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Abstract: Recently, the growing demand of various emerging applications in the realms of sixth-
generation (6G) wireless networks has made the term internet of Things (IoT) very popular. Device-
to-device (D2D) communication has emerged as one of the significant enablers for the 6G-based IoT
network. Recently, the intelligent reflecting surface (IRS) has been considered as a hardware-efficient
innovative scheme for future wireless networks due to its ability to mitigate propagation-induced
impairments and to realize a smart radio environment. Such an IRS-assisted D2D underlay cellular
network is investigated in this paper. Our aim is to maximize the network’s spectrum efficiency (SE)
by jointly optimizing the transmit power of both the cellular users (CUs) and the D2D pairs, the
resource reuse indicators, and the IRS reflection coefficients. Instead of using traditional optimization
solution schemes to solve this mixed integer nonlinear optimization problem, a reinforcement learning
(RL) approach is used in this paper. The IRS-assisted D2D communication network is structured
by the Markov Decision Process (MDP) in the RL framework. First, a Q-learning-based solution is
studied. Then, to make a scalable solution with large dimension state and action spaces, a deep Q-
learning-based solution scheme using experience replay is proposed. Lastly, an actor-critic framework
based on the deep deterministic policy gradient (DDPG) scheme is proposed to learn the optimal
policy of the constructed optimization problem considering continuous-valued state and action spaces.
Simulation outcomes reveal that the proposed RL-based solution schemes can provide significant SE
enhancements compared to the existing optimization schemes.

Keywords: device-to-device communication; overlay communication; intelligent reflecting surface
(IRS); reinforcement learning (RL); spectrum efficiency (SE)

1. Introduction

Recently, Internet of Things (IoT) systems have been rapidly deployed at an unprece-
dented pace with the growing demand in various emerging applications in the realms
of sixth-generation (6G) networks [1]. The International Data Corporation (IDC) reveals
that 41.6 billion connected IoT devices will generate 79.4 zettabytes of data by 2025 [2].
Hence, the design of 6G cellular IoT networks needs to satisfy the growing demands and
expectations, e.g., huge capacity, low latency, seamless coverage, and global connectivity [3].

Direct communication between devices in close proximity (D2D communication) has
emerged as a significant enabler of the 6G-based IoT networks [4]. In D2D communications,
devices can communicate directly to exchange information, or they can relay data over the
licensed cellular spectrum without forwarding it to a base station (BS) and without harm-
fully interfering with the licensed cellular users (this is called underlay communication).
Thus, D2D communication is considered a promising offloading solution that enhances
the overall network’s performance by improving the spectral and energy efficiencies while
reducing latency [5].

Due to the spectrum scarcity, there is a constant push for D2D users to share the under-
utilized radio spectrum with cellular users (CUs). However, this might cause degradation
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in the quality-of-service (QoS) for the CUs due to unacceptable co-channel interference.
Hence, interference management in underlay D2D communication has become a crucial
challenge [5]. This can, however, be carefully tackled using efficient resource allocation [6],
beamforming, and interference cancellation schemes [7]. On the other hand, due to transmit
power limitations, the success rate of offloading is poor for those D2D users who are far
away or hidden from each other. Moreover, the offloading communication links are prone
to deep fade, blockages by obstacles, shadowing, etc. Therefore, an advanced framework
for efficient D2D off-loading is necessary for satisfactory performance.

Recently, the usage of intelligent reflecting surfaces (IRS) has emerged as a hardware
solution to improve radio frequency (RF) signal propagation issues and, in addition, to
realize a smart radio environment [8]. Specifically, the IRS is a two-dimensional man-made
surface of electromagnetic (EM) material, namely a metasurface, that is composed of a large
array of specially designed passive scattering elements. Using software, each scattering
element can be programmed to maneuver the properties of the reflected RF signal, namely
the phase and spacial angles compared to the incident signal. This can create a desirable
multi-path effect. For instance, the reflected RF signals can be added coherently to improve
the received signal power or be combined destructively to mitigate interference. The IRS
can be applied as a coating on a building wall or even be carried by aerial platforms, paving
the way to several smart functionalities. Hence, the IRS can turn a radio environment into
a smart space with enhanced data rate, extended coverage, low power consumption, and
more secure transmissions [8]. In contrast to the traditional relay communications, IRS
can characterize a fully controllable signal propagation scenario without a constant power
supply and active circuitry requirements [9]. This enhances the system capacity, spectral
efficiency, and energy efficiency substantially.

Therefore, an IRS-assisted D2D framework underlaying cellular system is very promis-
ing in eliminating the interference between the cellular and D2D users. Thus, this frame-
work has the ability to boost the signal strengths of the cellular radio links, and it can help
to meet the required data rate [10]. The research in this area has not yet been fully explored,
which is the motivation behind this study on the IRS-assisted D2D framework.

Most of the resource allocation problems in the literature are constructed as nonlinear
non-convex optimization problems that are mathematically intractable [10]. Therefore,
traditional optimization approaches (e.g., exhaustive search) are infeasible for real-time
optimization. The large number of IRS elements in an IRS-aided D2D framework require
real-time optimization schemes with low complexity. Fortunately, reinforcement learning
(RL), a subset of machine learning (ML), is very effective for controlling relevant policies
and supporting intelligent decisions under uncertain and dynamic environments [11].
Q-learning, deep Q-learning, actor-critic framework, and other RL approaches have been
enormously adopted for resource management in wireless networks [12–15]. Therefore, we
propose an RL-based scheme to solve the optimization problem of the IRS-assisted D2D
underlay cellular network.

1.1. Related Works

There have been several related works in this area with different parameters. The
paper [16] investigates the task offloading and resource management for an IRS-assisted
D2D cooperative computing system. Here, the convex optimization theory and semi-
definite relaxation method are utilized to provide the optimal solution. On the other
hand, an IRS-aided D2D offloading system is studied in [17], where an IRS is employed
to assist in the offloading of computations from a group of intensive users to a group
of idle users. A mixed-integer stochastic successive convex approximation scheme is
proposed to tackle this problem. The physical layer security and data transmission for
underlay D2D networks have been investigated in [18], where a combination of IRS and
a full-duplex jamming receiver is considered for robustness and security enhancements.
Another application of IRS in D2D communications is presented in [19], where a double
deep Q-network (DDQN) structure is applied to optimize the transmit power and channel
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assignment for the D2D pairs, the RIS position, and the phase shift to maximize the
sum rate of the D2D network. An IRS-assisted single cell uplink D2D network has been
studied in [20], where the problem of maximizing the total system rate is formulated by
jointly optimizing the transmission power of all links and the discrete phase shifts of the
surface; then, the optimization problem is decomposed into two sub-problems and solved
iteratively. Another IRS-empowered underlay D2D network is presented in [10], where
the spectrum efficiency (SE) and the energy efficiency of the network are maximized by
jointly optimizing the resource reuse indicators, the transmit power, the IRS’s passive
beamforming, and the BS’s receive beamforming. An efficient relative-channel-strength-
based user-pairing scheme is proposed to determine the resource reuse indicators, and then
other variables are jointly optimized by iterative algorithms. In [21], the IRS is introduced
into a D2D communication system to improve the throughput of the D2D network, where
the block coordinate descent algorithm and a semidefinite relaxation technique were
utilized to optimize the beamforming vector, power allocation, and phase shift matrix. A
two-timescale IRS-aided D2D ergodic rate maximization problem is studied in [22] subject
to a given outage probability constrained by a cellular link QoS requirement. Here, the
optimization problem is decoupled into two sub-problems and then solved iteratively with
closed-form expressions.

1.2. Contributions

The resource allocation problem for an IRS-aided underlay D2D cellular network is
studied in this paper. The main contributions are as follows:

• The objective of this paper is to maximize the network’s SE, i.e., sum rate of both the
CUs and the D2D pairs, by jointly optimizing the transmit power for both the CUs
and the D2D pairs, the resource reuse indicators, and the IRS reflection coefficients.
The optimization problem is subjected to the signal-to-interference-plus-noise ratio
(SINR) constraints to meet the minimum data rate requirements to ensure the QoS for
both the CUs and the D2D radio links. Since the constructed problem in this paper is a
mixed integer non-linear optimization problem and poses challenges to being solved
optimally, RL-based approaches are utilized.

• The IRS-assisted D2D underlay cellular network is structured by a Markov Decision
Process (MDP) in the RL framework. At first, a Q-learning-based solution scheme
is utilized. Then, to make a scalable solution in the large dimensional state and
action spaces, a deep Q-learning-based solution scheme using experience replay is
adopted. Lastly, an actor-critic framework based on the deep deterministic policy
gradient (DDPG) scheme is proposed to learn the optimal policy of the constructed
optimization problem with the consideration of the continuous-valued state and
action spaces.

• Simulation outcomes under various representative parameters are provided to prove
the effectiveness of the proposed RL-based solution schemes, and an analysis of the
impact of different parameters on the system performance is also provided. It is cer-
tainly observed that the proposed RL-based solution schemes can provide significantly
higher SE compared to the traditional underlay D2D network without IRS and without
RL under different network parameters.

1.3. Organization

The paper is organized as follows: the system model for the IRS-assisted D2D underlay
cellular network is described and the optimization problem is constructed in Section 2.
The proposed RL-based solution schemes are presented in Section 3. The performance
analysis and simulation outcomes of the proposed RL-based solution schemes are provided
in Section 4. Finally, Section 5 concludes the paper.
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2. System Model and Problem Formulation
2.1. System Model

In this paper, a single-cell cellular network-assisted D2D communication is considered,
where an IRS is employed to elevate the link quality when a D2D user uses the cellular
spectrum in an underlay manner. Please note that the IRS is not needed for direct D2D
communication, which is of short range and the IRS is also not needed for communication
between cellular users, as it happens through the BS. As shown in Figure 1, the basic
system consists of one base station (BS), one IRS (more IRS units will be added as needed
at locations that will provide best coverage to every user), a number of CUs, and a number
of D2D pairs. The BS, CUs, and D2D pairs are equipped with a single antenna, while the
IRS has N (N > 1) reflecting elements. A controller is attached to the IRS to control the
reflection coefficients of each element. Note that we assume each reflecting element acts as
an independent unit; therefore, one IRS can handle N user pairs.

BS

D
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m

D
t
m

D
t
m

D
t
m

D
r
m

D
r
m

CU 

D2D pair

IRS controller

IRS

gb,c

gi,c

gb,i

ht,r

ht,i

hi,r

ut,c

vb,r

D2D linkCellular link Interference link

Figure 1. An IRS-assisted D2D underlay communication network.

In this system, K CUs coexist with M D2D pairs, and the D2D pairs share the downlink
stream of the cellular network. Orthogonal frequency division multiple access (OFDMA)
is used for the multiple access technique for both the CUs and D2D pairs, where resource
blocks are employed for the spectrum allocation. In order to tackle the interference, it is
assumed that the spectrum of a CU can be shared by at most one D2D pair, and a D2D pair
can share at most one CU’s resource.

Let K be the set for CUs, where K = {1, 2, . . . , K},M is the set for D2D pairs, and
where M = {1, 2, . . . , M} and N are the set for IRS reflecting elements, where N =
{1, 2, . . . , N}. We denote the kth CU in the system by Ck, where k ∈ K, and the mth D2D
pair by Dm, where m ∈ M. The transmitter and the receiver of the D2D pair Dm are
represented by Dt

m and Dr
m, respectively.

The channel model for all links in this system is considered quasi-static flat-fading.
Let gb,i ∈ CN×1 be the channel gain of the cellular link from the BS to the IRS, gi,c ∈ C1×N

be the channel gain from the IRS to CU Ck, and gb,c ∈ C be the channel gain from the BS
to CU Ck. On the other hand, the channel gain of the D2D link from D2D transmitter Dt

m
to the IRS is denoted as ht,i ∈ CN×1, the channel gain from the IRS to D2D receiver Dr

m is
denoted as hr,i ∈ C1×N , and the channel gain from D2D transmitter Dt

m to D2D receiver
Dr

m is denoted as ht,r ∈ C. Let ut,c ∈ C be the interference link from D2D transmitter Dt
m to

CU Ck and vb,r ∈ C be the interference link from the BS to D2D receiver Dr
m.

Let Φ , diag [Φ1, Φ2, . . . , ΦN ] ∈ CN×N be the reflection coefficient matrix at the
IRS, where Φn = αnejθn represents an amplitude coefficient αn ∈ (0, 1] and a phase shift
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coefficient θn ∈ (0, 2π]. Here, αn = 1, ∀n ∈ N is considered to achieve a maximum
signal reflection.

The instantaneous SINR of the received signal at CU Ck from the BS can be written as

γc
k =

Pc
k |g

H
i,cΦgb,i + gH

b,c|
2

M
∑

m=1
xk,mPd

m |gH
i,cΦht,i + uH

t,c|2 + σ2
, (1)

where Pc
k is the transmit power of CU k, and Pd

m is the transmit power of D2D pair m;
xk,m is a binary decision variable of resource reuse indicator, where k represents cellular
communication link and m D2D communication link, xk,m = 1 when m D2D link reuses
the spectrum of CU k, xk,m = 0 otherwise, and σ2 is the additive white Gaussian noise
(AWGN) power.

The SINR of the received signal at the D2D receiver Dr
m from the D2D transmitter Dt

m
can be written as

γd
m =

Pd
m |hH

i,rΦht,i + hH
t,r|2

K
∑

k=1
xk,mPc

k |h
H
i,rΦgb,i + vH

b,r|2 + σ2
. (2)

Therefore, the network’s SE (i.e., sum rate of both CU and D2D pairs) in bps/Hz is
given as

R(x, P, Φ) =
K

∑
k=1

log2(1 + γc
k) +

M

∑
m=1

log2(1 + γd
m), (3)

where x = [x1,1, . . . , x1,M, x2,1, . . . , xK,M]T is the resource reuse indicator vector, and P =
[Pc

1 , . . . , Pc
K, Pd

1 , . . . , Pd
M]T is the power allocation vector.

2.2. Problem Formulation

Our objective is to maximize the SE shown in (3) by jointly optimizing the transmit
power, the resource reuse indicator, and the IRS reflection coefficients. Therefore, the
optimization problem (OP) can be formulated as follows:

(OP) : max
x,P,Φ

R(x, P, Φ) (4)

subject to:

C1 : γc
k ≥ γc

min; ∀k ∈ K,

C2 : γd
m ≥ γd

min; ∀m ∈ M,

C3 :
K

∑
k=1

xk,m ≤ 1,

C4 :
M

∑
m=1

xk,m ≤ 1,

C5 : 0 ≤ Pc
k ≤ Pc

max; ∀k ∈ K,

C6 : 0 ≤ Pd
m ≤ Pd

max; ∀m ∈ M,

C7 : |Φn| = 1, 0 < θn ≤ 2π; ∀n ∈ N .

Here, constraints C1 and C2 denote the required minimum SINRs to ensure the
QoS for the cellular communication links and the D2D communication links, respectively.
Constraints C3 and C4 indicate that a D2D pair shares at most one CU’s spectrum and the
spectrum of a CU can be shared by at most one D2D pair, respectively. Constraints C5 and
C6 represent the maximum transmission power constraints for the CUs and the D2D pairs,
respectively, and constraint C7 denotes the practical reflecting coefficients of the IRS.

Note that the formulated OP in (4) is a mixed integer non-linear optimization problem
and thus is NP-hard [23]. The variables x, P, Φ in the objective function are all coupled,
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which makes their joint optimization computationally intractable and thus difficult to solve.
In addition, in practical network scenarios, all the parameters associated with the network
will change dynamically. Therefore, utilization of traditional optimization solutions to
solve the formulated OP generally leads to an infeasible solution. Hence, an RL-based
model-free architecture is used for learning the optimization policy to obtain the feasible
x, P, Φ.

3. Reinforcement Learning-Based Solution

Firstly, the formulated OP in (4) is reformulated using the MDP model to be solved by
RL. Secondly, a Q-learning-based solution scheme is proposed. Then, to reach a scalable
solution appropriate for the large dimension state and action spaces, a deep Q-learning-
based scheme using experience replay is adopted. Lastly, an actor-critic framework based
on the deep deterministic policy gradient (DDPG) scheme is proposed to learn the optimal
policy of the constructed optimization problem with the consideration of the continuous-
valued state and action spaces.

3.1. Reinforcement Learning (RL)

The interactions between the agent and the environment in RL can be well described by
the MDP model. The MDP model is structured as a tuple (S ,A, r,P , δ), where S be the state
space set, A the action space set, r the immediate reward function, P the state transition
probability, and δ the discount factor. As shown in Figure 2, in this model, each D2D pair is
regarded as a learning agent in the IRS-aided D2D communication system environment,
and there is no need for prior knowledge about the environment. The learning agent (i.e.,
the controller) continuously learns through interactions with the environment E in discrete
timesteps by taking an action and then observing instant rewards and the state transitions
in the environment. Thereby, it gradually derives its best action. The structure of the MDP
model is given in detail as follows:

BS

CU 

D2D pair

IRS controller

IRS

Environment

CU 

CU 

D2D pair

D2D pair
State

s(t)

Policy

π 

Action

a(t)

Agent 

Reward r(t)

State s(t)

Action a(t)

Figure 2. The RL framework for the IRS-assisted D2D communication network.

• Agent: A pair of every D2D transmitter and receiver.
• State: The observed information in the environment constitutes the system state

s(t) ∈ S , which characterizes the environment at current time t. It includes the channel
information and all D2D agents’ behaviors (e.g., SINR requirement). Therefore, the
system state s(t) can be defined by the following expression:

s(t) =
{{

Gc,t
k

}
k∈K

,
{

Hd,t
m

}
m∈M

,
{

γc,t
k

}
k∈K

,
{

γd,t
m

}
m∈M

}
, (5)
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where Gc,t
k denotes the instantaneous channel information of the kth cellular com-

munication link that includes gb,i, gi,c, and gb,c. Hd,t
m represents the instant channel

information of the mth D2D communication link that includes ht,i, hr,i, and ht,r.
• Action: The learning agent (D2D pair) does the appropriate action a(t) ∈ A at time t

during the learning process following the current state, s(t) ∈ S , based on the policy
π. Hence, the action is defined by constraints C3 and C4 (a D2D pair shares at most
one CU’s spectrum and the spectrum of a CU can be shared by at most one D2D
pair, respectively), constraints C5 and C6 (maximum transmission power constraints
for the CUs and the D2D pairs, respectively), and constraint C7 (practical reflecting
coefficients of the IRS). Based on the constraints in the formulated optimization prob-
lem, the action in this reinforcement learning framework depends on the transmit
power, the resource reuse indicator, and the IRS reflection coefficients. Thus, the action
a(t) ∈ A can be defined as follows:

a(t) =
{{

Pc,t
k

}
k∈K

,
{

Pd,t
m

}
m∈M

,
{

xt
k,m

}
k∈K,m∈M

,
{

θt
n
}

n∈N

}
. (6)

• Transition probability: P(s′|s(t), a(t)) is the probability of transitioning from a current
state s(t) ∈ S to a new state s′ ∈ S after executing an action a(t) ∈ A.

• Policy: The D2D agent’s behavior is defined by a policy π, which maps states s(t) to a
probability distribution over the actions a(t), e.g., π : S → P(A). Note that the policy
function needs to satisfy ∑(a(t)∈A) π(s(t), a(t)) = 1.

• Reward: The reward r is the immediate return to the D2D agent after taking the action
a(t) ∈ A given the state s(t) ∈ S . It is also a performance indicator that indicates how
good the action a(t) is in a given state st

m at time instant t. Hence, considering the
interactions with the environment, each D2D agent takes its decision to maximize its
reward. Now, the reward function for the D2D pair can be written as

r = R−Y1 ∑
k∈K

(γc
k − γc

min)−Y2 ∑
m∈M

(
γd

m − γd
min

)
, (7)

where the first part is the network’s SE at time t and the second and third parts denote
the minimum data rate requirement that is not satisfied for the CUs and the D2D pairs,
respectively. The parameters Y1 and Y2 are the weights of the second and third parts, and

r =

{
R, γc

k ≥ γc
min & γd

m ≥ γd
min,

Negative, otherwise.
(8)

The reward function remains positive for the D2D agent if it satisfies both the condi-
tions γc

k ≥ γc
min and γd

m ≥ γd
min; otherwise, it will be negative.

The framework for the RL-based MDP model works as follows: the D2D agent ob-
serves a state s(t) ∈ S , and considering the interaction with the environment, it takes an
action a(t) ∈ A, selecting the transmit power, the resource reuse indicators, and the passive
beamforming based on the policy π. When an action a(t) ∈ A is executed, the D2D agent
makes a transition from the current state s(t) of the environment to a new state s′, and the
D2D agent receives an immediate reward r.

3.2. Q-Learning-Based Solution Scheme

The objective of the D2D agent is to find a policy π∗ which maximizes the cumulative
discounted reward denoted as

∑
τ≥0

δτr(t + τ), (9)

where r(t) is the immediate reward for the D2D agent at time t, δ ∈ (0, 1] represents the
discount factor, and t denotes the time slot.



Future Internet 2022, 14, 256 8 of 18

The optimal policy π∗, which maximizes the expected sum of rewards, can be written as

π∗ = arg max
π

E
{

∑
τ≥0

δτr(t + τ)|π
}

. (10)

Now, the value function at state s following the policy can be expressed as

Vπ(s) = E
{

∑
τ≥0

δτr(t + τ)|π, s = s(t)

}
. (11)

The Q-value function of considering action a in state s following the policy can be
written as

Qπ(s, a) = E
{

∑
τ≥0

δτr(t + τ)|π, s = s(t), a = a(t)

}
. (12)

Now, the optimal Q-value function Q∗ from a given (state, action) pair can be repre-
sented as

Q∗(s, a) = max
π

E
{

∑
τ≥0

δτr(t + τ)|π, s = s(t), a = a(t)

}
. (13)

The Q∗ that satisfies the following Bellman equation [24] is utilized to find the optimal
policy π∗ by considering the best action in any state:

Q∗(s, a) = Es′∼E

[
r + δ max

a′
Q∗(s′, a′)|s, a

]
= ∑

s′ ,r
P(s′, r|s, a)

[
r + δ max

a′
Q∗(s′, a′)

]
.

(14)

Now, the Bellman equation (14) is updated with an iterative approach as follows:

Qi+1(s, a) = E
[

r + δ max
a′

Qi(s′, a′)|s, a
]

, (15)

where Qi converges to Q∗ as iteration i→ ∞.
The iterative update on the Bellman equation is then utilized to find the optimal

Q∗(s, a), which can be written as

Q∗(s, a)← (1− α)Q∗(s, a) + α

[
r + δ max

a′
Qπ(s′, a′)

]
, (16)

where α ∈ (0, 1] denotes the learning rate.
In a Q-learning-based solution scheme, the ε-greedy scheme [24] is used to choose the

action based on the current action-value estimation, which can be written as follows:

π =

arg max
a(t)∈A

Q(s(t), a(t)), with probability 1− ε

random{ai}ai∈A, with probability ε.
(17)
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The Q-learning-based solution scheme is provided in Algorithm 1. At each iteration step
of this algorithm, each D2D agent selects an action and updates its own policy independently.

Algorithm 1: Q-learning Based Solution Scheme
Initialization:
Initialize the Q-value function Q(s, a) with random weights
Parameter Setting and Updating:
for each episode do

Initial states s0 = {s0
1, . . . , s0

M} observed by all D2D agents
for each time slot do

Actions a(t) are selected using the ε-greedy scheme (17) and then executed by all
D2D agents ;

Perform observation of the rewards r(t) and the new state s′;
Update Q(s(t), a(t)) using (16);
Update π(s(t), a(t));

3.3. Deep Q-Learning-Based Solution Scheme

In this solution scheme, a deep neural network is used as a function approximator to
estimate the action-value function, where the Q-value is determined as follows:

Q(s, a; ω) ≈ Q∗(s, a), (18)

where ω is the weighting (bias) parameter in the neural network. The optimal Q∗(s, a) is
obtained by updating ω using stochastic optimization methods, i.e.,

ω(t + 1) = ω(t)− λ∆ω L(ω), (19)

where λ denotes the learning rate to update ω, and ∆ω represents the gradient of the loss
function L(ω) with respect to ω. Here, L(ω) is the difference between the predicted value
and the actual target value of the neural network. The action-value function Q(s, a) with a
parameter vector ω is then optimized by minimizing the loss function for iteration i, and
this can be expressed as

Li(ωi) = Es,a[(yi −Q(s, a); ωi))
2], (20)

where yi denotes the target value, which can be estimated as

yi = Es′∼E

[
r + δ max

a′
Q(s′, a′; ωi−1)|s, a

]
. (21)

In particular, the gradient update with respect to the Q-function parameters ω is
computed as

∆ωi Li(ωi) = Es,a;s′∼E

[
r + δ max

a′
Q(s′, a′; ωi−1)

−Q(s, a; ωi)∆ωi Q(s, a; ωi)

]
.

(22)

During the training phase of the Q-network, the learning from different batches of
consecutive samples is challenging due to the correlation among these samples. This leads
to inefficient learning. On the other hand, since the current Q-network parameters define
the upcoming training samples, this can introduce bad feedback loops. To tackle these
issues, the experience buffer method is utilized where the Q-network is trained on random
mini batches of transitions (s(t), a(t), r(t), s′) as experienced from the replay buffer, instead
of consecutive samples. Let BT be the total experiences that can be saved in the replay
buffer. At each learning step, a random mini batch of B experiences is sampled uniformly
from the replay buffer pool, and then the Q-network’s weights are updated by the stochastic
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gradient descent scheme. The deep Q-learning-based solution scheme using experience
replay is summarized in Algorithm 2.

Algorithm 2: Deep Q-learning Based Solution Scheme using Experience Replay
Initialization:
Initialize the Q-network and the target Q-network with the parameterized function ω and

the experience replay buffer B.
Parameter Setting and Updating:
for each episode do

Initial states s0 = {s0
1, . . . , s0

M} observed by all D2D agents
for each time slot do

Actions a(t) = η(s(t)) with the parameterized function ωη is selected and executed
by all D2D agents ;

Perform observation of the rewards r(t) and the new state s′;
if the transition number < BT then

Save the transition {s(t), a(t), r(t), s′} in the experience replay buffer;
else

Restore the first stored transition with {s(t), a(t), r(t), s′} in the experience
replay buffer;

A mini-batch of B transitions is selected from the experience replay buffer;
Update the gradient of the loss function L(ω) with respect to the parameterized

function ω using (22)

3.4. Actor-Critic-Based Solution Scheme

To learn the optimal policy for the OP formulated in (4), an actor-critic framework
based on the DDPG scheme [25] is adopted, as shown in Figure 3, with consideration
of the continuous-valued state and action spaces. In the DDPG scheme, the D2D agent
passes through the learning process and targets finding the optimal policy π by achieving
the maximum long-term reward E{Qπ(s, a)}. The DDPG scheme combines deterministic
policy gradients and deep Q-learning approaches to train the actor and the critic network.
Similar to DQN, a replay memory and a separate target network are also utilized here. In
order to form the actor-critic framework, two similarly structured deep neural networks
(DNNs) with different parameter settings are considered, where an evaluation network is
used for real-time parameter updating, and a target network is included for soft parameter
updating. The utilization of experience replay buffer and batch normalization procedures
not only helps to improve the performances of both the evaluation and the target network
but also provides stable and faster convergence. Each transition (s(t), a(t), r(t), s′) of the
D2D agent is kept in the experience replay buffer. When the experience replay buffer
becomes full, the first recorded transitions are overwritten by the new-coming transitions
that initiate the learning process. A random mini batch of B transitions, denoted as
(si, ai, ri, s′i) ∀ i = 1, . . . , B, is chosen during the learning process by sampling uniformly
from the experience replay buffer to update the actor and the critic networks.

In the critic structure, the evaluation and target networks are used to estimate the
Q-value functions as follows:

Qπ(s, a) = Er,s′∼E
[
r + δEa′∼πQπ(s′, a′)

]
. (23)

The critic structure parameter is updated as Q(a) ≈ Qπ(s, a) during the learning
period since the achievable Q-value function under the deterministic policy π (π : S → A)
is Qπ(s, a), where π(s) = arg maxaQ(s, a) [26]. Let ωQ and ωQ′ be the parameterized func-
tions; Q(·) denotes the network function of the evaluation network, and Q′(·) represents
the network functions of the target network for the critic structure. Then, the mini batch of
B transitions is chosen during the learning process, and the weights (ωQ) are updated by
minimizing the loss function stated as

L(ωQ) = E{(ξi)
2}, (24)
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where ξi is the temporal-difference (TD) error, which denotes the deference between the
estimated Q-value and the target Q-value, which can be written as follows:

ξi = Q(ai)− (ri + δQ′(a′)). (25)

Environment

Channel Gain

Reward r(t)

SINR Requirement

State s(t)

Resource reuse indication

Transmit power allocation

Decision Making

IRS reflection coefficient selection

Action a(t)

Observation

Soft

Update

Policy 

Gradient

Experience 

buffer
Mini batch Normalization

Loss

Function

Agent (Controller)

Evaluation Network
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Actor
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Update
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Q’

Critic

Update
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{ri}Q(ai)

Q(a)
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a = ᶯ(si)

a’ = ᶯ’(s’i)

Figure 3. The actor-critic framework based on the DDPG scheme.

Let the loss function L(ωQ) be continuously differentiable with respect to ωQ. Then,
the critic structure can update ωQ with the gradient of L(ωQ) as follows:

∆ωQ = λc 1
B ∑
B

ξi∆ωQ Q(ai), (26)

where λc denotes the learning rate of the critic structure, and ∆ωQ Q(ai) is the derivative of
L(ωQ) with respect to ωQ.

Let ωη and ωη′ be the parameterized functions; η(·) denotes the network function of
the evaluation network, and η′(·) represents the network function of the target network
in the actor structure. The actor structure utilizes the policy gradient scheme to update
the parameterized function ωη during the learning process to make η(si) approximate
the optimal policy π so that the maximum E{Qπ(s, a)} can be achieved. Thus, the policy
under the parameterized actor function ωη can be represented as J(ωη) = E{Q(a)}, as
in [27], where, a = η(si). Since J(ωη) is continuously differentiable with respect to ωη , ωη

can be updated by the chain rule to the expected return from the start distribution J with
the gradient of J(ωη) as follows:

∆ωη = λa 1
B ∑
B

∆aQ(a)|a=η(si)
∆ωη η(si), (27)

where λa denotes the learning rate of the actor structure; ∆aQ(a)|a=η(si)
is the derivative

of Q(a) with respect to a, where a = η(si); and ∆ωη η(si|ωη) is the derivative of η(si)
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with respect to ωη . Then, the following equations (28) and (29) are constructed by the
derivative scheme:

ωη′ = ςaωη + (1− ςa)ωη′ , (28)

ωQ′ = ςcωQ + (1− ςc)ωQ′ , (29)

where ςa � 1 and ςc � 1. This allows the values of the target networks to be constrained
to change slowly, which greatly improves the stability of the learning [25].

The DDPG-based actor-critic algorithm with the parameter updating processes is
summarized in Algorithm 3. In this scheme, the evaluation network of the actor structure
performs the action for each state in the given environment. A random mini batch of
transitions are chosen in each learning process by sampling uniformly from the experience
replay buffer, and they are input one by one to the D2D agent. With each input experience,
the actor updates its parameterized function ωη of the evaluation network based on the
policy gradient to maximize E{Q(a)}, and the critic updates its parameterized function
ωQ of the evaluation network based on the loss function to minimize the TD error. For both
the actor and critic, the parameterized functions of the target networks are soft updated
instead of directly copying the weights with that of their evaluation networks.

Algorithm 3: DDPG-based Actor-Critic Solution Scheme
Initialization:
Initialize the parameterized functions ωη , ωη ′, ωQ, and ωQ ′ of the evaluation and target

networks of the actor-critic structure and the experience replay buffer B.
Parameter Setting and Updating:
for each episode do

Initial states s0 = {s0
1, . . . , s0

M} observed by all D2D agents
for each time slot do

Actions a(t) = η(s(t)) with the parameterized function ωη is selected and executed
by all D2D agents ;

Perform observation of the rewards r(t) and the new state s′;
if the transition number < BT then

Save the transition {s(t), a(t), r(t), s′} in the experience replay buffer;
else

Restore the first stored transition with {s(t), a(t), r(t), s′} in the experience
replay buffer;

A mini-batch of B transitions is selected from the experience replay buffer;
Update the parameterized functions of the critic structure:
ωQ ← ωQ + ∆ωQ;
ωQ′ = ςcωQ + (1− ςc)ωQ′ ;
Update the parameterized functions of the actor structure:
ωη ← ωη + ∆ωη ;
ωη′ = ςaωη + (1− ςa)ωη′ ;

4. Performance Analysis and Simulation Outcomes

In this section, the simulation outcomes under various scenarios are provided for the
IRS-aided D2D cellular network to prove the effectiveness of the RL-based proposed solu-
tion schemes and to analyze the impact of different parameters on the system performance.

4.1. Simulation Setup

A single cell of a cellular wireless network is considered, where the BS is placed at the
center, and both the CUs and D2D pairs are uniformly distributed within the cell. The IRS is
located between the D2D pairs. The locations of the CUs, D2D pairs, and IRS are generated
initially (in one realization) and then kept fixed throughout the simulation. Furthermore,
each antenna of both the CUs and the D2D pairs is assumed to have an isotropic radiation
pattern with 0 dB antenna gain, where each reflecting element of the IRS is assumed to
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have a 3 dB gain for a fair comparison since each IRS reflects signals only in its front
half-space [28].

Two categories of fading, i.e., large-scale and small-scale fading, are considered for the
channel model. The large-scale fading based on the distance-dependent path loss model is
considered. The small-scale fading components of ht,r, vb,r, gb,c, and ut,c follow the Rayleigh
fading model, while the small-scale fading components of gb,i, ht,i, gi,c, and hi,r follow the
Rician fading model [28], i.e.,

gb,i =

√
µb,i

µb,i + 1
ḡb,i +

√
1

µb,i + 1
ĝb,i, (30)

where ḡb,i denotes the line-of-site (LOS) component, ĝb,i denotes the non-LOS (NLOS)
component, and µ represents the Rician factor. The simulation parameters used for the
IRS-aided D2D underlay cellular network are provided in Table 1.

Table 1. Simulation Parameters for IRS-aided D2D system.

Parameters Values

Cellular cell radius 500 m

D2D link distance 10–50 m

Number of CUs 5–25

Number of D2D users 5–35

Number of reflecting elements 50

CUs’ maximum transmit power 24 dBm

D2D transmitters’ maximum transmit power 24 dBm

CUs’ minimum SINR requirement 0.3 bps/Hz

D2D receivers’ minimum SINR requirement 0.3 bps/Hz

Resource block bandwidth 180 kHz

Pathloss exponent 4

Pathloss constant 10−2

Shadowing 8 dB

Multi-path fading 1

Noise spectral density −144 dBm/Hz

The simulation procedures of the RL-based proposed solution schemes consist of
two segments, i.e., learning and testing. First, the RL-based framework learns from the
constructed models, and then, the learned framework is tested under different parameter
settings to evaluate the system performance. Unless specified otherwise, the parameters
for the learning phase and the testing phase remain the same. In the proposed actor-critic
solution scheme, a three-layer fully connected neural network with two hidden layers is
considered as the actor. The actor network uses a rectified linear unit (ReLU) function
for the first and second layers and uses tanh for the final layer. For the critic, a four-layer
fully connected neural network with three hidden layers is considered. The critic network
uses the ReLU function for the first, second, and third layers and leaner activation for the
final layer. To simulate the model, the Python 4.5 platform is utilized. All the network
parameters are trained using the Adam optimizer [29]. The simulation parameters related
to the RL model are provided in Table 2.
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Table 2. Simulation Parameters for RL model.

Parameters Values

Learning rates of the actor/critic 0.0001/0.001

Discount factor 0.99

Greedy rate 0.1

Soft target update parameter 0.001

Replay buffer size 10,000

Mini-batch size 62

To analyze the system performance, the RL-based proposed solution schemes are
compared with the following two benchmark schemes:

• Underlaying D2D without RL (scheme-1): An IRS-empowered underlay D2D commu-
nication network is considered scheme-1 [28]. Here, a user-pairing scheme determines
the resource reuse indicator, and then, the transmit power and the passive beamform-
ing are jointly optimized by iterative algorithms.

• Underlaying D2D without IRS without RL (scheme-2): A traditional cellular system
underlaying the D2D network without IRS is considered scheme-2, where a two-stage
approach is proposed to solve the optimization problem instead of RL [6].

4.2. Evaluation of the Proposed Solution Schemes

Figure 4 compares the convergence performance of the RL-based proposed schemes
in terms of the total reward achieved per episode during the learning stage. It is observed
from Figure 4 that these rewards fluctuate rapidly and are apparently small in the first part
of the episodes during the learning period and then become relatively stable and large.
The total reward performance of the proposed Q-learning-based scheme (Scheme-Q) is the
worst due to the large state-action space. The proposed deep Q-learning-based solution
scheme (Scheme-DQ) performs better than scheme-Q. This is because it approximates
the complex mapping between the state-action spaces using a deep neural network with
experience replay. The proposed actor-critic scheme (Scheme-AC) performs the best. This
is because all parameters of this scheme are initialized, and the experiences are stored in
the replay buffer. These parameters are then updated with the joint process of policy value
learning during the learning stage. Here, the proposed Scheme-AC optimizes the policy
with good convergence properties. Therefore, the performance of the proposed Scheme-AC
is better than that of Scheme-Q and Scheme-DQ.
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Figure 4. Convergence of the RL-based proposed solution schemes.
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Figure 5 shows the SE performance with respect to the number of CUs for different
solution schemes. The result implies that the SE performance of the network increases with
the number of CUs with a fixed number of D2D pairs. This is because when the number
of CUs increases, the D2D pairs have a better opportunity to access the best spectrum
resources with less interference. It is also observed that the SE performance of the RL-based
proposed schemes outperforms that of the other schemes. The SE performance of Scheme-Q
and Scheme-AC remains at the top because they use the experience replay buffers to learn
faster and benefit from the potential deployment of the IRS elements.
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Figure 5. SE versus the number of CUs.

Figure 6 presents the SE performance with respect to the number of D2D pairs for
different solution schemes. It is observed that as the number of D2D pairs increases, the
SE performance for all the schemes monotonically increases but slowly saturates. This is
because of higher interference with more D2D pairs. However, the SE performance of the
RL-based proposed solution schemes outperforms that of the other two schemes.
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Figure 6. SE versus number of D2D pairs.

Figure 7 shows the SE with the minimum SINR requirement of the D2D pairs under
different solution schemes. It is observed that when the SINR requirement of the D2D
pairs is less, the SE performance of all the solution schemes is high. However, at a higher
SINR requirement for D2D pairs, the SE performance starts decreasing for all the schemes.
This is because a higher SINR requires lower interference, which naturally decreases the
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SE. It can also be seen that the RL-based schemes yield better SE performance than the
other schemes.
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Figure 7. SE versus minimum SINR requirement for D2D pairs.

Figure 8 shows that the SE performance increases for all four schemes with the number
of IRS elements. The SE performance of scheme-2 (without IRS) remains unchanged for ob-
vious reasons. Again, the RL-based proposed schemes outperform the other schemes. The
reason behind this increasing trend is that more reflecting elements can further enhance the
channel strength by passive beamforming and suppress the undesired channel interference.
However, the increase in the SE performance slows down as the number of IRS elements
becomes too large, which is caused by the increase in interference signal paths between the
CUs and D2D pairs.
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Figure 8. SE versus number of reflecting elements of IRS.

In Figure 9, it can be observed that the SE performances of the four schemes first
increase with the increase of the Rician factor and then remain almost constant. However,
the SE performance of scheme-2 (without IRS) remains unchanged. Again, the proposed
RL-based schemes outperform the other two schemes. This is because as the Rician factor
increases at first, the slowly varying LoS components between the users and the IRS
are enhanced to boost the SE performance of the proposed RL-based solution schemes.
However, when the Rician factor is relatively large, the LoS components are dominant and
therefore have less effect on the channel strength.
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Figure 9. SE versus Rician factor (dB).

5. Conclusions

In this work, an IRS-assisted D2D underlay cellular network is investigated and
structured by the MDP model in the RL framework. The network’s spectral efficiency is
maximized by jointly optimizing the transmit power, the resource reuse indicators, and
the IRS reflection coefficients. An RL-based solution architecture is proposed to solve the
constructed optimization problem. First, the Q-learning-based solution scheme is utilized.
Then, to make a scalable solution, a deep Q-learning solution scheme with experience
replay is proposed. Lastly, an actor-critic framework based on the deep deterministic
policy gradient (DDPG) scheme is proposed to learn the optimal policy of the constructed
optimization problem with the consideration of the continuous-valued state and action
spaces. Simulation outcomes clearly demonstrate that the proposed RL-based solution
schemes achieve a significant SE performance gain compared to the traditional underlay
D2D network without RL under different parameter settings. This research can be contin-
ued to explore complex cases, such as multi-antenna base stations, multiple IRSs, and the
multi-agent framework of the MDP model.
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