,Ag‘] future internet

L)
C)

Article

Exploring Distributed Deep Learning Inference Using
Raspberry Pi Spark Cluster

Nicholas James

check for
updates

Citation: James, N.; Ong, L.-Y.; Leow,
M.-C. Exploring Distributed Deep
Learning Inference Using Raspberry
Pi Spark Cluster. Future Internet 2022,
14,220. https://doi.org/10.3390/
£i14080220

Academic Editors: Nicolae Goga and

Dan Garlasu

Received: 22 June 2022
Accepted: 22 July 2022
Published: 25 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Lee-Yeng Ong *

and Meng-Chew Leow

Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia;
1181101477@student.mmu.edu.my (N.].); mcleow@mmu.edu.my (M.-C.L.)
* Correspondence: lyong@mmu.edu.my

Abstract: Raspberry Pi (Pi) is a versatile general-purpose embedded computing device that can be
used for both machine learning (ML) and deep learning (DL) inference applications such as face
detection. This study trials the use of a Pi Spark cluster for distributed inference in TensorFlow.
Specifically, it investigates the performance difference between a 2-node Pi 4B Spark cluster and other
systems, including a single Pi 4B and a mid-end desktop computer. Enhancements for the Pi 4B were
studied and compared against the Spark cluster to identify the more effective method in increasing
the Pi 4B’s DL performance. Three experiments involving DL inference, which in turn involve image
classification and face detection tasks, were carried out. Results showed that enhancing the Pi 4B
was faster than using a cluster as there was no significant performance difference between using
the cluster and a single Pi 4B. The difference between the mid-end computer and a single Pi 4B was
between 6 and 15 times in the experiments. In the meantime, enhancing the Pi 4B is the more effective
approach for increasing the DL performance, and more work needs to be done for scalable distributed
DL inference to eventuate.

Keywords: cluster; machine learning (ML); deep learning (DL); Spark; TensorFlow; Raspberry Pi (Pi);
model; inference

1. Introduction

Machine learning (ML) is consistently one of the most-applied computing disciplines
in the current technological era and has become the norm synonymous with artificial
intelligence (AI). The popularity of ML and its widespread use in many applications has
led it to become a must for every business or organization intending to gain an edge over
their competitors. Deep learning (DL) is a subset of ML. The differentiation between the
two lies in the number of layers in the architecture of artificial neural networks. A deep
neural network has more than one hidden layer. Contrariwise, an artificial neural network
like Support Vector Machine (SVM) has only one hidden layer [1]. DL has seen steady
adoption because of its performance over traditional state-of-the-art ML algorithms used in
different fields, particularly image processing [2,3]. A popular example of a DL framework
is TensorFlow, which has support for scalability in training DL models in a distributed
manner, capable of scaling across 200 workers [4]. However, the distributed inference
aspect in TensorFlow has yet to be tested so far.

Nowadays, researchers no longer solely implement DL-based image processing on
high-performance hardware. Researchers have experimented with low-cost, low-power
embedded devices such as Raspberry Pi and Nvidia Jetson Nano. These include an Al
traffic control system, face recognition systems, as well as an integrated smart CCTV
system [5-7]. The computational power of Raspberry Pi was barely sufficient for training
ML models. Some researchers have opted to use a pre-trained model that was trained using
powerful hardware before deployment on Raspberry Pi [8]. Thus, Raspberry Pi is mostly
limited to prototyping DL inference operations as an embedded device rather than training
DL models.

Future Internet 2022, 14, 220. https:/ /doi.org/10.3390/£i14080220

https:/ /www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14080220
https://doi.org/10.3390/fi14080220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2538-1519
https://orcid.org/0000-0003-4749-3490
https://orcid.org/0000-0001-6327-0735
https://doi.org/10.3390/fi14080220
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14080220?type=check_update&version=1

Future Internet 2022, 14, 220

2 of 26

Raspberry Pi (Pi) is a single-board computer (SBC) designed and manufactured by
the Raspberry Pi Foundation in the United Kingdom. Compared to a standard mid-end
desktop which typically costs around US$500 to US$600, the latest Pi 4 Model B (Pi 4B)
costs just US$35 for the base 2 GB RAM model. Its low cost makes it appealing among IoT
hobbyists and it is used for prototyping embedded systems in research. Pi 4B is powered
by a Broadcom BCM2711 system-on-a-chip (SoC), comprising four Cortex-A72 cores at a
clock speed of 1.5 GHz and two to eight gigabytes of LPDDR4-3200 RAM, depending on
the model variant. In contrast to previous generations of Pi, Pi 4B includes the addition of
two USB 3.0 ports which allow for faster forms of storage to be used, such as an external
HDD or even an external SSD in place of the traditional microSD card. Pi 4B runs on its
customized version of the Debian operating system named Raspberry Pi OS, even though
it supports other Linux operating systems such as Ubuntu and Arch Linux ARM.

However, DL inference performance benchmarks for Pi 4B are lacking, as most research
papers focus on prototyping Al systems using Pi 4B. This is especially important as Pi is
increasingly replacing traditional computers in prototyping systems. The choice of choosing
a base system for prototyping depends on the computational complexity of the prototype
system itself. In a scenario where researchers plan to implement a prototype system, the
choice for the base system would be rigorously evaluated to determine whether it fulfills the
requirements set out for prototyping. As Pi 4B is touted to be faster than its predecessor, the
performance gap between Pi and a conventional computer may be reduced. Most ML and
DL benchmarks carried out with the previous generation of Pi (3B) could quickly become
obsolete and irrelevant. Thus, there is a need to re-investigate the performance difference
between Pi 4B and a conventional x86 desktop computer to ensure performance review
results are up to date. There is also a need to study the improvement of the enhancements
for Pi 4B in lessening the performance gap between Pi 4B and a conventional x86 desktop
computer. Given its low cost, the increase in the competitiveness of the Pi 4B against
powerful and modern hardware could also increase its appeal for prototyping.

Other than enhancing Pi’s performance through software tweaks, the clustering of
multiple Pis is also known to improve performance in heavy processing workloads and of-
fers somewhat competitive performance for certain workloads [9-11]. Despite the existence
of the research mentioned in earlier papers implementing Pi clusters, there is very little
to no information about the performance evaluation of Pi clusters in DL inference. This
also forms another research gap to further investigate how well Pi SBCs perform in many
aspects via system comparisons and scalability tests. To the best of the authors” knowledge,
the closest attempt to distributed DL inference was by using the Apache Spark clustering
framework via Spark MLIlib. However, this framework only encompasses traditional ML
paradigms which limit flexibility in implementing the distributed DL system [12]. Such a
limitation would disallow the implementation of novel, state-of-the-art DL models into a
distributed system. For context, Apache Spark supports only a popular set of classification,
regression, and clustering algorithms such as random forest and linear SVM. Its closest
classifier is multilayer perceptron, though customizability is limited to the number of layers
rather than the entire neural network structure.

Apache Spark is a data processing engine suite designed for distributed processing
and data analytics. It is incorporated into the Hadoop ecosystem by working with or re-
placing Hadoop MapReduce. Intermediate operation results in Spark are stored as resilient
distributed datasets (RDDs), which use RAM. By using RDDs, processing operations can
be up to 100 times faster compared to MapReduce, as there are no intermediate disk I/O
operations that limit the processing speed. However, this comes at the cost of memory
space for Spark jobs, which necessitates the use of high-capacity RAM. While the impact of
using a Spark cluster for inference tasks in MLIib is already known, as seen in [12], there
is no information on the impact of using a Spark cluster for distributed inference in other
DL frameworks outside MLIlib. DL frameworks, such as TensorFlow and PyTorch, offer
superior versatility and customizability regarding the creation and testing of a DL model.
Moreover, MLIib is concerned with traditional ML paradigms and not DL, as per the focus

Future Internet 2022, 14, 220

30f26

of this paper. Thus, there is a need to investigate the performance difference between using
a Spark cluster versus a single system for inference tasks outside of the MLlib framework.

To reiterate, the entire scope of this paper first encompasses the study on the effec-
tiveness of distributed inference using Spark TensorFlow Distributor, which is achieved by
investigating the performance difference between using a single Pi and a 2-node Pi cluster.
Identifying the performance difference between a single system and a 2-node cluster is
crucial in understanding the effectiveness of distributed inference versus a single system, as
the relatively novel Spark TensorFlow Distributor is experimentally trialed for this study as
opposed to Spark MLIib which is proven to scale in ML tasks. So far, Spark MLlib remains
in use as the preferred option for scalable ML with the Spark clustering framework and it
is interesting to know whether distributed DL inference with Spark TensorFlow Distributor
would show potential to compete against MLIib not just in the customizability aspect, but
also in terms of performance scalability. Second, the performance gap between Pi 4B and
a standard mid-end desktop in inference tasks involving lightweight and standard DL
models will be identified. In contrast to standard DL models, lightweight models require
significantly less processing power for inference, which is suitable for resource-constrained
systems. However, these models are less accurate than their novel DL counterparts in most
tasks. In the interest of fairness, both lightweight and standard DL models are included
to investigate the performance gap between the two systems. In addition, this compari-
son may help discover a relationship between using lightweight or standard DL models.
Through the identification of the performance gap, an estimation of Pi 4B’s DL performance
can be made for reference when setting up DL prototype systems using Pi 4B. Third, the
performance of the enhanced Pi 4B will be studied and compared against the standard
unaltered Pi 4B and its 2-node Spark cluster counterpart in TensorFlow inference tasks.
This aspect evaluates the impact of the enhancements on the Pi 4B and determines the
more effective approach to increasing the DL performance of the Pi 4B. So far, TensorFlow
is the only DL library that officially supports the Spark clustering framework via Spark
TensorFlow Distributor for scalable DL. The use of TensorFlow Lite for this study was
originally considered, but it was revealed that the Spark TensorFlow Distributor, which
interfaces both Spark and TensorFlow, only supports the standard version of TensorFlow.
Thus, it was not possible to use TensorFlow Lite with Spark TensorFlow Distributor.

The rest of the paper is organized as follows. Section 2 presents the related work
that serves as motivation to investigate the DL performance of the Pi 4B, distributed or
otherwise. Section 3 presents the evaluation metrics used, the procedure of the experiments,
environment configuration, test systems, software used for carrying out the experiments of
this study, and the implementation of the Spark cluster. Section 4 details the experimental
results and the results of the enhanced Pi. Section 5 discusses the results and hypotheses
and the performance gap of the Pi 4B relative to other systems. Section 6 details the
contribution and suggestions of this work, as well as possible future works.

2. Related Work
2.1. DL Inference on Pi

DL on Pi is a recently explored field. As seen in [13], a performance review involving
an NVIDIA Jetson TX2, NVIDIA Jetson Nano, and Pi 4B in DL workloads was carried out.
The results of the study have shown that the Pi 4B took between 5 times and 9 times longer
than the Nano and the TX2 in executing inference on datasets while accuracy remained
similar with a deviation of 3%. The authors stated that even though Pi is the most cost-
effective hardware of the three, the lack of DL acceleration makes it unfavorable for DL
and Al They concluded that “while the Jetson TX2 held the highest DL performance and
bore the highest cost of the three SBCs, it is impossible to attain a highly performant SBC in
DL with the price tag of a Pi at $35”.

In [14], an experiment for performance analysis of edge computing platforms which
are intended to serve as backup systems for autonomous drones was carried out. The
devices used for testing are a Pi 3B with 1 GB RAM, an Intel Neural Compute Stick (NCS)

Future Internet 2022, 14, 220

4 0f 26

2 Al accelerator, and a laptop PC powered by an Intel Core i5-8250U 4-core processor
clocked at 1.6 GHz with 8 GB RAM. For their test, they tested three configurations: the Pi 3B
with and without the NCS, and the laptop PC with the NCS. To test each configuration, they
executed applications deemed to be safety critical in the backup system. The applications
are Single Shot MultiBox Detector (SSD)-based image recognition, State Lattice Planner
(SLP) for routing flight paths locally, and Pix2Pix (P2P) for generating an aerial image of
the drone into a map image to function as a fail-operational alternative for GPS. While the
results showed a tremendous speedup of 38.51 times when the Pi 3 was paired with the NCS
for the SSD-based image recognition application, the difference in performance between the
two Pi configurations (with and without NCS) for SLP and P2P was not apparent. However,
since SSD is the only application using a single deep neural network in contrast to SLP and
P2P, the use of a neural accelerator helps to increase the DL performance of the Pi in DL
applications. Even with an Al accelerator, the Pi is not guaranteed to perform at the level of
an x86 computer, as some applications in the experiment were not entirely dependent on Al
and leaned more toward conventional processing workloads. Pi development boards, while
being affordable, have a low-end System-on-a-Chip (SoC) that is not meant for extensive
processing workloads such as model training. This was apparent when other researchers
resorted to offloading model training tasks to a conventional computer, and the trained
model was then moved to the Pi for inference as seen in [8]. The authors hypothesize that
most applications are written for the x86 computer architecture and the lack of processing
power and optimization for the ARM architecture results in a huge performance deficit
between the two platforms.

2.2. Clustering with Multiple Pis

Outside of the ML/DL domain, other researchers have implemented Pi clusters to
investigate whether these clusters would offer non-trivial performance comparable to
that of server systems. Among the earliest attempts of benchmarking a Pi cluster in the
last 5 years was that described in [15]. For their discovery, they connected twelve Pi
2 SBCs to a local networking switch, and the cluster is coordinated through Message
Passing Interface (MPI) by using an implementation named MPICH. The results showed
significant speedup with higher node count, though diminishing occurs with higher node
count. The 12-node Pi 2 cluster only attained a speedup of 7.84 times over the single Pi 2.
Regardless, their discovery proved that homogeneous clustering of Pi SBCs will improve
computational performance. Unfortunately, there was no direct comparison made against
modern computer hardware for the case of the 12-node Pi 2 cluster.

Another newer but similar outcome was found in [16] where a group of researchers
set up a Hadoop cluster of ten Pi 3 SBCs against a mid-end desktop computer in their
experiment to evaluate the performance of the Pi cluster. The desktop computer ran an
Intel Core i5-4460 with 8 GB RAM. The authors stated that the relatively low-cost of Pi
clusters and the scalability of the Hadoop ecosystem make these clusters usable for an
array of heavy processing operations. In smaller datasets, the performance of a 10-node Pi
cluster is 12.5 percent lower than the conventional x86 mid-end desktop computer in the
experiment. However, the cluster was up to 20 percent faster in larger dataset sizes. Their
findings suggest that the clustering of Pi units for big data processing may be a good idea
to achieve similar processing performance as an x86 system at a lower cost.

The ARM hardware architecture powering the Pi has not seen use in high-performance
computing (HPC) such as in servers. Rather, it is catered to low-power, portable devices
like smartphones, tablets, and IoT devices which emphasize power efficiency rather than
processing performance. The only recent attempt at clustering Pi 4B SBCs was done by
a group of Greek researchers for evaluating Pi 4 cluster performance in tourism-related
ML applications using Apache Spark [12]. Their results in [12] also showed diminishing
returns with higher node counts, with 2 nodes providing the most significant speedup
impact on the training and inference time. The researchers commented the cluster suffices
for the training and the execution of ML models for edge computing and the performance

Future Internet 2022, 14, 220 5 of 26

evaluation of the cluster should be carried out with models of higher complexity. They
also pointed out the need for testing with other DL libraries such as TensorFlow, which are
suited for heavier processing workloads.

At the time of writing, no researchers are experimenting on a cluster of Pi 4B SBCs
for DL to evaluate its performance compared to other hardware solutions. As per the
discussions in [12], the authors suggested a more comprehensive performance evaluation
involving modern DL libraries beyond Spark MLIib. Table 1 summarizes the research pa-
pers relevant to this experimental study. Most of the DL-relevant papers have not explored
clustering with Pi 4, and most clustering attempts listed in the table used implementations
of MPI. These clustering attempts on Pi were quite outdated, as most of them used Pi
3 SBCs. Of all the research papers listed, only [12] used Pi 4 SBCs and Apache Spark
as the distributed processing framework for the cluster. However, their experiment was
concerned with distributed training and distributed inference using MLIlib. With this in
mind, the authors propose research that seeks to evaluate the performance of Pi 4 SBC(s)
in distributed DL inference using TensorFlow and Apache Spark with the clear objective
of evaluating the DL performance of the Pis in image processing-related DL workloads.
Specifically, DL performance is evaluated on applications using a neural network model
such as those for image classification and face detection.

Table 1. Summary of research coverage from previous works regarding Pi DL inference and dis-
tributed Pi clusters.

Study Pi Model DL/ML Clustering Framework Used Findings

Pi 4B performs the worst in inference tests involving
[13] 4B Yes No - Jetson Nano and Jetson TX2 due to a lack of
Al acceleration.
Pi 3B with Al accelerator performs almost similarly to
[14] 3B Yes No - laptop computer in SSD, however it falls behind in SLP
and P2P with a vast gap.

Clustering of Pi improves performance, speedup factor
diminishes with higher node count.
Negligible improvement in low-processing workloads

[16] 3 No Yes Apache Hadoop with clustering. The performance of 10-node cluster
rivals conventional x86 desktop computer.
Model training time and test prediction time dropped
sharply at 2 nodes, diminishes with higher counts.

[15] 2 No Yes MPICH

[12] 4B Yes Yes Apache Spark

3. Methodology
3.1. Evaluation Metrics

This section outlines and explores the performance metrics that were used for evalua-
tion in the experiments. Most of the performance metrics are chosen from the research paper
reviews in Section 2, though interpretations of the metrics may be different depending on
the context of the research scope and objective.

The metrics chosen for the experiments are execution time, frames per second (FPS),
and speedup. Their respective equations are shown in Table 2. Execution time is defined
as “a period in which an event is actively operating” [17]. It is the time taken to complete
an execution job. Execution time as a performance metric has been used in many papers
involving processing applications, as with [14,16] reviewed earlier in Section 2. Execution
time is used as the primary performance metric in this study because this metric well
represents the real-world processing performance for an application or a system, as opposed
to the theoretical on-paper performance measures such as GFLOPS. In this paper, this term
is synonymous with model inference time.

Future Internet 2022, 14, 220

6 of 26

Table 2. Evaluation metrics used in the experiments and their respective equations.

Evaluation Metrics Equations

ET=T,—T;s
where ET represents execution time, T, represents the end time of

Execution Time

[14,16,17] request, and Ts represents the start time of request.
=N
Frames PerSecond ~ L = &

where N represents the number of image frames rendered and s
represents one second.

Sn=1

where 5, represents speedup in configuration n, Tj represents execution
time for the baseline configuration and T}, represents the execution time
in the configuration n

(FPS) [18,19]

Speedup [15,20]

The definition of frames per second is perhaps best defined as the number of image
frames rendered in one second, which is commonly used for videos and for benchmarking
graphics performance in video games. This is the case as videos are essentially a continuous
sequence of image frames. However, there are multiple interpretations of this metric.
For example, Ref. [18] defined it as the “measure of fluidness of movement”, as higher
FPS relates to smoother and more fluid motion in videos and games alike. Instead of
merely focusing on video camera fluidity and smoothness, FPS is also used as a metric for
inference speed in object detection and recognition, especially in [19], where the authors
benchmarked ZF’s in-house ProAl SBC against the NVIDIA Jetson Nano and a Dell laptop
with a dedicated NVIDIA Quadro P2000 workstation GPU. This specific metric is used for
the experiment where rendering frames that have undergone face detection highly depend
on the inference speed of the face detection model, rather than the FPS as captured by the
camera. For this study, the former is used since DL model inference related to face detection
processes a series of frames that are captured by a source before being returned as another
set of frames.

Speedup is defined as “the ratio of the performance improvement on different input
sizes between two systems processing the same problem” [20]. Speedup is a metric used
to measure the effectiveness of a configuration versus some baseline configuration for a
processing job, as found in [15,20]. Besides being used in clustering versus single node
scenarios, as per the case of Pi 4B versus the 2-node Pi 4B Spark cluster, it is also used for
comparing the performance difference between different system configurations, processing
models, and software settings. This specific metric is used for measuring the effectiveness
of distributed inference using Spark TensorFlow Distributor, the effectiveness of the en-
hancements on the Pi, and the performance gap between systems, which are the scopes of
this study.

3.2. Neural Network Models & Datasets Used

The first experiment used the ImageNetV2 [21] and CIFAR10 [22] datasets for evaluat-
ing the inference performance in image classification for every system stated in Section 3.6.
ImageNetV2 was chosen as it is considered the benchmark dataset for classification models.
CIFAR10 was chosen to complement it as a simpler and smaller dataset in contrast to the
complex nature of ImageNetV2. The next experiment deals with face detection performance
using the WIDER FACE [23] image dataset, which was the face detection benchmark dataset
for the second experiment. Convolutional neural networks (CNN) such as Inceptionv3 and
its lightweight counterpart, MobileNetV3, were used for image classification for all system
configurations in the first experiment, whereas RetinaFace, YOLOface, and Multi-task
Cascaded Convolutional Network (MTCNN) were used solely for face detection in the
second and third experiments.

Nowadays, there are a wide variety of CNN architectures for different use cases.
Newer CNN architectures can classify datasets with a high number of labels, such as

Future Internet 2022, 14, 220

7 of 26

ImageNet, at higher accuracy, as with InceptionV3. InceptionV3 is the newest version of
the Inception neural network model and contains a different neural network structure
as opposed to its predecessors. It is pre-trained on the ImageNet dataset, which saves
the hassle of transfer learning, as inference can be done on the test set of the ImageNet
dataset directly. It is one of the best image classification models in terms of accuracy
and is therefore chosen for the experiment to investigate the performance trade-off for
the testing accuracy gained. MTCNN [24], RetinaFace [25], and YOLOface [26] are other
CNN architectures optimized for face detection. YOLOface is a version of the YOLOv3
CNN model trained on the WIDER FACE dataset, and it obtains higher accuracy than
YOLOV3 in detecting faces. MTCNN is different and is comprised of 3 components. As
explained in [27], the first component is the Proposal Network (P-Net) which generates
candidate windows that help in classifying images as ‘face’ or a ‘non-face’. These candidate
windows are used to estimate bounding boxes on face locations. The second component,
the Refine Network (R-Net), is intended to reject false candidate windows. Finally, the
Output Network (O-Net) outputs the facial landmarks’ positions based on the results of the
two previous components. RetinaFace is a recent state-of-the-art face detection architecture
that uses feature pyramid networks that are based on the concept of convolution seen in
CNNs. Notably, it achieved one of the highest accuracies in the WIDER FACE dataset at
91.4%. Table 3 summarizes the datasets and models used in Experiments 1 to 3. The use of
common lightweight face detection models such as the Haar-Cascade algorithm and SSD
for Experiments 2 and 3 was not considered, as the intended focus was solely on comparing
state-of-the-art, high-accuracy face detection models on Pi against the rest of the system
configurations for the coverage of this research.

Table 3. Datasets and models used in Experiments 1 to 3.

Experiment Datasets Used Models Used
Experiment 1 ImageNetV2 [21], CIFAR10 [22] InceptionV3, MobileNetV3
. MTCNN [24], RetinaFace [25],
Experiment 2 WIDER FACE [23] YOLOface [26]
MTCNN [24], RetinaFace [25],

Experiment 3 - YOLOface [26]

For Experiment 1, the datasets used were the ImageNetV2 test set and the CIFAR10
test split. The ImageNetV2 dataset is a specialised test set that follows the original Im-
ageNet2012 dataset with the same label space, each comprising 10 test images per class.
It is comprised of 10,000 test images which can be paired with an existing model that is
pre-trained on the ImageNet2012 dataset for running inference. The CIFARI1O0 test split is
comprised of 10,000 images which are 32 x 32 in resolution and are coloured. For consis-
tency reasons, test splits for these two datasets were chosen as the goal was to evaluate the
performance across every system configuration rather than evaluating the neural network
models used in this paper.

For Experiment 2, the WIDER FACE dataset [23], which is a face detection benchmark
containing faces taken from the WIDER dataset, was used. The official recommended
dataset split is 40% for training, 10% for validation, and 40% for testing. Its test split dataset
contains 16,097 images, which are similar in size to the train split. Originally, the plan was
to use the test split for executing inference on the WIDER FACE dataset. But during the
experiment, the time taken was exorbitantly long for low-end devices where it required
almost a week to complete inference on a single iteration on the Pi 4B. Hence, the decision
was taken to reduce the dataset size to the validation split, which contained 3220 images.

For Experiment 3, the experiment captured frames continuously in a real-time face
detection test.

Future Internet 2022, 14, 220

8 of 26

3.3. Experiment 1: Image Classification Inference Test

In this experiment, a comparison of the inference speed in classifying images from
the ImageNetV2 test set and the test split of CIFAR10 was done across every system
configuration on both pre-trained Inception-v3 and MobileNetV3 models. This experiment
serves to evaluate the general image classification inference performance of all systems.

Since Python works best with 2 executors in Spark as per the findings in [12], and
TensorFlow has official support only on Python, this experiment was carried out by running
programs coded in Python. Each different program resulted in TensorFlow importing a
different testing dataset, ImageNetV2 or CIFAR10, and the same applied to the loading of a
pre-trained model, Inception-v3 or MobileNetV3. By running either program, TensorFlow
would evaluate the model on the dataset and output its accuracy and the time taken for
executing inference on the entire test dataset (the execution time), of which both were
recorded at the end of each run. Each configuration was automatically run 5 times to pro-
duce consistent results and to reduce the likelihood of outliers. Minimum, maximum, and
average values for execution time were recorded over 5 runs and then averaged into a single
result. The flowchart for the Python program used in Experiment 1 is shown in Figure 1.
Distributed versions of the programs are also included for use by the cluster systems.

run_counter=0, avg_acc=0, Load dataset
min_time=0, max_time=0,

Load model with pre-trained
Split Dataset For weights
Testing

avg_time=0 (Imagenet-v2 / CIFAR10) (InceptionV/3 / MobileNetV3)

Print
avg_time, min_time,
max_time, avg_acc

run_counter==4

N
avg_time = Record execution Start TensorFlow
avg_time /5 time Inference

s N ™

Increment
run_counter

.| Update min_time,
max_time

e s P

Sum avg_time

Figure 1. General flowchart for the Python programs used in Experiment 1.

3.4. Experiment 2: Face Detection Test

This experiment focuses on evaluating the inference performance of every system in
face detection on a fixed dataset. Unlike the first experiment, CNN architectures such as
Inception-v3 and MobileNetV3 are not used as they are architected with image classification
tasks in mind. Instead, CNN architectures specialised in face detection such as RetinaFace,
YOLOface, and MTCNN are used in this experiment on the WIDER FACE image dataset.

The procedures are identical to Experiment 1, except that Python programs coded
specifically for this experiment initialise only the WIDER FACE validation dataset split.
One of three Python programs contains a different face detection model, which can be
RetinaFace, YOLOface, or MTCNN. Like Experiment 1, each Python program would be
automatically run five times, the results recorded, and the next program with undocu-
mented results chosen for subsequent testing until the results for every program were
tested, respectively. RetinaFace was chosen as it is currently one of the most accurate
face detection models available. YOLOface is essentially YOLOV3 trained on the WIDER
FACE training dataset. MTCNN is a well-known face detection model with high detection
accuracy and was chosen as the model benchmark for this experiment. Likewise, execution
time was used as the sole primary metric for this experiment. Figure 2 shows the flowchart
for the program used in Experiment 2.

Future Internet 2022, 14, 220

9 of 26

Load model with

0

Print
avg_time, min_time,
max_time

‘

run_counter=0, pre-trained weights Load WIDER
min_time=0, max_time=0, FACE
avg_time=0 (MTCNN / RetinaFace / validation split
YOLOface)

avg_time =
avg_time /5

run_counter==.

Record execution Start TensorFlow
time Inference

Update min_time,
max_time

Increment
run_counter

Sum avg_time

Figure 2. General flowchart for the Python programs used in Experiment 2.

3.5. Experiment 3: Real-Time Face Detection Test

This experiment focuses on evaluating the performance of every configuration in face
detection in real-time. Similar to Experiment 2, RetinaFace, YOLOface, and MTCNN were
used as the face detection models for this experiment. The additional processing workload
from rendering the frames from a video source poses a challenge to systems with weak
processing hardware such as the Pi. As most recognition systems capture frames and
process them in real-time, this experiment provides a good simulation of deploying the Pi
in a production environment.

This experiment involved the use of the Redmi Note 5 Pro smartphone as a USB camera
for real-time face detection. To clarify, frames were captured from the USB camera in real-
time via OpenCV instead of using a dataset. Inference via a face detection model was then
carried out on the captured frames via TensorFlow. Like Experiment 2, multiple Python
programs were coded specifically for this experiment, utilising different face detection
models to process the captured frames from the videos from OpenCV. When one of the
chosen programs was launched, OpenCV would capture frames from the USB camera
video footage continuously and the chosen model would carry out the inference on each of
these video frames using either of the three face detection models. This experiment focused
on camera FPS, which is retrieved directly from OpenCV. As the processing part of the face
detection is performed on the systems and not on the phone camera itself, it is a good way
to gauge the real-world performance of the systems if the face detection models are applied
for production.

For this experiment, the procedure differed from the previous two experiments. Before
the experiment began, the lead author was positioned in front of the USB camera, capturing
the lead author from shoulders up. First, the procedure for this experiment involved
launching one of the said programs. The lead author’s face would move side-to-side for
30 s. At the end of each run, the average FPS was recorded. Figure 3 shows the flowchart
for Experiment 3.

Future Internet 2022, 14, 220 10 of 26

Load model with
min_FPS=0, max_FPS=0, pre-trains et Inltl_allse Openes! Start 30 second timer
avg_FPS=0 Videotapie and model inference
9_FPs= (MTCNN / RetinaFace / interface
YOLOface)

Y

Print min_FPS,
max_FPS and avg_FPS

30 seconds

Update min_FPS, || e ace
elapsed max_FPS, avg_FPS detection

Figure 3. General flowchart for the Python programs used in Experiment 3.

:

3.6. Environment Configuration

This section explains the environmental configuration of all hardware and virtualized
systems, as well as their respective system configurations used for the experiments. The
hardware used in the experiments consisted of two Pi 4 Model B SBCs, a desktop computer
with a dedicated GPU, and a Redmi Note 5 Pro smartphone for the USB camera. Two
Pi 4 Model B SBCs that were similar in specifications were included in the experiment
to evaluate the SBC’s performance in both standalone and clustered configurations. This
was done in consideration of the findings in [12,16], which have shown diminishing
performance returns with higher node counts. Thus, two nodes should eliminate any
factor of diminishing performance gains, and it allows for evaluating the effectiveness of
distributed inference. Four-gigabyte variants of the Pi 4 SBC were used for this experiment,
and both used identical Class 10 microSD cards for storage. Like previous researchers,
Raspberry Pi OS was used (formerly Raspbian) for these SBCs, as it is optimized for them.
The lead author’s desktop computer was included in the experiment for virtualizing two
low-end x86 virtual machines (VMs) as well as to act as a reference for the performance
of other configurations. This system has 32 GB of DDR4 memory to cope with the worst
memory-intensive operations possible such as running multiple VMs. Storage for the VMs
and for the main machine was provided by a 256 GB Corsair MP510 solid-state drive (SSD).
Windows 10 runs on the host system.

The Redmi Note 5 Pro was used to provide the USB webcam input via the Droid-
cam app on Android. The Redmi Note 5 Pro is connected to every system configuration
used in the experiment through the v412loopback module in Linux, creating virtual cam-
eras in the system configurations used. Based on the hardware used for the experiment,
4 configurations were set up as summarized in Table 4.

Table 4. Systems used in the Experiments.

System CPU Memory (RAM) Storage Operating System
Configuration 1 Quad-core ARM 4 GB LPDDR4 SanDisk 32 GB Class Raspberry Pi OS
(Pi 4B) Cortex-A72 @ 1.5 GHz 10 microSD card 10 64-bit
Configuration 2 2 x (Quad-core ARM SanDisk 32 GB Class Raspberry Pi OS
(2-node Pi 4B cluster) Cortex-A72 @ 1.5 GHz) 2 x (4GB LPDDR4) 10 microSD card 10 64-bit
Configuration 3 2 x (2 virtual Ryzen 50 GB
(2-node VM cluster) 5 3500X cores) 2 % (4GB DDR4) Virtual hard disk Ubuntu 20.04 LTS
Configuration 4 Corsair MP510 .
(Desktop PC) AMD Ryzen 5 3500X 32 GB DDR4 (256 GB) Windows 10

3.7. Apache Spark: Standalone with HDFS, Cluster Setup & Job Execution

Spark is a data processing engine designed to replace or complement Hadoop’s MapRe-
duce processing engine. The research experiments made use of the latest Spark version

Future Internet 2022, 14, 220

11 of 26

(3.2.1) for clustering multiple nodes and for single-node use. Configurations 2 and 3 ran
Spark in standalone cluster deployment mode alongside the Hadoop Distributed File
System (HDFS) which runs as a background service. As for Hadoop’s HDEFS, the research
experiments made use of Hadoop version 3.3.1. The replication factor for HDFS was set to
the number of nodes, which in this case was 2.

Much like Hadoop and Spark-on-YARN, a Spark Standalone cluster has a master node
in charge of coordinating and distributing all Spark jobs to all workers or working nodes of
that cluster. To ease the entry of hostnames as worker nodes into the Spark environment
file, the local IP addresses of the nodes for Configurations 2 and 3 were mapped to their
respective hostnames in the /etc/hosts file, as these configurations use Linux operating
systems, and this process was repeated in every node. As Spark requires Secure Shell (SSH)
access, SSH fingerprints in the form of Rivest-Shamir-Adleman (RSA) keys were created on
the master node. These keys were then placed in the worker nodes to verify and trust the
master node. It is worth noting that a Spark node can be both a master and a worker at the
same time. The hostnames of the nodes, which now map to their local IP addresses, were
entered into the ‘workers’ file located under the Spark configuration folder. For checking
whether all nodes were configured properly for Spark cluster use, the web Ul for Spark was
accessed via ‘(hostname): 8080” in a web browser which displays the status of all nodes,
including the master node.

For all cluster systems, the following environment variables were set in the .bashrc file,
as seen in Figure 4. These environment variables were required by Spark. As Spark is built
on Java, using a compatible Java Development Kit (JDK) version was required. During
initial testing, newer versions of JDK such as 14 and 17 failed to work, and thus the decision
to revert to JDK 11 was made as it is the longest supported stable JDK version compatible
with Spark at the time of writing. Since Configuration 2 runs on ARM architecture, an
ARMG64 version of the JDK developed by the open-source community (Open]DK) was
used in place of the traditional AMDG64 architecture found in modern computers, which
was also used for Configuration 3. The Spark folder containing all important binaries and
configuration files was in the home directory of the user account for each cluster system.
For Spark to use Python, ‘PYSPARK_PYTHON’ would have used the system’s default
Python version, which was kept exactly at 3.8.10 across every node to prevent compatibility
issues. The 'SPARK_WORKER_CORES’ was set to the maximum number of cores available
for a worker node, which in this case is 4 for Configuration 2 and ‘2" for Configuration
3, as the Pi 4B is powered by a quad-core Broadcom SoC. Configuration 3 uses two cores
from the host system for virtualization. ‘SPARK_WORKER_MEMORY" was set to the
total memory of the node minus 1 GB, which was 3 GB for both cluster systems to offer
the best clustering performance and stability. Although JAVA_HOME’ was already set
in the .bashrc file, Spark mandated the JAVA_HOME environment variable in the Spark
environment file, as it would refuse to launch without it declared and set. The value of the
‘SPARK_MASTER_HOST’ parameter varies for Configurations 2 and 3, as it was set to the
local IP address of the master node for each of the Configurations.

JAVA HOME=/usr/lib/jvm/java-11-openjdk-armé64
SPARK_HOME=/home/pi/spark

PYSPARK_PYTHON=/usr/bin/python3
PATH=$PATH: $SPARK_HOME/bin:$SPARK_HOME/sbin

Figure 4. Environment Variables for 2-node Pi Cluster.

For launching cluster-optimized versions of the programs used for the experiments,
the spark-submit command was used to execute a SparkContext-containing Python program
for the experiments, which was suited for experimenting.

Future Internet 2022, 14, 220

12 of 26

3.8. Enhancement Methodology for Pi 4B

This section outlines a combination of enhancements that have a significant speedup
impact on the Pi to further evaluate the effectiveness of these combined enhancements
in contrast to a stock Pi. The enhancements consist of using the SSD, overclocking, and
disabling the graphical user interface of the Pi. Initially, the use of neural accelerators such
as the Intel Neural Compute Stick was considered. However, due to budget constraints, it
was not possible to obtain such devices for testing their effectiveness. The authors highly
recommend the use of neural accelerators for the Pi 4B to improve its DL performance
where available.

The Pi 4B has two hi-speed USB 2.0 ports and 2 super-speed USB 3.0 ports which allow
the use of external storage solutions such as an external hard drive, flash drive, or even
an SSD. The enhancement trials the use of SSD instead of the traditional Class 10 microSD
card storage, which has inferior read and write speeds compared to the SSD. The SSD used
in this test was a 120 GB Kingston A400 running off a 2.5-inch SATA-to-USB cable, as per
Figure 5. The contents of the microSD card were cloned to the SSD using the ‘SD Card
Copier’ program available in Raspberry Pi OS. During testing, it was found that using the
USB 3.0 port for the SSD draws a significant amount of power from the Pi 4B, preventing
the use of other peripherals such as the wireless network interface chip. Thus, the decision
was made to stick to USB 2.0 for operability.

Figure 5. External SSD connected to a Pi 4B.

Typically, increasing the clock speed of the processor allows for more processing
operations to be done in a second. This act of increasing clock speeds beyond designated
specifications is called overclocking. To date, this has been the most effective method in
increasing the processing performance of a system on all devices such as computers and
smartphones. However, not every device allows overclocking access as it might void the
warranty of a device. Overclocking on the Pi is achieved by setting a frequency beyond
1500 MHz in the config.txt file in the boot directory of the Raspberry Pi OS, which is the
stock maximum permissible frequency of the Pi. For this paper, the clock speed was set
to 1800 MHz with an overvoltage setting of 6 to help with stability. It was impossible to
attempt a higher clock speed as the system failed to stabilise long enough for all tests to
be complete.

By default, the Raspberry Pi OS includes a graphical user interface (or termed ‘desktop
environment’ in the Linux community) based on the Lightweight X Desktop Environment
(LXDE). However, there is still a motivation to know whether the standalone Pi will perform
considerably better without the additional workload imposed by the rendering of LXDE,
as the computing resource on the Pi is scarce. The ‘sudo systemct! set-default multi-user.target’
command was used to prevent the display server from being launched. This prevents the
loading of graphical elements onto the screen and by extension, LXDE will not be loaded.
The command forces the system to use a command-line interface.

Future Internet 2022, 14, 220

13 of 26

4. Experiment Results
4.1. Performance Evaluation of Pi Spark Cluster

This section aims to provide a performance evaluation of the Pi 4B and an assessment
of the effectiveness of distributed DL inference by using a Spark cluster of two Pi 4Bs by
comparing its performance against a single Pi 4B in experiments. The three experiments
that will be visited are concerned with investigating the feasibility of the Pi Spark cluster
and providing a performance review of the latest generation of Pi 4B. Complete results,
including minimum, average, and maximum values of the three experiments, can be found
in Appendix A.

When testing InceptionV3 on either CIFAR10 or ImageNetV2, all cluster configura-
tions utilising Spark failed to finish the test programs as per Figure 6. The systems crashed
halfway during the experiment due to out-of-memory errors despite multiple retries. How-
ever, Configurations 1 and 4, which are standalone systems—the former being a single
Pi 4B and the latter being the desktop PC—completed the test for 5 runs. Configuration 1,
which took nearly 2 h to complete inference (6529.43 s), trailed Configuration 4 (585.12 s)
by over 11 times to finish execution of an inference run using InceptionV3 on ImageNetV2.
However, it is unsurprising given the hardware performance gap between the two configu-
rations. Similarly, for CIFAR10, Configuration 1 took 3810.57 s, whereas Configuration 4
took 204.91 s, which is a difference of 18.6 times.

Experiment 1: Average Execution Time (InceptionV3)

I Configuration 1 [l Configuration 4
8000

6000 6529.43

4000
3810.57

Execution Time (s)

2000

585.12
ImageNetV2 CIFAR10

Dataset

Figure 6. Average execution time results using InceptionV3 in Experiment 1.

Referring to Figure 7, with using the MobileNetV3 model, all cluster configurations
were able to finish normally. The difference between Configuration 2 and Configuration 1
is very negligible. The cluster was performing worse by 2% when running MobileNetV3
on ImageNetV2 on average. When the cluster was tested on CIFAR10, however, there
seemed to be a 22% improvement in execution time, with a reduction of 3.78 s. Overall, the
difference between using a cluster as opposed to the single Pi was not significant. Other
than the results of the cluster systems, Configuration 4 eclipsed all system configurations
by performing over 6 times faster than the Pi 4B in ImageNetV2, and around 7.7 times
faster in CIFAR10. Configuration 1 held its ground and achieved respectable results in
tests utilising MobileNetV3, as it achieved a speedup of 10.8 times in ImageNetV2 and
217.75 times in CIFAR10 against InceptionV3.

For Experiment 2 as per Figure 8, all cluster systems failed to finish all tests yet again
by exhibiting the same behaviours seen in Experiment 1. Experiment 2 focused on just
two configurations—-Configurations 1 and 4. When testing with MTCNN on the WIDER
FACE validation test set, Configuration 1 achieved an execution time of 3156.71 s on an
average of 5 inference runs. Unsurprisingly, Configuration 4 achieved an average execution
time of 396.59 s, which is close to 8 times faster than Configuration 1. When testing with
YOLOface, the execution time for Configuration 1 jumped to 14,502.36 s on average, which

Future Internet 2022, 14, 220

14 of 26

is around 4.6 times slower than with MTCNN. Likewise, Configuration 4 experienced
similar surges in the average execution time of 1184.88 s. Of the three models, the most
processing-heavy model in this experiment is RetinaFace. Configuration 1 took 40,590.29 s
to finish an inference run on the WIDER FACE validation test set, which is over 12 times
slower than that of MTCNN. Configuration 4 took 3489.66 s to complete inference using
RetinaFace on average, which is around 8.8 times slower compared to the time required by
MTCNN to complete inference.

Experiment 1: Average Execution Time (MobileNetV3)

I Configuration 1 |l Configuration 2 Configuration 3 |l Configuration 4
1000

750

500

Execution Time (s)

250

ImageNetV2 CIFAR10

Dataset

Figure 7. Average execution time results using MobileNetV3 in Experiment 1.

Experiment 2: Average Execution Time

B Configuration 1 [l Configuration 4

50,000.00
40,590.29
40,000.00
©
o 30,000.00
E
IS
c
2 20,000.00
3 s 14,502.36
%
w
10,000.00
3156.71 3489.66
396.59 1184.88
MTCNN YOLOface RetinaFace
Model

Figure 8. Average execution time results for Experiment 2.

Much to the surprise of the authors, Experiment 3 is the only experiment where cluster
configurations run without issues of running out of memory. This is possibly because
of the low running time required for this specific experiment, with only 30 s of real-time
face detection time. As per Figure 9, when testing live face detection with MTCNN,
Configuration 1 achieved an average FPS of 2.64, which is expected of a heavy model. Its
cluster counterpart, Configuration 2, achieved 2.82 FPS on average, a 7% increase. However,
even Configurations 1 and 2 could surpass Configuration 3, respectively, with an average
FPS of 2.52. Unexpectedly, Configuration 4 had an average FPS of 15.83, which is almost
6 times as much as the average FPS of Configuration 1.

With heavier models, such as RetinaFace, used for inference, average FPS was expected
to plummet. Using YOLOface on Configuration 1 resulted in a measly average FPS of
0.21. Configuration 2 performed slightly worse with an average FPS of 0.19, which brings
the benefits of clustering into question and raises doubts. Configuration 3 achieved an
average FPS of 0.37, while Configuration 4 achieved an average FPS of 3.05, which is around
14.5 times more frames than Configuration 1. Despite this apparent gap, all configurations

Future Internet 2022, 14, 220

15 of 26

were not optimal for use with YOLOface due to low FPS of less than 1. Cameras typically
have an FPS of somewhere between 18 and 30. If the system cannot carry out model
inference on the captured frames in time, it will cause low FPS. Low FPS contributes
to a very jittery image recognition performance, which can affect the usefulness of the
recognition system.

The same scenario is repeated with RetinaFace. Configuration 1 achieved an average
FPS of 0.19. Configuration 2 did not fare well either, as it only achieved around 0.20 FPS on
average with an extremely negligible increase in FPS. Configuration 3 achieved an average
FPS of 0.35, while Configuration 4 achieved an average FPS of 2.09. From the results, the
average FPS figures were too low to be acceptable for real-time face detection at high frame
rates for the two models, even on the desktop PC.

Experiment 3: Average FPS

B Configuration 1 [} Configuration 2 Configuration 3 [l Configuration 4

20

Frames Per Second (FPS)

MTCNN YOLOface RetinaFace

Model

Figure 9. Average FPS results for Experiment 3.

4.2. Test Results with Enhancements for Pi 4B (Configuration 1)

In contrast to Section 4.1, this section evaluates the performance of the enhanced Pi 4B
and assesses the feasibility of using a Spark cluster of two Pi 4B versus using enhance-
ments. In Experiment 1, as per Table 5, the average execution time with InceptionV3 on
ImageNetV2 was noticeably reduced from 6529.43 to 5765.84 s, a reduction of 13.2%. The
average execution time for CIFAR10 decreased from 3810.57 s to 3289.85 s, again achieving
a reduction of 15.8%. Major reductions in average execution time were achieved when
testing MobileNetV3 on ImageNetV2, where the average execution time for ImageNetV2
decreased from 828.33 s to 553.59 s, resulting in a speedup of 49.6%. Likewise, the average
time on CIFAR10 was reduced from 20.67 s to 16.31 s, achieving a speedup of 26.7%. As
expected, this combination set of enhancements achieved the lowest average execution time
in all tests against the stock Pi 4B (without the enhancements). With these enhancements,
the average execution time reduction was between 13.2% to 49.6% for Experiment 1, which
is quite significant.

Table 5. Results for Experiment 1 using the enhancements for Pi 4B.

Execution Time (s)

Test Enhancement Speedup
Stock Enhanced
InceptionV3 on ImageNetV2 6529.43 5765.84 1.13
InceptionV3 on CIFAR10 3810.57 3289.85 1.16
MobileNetV3 on ImageNetV2 828.33 553.59 1.50
MobileNetV3 on CIFAR10 20.67 16.31 1.27

For Experiment 2, as per Table 6, the enhanced Pi 4B had an average execution time of
2882.82 s using MTCNN. The reduction in execution time down from 3156.71 s made up a
9.5% improvement. When tested using YOLOface, the average execution time was slashed

Future Internet 2022, 14, 220

16 of 26

to 12,768.22 s from 14,502.36 s, a 13.6% reduction. The same trend was observed when the
RetinaFace model was tested, where there is a reduction in execution time by 12.9%—from
40,590.29 s to 35,948.35 s. Overall, the combination of enhancements seemed to improve
the general processing performance of Pi 4B.

Table 6. Results for Experiment 2 using the enhancements for Pi 4B.

Execution Time (s)

Test Enhancement Speedup
Stock Enhanced
MTCNN 3156.71 2882.82 1.10
YOLOface 14,502.36 12,768.22 1.14
RetinaFace 40,590.29 35,948.35 1.13

As per Table 7, applying the enhancement combination to real-time MTCNN face
detection resulted in a very slight increase of average FPS from 2.64 to 2.99—which is still
a 13.3% increase in FPS. Nevertheless, the increase in FPS did not significantly help with
the smoothness of face detection. The enhancements had little impact on YOLOface and
RetinaFace, as underwhelming results were seen in both models during face detection
carried out in real-time. The average FPS values saw an extremely negligible increase from
0.21 FPS to 0.25 FPS for YOLOface, and from 0.21 FPS to 0.23 FPS for RetinaFace. There is
an improvement in average FPS between 9.5% to 19.5%. Even with the enhancements, the
FPS for face detection with all complex models used in this experiment failed to exceed 10,
leading to a suboptimal face detection performance.

Table 7. Results for Experiment 3 using the enhancements for Pi 4B.

Frames per Second (FPS)

Test Enhancement Speedup
Stock Enhanced
MTCNN 2.64 2.99 1.13
YOLOface 0.21 0.25 1.19
RetinaFace 0.21 0.23 1.10

5. Discussion
5.1. Ineffectiveness of Distributed DL Inference Using Pi

Based on the results of Configurations 2 and 3 in all experiments, the use of Spark
cluster systems for the image processing tasks tested in all three experiments was ineffective,
if not limiting. This ineffectiveness was highlighted when the cluster systems failed to
complete an inference run with InceptionV3 on both CIFAR10 and ImageNetV2 datasets.
Worse, these systems also failed to finish Experiment 2 with all 3 models. Regardless
of the architecture of the cluster (Pi or VM), both systems exhibited the same out-of-
memory (OOM) crash behaviour when executing inference with non-lightweight models
(InceptionV3, RetinaFace) or on larger datasets like WIDER FACE. There were no crashes
when testing programs in Experiment 3. It is suspected that the memory size of these
complex models and the dataset could be responsible for this behaviour, as the clusters did
not immediately crash when beginning testing but only several minutes into testing. It was
later confirmed when TensorFlow warned about the lack of free memory allocation via the
Spark output log, which subsequently caused the crash minutes into the tests.

Aside from the OOM issues, the results did not show any noticeable speedup as seen
in Tables 8 and 9, which is far from the expected values from 1.40 up to 2.00, especially
as only two nodes were used to minimise the effect of diminishing performance returns
associated with higher node counts. As per Figure 7a in [12], which was previously cited
in Section 2.2, the authors of [12] used a Pi 4B Spark cluster for Spark MLlib workloads.
There was a major reduction in the test set inference time from nearly 500 s to somewhere
slightly above 200 s when two executors (nodes) were used instead of just one, which

Future Internet 2022, 14, 220

17 of 26

represents a speedup of 2.33. The inference results in this paper showed speedup values
of less than 1 at 0.99, 0.90, and 0.95, which show slower inference speeds than a single
node in some tests, and the cluster could only attain a speedup of 1.22. The slight speedup
and the worse performance than running a single Pi completely contradicted the speedup
scalability that was initially expected. While all the Pi clustering papers previously cited
in Section 2.2 demonstrated speedup scalability across many nodes, the use of Spark
TensorFlow Distributor for distributed inference in this paper did not show such scalability.
Upon further investigation, it was found that the two executors were running the inference
tests on their own, which may also be partly responsible for the OOM issue explored earlier.
For context, the experiments utilised distributed versions of TensorFlow through the Spark
TensorFlow Distributor, which is a library for Spark to distribute TensorFlow jobs to all
executors. While Spark TensorFlow Distributor advertises distributed training, there was
no explicit mention of distributed inference. However, support for distributed inference
is obliquely suggested as the codebase in Spark TensorFlow Distributor has functions
that support such a feature. This finding highlights the ineffectiveness of distributed
DL inference when using the Spark TensorFlow Distributor even when the diminishing
speedup factor was eliminated for the experiments. It is hoped that this finding will bring
awareness towards implementing distributed DL inference in TensorFlow, as it is currently
not the preferred option for ML /DL clustering solution for inference.

Table 8. Comparison of average execution time and speedup between a single Pi 4B and a 2-node Pi
4B cluster for Experiment 1.

Average Execution Time (s)

Experiment 1 Test Pi 4B 2-Node Pi 4B Speedup
(Baseline) Spark Cluster
MobileNetV3 on CIFAR10 20.67 16.89 1.22
MobileNetV3 on ImageNetV2 828.33 835.79 0.99

Table 9. Comparison of average FPS and speedup between a single Pi 4B and a 2-node Pi 4B cluster
for Experiment 3.

Average FPS
Experiment 3 Test Speedup
Pi 4B (Baseline) 2-Node Pi 4B Spark Cluster
MTCNN 2.64 2.82 1.22
YOLOface 0.21 0.19 0.90
RetinaFace 0.21 0.20 0.95

The most likely hypothesis for this is the lack of capability for distributing a model
across different nodes. In a distributed training scenario, the same neural network model
with unmodified architecture would be copied over to worker nodes as model replicas.
This process speeds up training by comparing different accuracy and loss values in an
epoch across all nodes. The node with the best-performing values has its parameters passed
to some parameter server and the training process enters a new epoch until several epochs
have been reached. Finally, the parameter server holds the best set of parameters that allow
it to maximise accuracy and minimise loss, as seen in [28]. A neural network model in
TensorFlow could not be partially distributed across worker nodes for inference as there
is no method of segregating and re-joining the model architecture, given that the neural
network models run in a top-down manner where data is passed layer after layer. This
input dependency between layers renders the distribution of a neural network model
impossible. Distributed inference in Spark TensorFlow Distributor is limited to copying the
replica models over worker nodes. Ultimately, this results in the lack of speedup in cluster
systems when running model inference. Spark TensorFlow Distributor is less preferred
than Spark MLIib for the time being, as it could not increase inference performance with

Future Internet 2022, 14, 220

18 of 26

scale. At the time of writing, no other DL frameworks with adequate clustering support for
inference tasks are available.

5.2. Performance Gap of Systems

Focusing on the standalone Pi 4B (Configuration 1), it is unsurprising to see a huge
performance gap between the Pi and the desktop (Configuration 4) in all experiments as
per Table 10. When InceptionV3 was used for Experiment 1, the desktop was 14.41 times
faster on average compared to the standalone Pi. The optimistic target was for the Pi cluster
to perform closely to or outperform its VM counterpart (Configuration 3) in all experiments.
However, results for cluster systems are not available, as they failed to finish inference
run using InceptionV3. By using lightweight neural network models, the performance
difference between the desktop and the Pi was reduced to 7.42 times. This may suggest that
the Pi could remain competitive with modern hardware when a model with lightweight
architecture is used. The VM cluster is operating as a de facto single VM because of the
phenomenon explained in Section 5.1. It was only 29% faster than the Pi, which also
highlights the fact that the performance difference between the two systems may not be as
drastic as initially expected. In Experiment 2, using a lightweight model also reflects the
same trend, as the desktop was only 7.96 times faster than the Pi in MTCNN compared
to a difference of 12.24 times in YOLOface and 10.54 times in RetinaFace, respectively.
Once again, the results for cluster systems are absent due to the issues mentioned in the
previous section. For Experiment 3, the standalone Pi outperformed the VM cluster by 11%
in MTCNN. The desktop PC still outperformed the Pi by a difference of sixfold. When
using both YOLOface and RetinaFace, the average difference between the Pi and desktop
PCs widened to close to tenfold, where it was 14.52 times faster in YOLOface and 9.95 times
faster in RetinaFace, respectively. The same case is reflected in the VM cluster, where it was
1.76 times faster in YOLOface and 1.67 times faster in RetinaFace, respectively.

Table 10. Mean speedup against Configuration 1 in all experiments.

Mean Speedup against Configuration 1

Experiment Tested Model

P ode Config 1 Config 2 Config 4

. InceptionV3 - 14.41

Experiment 1 MobileNetV3 1.29 7.42

MTCNN 0.19 7.96

Experiment 2 YOLOface 1.00 _ 12.24

RetinaFace 10.54

MTCNN 0.89 6.00

Experiment 3 YOLOface 1.76 14.52

RetinaFace 1.67 9.95

Overall, the desktop PC still outperforms the Pi multiplicatively because of the hard-
ware difference between the two systems. However, this discovery of the reduction in per-
formance gap when using lightweight models for inference suggests that using lightweight
neural network models for Pi is vital to maintaining competitiveness in most applications
using DL against modern hardware. This is especially true when the performance differ-
ence between the desktop PC and the Pi was reduced when using lightweight DL models
as opposed to standard DL models. While the Pi could barely keep up with the VM cluster,
the performance difference between the VM cluster and the Pi was not drastic as initially
expected. This shows that the Pi can rival the VM, which itself is a simulation of a low-end
system created for this performance review.

Referring to Table 11, using lightweight models for the Pi massively reduces execution
time at the cost of accuracy. Execution time in ImageNetV2 was reduced from 6529.43 s to
only 828.33 s. This helped in achieving a reduction in execution time by 7.88 times, while
the accuracy was reduced only by 12%. In CIFAR10, the execution time was reduced from

Future Internet 2022, 14, 220

19 of 26

3810.57 s to just 20.67 s, which is an overwhelming reduction of 184.35 times at the cost
of a 25% decrease in accuracy. Regardless, the authors were surprised that the Pi could
achieve close to 3 FPS using MTCNN for face detection, even though it was suboptimal for
real-world usage.

Table 11. Accuracy and speedup differences over InceptionV3 using MobileNetV3 for Configuration 1.

Experiment 1 Test Speedup Over Accurac
. . y
Dataset Model Execution Time (s) InceptionV3 Difference
InceptionV3 3810.57 o
CIFAR10 MobileNetV3 20.67 184.35 25%
InceptionV3 6529.43
ImageNetV2 fobileNetv3 828.33 788 12%

Based on Figure 10, using the enhancements for the Pi helped to achieve noticeable
speedups where the optimised Pi was 26% faster in Experiment 1, 12% faster in Experiment
2, and 14% faster in Experiment 3 on average against a Pi that has not undergone optimisa-
tion. When considering the mean speedup figures from all experiments, the optimised Pi
was 17% faster on average. From the authors’ point of view, the optimised Pi was driven
to the very limit of performance and all viable optimisation attempts were exhausted
to achieve such speedup. For the time being, there are no other optimisation attempts
available that do not require dependence on optimising the software code that the Pi runs
on. This leads to the same outcome where more emphasis on the use of lightweight models
is required to compensate for the lack of powerful processing hardware found in the Pi 4B.
It still outperformed its 2-node Spark cluster counterpart.

Mean speedup versus unaltered Pi 4B

e _ .
o _ -
. _ N

Mean speedup

Experiment

Figure 10. Mean speedup with the enhancements versus default Pi 4B.

5.3. The State of Distributed DL Inference Using Spark TensorFlow Distributor

To recap, this paper mainly researched the effectiveness of distributed DL inference
by using a 2-node Pi cluster. Contrary to the expectations of the authors, adding another
Pi node for DL inference offered no significant speedup as there was no significant perfor-
mance difference between the 2-node Pi cluster and the single Pi. Occasionally, the cluster
performed worse than its standalone counterpart in some parts of the experiments.

Using just two Pi 4B nodes for processing-heavy Spark programs in standalone mode
is also not recommended, as there would be memory allocation issues, particularly with
the executor and driver. As all the nodes only had 4 GB of RAM, this might have played a
major role in this outcome. From this, the RAM capacity for a 2-node cluster configuration
should have the appropriate amount of RAM depending on the use case of the application,
as it is hard to find out the minimum amount of RAM capacity that will eliminate mem-
ory exceptions. For this reason, referring to the Apache Spark documentation is highly

Future Internet 2022, 14, 220

20 of 26

recommended, as every Spark application will have different resource requirements. For
the experiments seen in this report, the minimum is ideally 6 GB, as DL models such as
the InceptionV3 alone could easily occupy 3 GB of RAM during model inference. The size
of the dataset is also a factor, as ImageNetV2 was found to have occupied 2 GB of RAM
during testing. Another way to work around the memory limitations is to run Spark on
YARN, though this is not ideal as it introduces processing overhead as per the discovery
in [29]. In summary, it is better to use a single Pi which would be better off being enhanced
as per the findings of this report.

At the time of writing, the technology behind the distributed version of TensorFlow, the
Spark TensorFlow Distributor, has not matured enough to allow for distributed inference
that scales well with the number of nodes in a cluster, as currently, each node is still
executing inference independently without synchronisation across the cluster. The authors
deliberate that the Spark MLIib library will remain the status quo of the go-to ML framework
for use with Spark clusters.

6. Conclusions

In summary, the findings of this research paper have successfully addressed the need
to investigate the use of the TensorFlow framework for Spark cluster systems, which to
the authors” knowledge is one of the earliest findings based on the suggestion of fellow
researchers. The performance difference between a 2-node Pi 4B Spark cluster and a Pi
4B has been studied successfully. For the time being, it is currently not advised to use
a Pi 4B cluster for distributed DL because of the state of immaturity in DL frameworks
beyond SparkML like TensorFlow, as confirmed by the lack of performance scalability in
inference tasks seen in the results. The authors believe these findings will motivate fellow
researchers and the TensorFlow team to pursue a scalable distributed inference solution
that will allow multiple low-end devices to perform in tandem, especially in an age where
semiconductor shortage is rampant, and hopefully, such a solution shall eliminate the
status quo of SparkML as the preferred distributed ML framework.

Through the experiments, the performance gap between a Pi and a standard mid-end
system in inference tasks was also identified. The differences lie between 6 to 15 times,
depending on the complexity of the DL model. It was found that using a lightweight DL
model can help reduce the performance deficit between powerful systems and low-end
embedded devices like the Pi 4B as opposed to complex models. Therefore, low-end
embedded devices can carry out lightweight DL inference competitively with their more
powerful counterparts. In the experiments of this report, the Pi 4B could keep up with the
VM cluster in lightweight inference most of the time while falling behind on heavier tasks,
which is possibly attributed to a hardware-level architecture difference. The use of state-
of-the-art face detection models, which can achieve extremely high accuracies, requires
an ample amount of processing power. The authors highly recommend lightweight, CPU-
optimised neural network models for simple DL applications.

This paper has also optimised the Pi 4B, and results have shown that the enhancement
helped the Pi perform 17% faster on average than its standalone and 2-node cluster coun-
terparts, albeit with the addition of the SSD. However, the use of SSD may not have made a
major impact on the image processing performance of the Pi. For those seeking to optimise
the Pi, the switch to SSD is not mandatory for performance gains—in fact, it increases
the price-performance proposition of the Pi. Until distributed inference solutions are
available, the concept of distributed DL inference remains a theoretical concept for the time
being, and optimising remains key to increasing the performance of the Pi. Undoubtedly,
the computational power of a single Pi 4B would still suffice in lightweight ML and DL
inference tasks, as seen through the results of the experiments.

The authors would like to remind the reader that the Pi is a general-purpose embedded
device suitable for nearly every use case. Thus, the lack of neural acceleration is to be
expected, as DL is not Pi’s major use case. For those opting for an embedded device
for more complex DL inference tasks, the better price—performance option would be an

Future Internet 2022, 14, 220

21 of 26

Al-accelerated SBC such as the Nvidia Jetson Nano at $149, as it outperforms the Pi 4B by a
huge margin as per the results in [13]. Alternatively, a neural accelerator such as an Intel
Neural Computing Stick can also help boost the DL performance of the Pi, as seen in [14]. If
an embedded system is not the primary focus and where permissible, a low-cost PC with Al
acceleration via a single powerful discrete GPU is also recommended. If hardware solutions
are not an option, lightweight ML /DL models in TensorFlow can readily be converted into
the TensorFlow Lite versions to further improve inference speed. Progress on distributed
inference for cluster systems needs to be made for the feasibility of low-end device clusters
to come to fruition. Before that, the ideal cluster deployment mode for PySpark jobs must
be implemented in place of the less-reliable client mode. Regarding the previous statement,
the authors also suggest that the Apache Spark development team and the TensorFlow
development team collaborate in addressing this specific scope of distributed systems,
which may be niche by nature but will enable low-cost distributed DL inference that will
suffice as a viable alternative to a single powerful system for such purposes.

Additional work on investigating the benefits of using the Spark TensorFlow Distrib-
utor is required, as model inference seems to be ineffective. Future work in this study
would be to verify the performance benefits of distributed training of DL models using
Spark TensorFlow Distributor. Instead of using a Pi cluster, a distributed system containing
multiple GPUs would be used for this investigation. A performance comparison between
Spark MLIib and Spark TensorFlow Distributor by training models of identical architecture
should also be considered for investigating the use of DL frameworks outside the Spark
ecosystem. Other DL frameworks, like PyTorch, could be trialled against TensorFlow in
investigating the ideal scalable DL framework.

Author Contributions: Funding acquisition, M.-C.L.; investigation, N.J.; project administration,
L.-Y.O.; supervision, L.-Y.O.; visualization, N.J.; writing—original draft, N.J.; writing—review
and editing, L.-Y.O. and M.-C.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Telekom Malaysia Research and Development, RDTC /221036
(MMUE/220003) and the Multimedia University IR Fund, MMUI/210028.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Complete Results for Experiments 1, 2, and 3

Experiment 1
InceptionV3 on ImageNetv2

B vMin B Avg Max

Config 1 6529.43

Config 2

System

Config 3

Config 4

0 2000 4000 6000 8000

Execution Time (s), lower is better

Figure A1. Bar chart execution time results for all systems running InceptionV3 on ImageNetV2 in
Experiment 1. Configurations 2 and 3 are excluded due to Spark OOM error.

Future Internet 2022, 14, 220

22 of 26

Experiment 1
InceptionV3 on CIFAR10
B vin W Avg Max

3757.93

Config 1 3810.57

Config 2
£
8
2
» Config3

204.28
Config 4 204.91
0 1000 2000 3000 4000 5000

Execution Time (s), lower is better

Figure A2. Bar chart execution time results for all systems running InceptionV3 on CIFAR10 in
Experiment 1. Configurations 2 and 3 are excluded due to Spark OOM error.

Experiment 1
MobileNetV3 on ImageNetV2

B vn B Avg Max

Config 1

Config 2

System

Config 3

Config 4

] 200 400 600 800
Execution Time (s), lower is better

Figure A3. Bar chart execution time results for all systems running MobileNetV3 on ImageNetV2 in

Experiment 1.

Experiment 1
MobileNetV3 on CIFAR10

B vin B Avg Max
15.67
Config 1 17.5
15.51
Config 2 16.89
£
2
2
) Config 3
Config 4
0 10 20 30

Execution Time (s), lower is better

Figure A4. Bar chart execution time results for all systems running MobileNetV3 on CIFAR10 in
Experiment 1. Configurations 2 and 3 are excluded due to Spark OOM error.

Future Internet 2022, 14, 220 23 of 26

Experiment 2

MTCNN
B vin W Avg Max
3144.06
Config 1 3156.71
Config 2
£
2
2
%) Config 3
387.23
Config 4 396.59
0 1000 2000 3000 4000

Execution Time (s), lower is better

Figure A5. Bar chart execution time results for all systems running MTCNN on WIDER FACE in
Experiment 2. Configurations 2 and 3 are excluded due to Spark OOM error.

Experiment 2
YOLOface
B vin B Avg Max

14,420.07
Config 1 14,502.36

Config 2
£
2
2
@ Config 3

1108.95
Config 4 1184.88
0.00 5000.00 10,000.00 15,000.00

Execution Time (s), lower is better

Figure A6. Bar chart execution time results for all systems running YOLOface on WIDER FACE in
Experiment 2. Configurations 2 and 3 are excluded due to Spark OOM error.

Experiment 2

RetinaFace
[Min Execution Time [l] Avg Execution Time Max Execution Time
40,020.80
Config 1 40,590.29
Config 2
£
2
2
@ Config 3
3293.49
Config 4 3489.66
0.00 10,000.00 20,000.00 30,000.00 40,000.00

Execution Time (s), lower is better

Figure A7. Bar chart execution time results for all systems running RetinaFace on WIDER FACE in
Experiment 2. Configurations 2 and 3 are excluded due to Spark OOM error.

Future Internet 2022, 14, 220

24 of 26

Experiment 3

MTCNN
B Mn B Avg Max

Config 1

Config 2
E
2
2
%) Config 3

Config 4 15.83

0 5 10 15 20 25

Frames per second (FPS), higher is better

Figure A8. Bar chart FPS results for all systems running MTCNN for face detection in Experiment 3.

Experiment 3

YOLOface
B vMin B Avg Max
Config 1
Config 2
£
K]
2
@» Config3
Config 4

0 1 2 3 4
Frames per second (FPS), higher is better

Figure A9. Bar chart FPS results for all systems running YOLOface for face detection in Experiment 3.

Experiment 3

RetinaFace
B Min B Avg Max

Config 1

Config 2
E
o
2
» Config3

Config 4

0.0 0.5 1.0 1.5 20 2.5

Frames per second (FPS), higher is better

Figure A10. Bar chart FPS results for all systems running RetinaFace for face detection in Experiment 3.

Future Internet 2022, 14, 220 25 of 26

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Shinde, P.P; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the 2018 Fourth International
Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16-18 August 2018; pp. 1-6.
Razzak, M.I.; Naz, S.; Zaib, A. Deep learning for medical image processing: Overview, challenges and the future. In Classification
in BioApps; Dey, N., Ashour, A.S., Borra, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 323-350.

Hatt, M.; Parmar, C.; Qi, J.; El Naqa, I. Machine (deep) learning methods for image processing and radiomics. IEEE Trans. Radiat.
Plasma Med. Sci. 2019, 3, 104-108. [CrossRef]

Abadi, M.; Barham, P; Chen, J.; Chen, Z; Davis, A.; Dean, J.; Zheng, X. TensorFlow: A System for Large-Scale Machine Learning.
In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA,
USA, 2—4 November 2016; pp. 265-283.

Gupta, A.; Gandhi, C.; Katara, V.; Brar, S. Real-time video monitoring of vehicular traffic and adaptive signal change using
Raspberry Pi. In Proceedings of the 2020 IEEE Students Conference on Engineering & Systems (SCES), Prayagraj, India, 10-12
July 2020; pp. 1-5.

Gupta, I; Patil, V.; Kadam, C.; Dumbre, S. Face detection and recognition using Raspberry Pi. In Proceedings of the 2016 IEEE
International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Pune, India, 19-21 December 2016;
pp- 83-86.

Patel, K.; Patel, M. Smart Surveillance System using Deep Learning and RaspberryPi. In Proceedings of the 2021 8th International
Conference on Smart Computing and Communications (ICSCC), Kochi, India, 1-3 July 2021; pp. 246-251.

Anh, PT.; Duc, HT.M. A Benchmark of Deep Learning Models for Multi-leaf Diseases for Edge Devices. In Proceedings of the
2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 14-16 October
2021; pp- 318-323.

Cloutier, M.; Paradis, C.; Weaver, V. A Raspberry Pi Cluster Instrumented for Fine-Grained Power Measurement. Electronics
2016, 5, 61. [CrossRef]

Hajji, W.; Tso, F. Understanding the Performance of Low Power Raspberry Pi Cloud for Big Data. Electronics 2016, 5, 29. [CrossRef]
Rahmat, R.E; Saputra, T.; Hizriadi, A.; Lini, T.Z.; Nasution, M.K. Performance test of parallel image processing using open MPI
on Raspberry PI cluster board. In Proceedings of the 2019 3rd International Conference on Electrical, Telecommunication and
Computer Engineering (ELTICOM), Medan, Indonesia, 16-17 September 2019; pp. 32-35.

Komninos, A.; Simou, I.; Gkorgkolis, N.; Garofalakis,].D. Performance of Raspberry Pi microclusters for Edge Machine Learning
in Tourism. In Proceedings of the European Conference on Ambient Intelligence 2019, Rome, Italy, 13-15 November 2019;
pp- 8-18.

Stizen, A.A.; Duman, B.; Sen, B. Benchmark analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn. In Proceedings of
the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara,
Turkey, 26-28 June 2020; pp. 1-5.

Yoshimoto, J.; Taniguchi, I.; Tomiyama, H.; Onoye, T. An Evaluation of Edge Computing Platform for Reliable Automated Drones.
In Proceedings of the 2020 International SoC Design Conference (ISOCC), Yeosu, Korea, 21-24 October 2020; pp. 95-96.
Papakyriakou, D.; Kottou, D.; Kostouros, I. Benchmarking Raspberry Pi 2 Beowulf Cluster. Int. J. Comput. Appl. 2018, 179, 21-27.
[CrossRef]

Srinivasan, K.; Chang, C.Y.; Huang, C.H.; Chang, M.H.; Sharma, A.; Ankur, A. An efficient implementation of mobile raspberry
Pi hadoop clusters for robust and augmented computing performance. J. Inf. Process. Syst. 2018, 14, 989-1009.

Samadi, Y.; Zbakh, M.; Tadonki, C. Comparative study between Hadoop and Spark based on Hibench benchmarks. In Proceedings
of the 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), Marrakech, Morocco,
24-26 May 2016; pp. 267-275.

Biern-Hansen, A.; Gronli, T.M.; Ghinea GAlouneh, S. An empirical study of cross-platform mobile development in industry.
Wirel. Commun. Mob. Comput. 2019, 2, 1-12. [CrossRef]

Mantowsky, S.; Heuer, E; Bukhari, S.; Keckeisen, M.; Schneider, G. ProAl: An Efficient Embedded AI Hardware for Automotive
Applications-A Benchmark Study. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC,
Canada, 11-17 October 2021; pp. 972-978.

Bordin, M.V. A Benchmark Suite for Distributed Stream Processing Systems. Master’s Thesis, Federal University of Rio Grande
do Sul, Rio Grande do Sul, Brazil, May 2017.

Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do imagenet classifiers generalize to imagenet? In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9-15 June 2019; pp. 5389-5400.

Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report TR-2009; University of Toronto:
Toronto, ON, Canada, 2009.

Yang, S.; Luo, P; Loy, C.C.; Tang, X. Wider face: A face detection benchmark. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 5525-5533.

Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks.
IEEE Signal Process. Lett. 2016, 23, 1499-1503. [CrossRef]

http://doi.org/10.1109/TRPMS.2019.2899538
http://doi.org/10.3390/electronics5040061
http://doi.org/10.3390/electronics5020029
http://doi.org/10.5120/ijca2018916728
http://doi.org/10.1155/2019/5743892
http://doi.org/10.1109/LSP.2016.2603342

Future Internet 2022, 14, 220 26 of 26

25.

26.

27.

28.

29.

Deng, J.; Guo, J.; Ververas, E.; Kotsia, I.; Zafeiriou, S. Retinaface: Single-shot multi-level face localisation in the wild. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19 June 2020;
pp. 5203-5212.

Chun, L.Z; Dian, L.; Zhi,].Y,; Jing, W.; Zhang, C. YOLOV3: Face detection in complex environments. Int.]. Comput. Intell. Syst.
2022, 13, 1153-1160. [CrossRef]

Xiang, J.; Zhu, G. Joint face detection and facial expression recognition with MTCNN. In Proceedings of the 2017 4th international
conference on information science and control engineering (ICISCE), Changsha, China, 21-23 July 2017; pp. 424-427.

Li, M.; Andersen, D.G.; Park,].W.; Smola, A.J.; Ahmed, A.; Josifovski, V.; Long, J.; Shekita, E.J.; Su, B.Y. Scaling distributed
machine learning with the parameter server. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), Broomfield, CO, USA, 6-8 October 2014; pp. 583-598.

Mavridis, I.; Karatza, H. Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark.
J. Syst. Softw. 2017, 125, 133-151. [CrossRef]

http://doi.org/10.2991/ijcis.d.200805.002
http://doi.org/10.1016/j.jss.2016.11.037

	Introduction
	Related Work
	DL Inference on Pi
	Clustering with Multiple Pis

	Methodology
	Evaluation Metrics
	Neural Network Models & Datasets Used
	Experiment 1: Image Classification Inference Test
	Experiment 2: Face Detection Test
	Experiment 3: Real-Time Face Detection Test
	Environment Configuration
	Apache Spark: Standalone with HDFS, Cluster Setup & Job Execution
	Enhancement Methodology for Pi 4B

	Experiment Results
	Performance Evaluation of Pi Spark Cluster
	Test Results with Enhancements for Pi 4B (Configuration 1)

	Discussion
	Ineffectiveness of Distributed DL Inference Using Pi
	Performance Gap of Systems
	The State of Distributed DL Inference Using Spark TensorFlow Distributor

	Conclusions
	Appendix A
	References

