based on I2B+ Tree

Due to the complexity of time management, it is difficult for the B+ tree to manage
and merge the time feature effectively. However, the blockchain retrieval scenarios need
the B+ tree’s range retrieval. This paper introduces the I2B+ tree—an improved B+ tree
for the time index. The I2B+ tree combines the characteristics of the B+ tree and interval
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tree, which can store the time period, and support range retrieval. Based on the I2B+
tree, key–value pairs which contain block time and block hash are obtained from feature
extraction and processing. The core idea is that the timestamp of a block which represents
the generated time can be transformed into a time period (from the creation time of a block
to the creation time of the next block). The I2B+ tree can merge the time period, and improve
the management and retrieval efficiency of the time retrieval structure. According to the
block information parsed by the collection module, the block hash and the corresponding
time period can be obtained through analysis. The time period is input into the I2B+ tree as
the key value, and the block hash as the key value.

Establish time retrieval structure: As is shown in Figure 7, convert the time the time
period into value from 0 to 10,000, and enter the I2B+ tree. For example, the corresponds
period to block1 hash is “2–3”. The corresponding periods to block2 hash, block3 hash,
block4 hash, block5 hash and block6 hash are “4–10”, “11–20”, “21–23”, “24–30” and
“31–35”. The retrieval system will enter these period to the I2B+tree.

2|24| 2|24| 

2|21|  2|21|  

(20) (23) (30)

(23)

24|31|24|31|

(35)

[2,3][4,10][11,20] [21,23] [24,30]

Block1 hash Block2 hash Block3 hash Block4 hash Block5 hash Block6 hash

[31,35]

(35)

Figure 7. Time retrieval structure based on I2B+ tree.

Update time retrieval structure: As shown in Figure 8, when the block7 hash and
block8 hashes appear, the corresponding periods are “36–40” and “41–48”. Hash7 and
Hash8 are updated to the time retrieval structure. The internal node 24|31 in the I2B + tree
is updated to 24|36. At the same time, merge (31,35) with (24,30), add two time periods of
(36,40) (41,48), and also add block hashes of block7 and block8.

2|24|2|24|

2|21|2|21|

(20)) (23) (48)

(23)

24|3624|36

(48)

[2,3][4,10][11,20] [21,23] [36,40][41,48]

Block1 hash Block2 hash Block3 hash Block4 hash Block5 hash Block8 hash

[24,30][31,35]

(35)

Block7 hashBlock6 hash

Figure 8. Updating the time retrieval structure.

Retrieve in time retrieval structure: When the retrieval target time is “9–12”, the I2B+
tree traverses its nodes and selects the node involving the target period and the block hash
values of the corresponding leaf nodes, block2 hash and block3 hash, to return.

3.4. Blockchain Retrieval Processing

Blockchain transaction retrieval is a complex scenario, and users will have some feature
information when retrieving. The blockchain retrieval system proposed in this article can
select single-feature retrieval or multiple-feature retrieval based on feature information.

3.4.1. Single-Feature Retrieval

The retrieval module carries out retrieval based on one characteristic of time, sender
account address, and receiver account address, and obtains the complete block data from
the storage module.
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Based on the time characteristics, the retrieval module extracts the time of the retrieved
target. The retrieved the time by using the time retrieval tree, and the set of block hashes in
the time is output. Complete block data are obtained through the block storage module
and analyzed for verification.

Based on the account address characteristics, the retrieval module extracts the re-
ceiver’s address or sender’s address of the retrieved target. The account address retrieval
tree is used to retrieve the account address, and the set of block hashes related to the
account address is output. Complete block data are obtained through the block storage
module and analyzed for verification.

3.4.2. Multi-Feature Retrieval

As shown in Figure 9, the process is similar to single-feature retrieval. The retrieval
module will analyze various features contained in the retrieval target. The retrieval based
on time and account address features is carried out simultaneously in parallel to obtain the
block hash set. The retrieval module takes the intersection operation based on three kinds
of block hash sets obtained by different retrieval structures. According to the hash of the
block, the system obtains the hash of the target block and receives the corresponding block
in the storage module to obtain the related complete transaction records.

Sender Address   | Receiver Address |  TimeSender Address   | Receiver Address |  Time

Block Retrival

(Blockname Set1∩Blockname Set2∩Blockname Set3)

Block Retrival

(Blockname Set1∩Blockname Set2∩Blockname Set3)

Storage ModuleStorage Module Block SetBlock SetBlock Set
Parse 

And Validation
Parse 

And Validation
Parse 

And Validation
Hit Target BlockHit Target BlockHit Target Block

Sender Address 
Index

Sender Address 
Index

Block Hash Set2Block Hash Set2

Sender Address 
Index

Block Hash Set2

Sender Address 
Index

Sender Address 
Index

Block Hash Set1Block Hash Set1

Sender Address 
Index

Block Hash Set1

Sender Address 
Index

Sender Address 
Index

Block Hash Set3Block Hash Set3

Sender Address 
Index

Block Hash Set3

Figure 9. Multi-feature retrieval process.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed blockchain retrieval
system. The experimental platform used in this experiment is a server with Intel Xeon(R)
CPU E5-26090 @ 2.40 GHz, 16 GB memory and 2TB HDD, and the operating system is
Centos 7.9. Part of the blockchain data used in the experiment comes from xblock [41]. This
website provides blockchain data for research and exploration, including actual data from
currently influential blockchain projects, such as Bitcoin and Ethereum. This research uses a
data set of actual transactions on the Bitcoin network from 2014 to 2016. Bitcoin is the model
of most current blockchain projects, with distinctive blockchain characteristics, and its data
are more representative. A portion of the data is randomly generated on demand, whose
data structure is consistent with that of Bitcoin data. As shown in Table 2, Bitcoin block data
for experiments include some features, including the following: BlockID, which represents
the height of the block; BlockHash, which represents the hash of the block; Btime, which
represents the time when block was created; and Txs, which represents the number of
transactions in the block; In Bitcoin, each block contains 200 transactions on average. In
Table 3, the presented results are transaction information in block 327872. Transaction
represents the hash of the transaction. Sender Address represents the account address of
sender in the transaction. Receiver Address represents the account address of the receiver.
Time represents the time when the transaction was created.
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Table 2. Block data.

BlockID BlockHash Btime Txs

327872 00000000000000001BECC903BF44978DEDE7C0429B0 1414771239 288

327873 0000000000000000008F1C9DC87C18D50D6AAC82923 1414771715 256

327874 00000000000000001A80CF302D79ED1322AFB14Fsq1 1414771623 176

Table 3. Transaction data in block 327872.

Transaction Hash Sender Address Receiver Address Time

18755B2319DA1E1A
7F4432AF8C505D881

1111111111111111
1111BZbvjrl12xc

11114bV2T9cgCnj
8EffSHZtvop66atyv 1414771239

9ADE39C5D8CB3ED1
B91D702FF57A0FD9w

11111p3u5wS3s2DM
P3LMRhoqcCmVFte

1114UGwDgKvF5dT
eBzHBN6iN5BS5ao1JB 1414771239

12AD8088D7ECA878
CC7FBAAFAB9B2F5B2

11117APqhd39TNQL
pVQhSLBXo3vA8KCb

111dTWEm8zcGJNT
M5XBPLKjf3yRqxLWAv 1414771239

For comparative analysis, we implement BRBR [22], which is a novel and representa-
tive B+ tree transaction retrieval data structure based on extracting the sender transaction
addresses for transaction retrieval. At the same time, this paper proposes the BB+ tree, in
which we can dynamically adjust the bits array number in the Bloom filter. This experiment
compares N = 2, N = 4, and N = 6 to observe the influence of the Bloom filter bits, where N
is the bits number.

The experiment mainly has two parts. The first experiment part analyzes the time and
space consumption of the BB+ tree proposed in this paper. The content of the investigation
is the construction time and the amount of space occupied by the retrieval structure based
on the BB+ tree under different block sizes. The second part analyzes the retrieval efficiency
of the BB+ tree single feature in different scenarios and the retrieval efficiency of mixed
multi-feature retrieval.

4.1. Time and Space Consumption for BB+ Tree

The experiment mainly evaluates the time and space consumption of the BB+ tree in
different block sizes. Firstly, the blockchain retrieval system extracts the account address
and block hash in the Bitcoin data provided by xblock and inserts the key–value pairs to
BB+ tree and BRBR. Then, we analyze the comparison results of the establishment time and
the retrieval file size when the block sizes are 1000, 3000, and 5000.

As can be seen from Figure 10a, we obtain the comparison results including BRBR,
BB+ tree (N = 2), BB+ tree (N = 4), and BB+ tree (N = 6) to establish the retrieval structure in
different block sizes. When the block sizes are 1000, 3000, and 5000, the time consumption
of BRBR is 11.82, 40.26, and 71.52 s, respectively. The time consumption of the BB+ tree
(N = 2) is 11.55, 37.02, and 60.74 s. We can see that the time consumption results of BB+
are better than BRBR in different situations. This is because the BB+ tree reduces the
retrieval space of each subB+ tree by splitting the retrieval space so that it can be faster
when inserting, updating, and deleting the retrieval items. When the Bloom filter’s bits
number N is different, the retrieval structure establishment’s time is also different. When
the block size is small, the performance of the BB+ tree is not outstanding after introducing
the Bloom filter. However, as the block size increases, its advantages gradually manifest. As
can be seen from Figure 10a, the larger the N in the BB+ tree, the shorter the establishment
time of the retrieval structure. The reason is that the number of bits N of the Bloom filter
increases so that the search items can be maintained in more subB+ trees. The subB+ tree
has fewer items, which makes inserting, updating, and other maintenance efficient.
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(a) (b)

Figure 10. A comparison of time and space consumption. (a) Retrieval file build time between B+
and BB+; (b) retrieval file size between B+ and BB+.

As can be seen from Figure 10b, we obtain the space consumption comparison results
of BRBR, BB+ tree (N = 2), BB+ tree (N = 4), and BB+ tree (N = 6) under the block sizes of
1000, 3000, and 5000, and the space consumption of BRBR is 78.15, 235.01 and 380.88 KB.
The space consumption of the BB+ tree (N = 2) is 78.82, 242.59, and 404.76 KB. It can be
seen that in terms of space consumption, BRBR is slightly better than BB+. The reason is
that the BB+ tree introduces the Bloom filter, which will cause extra bitmap and other space
occupation compared to BRBR. However, the Bloom filter has the advantages of occupying
less space and having good performance, so the space consumption of the BB+ tree is not
increased significantly compared with that of BRBR.

4.2. Block Retrieval Performance Test and Analysis

The performance evaluation of retrieval structure mainly includes three experiments:
Experiment 1 investigates the retrieval performance of the account address retrieval structure
based on the BB+ tree proposed in this paper under different block sizes. In experiment 2,
blockchain retrieval often faces concurrent scenarios. This experiment investigates the retrieval
performance of the BB+ tree under different concurrent retrieval scales. In experiment 3, we
add time features to examine the performance of the proposed multi-feature retrieval.

4.2.1. Single-Feature Retrieval Based on the BB+ Tree

This experiment mainly focuses on the performance of the retrieval structure in
different block sizes. Firstly, the blockchain retrieval system extracts the account address
and block hash in the Bitcoin data provided by xblock and inserts the key–value pairs to
BB+ tree and BRBR. Then, we conduct the blockchain single-feature retrieval experiments.
The retrieval target is shown in Table 4. The retrieval structure contains the target, and the
number of target key–value pairs is fixed. Finally, we analyze the comparison results of
retrieval time in different block sizes, and the block sizes are 500, 1000, 1500, 2000, 2500,
3000, 3500, 4000, 4500, and 5000.

Table 4. Single-feature retrieval example.

Type Description Example

Single-Feature retrieval Account address retrieval address = “111113cvaEeMfzNNASCkn49qddBTdX1y4”

As shown in Figure 11, the abscissa is the block size, and the ordinate is the retrieval
time. It can be observed from the figure that as the block size increases, the increase in the
account address retrieval space will cause the retrieval time of BRBR and BB+ to increase,
but the retrieval time of BB+ is better than the BRBR in the overall retrieval time. Especially
in the small block size of 500 to 1000, the retrieval time of the BRBR can see a very significant
increase, and then the increasing trend becomes flat. When BB+ is in the block size of 500
to 5000, the retrieval time increases with the increase in the block number. As a whole,
compared with BRBR, the retrieval time increased more gently with the increase in the



Future Internet 2022, 14, 267 16 of 21

block size without a spike, indicating that the BB+ retrieval structure has good scalability
in the face of the rapid increase in the block size. Secondly, when the bits number N in the
Bloom filter bit array is different, the BB+ performance is also different. Compared with
BB+ (N = 2), the overall performance of BB+ (N = 4) is better, the retrieval time is shorter,
and the growth trend is more gradual. It indicates that the Bloom filter enables the BB+
tree to effectively reduce the size of retrieval space and improve the retrieval efficiency.
However, compared with BB+ (N = 4) and BB+ (N = 6), even in 1500–2000, the retrieval
time of the BB+ (N = 6) fluctuated. This means that as the Bloom filter bit array increases,
additional computational complexity may be introduced, thus affecting the overall retrieval
time. In 4000–5000, BB+ (N = 6) is gradually better than BB+ (N = 4), indicating that with
the increase in block size, the retrieval time based on the BB+ retrieval structure begins to
change again. It shows that the increase in N will not necessarily improve the retrieval
efficiency under the block size, and the size of N should be dynamically adjusted according
to the block size and the retrieval requirements of the transaction.
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Figure 11. Query response time in different block sizes.

4.2.2. Concurrent Retrieval Performance

This experiment mainly focuses on the performance of the retrieval structure in
different concurrent retrieval scales. Firstly, the blockchain retrieval system extracts the
account address and block hash in the Bitcoin data provided by xblock and inserts the
key–value pairs to BB+ tree and BRBR. Then we conduct the blockchain concurrent retrieval
experiments. The retrieval target is shown in Table 5. The retrieval structure contains the
target, and the number of target key–value pairs is fixed. We select the block sizes of 500,
1500, 3000, and 5000, and the number of concurrent retrievals is 2, 4, 6, 8, 10, and 20. Finally,
we analyze the comparison results of the retrieval time increase.

Table 5. Concurrent retrieval example.

Type Description Example

Concurrent retrieval Account address retrieval address = “111113cvaEeMfzNNASCkn49qddBTdX1y4”

We introduce a comparison parameter Bi [22], where i is the number of retrieval
participants in concurrent retrieval and t2 is the retrieval time when the number of retrieval
participants is 2. This parameter is used to compare the performance changes of different
retrieval structures when the size of the retrieval requests increases:

Bi =
ti
t2
(i = 4, 6, 8, 10, 20) (12)
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As is shown in Figure 12, the abscissa is the retrieval requests number, and the ordinate
is the comparison parameter Bi. When the number of blocks is 500, the retrieval time of
BRBR is longer than BB+. As the number of concurrent retrievals increases, the increase in
Bi is relatively tiny. It shows that BB+ tree has a shorter retrieval time in a small-scale block
retrieval scenario, and has weaker stability than that of BRBR in the face of the increase in
the number of concurrent retrievals. As the block size increases, especially in blocks of 1500
and 3000, the BB+ tree has good performance. Compared with BRBR, the retrieval time
is less, and the increase in the BB+ Bi is also more minor. With the rise in the number of
concurrent searches, the retrieval performance of the BB+ tree-based retrieval structure is
excellent and stable. When the number of blocks is 5000, we can see that the two are close
to each other in terms of stability, but the overall retrieval time based on BB+ tree is better.
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Figure 12. The increasing trend of retrieval time under different concurrent retrieval scales.

Overall, including different concurrent retrieval scales and block sizes, it is similar
to the situation in the first experiment. First, in terms of retrieval time, BB+ (N = 4) and
BB+ (N = 6) have identical performance and stability, indicating that the increase in Bloom
filters does not bring more significant performance improvement to BB+ tree. In some cases
with block sizes of 500, 1500, and 3000, BB+ (N = 4) is even better than BB+ (N = 6). The
main reason is that the addition of the Bloom filter increases the computational complexity
of the retrieval algorithm. There is a balance between the increase in the Bloom filter’s bit
array and the reduction in the retrieval time.

4.2.3. Multi-Feature Retrieval

This experiment mainly considers that the retrieval system introduces time retrieval
parameters and evaluates performance in multiple features retrieval. Firstly, the blockchain
retrieval system extracts the account address and time in the Bitcoin data provided by
xblock. It inserts the account retrieval item to the BB+ tree and BRBR. It inserts the time
retrieval item to the I2B+ tree. Then we conduct the blockchain multi-feature retrieval
experiments. The retrieval target is shown in Table 6. The retrieval structure contains the
target, and the number of targets is fixed. Random retrieval experiments are conducted
30 times under the scale of 1500 blocks. For multi-feature retrieval, we randomly generate
multi-feature attributes, including account address and time, according to the retrieval
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attributes. BRBR can retrieve the target sender account address without time. Finally, we
analyze the comparison results of the retrieval time.

Table 6. Multi-feature retrieval example.

Type Description Example

Multi-Feature retrieval Account address and time retrieval address = “111113cvaEeMfzNNASCkn49qddBTdX1y4” AND
time = “1414771239”

As can be seen from Figure 13a, “BB+” in the figure means that the retrieval only uses
the account address. “BB+ with time” means that the retrieval uses the account address
and time. N is the bits number in the Bloom filter. We can see that the BB+ tree is better
than BRBR in terms of retrieval time, on the whole, indicating that the retrieval structure
based on the BB+ tree performs better than BRBR.
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Figure 13. (a) Multi-feature query response time; (b) average analysis of different structures; (c) vari-
ance analysis of different structures.

Figure 13b shows the average time of each retrieval structure. According to the analysis
of the average retrieval time, the BB+ is improved by 19.25% compared with the BRBR
when N is equal to 2. When N is equal to 6, BB+ is improved by 40.54% in retrieval time.
BB+ with time is increased by 33.16% compared with BRBR at N = 2. When N is equal to 6,
BB+ is improved by 43.16% compared with BRBR. When N is equal to 2, the addition of
time features greatly improves the retrieval efficiency. When N is equal to 6, the addition of
time features makes the retrieval efficiency improve relatively little. Figure 13c show the
stability analysis of each retrieval data structure in these 30 experiments. We can see that
the stability of BRBR and BB+ is close, indicating that the Bloom filter does not influence
the stability of the B+ tree. However, it can be observed from the curve fluctuation and
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stability analysis in the figure that the stability of BB+ is significantly improved, mainly
due to the addition of the time retrieval feature. After the block set intersection is taken,
the retrieval range is narrowed, and the block can be hit more accurately, thus ensuring a
fast and stable retrieval algorithm.

5. Conclusions

With the rapid increase in data amount on the blockchain, ledger storage puts tremen-
dous storage pressure on the blockchain nodes. To ease the storage pressure, existing
research trends store blockchain ledger data in third-party storage networks to reduce the
storage pressure on blockchain nodes. However, after the blockchain ledger is distributed
to the network, the blockchain node needs to fetch the ledger frequently from the storage
network during transaction retrieval when it is not possible to locate the transaction, result-
ing in huge network overhead. The blockchain lacks an efficient transaction retrieval system
after distributed storage. For this purpose, we extract the universal blockchain transaction
features, such as account address and time, and establish a blockchain transaction retrieval
system. Based on system, this article first proposes an improved B+ tree—BB+ tree based
on the Bloom filter for account address retrieval. Compared with the B+ tree, this kind
of data structure has stronger expansibility and flexibility and higher retrieval efficiency.
Secondly, the I2B+ tree is introduced to manage the time retrieval effectively. Finally, to
verify the blockchain retrieval system proposed in this paper, we implement BRBR to
conduct comparative experiments. The experimental results prove that our method has
better results in single-feature retrieval and multi-feature hybrid retrieval. The retrieval
time is reduced by 40.54% under single feature retrieval, and the retrieval time under
multi-feature mixed retrieval is reduced by 43.16%. It has better stability in the face of
different block sizes and user scales.

This study focuses on two more common characteristics: time and account address.
With the more extensive application of blockchain in the future, there will be more and
more data types on the blockchain. This study can be improved according to the specific
scene characteristics of blockchain and the content recorded on the blockchain to achieve a
better retrieval effect. At present, various application areas have formed initial preparation
and accumulation work on blockchain technology, and gradually combine the blockchain
system with the original business system, which requires the blockchain system to accelerate
the improvement of its own shortcomings and limitations. The blockchain transaction
retrieval system proposed in this paper is for the performance improvement and function
extension of blockchain system transaction retrieval. It can provide a feasible idea for
the future application of blockchain in pan-financial applications, industrial supply chain,
information management and other read-intensive scenarios.
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