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Abstract: Predicting corporate bankruptcy is one of the fundamental tasks in credit risk assessment. In
particular, since the 2007/2008 financial crisis, it has become a priority for most financial institutions,
practitioners, and academics. The recent advancements in machine learning (ML) enabled the
development of several models for bankruptcy prediction. The most challenging aspect of this
task is dealing with the class imbalance due to the rarity of bankruptcy events in the real economy.
Furthermore, a fair comparison in the literature is difficult to make because bankruptcy datasets are
not publicly available and because studies often restrict their datasets to specific economic sectors and
markets and/or time periods. In this work, we investigated the design and the application of different
ML models to two different tasks related to default events: (a) estimating survival probabilities over
time; (b) default prediction using time-series accounting data with different lengths. The entire
dataset used for the experiments has been made available to the scientific community for further
research and benchmarking purposes. The dataset pertains to 8262 different public companies listed
on the American stock market between 1999 and 2018. Finally, in light of the results obtained, we
critically discuss the most interesting metrics as proposed benchmarks for future studies.

Keywords: bankruptcy prediction; deep learning; multi-head; LSTM; machine learning; stock market

1. Introduction

Since the 2007/2008 financial crisis, most financial institutions, lenders, and academics
have become interested in predicting corporate bankruptcy. Usually, corporate bankruptcy costs
spread to the whole economy, resulting in cascade effects that impact many companies [1,2].

Despite that different research works have already demonstrated the ability of machine
learning (ML) to assess the likelihood of companies’ default, making a fair comparison among
all the proposed approaches in the literature remains challenging for several reasons: (a) most
of the datasets are not publicly available or are only related to specific economic scenarios
like private companies in different countries [3,4]. For private companies, little information is
generally available, which makes it difficult to exploit other sources of information that may
improve bankruptcy prediction performance (e.g., textual disclosures [5], annual reports [6],
stock market data) and that can be used by more complex models; (b) bankruptcy prediction
actually involves different tasks: the default prediction in tasks for the next year, using past
data, and the survival probability prediction task that aims to predict the probability that a
company will face financial distress in k years. Most datasets cannot permit the performing
of both tasks, and this is a clear limitation to the development of intelligent models that
aim to generalize; (c) bankruptcy prediction models are usually trained on imbalanced data
including few examples of the bankruptcy class: there is still no general accepted metric to
assess bankruptcy prediction performance with machine learning. Indeed, the prediction
accuracy can be misleading since it gives the same cost to false positives and false negatives
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while making, for example, the wrong prediction on a company that is going to go bankrupt
has in general a higher cost than the former.

At the same time, as a means of addressing class imbalance, the common metric
reported for bankruptcy prediction is the Area Under the Curve (AUC). This, however,
can also be misleading since it refers to the overall performance of a classifier without
providing details regarding the performance of each class or the confusion matrix.

In this research work, we investigated the bankruptcy prediction with machine learn-
ing on the American stock market, which represents one of the most important drivers of
the world economy. The reasons for this choice are summarized in the following: (a) differ-
ent kinds of data are available for public companies in the American market: stock prices,
accounting variables, and annual and quarterly financial reports. It allows the dataset to be
improved in the future; (b) a corporate default in the American stock market can have a
large impact on the overall economy.

The main contributions of our paper are the following:

1. We collected a dataset for bankruptcy prediction considering 8262 different companies
in the stock market in the time interval between 1999 and 2018. The dataset has
been made public (https://github.com/sowide/bankruptcy_dataset, accessed on 14
August 2022) for the scientific community for further investigations as a benchmark
and thus it can be easily enriched with data coming from other sources pertaining to
the same companies. Our dataset faithfully followed the FAIR Data Principles [7]:

(a) Findable: our data is indexed in a searchable resource and had a unique and
persistent identifier.

(b) Accessible: our data is understandable to humans and machines and it is
deposited in a trusted repository.

(c) Interoperable: we used a formal, accessible, shared, and broadly applicable
language for knowledge representation.

(d) Reusable: we provided accurate information on provenance and clear usage licenses.

2. We investigated two different bankruptcy prediction tasks: The first task (T1) is the
default prediction task which aims to predict the company status in the next year
using time series of accounting data or just the last fiscal year available. The second
task (T2) is the survival probability prediction task in which the model tries to predict
the company status over k years in the future.

3. In light of the results achieved, we critically discuss the most interesting metrics as
proposed benchmarks for the future, such as: Area Under the Curve (AUC), precision,
recall (sensitivity), type I error, type II error, and macro- and micro-F1 scores for
each class.

The paper is organized as follows: In Section 2, we provide an overview the state-
of-the-art approaches for bankruptcy prediction. In Section 3, we describe in detail the
dataset that has been used for this study. In Section 4, we review and describe all the
machine-learning algorithms that we used in our experiments. In Section 5, we introduce
the metrics used for the imbalanced scenario encountered in this study. In Section 6, we
describe the first task we evaluated in this work, concerning the prediction of a company’s
health status based only on data from previous years. In Section 7, we present our second
task where we performed a survival probability task on companies within the dataset.
In Section 8, we show and describe the experimental results, and finally in Section 9 we
summarize the results with a critical discussion about the metrics.

2. Related Works

The recent advancements in machine learning (ML) led to new, innovative, and func-
tional approaches [8,9]. Moreover, they have enabled the development of intelligent models
that try to assess the likelihood of companies’ default by looking for relationships among
different types of financial data, and the financial status of a firm in the future [10–17].
Different ML algorithms and techniques such as Support Vector Machine (SVM) [18], boost-

https://github.com/sowide/bankruptcy_dataset
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ing techniques [19], discriminant analysis [20], and Neural Networks [5] have been used
in the literature for this task. Moreover, different architectures have been evaluated to
identify effective decision boundaries for this binary classification problem, such as the
least absolute shrinkage and selection operator [21], dynamic slacks-based model [22],
and two-stage classification [13]. However, although default prediction models have been
studied for decades, several issues remain. Interestingly, some new issues have even been
introduced with the recently increased exploitation of machine-learning models. Indeed,
since the Z-Score model was proposed by Altman in 1968 [23], research mainly focused
on accounting-based ratios as markers to detect and understand if a firm is likely to face
financial difficulties, such as bankruptcy. Scoring-based models use discriminant analysis
to provide ordinal rankings of default risk but are often computed from small datasets
using statistical and probabilistic models that focus more on explainability and explicability
but miss generalization over time and across different sectors [24]. Other examples are the
Kralicek quick test [25] and the Taffler model [26].

In [27], a step towards modern machine learning was made by introducing a binary re-
sponse model that uses explanatory variables and applies a logistic function for bankruptcy
prediction [28]. However, the main goal of these models’ class is not to identify a decision
boundary in the feature space but only to select a decision based on an output threshold
that was statistically significant in the past for the specific sector. For example, Altman
suggested two thresholds, 1.81 and 2.99.

Specifically, an Altman’s Z-score above the 2.99 threshold means that firms are not
expected to default in the next two years, below 1.81 that they are expected to default, while
the interval between the two thresholds is named the “zone of ignorance” where no clear
decision can be taken. However, even though many practitioners use this threshold, in
Altman’s view, this is an unfortunate practice since over the past 50 years, credit-worthiness
dynamics and trends have changed so dramatically that the original zone cutoffs are no
longer relevant [24].

Moreover, we still lack a definite theory for the bankruptcy prediction task [18,29]
and in particular, a generally accepted performance metric is missing along with a formal
theoretical framework. As a consequence, the most common methodology in bankruptcy
prediction tasks is identifying discriminant features using a trial and error approach with
various accounting-based ratios [15,16].

Machine-learning models usually need large datasets to be trained and suffer when
class imbalance is strong as in bankruptcy, since default events are quite rare. Learning
from imbalanced data requires dealing with several challenges, especially when the most
important class that should be recognized is exactly the one that is least represented in the
dataset. This issue is strongly related to the lack of a general performance metric.

Machine-learning techniques like ensemble methods were firstly explored for default
prediction by Nanni et al. [30]. Kim et al. showed a much better performance for the
ensembles compared to standalone classifiers, while their results were also confirmed by
Kim et al. [31]. Wang et al. further analyzed the performance of ensemble models, finding
that bagging outperformed boosting for all credit databases in terms of average accuracy,
as well as type I and type II error [32]. In [33], Barboza et al. show that, on average,
machine-learning models exhibit 10% more accuracy than scoring-based ones. Specifically,
in this study, Support Vector Machines (SVM), Random Forests (RF) as well as bagging
and boosting techniques were tested for predicting bankruptcy events and were compared
with results from the discriminant analysis, Logistic Regression, and Neural Networks. The
authors found that bagging, boosting, and RF outperformed all other models. However,
since the dataset has not been released and the models’ hyper-parameters are not reported,
it is difficult to replicate such results and understand if the performance improves because
of the quality of the models or because the authors take into account some other financial
variables as features.

Considering that the comparisons of the models are still inconclusive, new studies
exploring different models, contexts, and datasets are relevant. A firm’s failure is likely
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to be caused by difficulties experienced over time and not just the previous year. In light
of this, the dynamic behavior of firms should be considered in a theoretical framework
for bankruptcy prediction such as growth measures and changes in some variables [33].
Several research works investigated this aspect, but the results are again inconclusive and
often not reproducible. In [28], the authors show that firms exhibit failure tendencies as
much as five years prior to the actual event. On the other hand, Mossman et al. [34] pointed
out that the models are only capable of predicting bankruptcy two years prior to the event,
which improves to three years if used for multiperiod corporate default prediction [35].
In most studies, ratios are analyzed backward in time starting with the bankruptcy event
and going back until the model becomes unreliable or inaccurate. Moreover, most of the
bankruptcy prediction models in the literature do not take advantage of the sequential
nature of the financial data. This lack of multi-period models is also emphasized in a
literature review by Kim et al. [36].

3. Dataset

Since most of the bankruptcy models are evaluated on private datasets or small
publicly available ones, we provide a novel dataset for bankruptcy prediction related to the
public companies in the American stock market (New York Stock Exchange and NASDAQ).
We collected accounting data from 8262 different companies in the period between 1999
and 2018. The stock market is dynamic with new companies becoming public every year,
changing properties and names, or being removed or suspended from the market as a
result of acquisitions or regulatory action. For this reason, we consider the same companies
used in [6,37] since this set of firms has been proved to be a fair approximation of the
American stock market for each year in that time interval. According to the Security
Exchange Commission (SEC), a company in the American market is considered bankrupt
in two cases:

• If the firm’s management files Chapter 11 of the Bankruptcy Code to “reorganize” its
business: management continues to run the day-to-day business operations but all
significant business decisions must be approved by a bankruptcy court.

• If the firm’s management files Chapter 7 of the Bankruptcy Code: the company stops
all operations and goes completely out of business.

When these events occur we label the fiscal year before the chapter filing as “bankruptcy”
(1) for the next year. Otherwise, the company is considered healthy (0). In light of this,
our dataset enables learning how to predict bankruptcy at least one year before it happens
and, as a consequence, it is possible to deal with the default prediction task using time
series and also to deal with the survival probability task looking ahead. Figure 1 shows
the percentage of companies’ default for each year in the dataset. This value can be un-
derestimated due to the exclusion of some companies in the past because of their small
market capitalization, but it appears to agree with the literature that usually reports that
only a percentage below 1% of the available firms in the market is likely to default every
year under normal conditions. However, in some periods, bankruptcy rates have been
higher than usual, for example during the Dot-com Bubble in the early 2000s and the Great
Recession in 2007–2008. Our dataset distribution reflects this condition, see Table 1.

For all the companies and for each year, we selected 18 accounting and financial vari-
ables. Features were selected according to the most frequently used ratios, and accounting
information to which the literature refers [21,23,38]. The dataset has no missing values
or synthetic and imputed added values. Finally, the resulting dataset of 78,682 firm-year
observations is divided into three subsets according to the period of time: a training set, a
validation set, and a test set. We used data from 1999 until 2011 for training, data from 2012
until 2014 for validation and model comparison, and the remaining years from 2015 to 2018
as a test-set to prove the ability of the models to predict bankruptcy in real never seen cases
and macroeconomic conditions. Table 2 shows the full list of the 18 features available in the
dataset and their description.
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Figure 1. Rate of bankruptcy in the dataset (2000–2019) with financial variables in the period (1999–
2018). The next subdivision in training, validation, and test is highlighted with different colors.

Table 1. The table provides the firm distribution by year in the dataset.

Year Total Firms Bankrupt Firms Year Total Firms Bankrupt Firms

2000 5308 3 2010 3743 23
2001 5226 7 2011 3625 35
2002 4897 10 2012 3513 25
2003 4651 17 2013 3485 26
2004 4417 29 2014 3484 28
2005 4348 46 2015 3504 33
2006 4205 40 2016 3354 33
2007 4128 51 2017 3191 29
2008 4009 59 2018 3014 21
2009 3857 58 2019 2723 36

Table 2. The 18 numerical bankruptcy features we considered in our tests.

Variable Name Description

X1 Current assets
All the assets of a company that are expected to be sold
or used as a result of standard business operations over
the next year

X2 Cost of goods sold
The total amount a company paid as a cost directly
related to the sale of products

X3 Depreciation and
amortization

Depreciation refers to the loss of value of a tangible
fixed asset over time (such as property. machinery,
buildings, and plant). Amortization refers to the
loss of value of intangible assets over time.

X4 EBITDA

Earnings before interest,taxes, depreciation and
amortization: Measure of a company’s overall
financial performance alternative to the
net income

X5 Inventory
The accounting of items and raw materials
that a company either uses in production or sells.



Future Internet 2022, 14, 244 6 of 23

Table 2. Cont.

Variable Name Description

X6 Net Income
The overall profitability of a company
after all expenses and costs have been deducted
from total revenue.

X7 Total Receivables
The balance of money due to a firm for goods
or services delivered or used but not yet paid for
by customers.

X8 Market value
The price of an asset in a marketplace. In our
dataset it refers to the market capitalization since
companies are publicly traded in the stock market

X9 Net sales
The sum of a company’s gross sales minus its
returns, allowances, and discounts.

X10 Total assets All the assets, or items of value, a business owns

X11 Total Long term debt
A company’s loans and other liabilities
that will not become due within one year of the
balance sheet date

X12 EBIT Earnings before interest and taxes

X13 Gross Profit
The profit a business makes after subtracting
all the costs that are related to manufacturing and
selling its products or services

X14 Total Current Liabilities
It is the sum of accounts payable, accrued liabilities
and taxes such as Bonds payable at the end of the
year, salaries and commissions remaining

X15 Retained Earnings
The amount of profit a company has left over after
paying all its direct costs, indirect costs, income
taxes and its dividends to shareholders

X16 Total Revenue
The amount of income that a business has made from
all sales before subtracting expenses. It may include
interest and dividends from investments

X17 Total Liabilities
The combined debts and obligations that the company
owes to outside parties

X18 Total Operating Expenses
The expense a business incurs through
its normal business operations

In light of this, the dataset could be used to build and validate different ML models for
both of the main two tasks in bankruptcy prediction we show in this research work. More-
over, since the dataset has a temporal dimension, several time series analysis techniques
could be exploited as long as there are unsupervised methodologies.

4. Machine-Learning Models

In this section, we briefly review and describe all the machine-learning algorithms we
used for the experiments described in the next sections.

4.1. Support Vector Machine

Support Vector Machine is one of the oldest ML algorithms and aims to identify the
decision boundaries as the maximum-margin hyperplane separating two classes. The
hyperplane equation is given by Equation (1).

f (x) = ωT · x + b (1)
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where ω is the normal vector and b the bias. The objective function of SVM can be
expressed as: 

min
{

1
2‖ω‖2

}
s.t.
{

yi −ωTxi − b 6 ε

ωTxi + b− y 6 ε

(2)

where ε is the deviation between f (x) and the target yi.

4.2. Random Forest

Random Forest is an ensemble learning algorithm developed by Breiman [39]. Ensem-
ble learning is a way to combine different basic classifiers (“weak” classifiers) to compose
a new one (strong learner), more complex, more efficient, and more precise. The weak
classifiers should make independent errors in their predictions, and thus a strong classifier
can be composed of different algorithms or if the same algorithm is used the models should
be trained with different subsets of the training set.

Random Forest is an ensemble bagging tree-based learning algorithm. In particular,
the Random Forest Classifier is a set of decision trees that are trained using randomly
selected subsets of the training set and randomly selected subsets of features.

A Random Forest Classifier is composed of a collection of classification trees h (estimators):

{h(x, T, Θk), k = 1, 2, . . . , K} (3)

where (Θk) represents identically and independently distributed random vectors, and
each tree casts a unit vote for the most likely class at input x. Each tree in the collection
votes (only once) to assign the sample to a class, considering the x feature vector. The final
choice is to attribute the example to the class that obtained the majority of votes. A graphic
representation of the algorithm is presented in Figure 2.

RANDOM FOREST
CLASSIFIER

DECISION TREE

DATASET

PREDICTION PREDICTION PREDICTION

MAJORITY VOTE TAKEN FINAL PREDICTION

Figure 2. Graphic representation of Random Forest algorithm for classification.

4.3. Boosting Algorithms

Boosting is a subset of ensemble methods where a collection of models are trained sequen-
tially to permit every model to improve and compensate for the weakness of its predecessor.

Boosting algorithms differ in how they create and aggregate weak learners during the
sequential stacking process. In our work, we used various boosting algorithms:
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• AdaBoost [40]: This was the first boosting algorithm developed for classification and
regression tasks. It fits a sequence of weak learners on different weighted training data.
It gives incorrect predictions more weight in sub-sequence iterations and less weight
to correct predictions. In this way, it forces the algorithm to “focus” on observations
that are harder to predict. The final prediction comes from weighing the majority vote
or sum.
The algorithm begins by forecasting the original dataset and giving the same weight
to each observation. If the prediction is incorrect, using the first “weak” learner, the
algorithm will give a higher weight value to that observation. This procedure is
iterated until the model reaches a predefined value of accuracy.
AdaBoost is typically easy to use because it does not need complex parameters during
its tuning procedures and it shows low sensitivity to overfitting. Moreover, it is able to
learn from a small set of features learning incrementally new information. However,
Adaboost is sensitive to noisy data and abnormal values.

• Gradient Boosting [41]: This algorithm uses a set of weak predictive models, typically
decision trees. Gradient Boosting trains many models sequentially that are then
composed using the additive modeling property. In each training epoch, a new learner
is added to increase the accuracy of the previous one. Each model gradually minimizes
the whole system loss function using the Gradient Descent algorithm.

• XGBoost (Extreme Gradient Boosting) [42]: XGBoost is an optimized distributed Gra-
dient Boosting library designed to be highly efficient, flexible, and portable. XGBoost
minimizes a regularized (L1 and L2) objective function that combines a convex loss
function based on the difference between the predicted and target outputs and a
penalty term for model complexity. The training proceeds by adding new trees that
predict the residuals or errors of prior trees that are then combined with previous trees
to make the final prediction (4).

Fm(X) = Fm−1(X) + αmhm(X, rm−1), (4)

where αi and ri are the regularization parameters and residuals computed with the
i-th tree, respectively, and hi is a function that is trained to predict residuals, ri using
X for the i-th tree.
αi is computed using the residuals, ri solving the following optimization problem:

arg min
α

=
m

∑
i=1

L(Yi, Fi−1(Xi) + αhi(Xi, ri−1)) (5)

where L(Y, F(X)) is a differentiable loss function.

4.4. Logistic Regression

Binary Logistic Regression models the relationship between a set of independent
variables and a binary dependent variable. The goal is to find the best model that describes
the relationship between the dependent variable and multiple independent variables.

The Logistic Regression’s dependent variable could be binary or categorical and the
independent ones could be a mixture of continuous, categorical, and binary variables.

The general form of Logistic Regression is as follows:

z = a + b1x1 + b2x2 + b3x3 + . . . + bmxm (6)

y =
1

(1 + e−z)
(7)

where x1, x2, . . . , xm is the feature vector and z is a linear combination function of the
features. The parameters b1, b2, . . . , bm are the regression coefficients to be estimated. The
output is between 0 and 1, and, usually, if the output is above the threshold of 0.5 the model
predicts class 1 (positive) and otherwise class 0 (negative).
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4.5. Artificial Neural Network

An Artificial Neural Network (ANN) is a non-linear function approximator. It consists
of an input layer of neurons and an unspecified number of hidden layers and a final
output layer. Each neuron performs a weighted sum of its inputs, and finally, it applies
an activation function that determines the output of each neuron. When the activation
function is a Sigmoid function, the single neuron works as a Logistic Regression without
the classification threshold. Figure 3 shows a general structure of an ANN with the input
layer, two hidden layers, and the final output layer whose structure strongly depends
on the task it should perform. The main common architecture is the feed-forward ANN
where each neuron is linked to every neuron in the next layer but without exhibiting any
intra-layer connection among neurons belonging to the same layer. Each layer can be seen
as a partial approximation of the final function.

HIDDEN LAYERS

INPUT

OUTPUT

Figure 3. Representation of a generic Neural Network. Nodes are called neurons and the links are
called weights.

Each connection has a weight ω assigned that is randomly initialized at the beginning.
The output hi, of a neuron i, in the hidden layer, is:

hi = σ(
N

∑
j=1

ωijxj + bi) (8)

where σ() is the activation function, N the number of input neurons of the layer, ωij the
weights, xj inputs of the neurons, and bi the bias terms of the hidden neurons.

The goal of the activation function is to bound the value of the neuron so that the
Neural Network is not stuck by divergent neurons. Weight estimation for each connection
is the main goal of the ANN’s training. This step is usually performed using the back-
propagation algorithm [43] that minimizes an objective function that measures the distance
between the desired and actual output of the network. Inputs and outputs from a Neural
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Network can be binary or even symbols when data are appropriately encoded. This feature
confers a wide range of applicability to Neural Networks.

5. Metrics for Imbalanced Bankruptcy Prediction Tasks

The two bankruptcy prediction tasks we propose in the following sections have been
implemented as binary prediction tasks where the positive class (1) indicates bankruptcy
while the negative class (0) means that a company has been classified as healthy. To compare
our models and investigate their effectiveness, we used different metrics considering the
imbalance condition in the validation and the test sets. These metrics will be critically
discussed in Section 8 in light of our results for the two tasks. According to the binary
classification task we used to formulate the bankruptcy prediction problem, the following
variables represent:

• True positive (TP): The number of bankrupted companies that have been correctly
predicted as such.

• False negative (FN): The number of bankrupted companies that have been wrongly
predicted as healthy firms.

• True negative (FN): The number of actually healthy companies that have been cor-
rectly predicted as such.

• False positive (FP): The number of healthy companies that have been wrongly pre-
dicted as bankrupted by the model.

Since the validation and test sets are both imbalanced for both tasks with a prevalence
of healthy companies (∼96–97%), we did not compare the models in terms of accuracy of
the model. Indeed, the proportion of correct matches would be insufficient in assessing
the model performance. We firstly use the Area Under the Curve (AUC) for all the com-
parisons as it is commonly used in the literature to compare the performance of models
on imbalanced datasets and specifically to evaluate the bankruptcy models in general.
AUC measures the ability of a classifier to distinguish between classes and is used as a
summary of the Receiver Operating Characteristic (ROC) curve. The ROC curve is created
by plotting the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings.

In addition, we investigated other important metrics that can be used to clarify the
models’ performance depending on the target stakeholders. These are the precision, recall,
and F1 scores for each class. The precision achieved for a class is the accuracy of that
class’ predictions. The recall (sensitivity) is the ratio of the class instances that are correctly
detected by the classifier. The F1 score is the harmonic mean of precision and recall: whereas
the regular mean treats all values equally, the harmonic one gives more weight to low
values. As a consequence, a high F1 score for a certain class is achieved only if both its
precision and recall are high. Equations (11)–(13) report how these quantities are computed
for the positive class. The definitions for the negative class are exactly the same by inverting
positives with negatives.

Precision =
TP

(TP + FP)
(9)

Recall =
TP

(TP + FN)
(10)

F1score =
2

1
Precision + 1

Recall
(11)

Moreover, we computed and reported two other global metrics for the classifier that
have been selected because they enable an overall evaluation of the classifier on both classes:

• The macro-F1 score: The macro-F1 score is computed as the arithmetic mean of the F1
score of all the classes.

• The micro-F1 score: It is used to assess the quality of multi-label binary problems. It
measures the F1 score of the aggregated contributions of all classes.
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Finally, we used two other metrics that are often evaluated in the bankruptcy predic-
tion models. Because bankruptcy is a rare event, using the classification accuracy to measure
a model’s performance is misleading since it assumes that type I error (Equation (12)) and
type II error (Equation (13)) are equally costly. Actually, the cost of false negatives is much
higher than that of false positives for a financial institution. An error has a different cost
depending on the class that has been incorrectly predicted. The cost of predicting a com-
pany going into default as healthy is much higher than the cost of predicting a company
that will default as healthy. In light of this, we explicitly computed and reported type I and
type II errors and compared the classifiers focusing in particular on type II and recall of the
positive class.

Type I error =
FP

TN + FP
(12)

Type I I error =
FN

TP + FN
(13)

6. Task T1: Default Prediction with Historical Time Series

The first task we performed using the dataset is training each ML model presented
in Section 4 for default prediction with historical time-series accounting data. Our first
step was to perform the most classical task of predicting a company’s health status for
the next year based solely on data from the previous year. Furthermore, we attempted to
answer the open question in the literature regarding the number of years that should be
considered in order to maximize the performance of the bankruptcy prediction model. To
achieve this, we define a Window Length (WL) variable that refers to the number of fiscal
years considered as a temporal window for the prediction. We trained all the models using
data between 1999 and 2011, and we made the first comparison using the Validation set
(2012–2014) in terms of AUC.

Finally, we report the results of the test set using the best models identified on the
validation set. This last step is necessary to verify the ability of the models to generalize.
The average number of years available for each company in the dataset is 8 years. However,
we evaluated a WL ranging from one to five years for two main reasons:

• Five years is the general maximum number of years found in the literature to be useful.
• When increasing the WL considered, the most recent companies are excluded because

they do not have available data. In general, considering more years leads to smaller
training and test sets. This could introduce a statistical bias, causing the analysis to
focus on only the more mature and stable companies that have existed for several
years while ignoring the relatively newer, smaller companies that are riskier and have
higher default rates. This could introduce a statistical bias forcing the analysis to
consider only the more structured and stable companies that have existed for several
years while ignoring the relatively new companies with smaller market capitalization
and which are thus riskier and have a higher probability of default, particularly during
periods of economic decline.

Figure 4 shows the distribution of the two classes of bankruptcy and healthy samples
for the training, test, and validation by selecting different Window Lengths (WLs).
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Figure 4. Bankruptcy and healthy sample distribution in the training (2000–2011), validation (2012–
2014), and test (2015–2018) sets by varying the length of the window (WL) considered.

6.1. Models Comparison and Selection for Default Prediction

All the models were trained using the same training set (1999–2011) and compared
using the same validation set (2012–2014). However, learning from an imbalanced training
set led to unsatisfactory results for the bankruptcy class in the validation set. For this reason,
we decided to use a random balanced training set that is evaluated for different runs. Indeed,
every model is evaluated over 100 independent and different runs: for every run, the training
set is balanced with exactly the same number of bankruptcy examples and a random choice
of healthy examples from the same period. The number of features changes according to the
number of available variables for the temporal window length selected.

A binary classification task is implemented in each model, where the positive class (1)
represents a bankruptcy case in the next year, and the negative class (0) represents a healthy
case. For RF, AB, GB, and XGB, we used 500 estimators for a fair comparison, while the
other specific parameters are the default ones provided in the Scikit-Learn implementations.
The ANN is a multi-layer perceptron with three layers. In the first layer, the number
of neurons is equal to the number of input features. The hidden layer has half as many
neurons as the first layer, and finally, the output layer uses a Sigmoid function to produce a
binary prediction. All neurons except for those in the output layer use the Rectified Linear
Unit activation (RELU) function. Each Neural Network is trained over 1000 epochs using
the early-stopping regularization technique that prevents overfitting when the validation
loss tends to increase for a patience number of times.

We compared all the models using the average Area Under the Curve (AUC) over
100 runs. Figure 5 reports the results we achieved trying to predict bankruptcy in the most
common setting that exploits only the accounting variables of the last available fiscal year.
On average, the ensemble tree-based ML models perform better than the others except for
Adaboost. The best average result is achieved with the Random Forest (AUC = 0.748),
although the Neural Network achieves the best AUC in a single run (AUC = 0.856).
However, the ANN exhibits the highest variability in the results, which led to a lower
average AUC (AUC = 0.653). Figure 6 reports the comparison among the models when
using more than one year from the prediction (WL from two to five years). As a result of
this experiment, we can assert that on average increasing the number of fiscal years in the
input does not seem to impact the average AUC significantly:

• For WL = 2, best average AUC = 0.75 with Random Forest
• For WL = 3, best average AUC = 0.72 with Random Forest and Gradient Boosting
• For WL = 4, best average AUC = 0.74 with XGBoost
• For WL = 5, best average AUC = 0.754 with Random Forest

The highest average value is reached by Random Forest using a window length of
5 years. However, as in the first case, in general, the ensemble models exhibit better
performance. However, the best absolute result is reached by the Neural Network again
with AUC = 0.85. It should be highlighted that the Neural Network’s high variability
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concerning the results can be imputed to the random weights’ initialization for every run.
Probably performing several runs over the same training set could reduce this problem.
Finally, Table 3 shows the variance for each model considering every window length.

0.4 0.5 0.6 0.7 0.8

SVM

ANN

Logistic Regression

AdaBoost

Random Forest

Gradient Boosting

XGBoost

WL = 1

AUC Values

Figure 5. The box plot shows the locality, spread, and skewness groups of AUC values through their
quartiles achieved for each model in 100 different runs with a different balance training set. The
reported AUC values (horizontal axis) are related to the case of WL = 1 where all models use only
variables from the last year. The lines (whiskers) extending from the boxes indicate the variability
outside the upper and lower quartiles. The orange line represents the median between the first quartile
and the third quartile. The circular points (fliers) are those located past the end of the whiskers.
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0.6 0.65 0.7 0.75 0.8
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AdaBoost
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WL = 4

0.55 0.6 0.65 0.7 0.75 0.8 0.85
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Figure 6. The four box-plots show the locality, spread, and skewness groups of AUC values achieved
on the validation set for each model in the same conditions as for the first case by varying the
WL parameter.
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Table 3. Variance on the AUC values calculated for each model on the validation set for T2 task
(LAW) and for T1 task (WL).

LAW = 2 LAW = 3 LAW = 4 LAW = 5 WL = 1 WL = 2 WL = 3 WL = 4 WL = 5

Svm 4.930e-32 0.0 0.0 4.930e-32 0.0 1.233e-32 0.0 0.0 0.0
Ann 0.009 0.0075 0.0089 0.0103 0.0076 0.0037 0.0026 0.0029 0.0022
Logistic Regression 1.233e-32 1.232e-32 6.145e-07 2.488e-07 1.233e-32 2.831e-05 5.612e-08 0.00019 2.427e-06
AdaBoost 6.416e-07 0.0 8.430e-07 4.930e-32 6.559e-06 1.233e-32 2.039e-07 1.233e-32 6.951e-06
Random Forest 8.301e-05 8.208e-05 6.273e-05 9.655e-05 8.076e-05 0.00012 7.139e-05 0.00011 9.349e-05
Gradient Boosting 2.887e-05 1.616e-05 4.583e-06 2.462e-05 3.135e-06 8.098e-07 1.801e-06 1.445e-06 2.860e-05
XgBoost 4.930e-32 0.0 0.0 1.233e-32 4.930e-32 1.233e-32 1.233e-32 4.930e-32 4.930e-32

6.2. Results for Default Prediction

Once we compared the algorithms with 100 different runs on the validation set, ranked
the average AUC achieved for every temporal window, and selected the best model on
the validation set, we performed a final evaluation on the test set (2015–2018). These data
have never been used for model training or comparison. It is important to evaluate on a
different test set in terms of temporal period because it refers to a different economic cycle.
Since we trained on data until 2011 that include the 2007/2008 sub-prime crisis and the
European debt crisis in 2010–2011, there could be a bias concerning the knowledge learnt
by the models about what is a company that is likely to go into bankruptcy. Evaluating
all the models only on the validation set is not enough since we used that dataset to
select the hyper-parameters. If a model performs well on both validation (2012–2014)
and on the never used test set (2015–2018), we could asses that it is effectively able to
generalize concerning bankruptcy companies. The best models on the validation set are
in order Random Forest, Gradient Boosting, XGBoost, and Logistic Regression. Figure 7
presents the final results we achieved for this task on the American stock market. We
also added the results achieved by the Neural Network with the best model that actually
outperforms all the other machine-learning techniques in terms of AUC. It appears that this
result contradicts what has been reported in the current literature, which is that bagging
and boosting ensemble models perform better. The results achieved on the never seen
test set by the ANN demonstrate what is currently known for other machine-learning
applications: When a Neural Network is properly designed, trained, and fine-tuned with
higher computational costs and when the best model is identified with random and grid
searches, then Neural Networks usually outperform all the machine-learning baselines
thanks to their ability to deal with non-linear dependencies.

WL = 1 WL = 2 WL = 3 WL = 4 WL = 5
Window Length
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Figure 7. AUCs achieved by the best models on the test set (2015–2018) for task T1 using the best
models selected on the validation set (2012–2014). The ANN is also considered because, although it
yields the worst average AUC on the validation set, it achieves the best absolute performance on the
test set when using the best models found on the validation set.
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7. Task T2: Survival Probability Task

The second task we performed using the dataset is the years anticipated prediction of
the bankruptcy events. This task is implemented by considering the event in the dataset
and looking ahead a number of years; we named it the Look-Ahead Window (LAW). In
practice, default prediction with WL = 1 is exactly the same as the one with LAW = 1. For
this reason we investigated the LAW parameter ranging from two to five years. The main
difference between task T1 and this task is that for task T2 the models exploit only a single
year of accounting variables in the past depending on the LAW parameter. For example
if LAW is selected equal to three years, it means that the model learns how to predict the
companies’ status looking over three years. This way of predicting bankruptcy is usually
adopted to estimate the survival probability of a company within some years. All the
experiments are conducted with the same methodological framework as for task T1. We
trained all the models for 100 different runs by randomly undersampling the number of
healthy examples in the training set in order to have a balanced set. We compared all the
models on the validation set to select the best ones by varying the LAW parameter. Models
settings are the same as for task T1. Figure 8 shows the models comparison. We remind
readers that the validation set is unbalanced and this is the reason why the performances
are measured in terms of the AUC. The results are similar to task T1. Adaboost achieves
the worst performance on average along with Support Vector Machine for all the LAW
parameters. The other ensemble models seem to outperform the other models and exhibit a
small variance by changing the training set for each run. The Neural Network achieves the
best absolute result for each window but presents a high performance variance. However,
one should highlight that, in general, all the models achieve a better average AUC for
the survival probability task rather than on the classical bankruptcy prediction (task T1).
Table 3 shows the variance calculated on the AUC values on the validation set for each
look-ahead window.

0.4 0.5 0.6 0.7 0.8
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LAW = 4
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Figure 8. The four box plots show the locality, spread, and skewness groups of AUC values achieved
for each model on the validation set for the survival probability task (T2) when the Look-Ahead
Window (LAW) is changed between 2 and 5 years.
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Results for the Survival Probability Prediction

As already carried out for task T1, we selected the best models on the validation set,
and we measured the generalization ability of the models on the test set (2015–2018). We
compared GB, XGB, LR, and RF. As expected from the previous models’ comparison, the
best model is Random Forest also in this case. However, also for this task, the best ANN
model found on the validation set definitely outperforms all the other models, showing an
additional demonstration of the better ability of this category of models to achieve better
performance when properly designed. In general, the results of both validation and test
experiments suggest that machine learning can better predict a company’s status over a
long period (from 3 to 5 years before) rather than over a short period (1 or 2 years). Results
are presented in Figure 9.
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Figure 9. AUCs achieved by the best models on the test set (2015–2018) for task T2 (survival
probability over time) prediction using the best models selected on the validation set (2012–2014).

8. Results

In this section, we present a deeper analysis of the results for both tasks T1 and T2 by
also discussing the other metrics available. In Sections 6 and 7, we compared all the models
in terms of the AUC, and we identified the best model for both tasks using this metric. This
metric was chosen for two reasons: first, due to the imbalance test set, but also because
it is most commonly used in literature for this task. Now, we would like to analyze the
same results by looking at the other metrics in order to find some robust answers about
the models for the two tasks. Tables 4 and 5 show all the results we achieved with all the
models on the test set (2015–2018).

We show precision and recall for both the bankruptcy class and the healthy one.
Starting from these, we computed the micro- and macro-F1 scores for the overall classifier
and finally the type I and type II errors. All the results were computed for all the temporal
window WLs and LAWs of the two tasks.

In the end, we reported the complete confusion matrix of the experiments that we
have never seen reported in the other papers because we strongly believe that this may
help for correct comparisons and usage as benchmarks for future investigations.
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Table 4. Overall results on the test set (2015–2018) for the T1 task: default predictions with historical data. Rec indicates the recall and Pr indicates the precision

WL = 1

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 42 63 742 2498 0.585 0.759 0.478 22.901 60 0.4 0.054 0.771 0.975
Ann 80 25 609 2631 0.861 0.81 0.547 18.796 23.81 0.762 0.116 0.812 0.991
Logistic Regression 85 20 969 2271 0.755 0.704 0.484 29.907 19.048 0.81 0.081 0.701 0.991
AdaBoost 68 37 1072 2168 0.658 0.668 0.453 33.086 35.238 0.648 0.06 0.669 0.983
Random Forest 83 22 1158 2082 0.717 0.647 0.451 35.741 20.952 0.79 0.067 0.643 0.99
Gradient Boosting 85 20 945 2295 0.759 0.712 0.488 29.167 19.048 0.81 0.083 0.708 0.991
XgBoost 90 15 921 2319 0.786 0.72 0.497 28.426 14.286 0.857 0.089 0.716 0.994

WL = 2

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 50 53 701 2442 0.631 0.768 0.492 22.304 51.456 0.485 0.067 0.777 0.979
Ann 75 28 541 2602 0.857 0.825 0.555 17.213 27.184 0.728 0.122 0.828 0.989
Logistic Regression 85 18 1024 2119 0.75 0.679 0.471 32.58 17.476 0.825 0.077 0.674 0.992
AdaBoost 77 26 1077 2066 0.702 0.66 0.456 34.267 25.243 0.748 0.067 0.657 0.988
Random Forest 89 14 979 2164 0.776 0.694 0.483 31.149 13.592 0.864 0.083 0.689 0.994
Gradient Boosting 82 21 1070 2073 0.728 0.664 0.461 34.044 20.388 0.796 0.071 0.66 0.99
XgBoost 80 23 796 2347 0.762 0.748 0.507 25.326 22.33 0.777 0.091 0.747 0.99

WL = 3

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 43 58 628 2378 0.608 0.779 0.493 20.892 57.426 0.426 0.064 0.791 0.976
Ann 83 18 885 2121 0.85 0.709 0.49 29.441 17.822 0.822 0.086 0.706 0.992
Logistic Regression 81 20 1259 1747 0.692 0.588 0.422 41.883 19.802 0.802 0.06 0.581 0.989
AdaBoost 74 27 1168 1838 0.672 0.615 0.432 38.856 26.733 0.733 0.06 0.611 0.986
Random Forest 85 16 869 2137 0.776 0.715 0.495 28.909 15.842 0.842 0.089 0.711 0.993
Gradient Boosting 78 23 834 2172 0.747 0.724 0.495 27.745 22.772 0.772 0.086 0.723 0.99
XgBoost 77 24 816 2190 0.745 0.73 0.497 27.146 23.762 0.762 0.086 0.729 0.989

WL = 4

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 54 42 641 2183 0.668 0.766 0.501 22.698 43.75 0.563 0.078 0.773 0.981
Ann 80 16 711 2113 0.87 0.751 0.517 25.177 16.667 0.833 0.101 0.748 0.992
Logistic Regression 85 11 1373 1451 0.7 0.526 0.393 48.619 11.458 0.885 0.058 0.514 0.992
AdaBoost 71 25 888 1936 0.713 0.687 0.472 31.445 26.042 0.74 0.074 0.686 0.987
Random Forest 80 16 807 2017 0.774 0.718 0.497 28.576 16.667 0.833 0.09 0.714 0.992
Gradient Boosting 72 24 925 1899 0.711 0.675 0.466 32.755 25 0.75 0.072 0.672 0.988
XgBoost 78 18 771 2053 0.77 0.73 0.502 27.302 18.75 0.813 0.092 0.727 0.991
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Table 4. Cont.

WL = 5

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 37 54 572 2072 0.595 0.771 0.487 21.634 59.341 0.407 0.061 0.784 0.975
Ann 85 6 1107 1537 0.893 0.593 0.433 41.868 6.593 0.934 0.071 0.581 0.996
Logistic Regression 82 9 1174 1470 0.729 0.567 0.417 44.402 9.89 0.901 0.065 0.556 0.994
AdaBoost 69 22 955 1689 0.699 0.643 0.45 36.12 24.176 0.758 0.067 0.639 0.987
Random Forest 75 16 651 1993 0.789 0.756 0.52 24.622 17.582 0.824 0.103 0.754 0.992
Gradient Boosting 72 19 759 1885 0.752 0.716 0.493 28.707 20.879 0.791 0.087 0.713 0.99
XgBoost 72 19 669 1975 0.769 0.748 0.512 25.303 20.879 0.791 0.097 0.747 0.99

Table 5. Overall results on the test set (2015–2018) with look-ahead models. Rec means recall and Pr means precision.

WL = 2

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 51 52 759 2384 0.627 0.75 0.483 24.149 50.485 0.495 0.063 0.759 0.979
Ann 74 29 842 2301 0.819 0.732 0.493 26.79 28.155 0.718 0.081 0.732 0.988
Logistic Regression 85 18 1082 2061 0.74 0.661 0.462 34.426 17.476 0.825 0.073 0.656 0.991
AdaBoost 83 20 1042 2101 0.737 0.673 0.467 33.153 19.417 0.806 0.074 0.668 0.991
Random Forest 78 25 853 2290 0.743 0.73 0.495 27.14 24.272 0.757 0.084 0.729 0.989
Gradient Boosting 81 22 1002 2141 0.734 0.685 0.472 31.88 21.359 0.786 0.075 0.681 0.99
XgBoost 79 24 946 2197 0.733 0.701 0.48 30.099 23.301 0.767 0.077 0.699 0.989

WL = 3

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 48 53 554 2452 0.645 0.805 0.513 18.43 52.475 0.475 0.08 0.816 0.979
Ann 83 18 779 2227 0.872 0.743 0.51 25.915 17.822 0.822 0.096 0.741 0.992
Logistic Regression 90 11 1136 1870 0.757 0.631 0.45 37.791 10.891 0.891 0.073 0.622 0.994
AdaBoost 87 14 872 2134 0.786 0.715 0.496 29.009 13.861 0.861 0.091 0.71 0.993
Random Forest 85 16 781 2225 0.791 0.743 0.512 25.981 15.842 0.842 0.098 0.74 0.993
Gradient Boosting 76 25 962 2044 0.716 0.682 0.469 32.003 24.752 0.752 0.073 0.68 0.988
XgBoost 83 18 841 2165 0.771 0.724 0.498 27.977 17.822 0.822 0.09 0.72 0.992
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Table 5. Cont.

WL = 4

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 46 50 750 2074 0.607 0.726 0.471 26.558 52.083 0.479 0.058 0.734 0.976
Ann 69 27 705 2119 0.811 0.749 0.506 24.965 28.125 0.719 0.089 0.75 0.987
Logistic Regression 77 19 742 2082 0.77 0.739 0.507 26.275 19.792 0.802 0.094 0.737 0.991
AdaBoost 71 25 844 1980 0.72 0.702 0.48 29.887 26.042 0.74 0.078 0.701 0.988
Random Forest 81 15 770 2054 0.786 0.731 0.505 27.266 15.625 0.844 0.095 0.727 0.993
Gradient Boosting 79 17 880 1944 0.756 0.693 0.481 31.161 17.708 0.823 0.082 0.688 0.991
XgBoost 77 19 824 2000 0.755 0.711 0.49 29.178 19.792 0.802 0.085 0.708 0.991

WL = 5

TP FN FP TN AUC Score Micro-f1 Macro-f1 I Error II Error Rec Bankruptcy Pr Bankruptcy Rec Healthy Pr Healthy

Svm 62 29 539 2105 0.739 0.792 0.53 20.386 31.868 0.681 0.103 0.796 0.986
Ann 85 6 1270 1374 0.862 0.533 0.4 48.033 6.593 0.934 0.063 0.52 0.996
Logistic Regression 78 13 849 1795 0.768 0.685 0.48 32.11 14.286 0.857 0.084 0.679 0.993
AdaBoost 74 17 953 1691 0.726 0.645 0.455 36.044 18.681 0.813 0.072 0.64 0.99
Random Forest 79 12 715 1929 0.799 0.734 0.51 27.042 13.187 0.868 0.099 0.73 0.994
Gradient Boosting 74 17 866 1778 0.743 0.677 0.472 32.753 18.681 0.813 0.079 0.672 0.991
XgBoost 73 18 610 2034 0.786 0.77 0.527 23.071 19.78 0.802 0.107 0.769 0.991
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8.1. The Most Suitable Metric

The first question we aim to answer with the experiments is the following: Does a high
value of AUC mean that the model is better at predicting bankruptcy or survival probability
over time? There is not a unique and simple answer. We compared the overall performance
of the models using the AUC and the micro-F1 score, and the two metrics present similar
results both with high values: models that exhibit a high AUC also have a high micro-F1
score. This direct proportionality is also evident with the macro-F1 score, which we remind
readers is the arithmetic average of the simple F1 scores on the two classes, but the value is
usually definitely lower.

The reason why the macro-F1 score is much lower is related to the low precision that
the models achieve in the bankruptcy class. All the best models selected with the highest
value of AUC exhibit a high recall and a low precision for the bankruptcy class and this
is not evident looking only at the AUC value that often is reported as something similar
to the accuracy. The precision–recall trade-off is well known in the literature: there is an
inverse proportionality between the two metrics since precision considers false positives
and recall considers false negatives. If the model is good at predicting true positives with a
low value of false negatives it will often predict negative samples as positive (High False
Positive and so low precision). Moreover, in our dataset and in most of the bankruptcy
datasets, the class imbalance is usually very pronounced, with an average of 97% of healthy
(negative) samples in the test set versus a small 3% of bankruptcy (positive) samples. For
this reason, we can assert that the precision over the bankruptcy class strongly depends on
the absolute value of the negative examples in the test set. The reader may observe this
dependence by looking at the confusion matrices reported in the two tables.

At the same time, this condition can be considered optimal for some financial stake-
holders: If the model has a high recall on the bankruptcy class it will make some wrong
predictions on healthy companies but ensure that most of the risky companies are detected
and avoided in their investments.

The type II error is the other metric mostly related to the recall of the bankruptcy class,
but it considers the ratio of false negatives (default companies that have been wrongly
classified as healthy): to minimize this value, it is important to reduce the number of false
negatives while for the recall we want to maximize the number of true positives. However,
these two metrics should always be highlighted along with the AUC because they provide
concrete insight into the ability of the model to correctly identify companies that are going
to face financial troubles. Indeed, a higher value of AUC is due to the high precision and
recall that the models achieve in the healthy (negative) class since it is over-represented.

The final user, particularly if it is a regulatory body that is responsible for monitoring
the status of a company, should not blindly trust the AUC value since all the models
selected on this basis may produce several false alarms (low precision for the bankruptcy
class, high values of false positives). In this case, they should design and compare the ML
models using the macro-F1 score and then the AUC.

8.2. Best Model and Temporal Windows

In light of our results, we can assert that Neural Networks should be preferred among
all the ML models for the bankruptcy prediction tasks since they present the best ability to
generalize on new and unseen cases with every metric adopted. However, the training and
design of ANNs is usually harder and requests a larger computation time, higher costs,
and more experiments with respect to the other models. When computation time and costs
are constraints to be kept in account or when the model should be used in high dynamic
contexts, the Random Forest algorithm should be preferred since it presents almost similar
performance, but it requires fewer parameters, and thus it takes less time to be designed
and trained.

The temporal window analysis for tasks T1 and T2 led to the following conclusions:

• For the default prediction task (T1), the general performance increases when considering
more than one year of accounting variables and this is true for both ANNs and Random
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Forest. Indeed, the 5-year temporal window exhibits the best results in terms of AUC.
However, in light of the discussion about the metrics, the temporal window of three
years achieves the best trade-off between AUC and macro-F1 score using fewer variables.

• For the survival probability prediction task (T2), the best performance is achieved
when trying to predict the company status three years in advance (LAW = 3) with an
AUC = 0.87 with the ANN. It should be highlighted that ANN reached for LAW = 5 a
considerable AUC = 0.86. However, all the models exhibit a really low precision on
the bankruptcy class except for SVM and XGBoost. Indeed the best model in terms of
macro-F1 score is XGBoost (LAW = 5)

In general, learning from temporal variables seems to lead to better performance,
especially when the model learning capacity can learn complex patterns as happens with
Neural Networks.

9. Conclusions

In this research work, we deeply investigated the performance of several machine-
learning techniques concerning predicting bankruptcy in the American stock market. We
compared the models over two different tasks: (a) default prediction using time series
accounting data; (b) survival probability prediction. We performed the tasks using a dataset
with 8262 companies in the period between 1999 and 2018. The dataset is also one of the
contributions of this paper since it has been publicly released. We used temporal criterion to
divide the dataset into training, validation, and test sets. For both tasks, Neural Networks
achieve the absolute best results despite exhibiting a great variance in their results, leading
to the conclusion that these models can be superior only when opportunely designed and
trained with higher computational costs. Finally, we critically discuss the general use of the
Area Under the Curve as a common metric to evaluate bankruptcy prediction tasks since in
most cases computing precision, recall for the single classes, and the macro-F1 score would
better define the models’ performance. Moreover, we highlighted that using more fiscal
years for the prediction can improve the performance for both tasks, as has been proved
in the past only for small datasets. In light of this, future works are to be related to the
use of Recurrent Neural Networks and attention-models to better exploit the time-series
information, considering the possible trade-off of using deep learning models with such
short time series and relatively small datasets. Moreover, bankruptcy prediction could also
be evaluated with unsupervised models like Isolation Tree and anomaly detection models.
The current dataset could also help in that case. Finally, future works are to be related to
the possible limitations of this research work. The main issue to be deeply investigated
is related to the temporal dimension of the study: we were able to collect reliable data
until 2018 and testing on previously unseen example has been promising. However, it
would be interesting to evaluate if the current models could also generalize on different
economic situations like the ones that come up with the COVID-19 pandemic and the
resource crisis. Another limitation of this work is related to the class imbalance. Several
techniques of effective sampling methods should be considered in the study in order to
evaluate a balanced scenario as long as there is synthetic data generation.
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