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Abstract: The work presented in this paper focuses on the use of data augmentation techniques
applied in the domain of the detection of antisocial behavior. Data augmentation is a frequently
used approach to overcome issues related to the lack of data or problems related to imbalanced
classes. Such techniques are used to generate artificial data samples used to improve the volume
of the training set or to balance the target distribution. In the antisocial behavior detection domain,
we frequently face both issues, the lack of quality labeled data as well as class imbalance. As the
majority of the data in this domain is textual, we must consider augmentation methods suitable
for NLP tasks. Easy data augmentation (EDA) represents a group of such methods utilizing simple
text transformations to create the new, artificial samples. Our main motivation is to explore EDA
techniques’ usability on the selected tasks from the antisocial behavior detection domain. We focus
on the class imbalance problem and apply EDA techniques to two problems: fake news and toxic
comments classification. In both cases, we train the convolutional neural networks classifier and
compare its performance on the original and EDA-extended datasets. EDA techniques prove to be
very task-dependent, with certain limitations resulting from the data they are applied on. The model’s
performance on the extended toxic comments dataset did improve only marginally, gaining only 0.01
improvement in the F1 metric when applying only a subset of EDA methods. EDA techniques in this
case were not suitable enough to handle texts written in more informal language. On the other hand,
on the fake news dataset, the performance was improved more significantly, boosting the F1 score by
0.1. Improvement was most significant in the prediction of the minor class, where F1 improved from
0.67 to 0.86.

Keywords: data augmentation; EDA; deep learning; antisocial behavior; fake news detection; toxic
comments

1. Introduction

In recent years, deep learning methods have achieved great success in solving various
problems, including bioinformatics [1], cybersecurity [2], manufacturing [3,4], or natural
language processing (NLP). NLP deals with creating computational algorithms for the
automatic analysis and representation of human language. In the field of NLP, neural net-
works achieve excellent results compared to traditional machine learning models, such as
SVM (support vector machine) or logistic regression. In comparison to traditional machine
learning algorithms, deep learning algorithms can learn multiple levels of representation.
From the perspective of NLP, deep learning models (especially recursive neural networks)
can also capture sequence information within the text (e.g., phrases), which makes them a
more suitable option for NLP than the traditional methods. In recent years, convolutional
neural networks (CNNs) have shown breakthroughs in some NLP tasks, such as text
classification [5–7].

Nowadays, online platforms are a widespread phenomenon that enables users to com-
municate with different messages. Moving human communication to online platforms is a
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double-edged sword. Benefits include the opportunity to share opinions and experiences
and get immediate feedback, as well as the opportunity to discuss various topics. On the
other hand, on these online platforms, we can observe vulgarities, hate speech, insults, or
misinformation, which are referred to as antisocial behavior on the Internet [8]. Spreading
misinformation on the Internet can take various forms, such as hoaxes, spam, rumors, false
reviews, etc. We focused on two types of them, toxicity in comments and fake news [9].
Toxicity in comments is defined as a rude, disrespectful, or inappropriate comment that
is likely to force other users to leave the discussion. Toxicity in comments can appear in
various areas, such as social networks or discussions related to news articles [10]. The most
common type of antisocial behavior on the Internet is fake news. They are considered news
pieces that are intentionally and demonstrably untrue. Usually, these articles are designed
to mislead, deceive, and influence people’s opinions. Fake news contains false information,
the veracity of which can be verified [11].

Manually detecting and tracking online content is a very demanding and costly
process. Machine-learning systems that prescreen content and identify suspicious cases
have proven successful in detecting antisocial behavior. These algorithms may prove to be
a viable solution to problems on social networking platforms.

Besides the traditional machine learning models, deep learning is very capable in
the detection of various forms of antisocial behavior on the web. Deep networks (in-
cluding different topologies of CNN) have been successfully used to automatically de-
tect cyber-bullying in Twitter posts [12,13]. Deep networks are successful in other re-
lated tasks, such as hate speech detection [14]. Besides the commonly used deep learn-
ing architectures, ensembles of deep networks can be used to improve the detection
ratio [15]. Deep learning methods are very popular in toxic comment classification and fake
news detection. The authors of the study [16] focused on the detection of fake news using
neural network methods on two datasets that contained English news articles. To solve
this problem, the authors used CNNs, RNNs (recurrent neural networks), unidirectional
LSTM (long short-term memory), and bidirectional LSTM networks. In [17], the authors
focused on binary toxicity classification in online comments. The authors used the k-nearest
neighbors, naive Bayes, and CNN models to detect toxicity in the comments. The CNN
network proved to be the most successful one. In contrast to the previous study, the authors
of [18] focused on classifying toxicity in comments and minimizing identity bias. In this
experiment, the authors showed that although the model works well on a dataset, it can
still demonstrate bias at subgroup levels. In this experiment, they trained three models:
LSTM, BERT, and the TF-IDF model. As in previous studies, the authors [19] focused on
detecting toxicity in online comments. The authors divided this research into two parts.
In the first part, they used a binary classification to detect toxic comments correctly. In
the second part, they used a multiclass classification model to determine the degree of
toxicity. Deep networks can address different types of toxicity in the text using multilabel
classification [20,21]. Capsule networks are also used to track the temporal aspects of
toxicity in the comments [22].

The use of ML models to detect antisocial behavior from the texts is well studied, and
models based on neural networks often prove to be the most suitable for handling these
tasks. However, there are still many open research issues. One of the problems lies in the
lack of well-labeled data. Even if many public datasets are available (in multiple antisocial
behavior detection areas), many of them are still human-labeled, which may incorporate
bias into the data. On the other hand, automatic labeling (e.g., using lexicons) may be more
efficient in processing more data but still is not very reliable. To address the bias which can
be introduced by human labeling, techniques such as crowd sourcing can be utilized. In
addition, many datasets in this domain are heavily imbalanced. Such class imbalance may
influence the detection models’ performance, especially in the minor class, which usually
represents the type of antisocial behavior (e.g., fake news articles, fake reviews, or toxic
comments). Therefore, exploring the approaches that can sample the data in the minor
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classes to overcome the lack of data can be interesting. An important issue is generating
new, artificial samples with the same characteristics as the original data.

In work presented in this paper, we focused on using data augmentation techniques
to improve the class imbalance by generating new, artificial samples from minor classes.
We used simple text transformation methods based on vocabularies which were used to
construct the new samples by replacing certain words with their synonyms. Such methods
were already experimentally evaluated in several domains, e.g., clinical literature [23],
sentiment analysis [24], or more recently in local (Portuguese) fake news detection [24].
The main motivation of our research was to focus on the antisocial detection behavior
domain. We selected two typical tasks within this area which often involve processing
imbalanced data. Then we experimentally evaluated if the application of EDA in these
tasks could influence the performance of the detection models. We decided to evaluate
both, separate EDA techniques as well as a combination of all EDA methods applied
at once. We compared the performance of the classification models on the original and
EDA-extended datasets.

The paper is organized as follows: Section 2 describes the data augmentation methods
used in the text processing domain. The following section presents the datasets used in
the study and their preprocessing. Section 4 presents the deep learning model used in
both evaluated tasks and presents the results of the experiments. Section 5 presents the
conclusions of the experiment’s results.

2. Data Augmentation

In deep learning, model performance often improves with increasing data volume.
To achieve the required performance of the model, it is necessary to have enough training
data, which, however, are not always available. To solve this problem, it is essential to
add new data samples or generate new samples from existing ones to be able to train a
more generalized model. Manually adding relevant new records is a very time-consuming
process. This has led to the development of methods to generate new samples automatically.
Augmentation techniques are used to automatically extend the size of the dataset used to train
the models. Data augmentation generally involves methods that increase the training data
without collecting new data. There are multiple data augmentation techniques; most are
based on a generation of slightly perturbed original data samples. The main motivation is
to use the augmented data as a regularizer to reduce the potential overfitting of the trained
models. Therefore, generated data samples should be neither too different (semantically)
nor, at the same time, too similar to the original samples. This could lead to an even higher
level of overfitting. We can use these techniques to handle two problems that may cause
poor model performance. The first one is the lack of data in the training set. The second
problem lies in the uneven distribution of records in the target class. In the case of heavy
imbalanced classes, the model usually performs better in a major class, while it struggles to
learn concepts from the minor one. Data augmentation techniques can help to artificially
expand the size of a training set by creating new records from existing data (usually from
the minor classes) [25].

2.1. Data Augmentation in NLP

While using augmentation techniques in computer vision and image classification
applications is very popular [26–29], text data augmentation techniques in NLP applications
are still relatively less used mostly due to the complexity of natural language. However,
more recently, methods to extend textual training data for NLP tasks have been the subject
of several studies [30–32]. In general, augmentation methods in NLP can be divided into
four groups based on the level at which the augmentation procedure works. Character-
level augmentation is based on adding noise to the training samples (e.g., switching the
letters) on a character level. Such an approach can be used to simulate the natural noise
in text (e.g., spelling mistakes), common in written text. Models trained on character-
level enhanced data should be more suitable for text processing tasks in some specific
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domains, e.g., classification of texts from social networks [33,34]. Word-level augmentation
is based on adding noise or the replacement of words. Very common are vocabulary-
based approaches, where replacements are based on different lexicons [35–37]. One of
the most frequently used ones is Wordnet [38]. A very popular word-level augmentation
technique is easy data augmentation (EDA) [39], which we will describe later. Besides the
replacement of the lexical units, there are more advanced methods based on embedding
replacement which (instead of synonym substitution) replace words based on textual
context [40] or replacement methods based on language models [41]. Phrase- or sentence-
level augmentation methods perform the replacement of multiple words or parts of the text
(e.g., semantic text exchange [42]). In the last group, document-level methods are used to
generate entire text documents. In this case, mostly generative approaches[43] or translation
models [44,45] are used.

2.2. Easy Data Augmentation

EDA consists of augmentation techniques developed and evaluated in [39]. This set of
methods uses traditional and straightforward approaches to increase the volume of data.
These techniques create new data so that the meaning and grammatical structure of the
original data are preserved. EDA consists of the following four methods that prevent model
learning and help train more robust models:

• Synonyms replacement—this method creates new samples of textual documents by
the replacement of suitable words from the text with their synonyms which retain the
meaning of the text. The user needs to provide the parameter n, which specifies how
many words will be replaced by their synonyms in the given sentence. Users must
also focus on selecting the right words and appropriate synonyms that do not change
the meaning of the text. In our research, we used the Wordnet lexical database for the
English language, which is available in the NLTK library in Python. In addition, we
used the Stopwords dictionary (a corpus containing English stop words) to identify
nonmeaningful words in the data. An example of this method on the toxic comments
dataset used in the study is as follows:
All stupid, no brains, is a more accurate description of Trudeau.
Wholly stupid, no brains, is a more precise description of Trudeau.

• Random insertion—this method works with synonyms of selected words as in the
previous method. However, the difference is that n synonyms of the words chosen
are randomly inserted at different positions in the text. The random insertion of the
synonyms of certain words from the text, as opposed to a synonyms replacement,
can be more relevant to a given context, as it retains the original evaluation of the
text. The method is specified by the number of full-meaning words whose synonyms
are randomly inserted at particular positions. An example of an application of this
method on a sample record from the toxic comments database is as follows:
Presidents are unpredictable. What do you think we should do about it, shoot him in the
back?
Presidents are unpredictable. What recover do you think we should do chairperson retrieve
about it, shoot him in the back?

• Random swap—unlike previous methods, this method does not use synonyms to
create new samples. This method aims to select two random words that swap positions
in the text. The user specifies parameter n, which defines how many pairs of words
should exchange positions in the text. This method could help the model to be more
robust. However, a very high number of words exchanged can worsen the model due
to a change in the meaning of the text. An illustrative example of this method on the
toxic comments dataset is as follows:
Only wishful thinking on your part—simple and silly imagining. something would happen
that isn’t realistic.
Only your thinking on wishful isn’t —simple and silly realistic. something would happen
that part imagining.
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• Random deletion—the goal of this method is to randomly remove words in the text
with a certain probability specified by a parameter p. It is necessary to choose the
probability appropriately so we do not delete many words from the text. The text in
the toxic comments dataset after applying this augmentation technique is changed as
follows:
Funny you should link Palin and Trump. They are both grifters, playing the poorly educated
for fools.
Funny should link Palin and Trump. They are both grifters, the poorly educated for fools.

The EDA provides simple methods for increasing the training data volume, but it
is important to follow certain rules for the methods to work properly. In each method,
it is necessary to correctly choose the number of words to be replaced, inserted, deleted,
or replaced so that the meaning and structure of the text are preserved. For text with a
small number of words, the meaning of the text is more likely to change. It is also very
important that methods replace only full-meaning words and not stop words. Properly
tuning the method parameters does not change the text’s meaning or structure, and the
model improves.

3. Data Understanding and Preprocessing

To evaluate the selected EDA methods, we used two datasets from the antisocial
behavior detection domain—toxic comments and fake news datasets. In the first case, we
used the Jigsaw toxic comments dataset (available online: www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-classification/data, accessed on 6 July 2022), which is used
to train the models for the detection of toxicity in comments related to news reports. The
dataset consists of short text comments that contain very informal language and expressions,
including emoticons, explicit language, or slang expressions. The dataset was created by
the Civil Comments platform, which collected and made available in competition Jigsaw
Unintended Bias in Classification Toxicity. Figure 1 depicts a dataset sample to illustrate the
content of the texts. Individual documents have lengths ranging from 1 to 1000 characters.
The majority of the comments are short, ranging from 50 to 150 characters. The target
attribute represents the toxicity score. The score values range from 0.0 to 1.0 and represent
the fraction of raters who believed the label fit the toxicity type. We transformed the
numeric target feature to a binary class, dividing the comments into toxic and nontoxic
groups, where toxic comments were considered those with scores higher than 0.5. Other
comments we considered as nontoxic/neutral. The resulting binary target feature was
unbalanced, as the toxic comments made up only 8 percent of the entire dataset.

In the second task, we solved the fake news detection problem in news articles. The
dataset consists of news articles; texts are usually longer than the comments used in the
previous dataset. In addition, as the data consist of news pieces from different online
media, the texts are written more formally and use more polished language. The particular
documents are also longer, with the majority of the documents containing from 2000 to
5000 characters. The dataset consists of a total of 7500 news articles. The target class
is binary, specifying if a given article is considered a regular news piece or if it contains
misinformation. In addition, in this case, the target class is unbalanced, with regular records
being a major and fake news a minor class.

In the data preprocessing phase, we performed just the basic standard text prepro-
cessing, including converting the texts to lowercase, removing the punctuation marks, and
dividing the sentences into tokens. We did not apply more text processing techniques to
keep the data in form as close to original as possible. Data in datasets describing antisocial
behavior contain various slang words, abbreviations, emoticons, or other forms of text
that can express the features and characteristics of antisocial behavior. By removing these
words, we could disrupt the main features and characteristics of the text, which could
change the semantic meaning [46]. Especially with toxic comments, it is very important to
keep the text form as close to the original to extract the features of toxicity in the comments
properly. For the same reason, keeping the stop words, nonmeaningful words, and formu-

www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
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las is important. In the antisocial behavior detection domain, it is more suitable to keep
the dataset without several more advanced preprocessing methods (such as stemming or
lemmatization or stop words removal). The application of those techniques can result in a
loss of important information typical for the style used in the short texts (comments) [6].
As a text representation model, we used GloVe (Global Vectors for Word Representation)
embeddings [47]. We aligned the sequences to the same length. In the toxic comments
dataset, we used a maximum size of 200. In the fake news dataset, we set a maximum size
of 2500.

Figure 1. Target class frequency in the original and EDA-extended toxic comments dataset.

While applying the selected EDA techniques, we extended the dataset by newly
created artificial samples from the minor class. In this phase, it was necessary to correctly
choose the parameters of the EDA methods—the number of words to be replaced, inserted,
exchanged, or deleted. We trained multiple CNN models to find out which parameter value
would be optimal and recorded the best results. On the toxic comments dataset, we decided
to use the parameters n = 4 in synonyms replacement, n = 3 in random insertion and
random swap, and p = 0.13 in the random deletion approach. Similarly, on the fake news
dataset, we applied the EDA techniques using following settings: synonyms replacement
(n = 4), random insertion (n = 6), random swap (n = 3), and random deletion (p = 0.12).
First, we gradually added individual techniques and, finally, we applied a combination of
all EDA methods. The application of particular EDA techniques doubled the minor class
records in the training data; the application of all EDA techniques resulted in five times
more samples of the minor class. Tables 1 and 2 then summarize the class attributes in both
of the datasets before and after the application of EDA methods.
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Table 1. Target class frequency in the original and EDA-extended toxic comments dataset.

Data Augmentation Neutral Comments Toxic Comments

Original 1,328,643 115,256

Synonym replacement 1,328,643 230,512
Random insertion 1,328,643 230,512
Random swap 1,328,643 230,512
Random deletion 1,328,643 230,512

EDA 1,328,643 576,280

Test set 331,897 29,078

Table 2. Target class frequency in the original and EDA-extended fake news dataset.

Data Augmentation Relevant News Fake News

Original 5618 460

Synonym replacement 5618 920
Random insertion 5618 920
Random swap 5618 920
Random deletion 5618 920

EDA 5618 2300

Test set 1382 138

4. Detection of Antisocial Behavior Using Deep Learning Methods

We chose a CNN [48] model for the experiments, as the architecture proved to achieve
good results in NLP tasks [13,49]. While maintaining performance, CNN architecture
proved to be much less computationally intensive than LSTM networks. We expected
that the effect of EDA augmentations should be very similar regardless of the used model.
Both solved problems were binary classification tasks. Binary classification aims to classify
data into one of two classes. In our case, we classified the data in the first dataset into
toxic/nontoxic comments and, in the case of the fake news dataset, into fake/relevant news.
Entire preprocessing, training, and evaluation were implemented in the Python language,
including standard analytical stack (e.g., Pandas, Tensorflow, and scikit-learn packages).

The main idea of the experiments was to find out the effect of EDA augmentation
techniques to the classification results. We used a simple convolutional neural network
model, shown in Figure 2. It consisted of two convolution layers, two pooling layers, one
flatten layer, and one regularization dropout layer. We used the checkpoint method to
prevent overfitting [50]. The hyperparameters of the CNN model are summarized in Table 3.
During the experiments, we gradually added individual EDA augmentation techniques to
the data and monitored its influence on the resulting metrics.

We evaluated the models using standard classification metrics:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score =
2 × Precision × Recall

Precision + Recall
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
. (4)
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Figure 2. Architecture of CNN model.

Table 3. Hyperparameters of the CNN model.

Hyperparameters Values

Batch size 32
Optimizer Adam

Learning rate 0.001
Dropout rate 0.20

These metrics were computed using the coefficients derived from the confusion matrix
(see Table 4), which expresses the number of correct and incorrect predictions made by
the classification model compared to the ground truth values in the testing data. In the
formulas, TP, FP, FN, and FP stand for true positive, false positive, false negative, and false
positive rates associated with the class attribute. These metrics were used also to measure
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the model performance on the particular minor. To measure the overall model performance,
we also used the AUC (area under curve). The AUC score computes the area under the
ROC (receiver operating characteristic) curve and provides the aggregate measure of model
performance across all possible classification thresholds.

Table 4. Confusion matrix.

Actual Values

Predicted Values
0 1

0 TN FN
1 FP TP

4.1. Evaluation of Toxic Comments Detection

The basic model of the convolutional neural network without the extension of the
training set reached a precision of 78%, a recall of 50%, and an F1 score of 61% in toxicity
detection (minor class prediction, see Table 5). After evaluating the basic model, we
trained the models using EDA augmentation techniques. Table 6 summarizes the overall
performance (macro-averaged metrics) of the CNN model and compares different EDA
methods applied to the original training data.

Table 5. Performance results of the CNN model on the toxic comments dataset achieved in the minor
(toxic) class.

Data Precision Recall F1 Score

Original 0.78 0.50 0.61

Synonym replacement, n = 4 0.74 0.55 0.63
Random insertion, n = 3 0.74 0.55 0.63
Random swap, n = 3 0.76 0.52 0.62
Random deletion, p = 0.13 0.77 0.51 0.61

EDA 0.51 0.77 0.61

Table 6. Macro-averaged performance results of the CNN model on the toxic comments dataset.

Data Accuracy Precision Recall F1 Score AUC

Original 0.95 0.87 0.74 0.79 0.9461

Synonym replacement, n = 4 0.95 0.85 0.76 0.80 0.9509
Random insertion, n = 3 0.95 0.85 0.77 0.80 0.9508
Random swap, n = 3 0.95 0.86 0.75 0.80 0.9505
Random deletion, p = 0.13 0.95 0.86 0.75 0.79 0.9505

EDA 0.92 0.74 0.85 0.78 0.9422

In this case, EDA augmentation techniques did not achieve the desired improvements
in the detection of toxicity in the comments. Although we trained models with different
augmentation techniques where we defined other parameters, we still did not achieve
significant improvement. The toxic comments dataset contains comments with many
slang words, dialect words, abbreviations, swear words, and words made up of different
characters. For this reason, augmentation techniques that work with synonyms cannot be
used because they are not in the standard synonym dictionary. If these words are replaced
by words that do not constitute antisocial behavior, false negative cases will arise. When
randomly deleting, the biggest problem is the length of the text. As these are short texts,
toxic words are often deleted. After deleting these words, the comment becomes neutral,
so there arise false negative cases.
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4.2. Evaluation on the Fake News Dataset

The CNN model was trained on the fake news dataset without the extension of the
training data, with an unbalanced target attribute class. The training set consisted of more
than 92% regular news pieces and only 8% fake news articles. After training the base model
of the same architecture as in the previous dataset, we evaluated the model’s performance
on the minor (fake news) class. The fake news dataset contained 460 positive cases in the
training set. Table 7 shows the confusion matrix of this model.

Table 7. Confusion matrix of base CNN model trained on fake news dataset.

Actual Values

Predicted Values
0 1

0 1378 4
1 66 72

As in the previous dataset, using EDA augmentation techniques extended the data
with approximately more than four times more fake news records. Table 8 summarizes the
results of the CNN model on the original data and data extended using EDA techniques.
The CNN model achieved a precision of 95%, a recall of 52%, and an F1 score of 67% in the
toxic comments class. Table 9 summarizes the macro-averaged performance of the CNN
model on the original and EDA-extended datasets.

Table 8. Performance results of the CNN model on the fake news dataset achieved in the minor (fake
news) class.

Data Precision Recall F1 Score

Original 0.95 0.52 0.67

Synonym replacement, n = 6 0.91 0.68 0.78
Random insertion, n = 6 0.90 0.63 0.74
Random swap, n = 3 0.96 0.64 0.77
Random deletion, p = 0.12 0.93 0.63 0.75

EDA 0.95 0.79 0.86

Table 9. Macro-averaged performance results of the CNN model on the fake news dataset.

Data Accuracy Precision Recall F1 Score AUC

Original 0.95 0.95 0.76 0.82 0.9701

Synonym replacement, n = 6 0.97 0.94 0.84 0.88 0.9781
Random insertion, n = 6 0.96 0.93 0.81 0.86 0.9773
Random swap, n = 3 0.97 0.96 0.82 0.88 0.9785
Random deletion, p = 0.12 0.96 0.94 0.81 0.86 0.9758

EDA 0.98 0.96 0.89 0.92 0.9856

The model, which used a combination of all EDA augmentation methods, significantly
improved all metrics compared to other models. Using EDA, we increased the F1 score by
19 percent and recall by 27 percent when detecting fake news samples (minor class). The
confusion matrix of this model is shown in Table 10.

Table 10. Confusion matrix of CNN model trained on the fake news dataset expanded using EDA
techniques.

Actual Values

Predicted Values
0 1

0 1376 6
1 29 109
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4.3. Comparison with Related Literature

The use of EDA techniques was already explored in the available literature [39], where
the authors evaluated these methods on five different text classification tasks. EDA boosted
the model’s performance marginally, but significant improvements could be expected on
the smaller datasets. Similar behavior was observed during our experiments. Especially
on the fake news dataset, which consisted of approximately 6000 training samples, the
improvements were most significant. To check the issue of the possible overfitting that
EDA may cause, we evaluated the models’ overall performance and their performance
in the minor class. This kind of evaluation supported the benefits that EDA applications
can bring.

In addition, we could compare the results obtained by applying similar techniques
to the same dataset. For example, in [51], authors applied EDA and back-translation
techniques to the toxic comments classifiers using traditional machine learning algorithms
(logistic regression and support vector machine). Their baseline model gained an F1
performance of 0.677; after the EDA application, it improved to 0.736. Back-translation
itself did not achieve better results. Relatively lower levels of F1 could be attributed to
the usage of standard ML models. In addition, in this case, the authors did not perform
the optimization of EDA parameters or their combination. In [19], authors used a similar
technique as EDA on CNN-based toxic comments classification. The authors used synonym
replacement, random mask, and unique word augmentations, which improved the baseline
CNN model from a 0.846 F1 to 0.885 (a combination of all techniques). Similar to our
experiments, a combination of multiple techniques brought higher benefits to the model
performance. The difference in the F1 score of the baseline model can be attributed to
different test sets (the testing set in our experiments consisted of 20% of samples, in
comparison to a 10% test set in these experiments).

The comparison of the fake news dataset can be difficult, as there are multiple
datasets, and their usage among the studies is rather inconsistent. The majority of current
research [52–54] uses the COVID-19 fake news dataset. However, mentioned studies use
advanced deep learning models for classification and different augmentation techniques
(translation, BiGRU-CRF, and CapsuleNet). In both cases, the effects of the applied tech-
niques are quite similar, as they boost the F1 performance of the classifiers by 0.01. It is
important to note that applying more advanced techniques can be very demanding on
computational resources. EDA techniques can be relatively simple to implement, but their
effects on classifier performance can be comparable.

4.4. Practical Implications

In this work, we have presented a CNN classification model for the detection of
two forms of antisocial behavior detection trained on an EDA-extended dataset. Data
analytical methodologies such as CRISP-DM [55] describe the overall data analysis process
in multiple steps. Such steps include data understanding and preparation, the training
and evaluation of the analytical models, and the actual deployment of the model into
production. In this paper, we focused mostly on the experimental evaluation of the model.
However, as we used standard data analytical technologies in the implementation, it is
relatively straightforward to serialize the developed models to transfer them into the
production environment. In the studied domain, similar models could run as web services,
consuming the input data from the sources and providing real-time predictions. Depending
on the particular type of task, such models could be implemented as browser extensions
highlighting the given text (e.g., toxic comments or unreliable news pieces) during web
browsing. From a practical point of view, data can be accessed in real-time using public
APIs (e.g., news articles or comments from social networks). Models can be serialized using
standard Python tools (e.g., Pickle) and deployed as web services using a web framework
(e.g., Flask). Such an approach enables the creation of an architecture where serialized
models are used to score the incoming data on the back-end and feed the classification
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results to the front-end. In this case, the output of the model can be fed to the browser
extension, able to highlight possible toxic comments or unreliable news pieces.

5. Discussion and Conclusions

The work presented in this paper focused on data augmentation techniques applied
to text classification in the antisocial behavior detection domain. The main objective was to
explore the possibility of using simple EDA augmentation techniques to overcome the class
imbalance problem when solving antisocial behavior detection tasks using deep learning
models. We evaluated EDA methods on two selected tasks—fake news detection and
toxic comments classification. In both cases, we used the CNN classifier and compared its
performance when trained on the original training set with training sets enhanced using
a combination of EDA techniques. The effect of EDA augmentation techniques on the
model performance is strongly dependent on the dataset. Although there are multiple EDA
techniques available, those are usually very well used when applied to a dataset containing
the texts written in more formal language. It was evident on the performance boost of the
CNN model on the fake news dataset, which was significant, improving the F1 score by
a 0.1.

From the perspective of the style and language of the texts, EDA techniques applied to
the fake news dataset positively affected classification performance. This dataset comprised
news pieces usually longer than discussion comments and written using more formal
language. This task was much better suited to the EDA synonym replacements and
similar techniques. Using EDA, we could correctly generate the augmented data samples,
contributing to model performance improvement. On the other hand, EDA techniques
applied to the dataset of toxic comments did not improve the CNN model performance
(only a 0.01 improvement in F1). The dataset mostly comprised short texts (discussion
posts) and contained much nonformal content (e.g., slang expressions). Therefore, EDA
methods relying on synonyms replacement were unable to find suitable synonyms for
many of the words typical for toxic behavior in the comments. The application of these
methods did not generate the augmented toxic samples suitable enough to be used to
improve the model’s performance.

In general, the problem of enhancing the datasets (e.g., due to data scarcity or to
balance the classes) in the NLP domain is very difficult and attracts the attention of many
research groups. The ability to artificially generate new texts is a difficult task, and it is very
challenging to synthetically generate the features present in the texts written by humans
(such as irony or sarcasm). Simple augmentation techniques such as EDA cannot reflect
these complex issues and even simpler ones, such as considering the context of replaced
words. However, its simple implementation and application while maintaining reasonable
performance can present an advantage in certain applications. In the future, we expect that
exploration of the usage of a character-level augmentation method could be useful, as they
can generate texts which can represent spelling mistakes (which are very common in this
type of data). The further analysis and exploration of the suitability evaluation of other,
more advanced augmentation methods such as GAN in this domain could be interesting.
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