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Abstract: In the last decade, cryptocurrency trading has attracted the attention of private and
professional traders and investors. To forecast the financial markets, algorithmic trading systems
based on Artificial Intelligence (AI) models are becoming more and more established. However, they
suffer from the lack of transparency, thus hindering domain experts from directly monitoring the
fundamentals behind market movements. This is particularly critical for cryptocurrency investors,
because the study of the main factors influencing cryptocurrency prices, including the characteristics
of the blockchain infrastructure, is crucial for driving experts’ decisions. This paper proposes a new
visual analytics tool to support domain experts in the explanation of AI-based cryptocurrency trading
systems. To describe the rationale behind AI models, it exploits an established method, namely
SHapley Additive exPlanations, which allows experts to identify the most discriminating features
and provides them with an interactive and easy-to-use graphical interface. The simulations carried
out on 21 cryptocurrencies over a 8-year period demonstrate the usability of the proposed tool.

Keywords: quantitative trading; cryptocurrencies; blockchain

1. Introduction

Cryptocurrencies are digital assets whose transfers and accounting are cryptograph-
ically estabilished through the blockchain [1]. Even though they are not backed by any
physical asset, they have become popular financial assets for online trading. After bitcoin,
which is the first and most famous cryptocurrency [2], many different cryptocurrencies
have been created, thus increasing the options to invest in cryptoassets significantly.

Following the recent trends on algorithmic trading, many research efforts have been
devoted to designing cryptocurrency trading systems based on Machine Learning (ML) and
Artificial Intelligence (AI). Existing methods rely on algorithms that span from classical clas-
sification and regression methods (e.g., [3–7]) to Deep Learning architectures (e.g., [8–11]).
The aim is to learn predictive models from historical data related to cryptocurrency assets
(e.g., markets, blockchain-related data, news) and apply them to forecast the future price
directions. A recent survey on cryptocurrency trading can be found in [12].

Although Machine Learning-based solutions have shown to achieve better perfor-
mance than simpler heuristic methods [12], they suffer from the lack of transparency. In
fact, most state-of-the-art classification models, including all the Neural Network-based
approaches, are not explainable; i.e., domain experts cannot gain insights into the model
decisions. Cryptocurrency markets can be influenced by a large variety of factors, including
the underlying market trends, the characteristics of the blockchain, and the sentiment of
financial investors on the virtual assets. This prompts the need for new approaches aimed
at explaining ML reasoning in cryptocurrency trading.

This work focuses on leveraging an established eXplainable AI (XAI) method, namely
SHapley Additive exPlanations (SHAP) [13], to provide domain experts with an effective
visualization of the ML reasoning behind cryptocurrency trading. SHAP quantifies the
contribution of different features on classifier predictions, thus highlighting the contribution
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of different factors to the decisions of the ML-based system. We aim at addressing the
following research questions:

• Q1: What are the most discriminative features for cryptocurrency price prediction?
• Q2: How can cryptocurrency investors be provided with quantitative estimates of

the influence of specific features and feature categories on machine learning-based
cryptocurrency predictions?

• Q3: How can we evaluate the statistical dependency of the Machine Learning (ML) fea-
ture ranks returned by SHAP in different time periods and on different cryptocurrencies?

To address Q1, this paper explores a large variety of features computed on the daily
price series of 21 different cryptocurrencies. The analyzed features are established for
cryptocurrency trading [12] and encompass the price- and volume-related series, the
technical indicators summarizing the momentum, volatility, and moving averages of the
original price series, and the blockchain-related features. The latter are particularly relevant
to the scope of the present study because they are peculiar to cryptoassets.

To address Q2, we use eXplainable AI methods based on the Shapley value [14] to
provide cryptocurrency traders with evidence of the main factors influencing algorithmic
trading. We present a new eXplainable AI tool for visualizing and monitoring the activities
of Machine Learning-based systems, with particular attention paid to the blockchain-based
features influencing the decision process.

To tackle Q3, we apply the Rank Biased Overlap similarity measure [15] to quantify the
pairwise agreement between the top-10 features shortlisted by SHAP. We also performed
the experiment using feature subcategories and categories rather than individual features.

The experiments carried out on a 8-year period produce the following main outcomes:

• O1: The high variability of the feature importance across different cryptocurrencies.
This confirms the relevance of eXplainable AI solutions for cryptocurrency traders.

• O2: A visual eXplainable AI tool, namely Crytpocurrency-based Machine Learning
Explainer (CryptoMLE, in short). Some practical examples of use of CryptoMLE are
also presented.

• O3: The dependency among the feature ranks is weak, whereas those among feature
subcategories and categories are stronger.

The paper is organized as follows: Section 2 overviews the related literature. Section 3
details the dataset employed in the study. Sections 4 and 5 introduce the fundamentals
of Shapley values and SHAP and presents the Visual Analytics tool, based on SHAP, to
support cryptocurrency investors’ activities. Section 6 summarizes the main empirical
results, whereas Sections 7 and 8, respectively, report a discussion of the main achievements
and open issues and draw the conclusions of the present work.

2. Comparison with Prior Works

Table 1 summarizes the main characteristics of the existing approaches to eXplainable
AI (XAI) in finance, including the Crytpocurrency-based Machine Learning Explainer
(CryptoMLE) presented in this paper. We analyze the current and prior works under the
following aspects:

1. The considered assets, which encompass specific stocks, cryptocurrencies, or a combi-
nation of the above (e.g., the stocks belonging to the Standard&Poor500 U.S. index).

2. The features under analysis, which describe the environmental and market charac-
teristics considered by the classification models (including the blockchain-related
features for cryptocurrency assets).

3. The availability of a user interface to support domain expert decisions.
4. The main model used to explain ML-based decisions (e.g., SHAP [13] for the proposed

CryptoMLE tool).
5. The resolution of the analyzed data (typically, one sample per trading day).
6. The goal of the approach (e.g., support decision making with data-driven insights for

CryptoMLE).
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The main goal of this work is to present a visual analytics tool providing AI-based ex-
planations for cryptocurrency investors. Notice that our goal is not to propose a new, more
effective trading system but rather to provide experts with an interactive tool, based on XAI,
to explain the decisions of algorithmic trading approaches and make appropriate decisions.

Similar to [16–18], CryptoMLE provides domain experts with a graphical interface.
Unlike all the prior works on algorithmic trading, it also allows them to interactively collect,
analyze, and compare data models trained in multiple time periods. Analogously to [18],
CryptoMLE analyzes a large number of cryptocurrencies. Unlike [18], it also considers
blockchain-related data.

CryptoMLE relies on SHAP [13], whereas other approaches (e.g., [17,19]) adopt simpler
explainable models such as partitional clustering and decision tree, which are known to be
less robust to noise and model bias than SHAP. The work recently proposed in [20] is, to the
best of our knowledge, the first attempt to use SHAP in algorithmic trading. Unlike [20],
this work (1) Addresses short-term cryptocurrency trading instead of long-term portfolio
management. Hence, it compares the outcomes of classification models predicting next-day
cryptocurrency price; (2) Presents a graphical tool for supporting decision making. It
also allows experts to interact with the tool and gain insights into specific market trends;
(3) Analyzes a significantly larger set of cryptocurrencies (21 vs. 8).

Table 1. Comparison with prior works. Legend: crypto = cryptocurrency/cryptocurrencies,
BC = blockchain, MA = market data, V = Exchanged volumes, TA = technical analysis, B6 = CME
Globex British Pound futures, SPF = S&P E-mini Futures.

User Interface

Paper Asset Features Graphical Interactive XAI Model XAI Resolution XAI Goal

CryptoMLE 21 crypto BC, MP, TA Yes Yes SHAP [13] Daily Decision making

[21] S&P index MA No No Ablation, permutation,
added noise, integrated
gradients [22]

Daily XAI model com-
parison

[23] CHES120 China MA No No Custom LightGBM-
based model [24]

10 s, 30 s, 1 min
ticks

Matching testing
and real-trading
performances

[20] 8 crypto MA No No SHAP [13] Daily Portfolio manage-
ment approach for
crypto

[19] The BTC crypto BC, MA No No K-means clustering, de-
cision tree classifier [25]

Daily Valuation method
for cryptocurrency
markets

[16] The ETH crypto MA, TA Yes No Adversarial Deep Neu-
ral Networks [26]

Daily Display reversal
patterns on candle-
stick charts [27]

[17] The S&P stocks MA, TA, News Yes No decision tree classifier Daily Identify the most
impactful words in
business-specific
stock market
sectors

[18] 18 crypto MA, Reddit Yes No Ensemble meth-
ods, co-occurrence
analyses [25]

Daily Correlation analy-
sis between crypto

[28] B6, SPF MA, V No No Decision trees [25],
SHAP [13]

Daily Adapt market data
to the Machine
Learning pipeline.

3. Data Overview and Categorization

We collect historical data about the 21 most popular cryptocurrencies within the time
period from 2011 to 2018 (For the cryptocurrencies whose year of introduction is after
2011, we gathered data from the date they became available.). In the experiments we
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sampled cryptocurrency data at a daily granularity. However, the performed analyses can
be straightforwardly extended to finer or coarser aggregation levels.

We consider three main feature categories:

• The Blockchain-related (BC) features, which describe the underlying characteristics of
the distributed ledger technology enabling each cryptocurrency [18].

• The Market Data (MD) features, which represent the main cryptocurrency Open–
High–Low–Close–Volume (OHLCV) price series as well as a selection of summarized
features derived from the candlestick chart [29].

• The Technical Analysis (TA) features, which include a variety of momentum indicators,
volatility indices, and oscillators that are commonly used in Technical Analysis on
both cryptocurrencies and regulated market assets [8].

The features are aggregated into the corresponding category and subcategory ac-
cording to the hierarchy reported in Table 2. We considered a large variety of features
among the most established for cryptocurrency trading (according to [12]). To foster
the reproducibility of our work, both the analyzed dataset and the project code are pub-
licly available for research purposes (https://dbdmg.polito.it/dbdmg_web/index.php/
leveraging-explainable-ai-to-support-cryptocurrency-investors/, accessed on 1 August
2022). A detailed description of the dataset features is available at https://dbdmg.polito.it/
dbdmg_web/wp-content/uploads/2022/08/features.xlsx, accessed on 1 August 2022.

Table 2. Categories and subcategories of the features present in the dataset.

Category Subcategory Description

Blockchain Addresses Metrics representing an index of network activity and
interest.

Economics Metrics regarding the ratio of the USD network value
divided by the adjusted transfer value (in USD).

Exchange
Metrics representing the currency flow for known cen-
tralized exchange addresses for both deposits and with-
drawals.

Fees and Revenues

Metrics covering the network’s efficiency in terms of trans-
fer costs, representing fees for doing operations on the
blockchain such as transactions and smart contract execu-
tion.

Market
Metrics covering the economic aspects of cryptocurrency
markets such as capitalization, BTC exchange price, ROI
and volatility returns.

Mining Metrics representing protocol-specific parameters.

Network Usage Metrics covering blockchain activity in the form of mined
block and their size.

Supply Metrics that aim to explain token supply and its distribu-
tion among wallets.

Transactions Metrics addressing transferred value and throughput of
the network.

Market Data Prices Features directly derived from Open, High, Low, Close
prices of the current timestamp.

Volume Features directly derived from the trading volume of the
current timestamp.

Volatility Features directly derived from current volatility of the
currency.

History Features derived from the historical time series of Open,
High, Low, Close prices and Volume.

Candlestick Analysis Features concerning the analysis of the candlesticks
shapes.

https://dbdmg.polito.it/dbdmg_web/index.php/leveraging-explainable-ai-to-support-cryptocurrency-investors/
https://dbdmg.polito.it/dbdmg_web/index.php/leveraging-explainable-ai-to-support-cryptocurrency-investors/
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2022/08/features.xlsx
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2022/08/features.xlsx
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Table 2. Cont.

Category Subcategory Description

Technical Analysis Trend Indicators
Trend-following indicators whose values help as-
sess the direction and strength of established
trends.

Momentum Indicators Indicators used to determine the strength or weak-
ness of a stock’s price.

Volatility Indicators Indicators measuring how far the security moves
away from its mean price.

Volume Indicators Indicators representing a security’s bull and bear
power.

3.1. Blockchain-Related Features

We gathered BC features containing various specific properties of the enabling blockchain
architecture, which are aggregated on a daily basis. The 30 features belonging to the
BC category cover different aspects addressed by the following subcategories: Address,
Economics, Exchange, Fees and Revenues, Market, Mining, and Network Usage. They are likely
to show direct or indirect relations with the cryptocurrency bid and ask prices. Hence,
they can be deemed relevant by the Machine Learning model to obtain accurate price
predictions.

The high variability of the technologies enabling each cryptocurrency makes cross-
cryptocurrency analyses of BC features particularly relevant to understand the rationale
behind Machine Learning predictions. For example, the in-depth analysis of the blockchain
supply and mining features can reveal an increasing/decreasing interest of the cryptocur-
rency investors in particular virtual assets.

3.2. Market Data Features

MD features characterize temporal trends in cryptocurrency prices [11]. The data we
gathered include the raw Open–High–Low–Close–Volume (OHLCV) price series, the resid-
uals from the Seasonal-Trend Decomposition using Loess (STL) [30], and the characteristics
of the shapes of the candles in the candlestick chart [29].

3.3. Technical Analysis Features

Technical analysis provides a synthetic description of price- and volume-related
trends [27]. They were derived from the historical price and volume series using the
TA-Lib Python library (https://ta-lib.org/, accessed on 10 January 2022).

The TA feature category describes notable price-related properties of the cryptocur-
rency such as momentum, volatility, oversold/overbought conditions, etc. Recently, they
have shown to be relevant to cryptocurrency trading as well [8].

4. SHapley Additive Explanation Values

SHapley Additive Explanation (SHAP, in short) [13] is a method to explain individual
predictions. It is based on the Shapley value, whose applications to eXplainable AI rely on
coalitional game theory [14].

4.1. The Shapley Value

Given a set of playersP = {P1, P2, . . ., Pn}, a player coalition C is aP ’s subset cooperating
to accomplish a specific task. The utility U (P) evaluates the payoff of the coalition for the
task, whereas the marginal utility U (Pj) indicates the additional contribution provided by a
new player Pj being added to the coalition P , i.e.,

U (Pj) = U (P ∪ Pj)−U (P)

https://ta-lib.org/
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The Shapley value [14] is the expectation of the marginal contribution U (Pj) in all
possible coalitions.

SV i =
1
n ∑
S⊆N\Pi

U (P ∪ Pi)−U (P)
(n−1
|C| )

Computing the exact Shapley value entails enumerating all the possible coalitions,
which is computationally prohibitive in real-world contexts.

4.2. Additive Feature Attribution Methods

Given a training dataset consisting of a set of features F = {F1, F2, . . ., Fn}, each value
of an individual feature Fi acts as a player in a coalition. The number n of considered
features can be interpreted as maximum coalition size.

Let f be a complex prediction model, trained on F instances. For the sake of simplicity,
we assume the financial forecasting model f predicts the next-day closing price direction
(i.e., Uptrend or Downtrend) of a specific cryptocurrency based on the past samples observed
in the last W days (Hereafter, we will disregard the Stationary class (neither uptrend nor
downtrend)).

We seek explanations of f clarifying the effects of features in F . Specifically, we aim at
explaining the prediction f (x) of an instance x of F by computing the contribution of each
individual feature.

Within this scope, the Shapley value of feature Fi indicates how to fairly distribute the
payout among the features; i.e., it quantifies the effect of the individual feature Fi on the
outcome of the prediction task. To generalize players as sets of feature values, we exploit
the additive feature attribution method to linearly combine the individual Shapley values.

The explanation model g is defined as a linear combination of binary features associ-
ated with each feature Fi:

g(z′) = φ0 +
n

∑
i=1

φi · z′i , z′ ∈ 0, 1n

where z′i is a binary variable denoting either the presence of a feature (z′i = 1) or its absence
(z′i = 0). φi is the Fi’s attribution value, which quantifies the effect of Fi on f (x). The
explanation model sums the effect of all individual feature attributions approximating
the output.

4.3. The SHAP Explanation Model

In [13], Shapley values are leveraged to explain Machine Learning models by applying
sampling approximations to the original Shapley expression. Specifically, it approximates
the effect of removing a variable from the model by integrating over samples from the
training dataset.

The key steps of the SHAP model generation are as follows:

1. Generate random sample coalitions z′′ of m < n features in F , where z′′ ∈ 0, 1m.
2. Sample coalitions to valid instances.
3. Train a regression model on the generated instances, whose target is the prediction for

a coalition.

To move from coalitions of feature values to valid data instances (Step 2), instance
values are taken from the instance x we want to explain for all features that are present in
the coalition (z′′ = 1), whereas the other features are randomly sampled from the training
dataset instances for all the absent features (z′′i = 0).

The regression function (Step 3) corresponds to the weighted linear explanation model
g previously defined according to the additive feature attribution method.
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5. The CryptoMLE Tool

Receiving advice from algorithmic advisors is becoming more and more popular for
financial analysts [31]. However, relying on sophisticated Machine Learning models trained
on massive datasets is particularly risky in financial market forecasting, because the ML
models often act as black boxes and domain experts are not keen to trust.

EXplainable AI models provide insights into ML algorithms by indicating which
features are more important and how they could affect ML predictions [32]. They can return
either local or global explanations. In the former case, the insight is about a particular
instance x. The local model estimates the effect of the features in F on f (x) [13]. Conversely,
global models summarize the main patterns driving ML decisions (on whatever instance).
In this work, we conveniently combine the local explanations of the cryptocurrency price
predictions provided by SHAP to model the global influence on ML models of individual
features, features subcategories and categories.

We present a visual eXplainable AI tool, namely Crytpocurrency-based Machine
Learning Explainer (CryptoMLE, in short). It supports cryptocurrency traders and investors
in monitoring the performance of quantitative Machine Learning-based cryptocurrency
predictions. CryptoMLE consists of an interactive dashboard summarizing the main feature
contributions to the ML price predictions.

A snapshot of the dashboard interface is depicted in Figure 1. The plot in the upper
side of the dashboard shows the SHAP time series of the 10 most influential features in the
prediction of class uptrend. The purpose is to explain how ML works within a restricted
time period and how ML decisions vary over time. More specifically, a time series value
sampled on day d consists of the mean Shapley value of a given feature Fi computed over
the W days preceding d (Since historical data are collected at a daily granularity, each time
point in the series corresponds to a distinct trading day.). The mean Shapley value of Fi
indicates the effect of Fi on the ML model trained on d using a sliding window approach.

For example, according to the SHAP series plot in Figure 1, the MD feature close_resid
appears to be the most influential one in the period between August 2017 and April 2018,
whereas between May 2018 and December 2018, Close_resid and High_resid are joint winners.
The SHAP series plot can be useful, for instance, for discretionary traders who need to
select and monitor a relatively small subset of visual features.

Figure 1. Interactive dashboard snapshot. Uptrend class. LTCUSD. Training window size W = 90.

The bee-swarm summary plots in the lower side of the dashboard snapshot are pop-up
windows that analysts might activate when they are interested in gaining insights into the
characteristics of the ML model trained on a particular day. It shows the Shapley values
of all instances belonging to a training window of size W (i.e., W points per feature). For
the sake of readability, only the top-10 features in order of decreasing Shapley value are
visualized.
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For example, according to the left hand-side bee-swarm summary plot in Figure 1,
close_resid, volume_pct_tag8 macd_12_26, and low_close_dist_pct_d30 are the only features
obtaining a significant number of positive Shapley values during the training window from
the beginning of February 2017 to the end of July 2017. Comparing different summary plots
over time can be useful, for instance, for detecting temporal changes in the ML decisions.
Traders can manually verify and possibly revise the current trading strategy based on the
alarms triggered by the eXplainable AI tool.

To generate the plot, we apply the procedure described in Algorithm 1 considering one
cryptocurrency at a time. First, the dataset Dc, containing the data of the cryptocurrency
c, is split into train and test, and the feature importance scores are computed based on a
general-purpose Machine Learning model trained on Dtrain (e.g., XGBoost [33]). Then, we
generate a ranked feature list, based on the importance score, and tune the system hyper-
parameters. This first phase aims at performing feature selection and parameter tuning
before training the following models. To have up-to-date and contextualized models, one
model is retrained for each test date/time-step t considering the latest W days preceding t,
using the previously defined feature subset and hyperparameters; i.e., we employ a sliding
window approach to train ML models tailored to the time-steps t. Finally, the trained ML
models (one per test time-step) are analyzed to compute the SHAP series and the summary
plots, thus enabling the visual exploration of the ML reasoning at different time points. The
procedure is repeated for all cryptocurrencies of interest.

Algorithm 1: CryptoMLE: Procedure of dashboard generation for a cryptocurrency.

Input : F: feature set;
Dc: dataset associated with cryptocurrency c;
W: sliding training window;
fpr: chosen Machine Learning model for the prediction step;
f f s: chosen Machine Learning model for the feature selection step;

output : SH: time series of average Shapely values per-feature;
BS: bee-swarm summary plots for each point of the test-set;

/* Train-test dataset split */
Dtrain, Dtest ← SplitDataset (Dc)
/* Feature selection */
Mfs ← TrainFeatureSelectionModel ( f f s, Dtrain, F)
R← FeatureImportanceRankingForModel (Mfs)
Fs ← SelectFeaturesFromRanking (R, F)
/* Hyper-parameters tuning */
P← TuneHyperparameters ( fpr, Dtrain, Fs)
/* Dashboard generation */
foreach time-step t ∈ Dtest do

Mpr ← TrainPredictionModel ( fpr, D(t−W,t), Fs, P)
BSt ← ProduceBeeswarmPlot (Mpr)

end
SH← ProduceShapTimeSeries (BSt)
return SH, BS∗

6. Experimental Results

In this section, we simulate a session of Machine Learning-based forecasting of 21 cryp-
tocurrency prices explained by CryptoMLE.

The rest of the section is organized as follows.

• Section 6.1 clarifies the experimental settings and the reproducibility aspects.
• Section 6.2 reports the main findings related to Research Question 1, i.e., What are the

most discriminative features for cryptocurrency price prediction? Empirical outcome O1
compares the feature importance plots relative to different cryptocurrencies.
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• Section 6.3 addresses the Research Question 2, i.e., How to provide cryptocurrency in-
vestors with quantitative estimates of the influence of specific features and feature categories on
Machine Learning-based cryptocurrency predictions? The empirical outcome O2 consists
of a selection of SHAP series and bee-swarm summary plots highlighting interesting
trends in the analyzed cryptocurrencies.

• Section 6.4 addresses the Research Question 3, i.e., How can we evaluate the statistical
dependence of the ML feature ranks returned by SHAP in different time periods and on different
cryptocurrencies? We address O3 by evaluating the pairwise agreement between the
shortlisted feature ranks using the Rank Biased Overlap similarity measure [15].

6.1. Experimental Design

In the following, we describe the hardware used to perform the experiments and the
experimental settings to improve reproducibility.

Hardware settings. We run experiments in a single-node setting on an HPC facility.
The node runs Ubuntu 20.04.2 LTS, with an 8 CPU threads Intel(R) Xeon(R) Gold 6140 CPU
@ 2.30 GHz and 40 GB of RAM.

Experimental settings and reproducibility. The source data described in Section 3 and a
detailed per-feature description are available for research purposes. We also release the
guidelines for dashboard creation (again for research purposes only).

As a representative ML model for both classification and feature importance estimation,
we used the XGBoost classifier available in the SK-Learn library [33]. It is both efficient and ac-
curate. To run SHAP [13], we use the publicly available code released by the paper’s authors.

6.2. Empirical Outcome O1: Feature Importance across Cryptocurrencies

The pie charts in Figures 2–5 show the feature importance scores (returned by the
XGBoost ML model) computed over all cryptocurrencies (see Figure 2) and separately for
BTCUSD, BCHUSD, and ETHUSD (see Figures 3–5). BTCUSD is, by far, the most famous
cryptocurrency. BCHUSD is a fork of BTCUSD, whereas ETHUSD is another extremely
popular cryptocurrency.

Figure 2. Hierarchical mean feature importance over all the analyzed cryptocurrencies.
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Figure 3. Hierarchical mean feature importance for BTCUSD.

Figure 4. Hierarchical mean feature importance for BCHUSD.
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Figure 5. Hierarchical mean feature importance for ETHUSD.

The outermost circular crown of the pie chart in Figure 2 reports the average impor-
tance scores per feature by considering all cryptocurrencies. Specific price-related features,
such as close_resid (i.e., the Seasonal-Trend decomposition using LOESS of the closing price
series [30], have shown to be the most relevant to predict future cryptocurrency prices).
However, the selected features are not the same for all cryptocurrencies and also include
blockchain-related ones. For example, hashrate_pct, which indicates the amount of com-
putational operations that a miner or the network of miners is capable of carrying out, is
particularly relevant to BitCoin casH (BCH), which has been created to specifically address
efficiency issues of the most established BTC cryptocurrency. Conversely, it is not relevant
to Ethereum (ETH) because ETH is known to be weakly correlated to BTC.

To have a higher-level view of which features are more discriminating for a given cryp-
tocurrency, we also aggregate the feature importance scores per subcategory and category
(see the two inner crowns in Figure 2 and the bar charts). The most relevant features are
those belonging to category Blockchain (average score 0.48), which is followed by Market
data (0.46) and Technical analysis features (0.16). This means that to drive their investments,
cryptocurrency traders should closely monitor blockchain-related features first rather than
simply analyzing price-related features (e.g., moving averages, momentum [27]).

Focusing on the most influential subcategories, they encompass the properties of the
supply chain, namely Supply (BC category), the historical cryptocurrency prices, i.e., History
(MD category), and the blockchain network activity metrics, namely Addresses (BC category).
It is worth noticing that restricting the in-depth analysis to these feature subsets allows
experts to ignore almost 70% of the original features.

The variability in feature importance across different cryptocurrencies is also quite
significant (see Figures 3–5). For example, for ETHUSD, the blockchain-related features
turn out to be slightly less significant than for BTCUSD and BCHUSD, which is possibly
due to the primary influence of the blockchain architecture on the price movements of
the BiTCoin-related assets. Ethereum (ETH) is partly uncorrelated with BC and weakly
dependent on blockchain-related properties such as hash rate and transaction counts.
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6.3. Visual Explanations

We report the dashboard snapshots for three representative combinations of cryptocur-
rency and prediction class (see Figures 6–11).

From the line chart in the upper side of Figure 6, we can see how the average Shapley
value changes over time for the top-10 most influential features for class Uptrend. Some
features (e.g., close_resid) are always highly relevant regardless of the considered time period,
whereas some others show variable influence. The latter can be dynamically included in
the trading system models according to the feedback collected from the eXplainable AI
tool. Moreover, traders can also use the provided information to assess the reliability of the
performed predictions. If the features associated with the highest absolute Shapley values
are, based on the prior knowledge of traders, remarkable features, traders will become
more confident in the returned predictions and thus will likely use them in the design of
the cryptocurrency trading strategy. In a nutshell, the visual explanation of CryptoMLE
has a twofold aim: (1) understand the rationale behind ML decisions, and (2) discover
potentially interesting (cryptocurrency-specific) patterns that are worth considering in the
future trading activities.

Figure 6. Interactive dashboard snapshot. Uptrend class. BTCUSD. Sliding training window size
W = 90.

Figure 7. Interactive dashboard snapshot. Downtrend class. BTCUSD. Sliding training window size
W = 90.
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Figure 8. Interactive dashboard snapshot. Uptrend class. BCHUSD. Sliding training window size
W = 90.

Figure 9. Interactive dashboard snapshot. Downtrend class. BCHUSD. Sliding training window size
W = 90.

Figure 10. Interactive dashboard snapshot. Uptrend class. ETHUSD. Sliding training window size
W = 90.
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Figure 11. Interactive dashboard snapshot. Downtrend class. ETHUSD. Sliding training window
size W = 90.

The charts in the bottom part of Figure 6 report the Shapley values computed for
three representative windows of size W (i.e., the ones associated with the first, the middle,
and last date of the considered evaluation period). Each chart reports, for the top-10 most
influential features, the Shapley values associated with the predictions made within the
considered time window (i.e., one point in the plot per prediction). The absolute Shapley
value indicates the strength of the feature influences. Its sign indicates whether the value
of the feature positively or negatively impacts on the prediction of the Uptrend label. If
the Shapley values associated with a feature are close to −1 or 1, it means that the feature
affects the prediction more significantly than the other ones. As for the SHAP series plot,
the variability in the summary plots over time strongly depends on the underlying market
conditions. For example, in the last quarter of 2018, AI model predictions turn out to be
primarily influenced by the historical price series, whereas in the previous quarters of 2018,
the influence of blockchain-related features is more evident. Based on these results, domain
experts can investigate more in depth the reasons behind such a strategy change to judge
the reliability of the algorithmic trading approach. More specifically, in the last quarter of
2018, all the BitCoin-related plunged, and such an evident market downtrend is prevailing
for algorithmic trading systems.

Figure 7 reports a similar information but the class label Downtrend is considered,
i.e., those charts try to explain which features impacted more on the prediction of the label
Downtrend. Some features are relevant for the prediction of both class labels, whereas
others are specific for each class.

Figures 8–9 and Figures 10–11 report similar pieces of information for BCHUSD and
ETHUSD, respectively. We can notice that some of the top features are shared between
BTCUSD and BCHUSD, whereas ETHUSD is more affected by other blockchain-related
features. Most of the top features categories are shared among all the three considered
features.

Tables 3 and 4 report the top-3 most influential features per cryptocurrency and class in
terms of average Shapley value. The achieved results confirm that for most of the analyzed
cryptocurrencies, the subcategories of the most influential features are independent of the
predicted class label.
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Table 3. Most influential features for class Uptrend.

Crypto Top1_Feature Top1_Subcategory Top2_Feature Top2_Subcategory Top3_Feature Top3_Subcategory

ADA close_resid market_data_prices splyact180d_pct blockchain_supply adi_pct technical_analysis_volume
BCH close_resid market_data_prices nvtadj_pct blockchain_economics adrbal1in1bcnt_pct blockchain_address
BNB close_open_pct_d30 market_data_candlestick_analysis splyadrbalntv100k blockchain_supply capact1yrusd blockchain_market
BTC close_resid market_data_prices txcntsec blockchain_transactions txtfrvalmedntv blockchain_transactions
BTG close_resid market_data_prices high_low_dist_pct_d7 market_data_candlestick_analysis low_pct_lag4 market_data_history
DASH close_resid market_data_prices adrbal1in1mcnt_pct blockchain_address low_pct_lag3 market_data_history
DOGE close_open_pct_d30 market_data_candlestick_analysis close_resid market_data_prices txtfrvalmedntv blockchain_transactions
EOS close_resid market_data_prices open_pct_lag6 market_data_history low_pct_lag3 market_data_history
ETC adrbalntv0_01cnt blockchain_address gaslmtblk blockchain_fees gaslmttx blockchain_fees
ETH open_resid market_data_prices close_resid market_data_prices close_open_pct market_data_candlestick_analysis
LINK txtfrcnt blockchain_transactions splyadrtop1pct_pct blockchain_supply caprealusd blockchain_market
LTC close_resid market_data_prices high_resid market_data_prices txtfrcnt blockchain_transactions
NEO adi_pct technical_analysis_volume close_resid market_data_prices txtfrcnt blockchain_transactions
QTUM low_resid market_data_prices volume_pct_lag9 market_data_history open_pct_lag5 market_data_history
TRX high_resid market_data_prices close_resid market_data_prices high_pct_lag8 market_data_history
WAVE txcntsec blockchain_transactions low_resid market_data_prices adi technical_analysis_volume
XEM cmo_14 technical_analysis_momentum high_pct_lag2 market_data_history close_resid market_data_prices
XMR close_resid market_data_prices high_lag2 market_data_history rema_8_15_pct technical_analysis_trend
XRP close_resid market_data_prices close_open_pct_d3 market_data_candlestick_analysis close_pct_lag7 market_data_history
ZEC high_resid market_data_prices close_resid market_data_prices close_pct_lag3 market_data_history
ZRX txtfrvalmeanusd blockchain_transactions high_pct_lag2 market_data_history txtfrvaladjntv_pct blockchain_transactions

Table 4. Most influential features for class Downtrend.

Crypto Top1_Feature Top1_Subcategory Top2_Feature Top2_Subcategory Top3_Feature Top3_Subcategory

ADA splyadrtop100_pct blockchain_supply splyact1yr_pct blockchain_supply close_resid market_data_prices
BCH adrbal1in1mcnt_pct blockchain_address diffmean_pct blockchain_mining adrbal1in1mcnt blockchain_address
BNB splyadrbalntylk_pct blockchain_supply splyadrbal1in1k_pct blockchain_supply low_close_dist_pct_d30 market_data_candlestick_analysis
BTC splyact4yr_pct blockchain_supply close_resid market_data_prices open_resid market_data_prices
BTG close_resid market_data_prices low_resid market_data_prices txtfrvaladjusd blockchain_transactions
DASH close_resid market_data_prices isstotl_isstot365_pct blockchain_supply high_resid market_data_prices
DOGE volume_pct_lag3 market_data_history high_resid market_data_prices txtfrvalmedntv blockchain_transactions
EOS close_pct_lag8 market_data_history close_resid market_data_prices open_pct_lag4 market_data_history
ETC close_resid market_data_prices splyactever_pct blockchain_supply nvtadj blockchain_economics
ETH gaslmtblk_pct blockchain_fees close_resid market_data_prices adrbalntv10kcnt blockchain_address
LINK high_close_dist_pct_d3 market_data_candlestick_analysis splyadrbalusd1m blockchain_supply close_resid market_data_prices
LTC close_resid market_data_prices volume_pct_lag1 market_data_history close_open_pct_d30 market_data_candlestick_analysis
NEO close_resid market_data_prices low_pct_lag9 market_data_history low_close_dist_pct market_data_candlestick_analysis
QTUM close_pct_lag10 market_data_history low_resid market_data_prices open_lag9 market_data_history
TRX fi_13_pct technical_analysis_volatility close_resid market_data_prices high_resid market_data_prices
WAVE close_pct_lag7 market_data_history close_resid market_data_prices volume_pct_lag3 market_data_history
XEM low_resid market_data_prices volume_pct_lag2 market_data_history low_lag4 market_data_history
XMR close_resid market_data_prices txcnt_pct blockchain_transactions close_volatility_7d market_data_volatility
XRP close_resid market_data_prices adrbalntv1mcnt_pct blockchain_address volume_pct_lag4 market_data_history
ZEC close_resid market_data_prices close_pct_lag8 market_data_history low_spl_d1 market_data_prices
ZRX high_close_dist_pct_d3 market_data_candlestick_analysis splyadrbal1in10k_pct blockchain_supply low_resid market_data_prices

6.4. Statistical Dependence between Feature Ranked Lists

We evaluate the agreement between the feature ranked lists associated with the 21 cryp-
tocurrencies using the Rank Biased Overlap similarity measure [15]. The goal is to verify
whether ML predictions on different cryptocurrencies are influenced by the same features,
feature subcategories, or categories.

Tables 5 and 6, respectively, report the pairwise similarity matrices for the classes
Uptrend and Downtrend. They allow us to identify specific cryptocurrency clusters char-
acterized by relatively high pairwise similarities. For instance, XMR and ZEC are highly
similar, which is probably because they are both focused on privacy aspects.

Table 5. Pairwise similarity among cryptocurrencies. Class Uptrend.

ADA BCH BNB BTC BTG DASH DOGE EOS ETC ETH LINK LTC NEO QTUM TRX WAVE XEM XMR XRP ZEC ZRX

ADA 1.00 0.84 0.98 0.84 0.89 0.94 0.94 0.72 0.80 0.78 0.68 0.94 0.85 0.72 0.76 0.90 0.81 0.90 0.88 0.91 0.86
BCH 0.84 1.00 0.85 1.00 0.74 0.89 0.84 0.61 0.66 0.94 0.84 0.84 0.69 0.61 0.59 0.74 0.63 0.71 0.77 0.81 0.78
BNB 0.98 0.85 1.00 0.85 0.90 0.96 0.96 0.74 0.82 0.80 0.70 0.96 0.84 0.74 0.78 0.88 0.79 0.88 0.89 0.93 0.87
BTC 0.84 1.00 0.85 1.00 0.74 0.89 0.84 0.61 0.66 0.94 0.84 0.84 0.69 0.61 0.59 0.74 0.63 0.71 0.77 0.81 0.78
BTG 0.89 0.74 0.90 0.74 1.00 0.84 0.91 0.83 0.65 0.79 0.52 0.91 0.79 0.83 0.87 0.79 0.83 0.96 0.96 0.94 0.76
DASH 0.94 0.89 0.96 0.89 0.84 1.00 0.95 0.77 0.76 0.84 0.74 0.95 0.80 0.77 0.75 0.84 0.73 0.82 0.87 0.92 0.89
DOGE 0.94 0.84 0.96 0.84 0.91 0.95 1.00 0.78 0.73 0.84 0.65 1.00 0.84 0.78 0.82 0.84 0.78 0.89 0.94 0.97 0.86
EOS 0.72 0.61 0.74 0.61 0.83 0.77 0.78 1.00 0.45 0.67 0.40 0.78 0.62 1.00 0.96 0.62 0.66 0.81 0.84 0.81 0.66
ETC 0.80 0.66 0.82 0.66 0.65 0.76 0.73 0.45 1.00 0.54 0.81 0.73 0.74 0.45 0.51 0.90 0.66 0.64 0.62 0.68 0.87
ETH 0.78 0.94 0.80 0.94 0.79 0.84 0.84 0.67 0.54 1.00 0.73 0.84 0.68 0.67 0.65 0.68 0.66 0.75 0.82 0.87 0.72
LINK 0.68 0.84 0.70 0.84 0.52 0.74 0.65 0.40 0.81 0.73 1.00 0.65 0.62 0.40 0.38 0.78 0.54 0.51 0.55 0.60 0.82
LTC 0.94 0.84 0.96 0.84 0.91 0.95 1.00 0.78 0.73 0.84 0.65 1.00 0.84 0.78 0.82 0.84 0.78 0.89 0.94 0.97 0.86
NEO 0.85 0.69 0.84 0.69 0.79 0.80 0.84 0.62 0.74 0.68 0.62 0.84 1.00 0.62 0.66 0.85 0.96 0.80 0.78 0.81 0.81
QTUM 0.72 0.61 0.74 0.61 0.83 0.77 0.78 1.00 0.45 0.67 0.40 0.78 0.62 1.00 0.96 0.62 0.66 0.81 0.84 0.81 0.66
TRX 0.76 0.59 0.78 0.59 0.87 0.75 0.82 0.96 0.51 0.65 0.38 0.82 0.66 0.96 1.00 0.66 0.70 0.85 0.88 0.84 0.67
WAVE 0.90 0.74 0.88 0.74 0.79 0.84 0.84 0.62 0.90 0.68 0.78 0.84 0.85 0.62 0.66 1.00 0.81 0.80 0.78 0.81 0.96
XEM 0.81 0.63 0.79 0.63 0.83 0.73 0.78 0.66 0.66 0.66 0.54 0.78 0.96 0.66 0.70 0.81 1.00 0.85 0.82 0.79 0.75
XMR 0.90 0.71 0.88 0.71 0.96 0.82 0.89 0.81 0.64 0.75 0.51 0.89 0.80 0.81 0.85 0.80 0.85 1.00 0.93 0.90 0.74
XRP 0.88 0.77 0.89 0.77 0.96 0.87 0.94 0.84 0.62 0.82 0.55 0.94 0.78 0.84 0.88 0.78 0.82 0.93 1.00 0.96 0.79
ZEC 0.91 0.81 0.93 0.81 0.94 0.92 0.97 0.81 0.68 0.87 0.60 0.97 0.81 0.81 0.84 0.81 0.79 0.90 0.96 1.00 0.83
ZRX 0.86 0.78 0.87 0.78 0.76 0.89 0.86 0.66 0.87 0.72 0.82 0.86 0.81 0.66 0.67 0.96 0.75 0.74 0.79 0.83 1.00
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Table 6. Correlations among cryptocurrencies. Class Downtrend.

ADA BCH BNB BTC BTG DASH DOGE EOS ETC ETH LINK LTC NEO QTUM TRX WAVE XEM XMR XRP ZEC ZRX

ADA 1.00 0.88 0.98 0.95 0.76 0.85 0.76 0.56 0.86 0.97 0.83 0.69 0.64 0.56 0.55 0.76 0.66 0.85 0.87 0.69 0.82
BCH 0.88 1.00 0.86 0.87 0.76 0.73 0.76 0.54 0.74 0.85 0.79 0.54 0.47 0.54 0.54 0.62 0.51 0.73 0.75 0.54 0.82
BNB 0.98 0.86 1.00 0.93 0.74 0.87 0.74 0.53 0.86 0.95 0.82 0.71 0.66 0.53 0.52 0.78 0.68 0.87 0.85 0.71 0.80
BTC 0.95 0.87 0.93 1.00 0.84 0.86 0.84 0.66 0.87 0.98 0.89 0.72 0.68 0.66 0.63 0.80 0.70 0.86 0.88 0.72 0.87
BTG 0.76 0.76 0.74 0.84 1.00 0.90 1.00 0.83 0.91 0.82 0.96 0.83 0.79 0.83 0.68 0.90 0.81 0.90 0.92 0.83 0.97
DASH 0.85 0.73 0.87 0.86 0.90 1.00 0.90 0.69 0.99 0.88 0.95 0.87 0.82 0.69 0.57 0.94 0.84 1.00 0.98 0.87 0.93
DOGE 0.76 0.76 0.74 0.84 1.00 0.90 1.00 0.83 0.91 0.82 0.96 0.83 0.79 0.83 0.68 0.90 0.81 0.90 0.92 0.83 0.97
EOS 0.56 0.54 0.53 0.66 0.83 0.69 0.83 1.00 0.71 0.62 0.78 0.64 0.66 1.00 0.84 0.75 0.65 0.69 0.72 0.64 0.80
ETC 0.86 0.74 0.86 0.87 0.91 0.99 0.91 0.71 1.00 0.89 0.95 0.86 0.81 0.71 0.58 0.93 0.83 0.99 0.99 0.86 0.94
ETH 0.97 0.85 0.95 0.98 0.82 0.88 0.82 0.62 0.89 1.00 0.86 0.75 0.70 0.62 0.59 0.82 0.72 0.88 0.90 0.75 0.85
LINK 0.83 0.79 0.82 0.89 0.96 0.95 0.96 0.78 0.95 0.86 1.00 0.81 0.77 0.78 0.65 0.89 0.79 0.95 0.96 0.81 0.99
LTC 0.69 0.54 0.71 0.72 0.83 0.87 0.83 0.64 0.86 0.75 0.81 1.00 0.95 0.64 0.48 0.92 0.98 0.87 0.85 1.00 0.80
NEO 0.64 0.47 0.66 0.68 0.79 0.82 0.79 0.66 0.81 0.70 0.77 0.95 1.00 0.66 0.50 0.88 0.98 0.82 0.80 0.95 0.76
QTUM 0.56 0.54 0.53 0.66 0.83 0.69 0.83 1.00 0.71 0.62 0.78 0.64 0.66 1.00 0.84 0.75 0.65 0.69 0.72 0.64 0.80
TRX 0.55 0.54 0.52 0.63 0.68 0.57 0.68 0.84 0.58 0.59 0.65 0.48 0.50 0.84 1.00 0.59 0.49 0.57 0.59 0.48 0.67
WAVE 0.76 0.62 0.78 0.80 0.90 0.94 0.90 0.75 0.93 0.82 0.89 0.92 0.88 0.75 0.59 1.00 0.90 0.94 0.92 0.92 0.87
XEM 0.66 0.51 0.68 0.70 0.81 0.84 0.81 0.65 0.83 0.72 0.79 0.98 0.98 0.65 0.49 0.90 1.00 0.84 0.82 0.98 0.78
XMR 0.85 0.73 0.87 0.86 0.90 1.00 0.90 0.69 0.99 0.88 0.95 0.87 0.82 0.69 0.57 0.94 0.84 1.00 0.98 0.87 0.93
XRP 0.87 0.75 0.85 0.88 0.92 0.98 0.92 0.72 0.99 0.90 0.96 0.85 0.80 0.72 0.59 0.92 0.82 0.98 1.00 0.85 0.95
ZEC 0.69 0.54 0.71 0.72 0.83 0.87 0.83 0.64 0.86 0.75 0.81 1.00 0.95 0.64 0.48 0.92 0.98 0.87 0.85 1.00 0.80
ZRX 0.82 0.82 0.80 0.87 0.97 0.93 0.97 0.80 0.94 0.85 0.99 0.80 0.76 0.80 0.67 0.87 0.78 0.93 0.95 0.80 1.00

We performed a further experiment to compare the list of categories of the features
that are more relevant for predicting Uptrend or Downtrend. We considered three different
windows/time periods (P1, P2, P3) to analyze also the impact of the time dimension. Table 7
reports the results. For each cryptocurrency, we report the computed correlations in P1, P2,
and P3. For almost all cryptocurrencies, the correlation value is stable with respect to the time
slot and is higher than 0.7. Hence, for almost all cryptocurrencies, the decision about the class
label is based on the same categories of features independently of the predicted label.

Table 7. Uptrend/Downtrend correlations.

Crypto P1 P2 P3

ADA 0.72 0.62 0.80
BCH 0.82 0.90 0.66
BNB 0.92 0.76 0.80
BTC 0.90 0.83 0.78
BTG 0.96 0.90 0.93
DASH 0.77 0.99 0.97
DOGE 0.87 0.75 0.99
EOS 0.91 1.00 0.93
ETC 0.77 0.65 0.74
ETH 0.69 0.81 0.75
LINK 0.82 0.78 0.71
LTC 0.83 0.94 0.84
NEO 0.94 0.64 0.64
QTUM 0.60 0.76 0.93
TRX 0.76 0.84 0.82
WAVE 0.89 0.75 0.76
XEM 0.59 0.82 0.67
XMR 0.95 0.98 0.79
XRP 0.80 0.82 0.86
ZEC 0.87 0.70 0.87
ZRX 0.59 0.89 0.87

7. Discussion

Explainability plays an important role in many Machine Learning-driven applications,
including quantitative cryptocurrency trading. Despite their accuracy, ML models are
deemed as not reliable enough, as domain experts do not trust the automated solutions.
In the financial, in particular, a clear explanation of the rationale behind machine-driven
decisions is deemed as unavoidable.

EXplainable AI opens the ML black boxes providing global or local explanations based
on the underlying data features. Due to their high dimensionality and multi-faceted nature,
cryptocurrencies are particularly suited to eXplainable AI. The main purposes are:
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• The enhancement of existing crytpocurrency trading systems based on the collected
feedback on the current market trends.

• The online support to discretionary traders, who commonly monitor the financial
markets and execute trading operations in real time.

CryptoMLE is designed for supporting the monitoring of ML model performances
on cryptocurrency markets. To enhance trading system strategies, CryptoMLE helps
cryptocurrency investors verify the predictive rules inferred by the ML algorithms against
the domain knowledge. To support online discretionary traders’ activities, it shortlists the
most influential cryptocurrency features that are worth monitoring. The SHAP series and
the SHAP summary plots provide them with a simple, interactive environment to obtain
actionable feedback based on the recent ML outcomes.

The main takeaways from the empirical outcomes can be summarized as follows:

• Feature relevance to cryptocurrency price forecasting is either generalized, i.e., valid for
all cryptocurrencies independently of time periods and market conditions (e.g., for
the Close_rel feature), or selective, i.e., valid only for a subset of features and for specific
time periods. For the latter feature subset, CryptoMLE provides experts with an
automated way to recognize them and leverage their predictive power for quantitative
trading.

• Based on the prediction outcomes, the relevance of the individual features is highly
variable (see the dashboard snapshots in Figures 6–11). To drive short-term cryptocur-
rency investments, it is crucial to monitor the most likely causes of market movements.
For example, the percentage variations of the trading volume between current and pre-
vious days (namely volume_pct*) appear to be relevant to predict BCHUSD variations
(see Figure 9), whereas they are less influential in the prediction of other cryptocur-
rency prices.

• The influence of feature subcategories and categories is less sensitive to the market
conditions, but they can be tailored to particular cryptocurrencies. For example, a
cryptocurrency is more likely to be more influenced by BC features than others. This
can be easily verified using CryptoMLE in real trading simulations.

• The discrepancies between the observed results among the target class (e.g., Uptrend,
Downtrend) are often negligible. Therefore, traders relying on both long- and short-
selling trading strategy can easily and quickly interact with CryptoMLE to gather all
the required information.

• Simpler ML models analyzing only the prices of the target cryptocurrency assets
appear to be suboptimal because, according to the achieved results, cryptocurrency
prices are likely to be relevantly influenced by many other features (see, for instance,
BCHUSD and ETHUSD). This confirms the utility of the CryptoMLE graphical inter-
face, which provides human experts with a summary of the main feature contributions
to the ML predictors.

8. Conclusions and Future Works

This paper introduced an eXplainable AI tool for cryptocurrency price forecasting. It
presented a visual interface based on which domain experts can infer actionable depen-
dencies among input data features and Machine Learning predictions. The interactive
dashboard consists of an SHAP series plot, showing the temporal variation of the mean
Shapley values associated with the most recent ML predictions, and a selection of pop-up
summary plots, which are snapshots of the main features’ influences at given time points.
The empirical simulation, which was run on a 8-year period, showed the variability of the
model explanations across 21 cryptocurrencies and three reference time periods in terms of
selected features, feature subcategories and categories.

As future work, we plan to leverage the Shapley values in quantitative intraday trading.
Specifically, we aim at dynamically adapt algorithmic decisions in crtyptocurrency trading
based on the relevant feedback provided by domain experts through the graphical interface.
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