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Abstract: Unlike price fluctuations, the temporal structure of cryptocurrency trading has seldom
been a subject of systematic study. In order to fill this gap, we analyse detrended correlations of
the price returns, the average number of trades in time unit, and the traded volume based on high-
frequency data representing two major cryptocurrencies: bitcoin and ether. We apply the multifractal
detrended cross-correlation analysis, which is considered the most reliable method for identifying
nonlinear correlations in time series. We find that all the quantities considered in our study show an
unambiguous multifractal structure from both the univariate (auto-correlation) and bivariate (cross-
correlation) perspectives. We looked at the bitcoin–ether cross-correlations in simultaneously recorded
signals, as well as in time-lagged signals, in which a time series for one of the cryptocurrencies is
shifted with respect to the other. Such a shift suppresses the cross-correlations partially for short time
scales, but does not remove them completely. We did not observe any qualitative asymmetry in the
results for the two choices of a leading asset. The cross-correlations for the simultaneous and lagged
time series became the same in magnitude for the sufficiently long scales.

Keywords: bitcoin; ethereum; multifractal analysis; detrended cross-correlation; inter-transaction
time intervals; volume; price changes

1. Introduction

The cryptocurrency market has once again become the media spotlight during a series
of spectacular crashes that have driven bitcoin and other principal cryptocurrencies to lose
75–80% of their market value over roughly half a year until mid-2022, proving that the
preceding substantial growths were merely yet another speculation bubble, resembling
those that occurred in 2011, 2013, and 2017 [1]. This bubble overlapped with the later
part of the COVID-19 pandemic [2–6], raising the question of possible relations between
the two, and opened an interesting topic for future research. It has been shown that the
pandemic outbreak in early 2020 had some limited effect on the multifractal properties of
the price returns [7]. The most important observation is that the cryptocurrencies during
the outburst lost their potential to be a safe haven, because they started to be strongly
cross-correlated with the regular markets [8,9]. The strength of these correlations has varied
with time, but despite the fact that there were periods in which the cryptocurrency market
used to evolve rather independently in the post-COVID-19 time [9–13], the overall picture
favours strong cross-correlations, especially since Fall 2021. By the post-COVID-19 time,
we mean a period after the initial pandemic-related panic had simmered down and the
markets started to see the pandemic as a part of daily life, i.e., starting from approximately
late Spring 2020. Despite the turbulence that the cryptocurrency market has been coping
with since the pandemic outbreak, there are studies suggesting that it has finally reached

Future Internet 2022, 14, 215. https://doi.org/10.3390/fi14070215 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14070215
https://doi.org/10.3390/fi14070215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2131-7440
https://orcid.org/0000-0001-8813-9637
https://orcid.org/0000-0003-1613-6175
https://doi.org/10.3390/fi14070215
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14070215?type=check_update&version=1


Future Internet 2022, 14, 215 2 of 15

maturity and, at least from some perspectives, it shows features that are the same as their
counterparts in the classic markets [14,15].

Bitcoin (BTC) was introduced in 2009 as the first asset entirely based on the then newly
introduced blockchain technology [16]. Its purpose was to provide a decentralised and
non-inflationary alternative for fiat currencies, which were subject to massive quantitative
easing related to the central bank policies aimed at fighting the consequences of the global
financial crisis of 2008–2010. In the beginning, bitcoin was viewed just as a curiosity, even
though a transaction that set the bitcoin price expressed in US dollars for the first time took
place as early as May 2010, and the first platform designed for cryptocurrency trading was
opened in July 2010 [17]. Soon, the investors found that BTC and other cryptocurrencies,
which started to emerge after the idea of decentralised finance gained initial recognition,
can be used as speculative assets [18]. The first bubble and a subsequent price drop
occurred in 2011, when the market was in its infancy, while the subsequent bubbles in
2013 and 2017 appeared at later stages of the cryptocurrency market development [14].
This development is characterised, from a statistical point of view, by a gradual transition
from rather idiosyncratic properties of the fluctuation probability distribution functions
(pdfs), temporal correlations, and scaling behaviour towards the appearance of the financial
stylised facts that are observed in the standard markets [14].

Nowadays, after 12 years of the existence of this market and an enormous variety of
assets traded there, the cryptocurrencies have not yet managed to achieve the initial goal
envisaged by their founders. Perhaps the most serious issue that prevents them from being
considered as a substitute for fiat currencies is their extreme volatility, which attracts large
amounts of speculative capital, which in turn amplifies price fluctuations. Volatility is one of
the standard indicators of asset liquidity: for a liquid asset, even a large order does not have
any significant impact on its price. However, even the most capitalised cryptocurrencies,
such as BTC or ether, (ETH) suffer heavily from large price jumps triggered by large orders.
This is related, in part, to a much smaller trading frequency on various exchanges compared
to the stock and foreign currency markets [19,20]. Interestingly, this important indicator has
seldom been the subject of quantitative studies based on tick-by-tick data. Only recently
has progress in this direction been reported in Ref. [21], where the inter-transaction times,
the number of transactions in unit time, and the traded volume have been analysed. Data
representing major cryptocurrencies collected from a few trading platforms have shown
that the inter-transaction times are long-term autocorrelated with a power-law decay [21]
exactly the same as the data from the regular stock and Forex markets [22–26]. This
provides space for future application and testing of relevant stochastic models, such as the
Markov switching multifractal duration model [26,27] and the continuous-time random
walk model [28–31] to the cryptocurrency market data. As the inter-transaction times are
directly related to the number of transactions in time unit, the latter quantity was also
demonstrated to show long-range power-law autocorrelation [32].

The inter-transaction times and the number of transactions in the stock markets
were reported to be multifractal [23,33], and the same was observed for the cryptocurrency
market data [21]. Multiscaling of the related time series has also been reported, with a strong
indication that small fluctuations, i.e., the periods of increased trading frequency, show
richer multifractality compared to the large fluctuations associated with the periods of less
frequent trading [21]. Slower trading thus happens to be more uncorrelated (efficient) than
trading associated with a market frenzy. The long-term autocorrelations of inter-transaction
times are also responsible for their distribution tail behaviour, which according to the
Ref. [21] cannot be approximated by an exponentially decaying function but, contrastingly,
in many cases can be approximated by stretched exponential or power-law functions.

In the present work, we study data that represent a few quantities that characterise the
trading of two major cryptocurrencies: BTC and ETH. These quantities are: the logarithmic
price returns, the volume traded in time unit, and the number of transactions in time unit.
We investigate the fractal properties of these data both from the univariate perspective,
in which the properties of each signal are analysed separately, and from the bivariate
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perspective, in which we look at the cross-correlations between the respective time series of
BTC and ETH. As a particularly novel element, we also study the lagged cross-correlations
between these assets and seek a possible asymmetry between BTC→ETH and ETH→BTC
directions. Our goal is to answer the following questions:

1. Do the price returns, the volume, and the number of transactions in the time unit
representing the principal cryptocurrencies show any statistical inter-currency cross-
correlations that can be detected with the q-dependent detrended cross-correlation
coefficient (defined in Section 2)?

2. Are those cross-correlations, if present, fractal? That is, does the covariance of the fluc-
tuations of these quantities reveal multiscaling/multifractality over a range of scales?

3. Do the cross-correlations, if present, survive if the studied signals have been shifted
in time with respect to each other?

4. If so, is it possible to observe any asymmetry between the results with respect to a
shift direction (BTC→ETH and ETH→BTC)?

5. What is a proposed explanation for the outcomes?

Our paper is organised as follows. In Section 2, we present the data on which our
study is based, together with the applied multifractal formalism. In Section 3 we report
details of the results, and in Section 4, we sum up the results and discuss their implications.

2. Materials and Methods

In this study, we analyse high-frequency data collected from Binance [34], which is
the largest cryptocurrency trading platform in terms of daily volume [35]. We analyse
time series representing the number of transactions in time unit N(ti), logarithmic price
returns r(ti), and volume traded in time unit V(ti) for two major cryptocurrencies: BTC
and ETH, which were sampled every ∆t = 10 s with ∆t = ti+1 − ti and i = 1, . . . , T. Since
cryptocurrency trading is continuous 24/7, our time series that start on 1 April 2020 and
end on 31 May 2022 (i.e., they cover the period that we call the post-COVID-19 period)
consist of 791 trading days and their length equals T = 6,834,240 data points.

Among a few available approaches to fractal analysis of time series, the multifractal
detrended fluctuation analysis (MFDFA) has proven to be among the most reliable (see,
e.g., [36]). The reliability of MFDFA was assessed by comparing its outcomes for a few
model data sets with the respective theoretical values based on analytically derived for-
mulas. The MFDFA performance was, in the majority of cases, much better than that of
competitive methods. MFDFA was designed to deal with nonstationary data by indepen-
dently removing trends on different time scales, and to examine the statistical properties
of the residual fluctuations [37]. Its generalised version, the multifractal cross-correlation
analysis (MFCCA [38]), is capable of detecting multiscale cross-correlations between two
parallel nonstationary signals [39–41]. Here, we briefly sketch the MFCCA procedure.

Let us consider two nonstationary time series X = {Xi}T
i=1 and Y = {Yi}T

i=1 of length
T, sampled uniformly with an interval ∆t. We start by dividing each time series into
Ms = 2bT/sc disjointed segments of length s, going from both its start (i = 1) and its
end (i = T), where b·c denotes the floor value. Next, we integrate the time series within
each segment ν and remove a polynomial trend Pm

ν (j) of degree m from the resulting
integral signal:

xj(s, ν) =
j

∑
k=1

Xj(ν−1)+k − Pm
ν (j), j = 1, . . . , s, ν = 1, . . . , Ms. (1)

Typically, a polynomial of degree m = 2 is used, because the results obtained for a
few larger values of m were stable. In each segment, we calculate a detrended covariance:

f 2
XY(s, ν) =

1
s

s

∑
j=1

[
xj(s, ν)− 〈xj(s, ν)〉j

][
yj(s, ν)− 〈yj(s, ν)〉j

]
, (2)
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where 〈·〉j denotes the averaging over j. We then use the covariances of all segments
to calculate the signed moments of order q, which are called the (bivariate) fluctuation
functions of s:

FXY
q (s) =

{ 1
Ms

Ms

∑
ν=1

sign[ f 2
XY(s, ν)]| f 2

XY(s, ν)|q/2}1/q. (3)

Since covariances can be negative, their absolute value prevents FXY
q from being

complex, while the sign function ensures the consistency of the results [38]. A possibly
negative sign of the whole expression in the curly brackets also has to be preserved before
the qth-degree root is calculated. A character of the functional dependence of FXY

q on s
allows for distinguishing the fractal time series from those that do not show this property.
The most interesting are those signals for which the fluctuation functions exhibit power-law
scaling for some range of q and s:

FXY
q (s) ∼ sλ(q), (4)

where λ(q) plays a role of the bivariate generalised Hurst exponent. If the cross-correlations
are monofractal, then λ(q) = const for all q. In contrast, a multifractal case is associated
with a monotonically decreasing function λ(q).

A special case of FXY
q is X = Y, when the detrended cross-correlations become the

detrended autocorrelations. In this case, we can omit both the sign term and the modulus
in Equation (3), as the detrended variance f 2

X is always positive. The MFCCA then reduces
to the standard MFDFA with univariate fluctuation functions FXX

q (s) and FYY
q (s). The

detrended cross-correlation function plays a role of a mean covariance, while FXX
q and

FYY
q play a role of mean variances. If the univariate fluctuation functions are power-law

dependent on s, such that FXX
q ∼ shX(q) and FYY

q ∼ shY(q), the exponents hX(q) and hY(q)
are the generalised Hurst exponents, which for q = 2 reduce to the standard definition of
the Hurst exponent H.

Having calculated all fluctuation functions, we can then introduce the q-dependent
detrended cross-correlation coefficient ρq(s) [42], defined as

ρq(s) =
FXY

q (s)√
FXX

q (s)FYY
q (s)

. (5)

Formula (5) was proposed in such a form in order to resemble the formula for the
Pearson cross-correlation coefficient if q = 2. The coefficient ρq(s) can be considered, then,
as a counterpart of the Pearson coefficient for non-stationary signals. Both coefficients
assume values in the range [−1,1], with ρq(s) = 1 for perfectly correlated time series,
ρq(s) = 0 for independent time series, and ρq(s) = −1 for perfectly anticorrelated time
series. It should be noted that, in order to calculate ρq(s) the time series do not have to be
fractal [42].

If compared with the Pearson coefficient, the coefficient ρq offers a few main advan-
tages. The first one is its flexibility of the trend removal. There is no a priori best polynomial
to use in Equation (1). The order m of this polynomial has to be optimised by considering
the stability of the final results if we vary m. The lowest order that gives stable results
is preferred. Typically, the optimal value of m is larger than one, so the removed trends
can be nonlinear, which is important, especially for the large-scale s. This contrasts with a
more standard approach to detrending of the financial data, where the linear trends are
considered (e.g., by transforming the original time series to its increments). In general,
it is also possible to use m that is selected individually for each segment, but we shall
not consider such a detrending variant here. Another advantage of ρq over the Pearson
coefficient is that it is not sensitive to the linear correlations only—we can look at its values
for different qs and catch the nonlinear correlations as well. Moreover, with ρq, we can
have some insight into the amplitude of the fluctuations that carry the correlations (by
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tuning q, we amplify the segments of specific variance/covariance). The fourth advantage
is that ρq is inherently multiscale oriented. In order to achieve a comparable feature by
using the Pearson coefficient, one needs to consider the same observable recorded with
different sampling frequencies, while for ρq, it is a built-in property. The fifth advantage
is that the DFA procedure and its multifractal generalisations are able to detect the fractal
and multifractal scaling in the data fluctuations, something that is beyond the scope of
the Pearson-coefficient-based correlation measures. Detection of the multifractality of data
allows one to gain some insight into the nature of the processes that govern the observed
time series evolution. It can be of importance if one’s goal is to model the empirical data in
order to make prediction, for example. All these properties that we have mentioned here
make use of ρq, which is highly recommended even if the computation in this case is more
resource demanding than in the case of the standard correlation coefficient.

3. Results

We begin the presentation by taking a look at the time evolution of the quantities of
interest over the interval considered in this work. Figure 1 (top) shows the price course
of BTC and ETH expressed in tether (USDT)—a stablecoin pegged (1:1 on average) to the
US dollar [43]. This stablecoin is used by trading platforms as a proxy for fiat currencies,
because it facilitates trading and allows the market participants to avoiding taxation while
temporarily closing the cryptocurrency positions. The lowest prices of BTC and ETH
during the observed 26 months were 6202 USDT and 130 USDT, respectively, recorded on 1
April 2020, and the highest prices were 68,789 USDT, recorded for BTC on 10 November
2021 and 4892 USDT for ETH, which was recorded 6 days later. The time span considered
comprised almost the entire rally and subsequent fall of this market.

Figure 1. Evolution of the quantities of interest over the time period considered in this study for
two principal cryptocurrencies: BTC (red circles) and ETH (blue squares). (a) Price P(t) of the
cryptocurrencies expressed in US dollars; (b) logarithmic returns r∆t(t) for ∆t = 10 s; (c) mean
volume traded 〈V∆t(t)〉 in 10 s intervals; (d) mean number of transactions 〈N∆t(t)〉 in ∆t = 10 s. The
averaging was carried out over a rolling window of 1 month with a step of 6 days.
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The logarithmic returns presented in Figure 1 (upper middle) are defined as

r∆t(ti) = ln P(ti+1)− ln P(ti), (6)

where P(ti) is an asset price at time ti. Inferring their heavy-tailed probability distribution
function and volatility clustering is straightforward. Periods of market turbulence are
associated with a high amplitude of returns. In Figure 1, a rolling window of 1 week
is applied to calculate the mean volume traded 〈V∆t(t)〉 (lower middle), and the mean
number of transactions executed in 10 s-long intervals (bottom). The market sensed the
most increased volatility level in September 2020, January–February 2021, and May–June
2021. These volatile periods can be associated with a few bear phases of the cryptocurrency
market. The periods of increased volatility overlap with the periods of increased volume
and increased number of transactions, as can be seen in Figure 1.

These associations can be quantified in terms of the Pearson cross-correlation coefficient

CXY =
(1/T)∑T

i=1(Xi − 〈X〉)(Yi − 〈Y〉)
σXσY

, (7)

where 〈·〉 is mean and σ is standard deviation of the time series {Xi} and {Yi}. Values of
CXY for all pairs of the non-detrended time series are collected in Figure 2, showing that the
strongest cross-correlations are observed for the absolute values of logarithmic returns of
BTC and ETH (CXY = 0.72) and for the mean number of transactions and the mean volume
traded of BTC (CXY = 0.75). All the related time series representing BTC are substantially
cross-correlated among themselves, and the same can be noted regarding the time series
representing ETH. The least cross-correlated are the pairs in which time series represent
both cryptocurrencies, but even in this case, the obtained values are statistically significant.

Figure 2. Pearson’s cross-correlation coefficients calculated for all possible pairs of time series
considered in this study. All values are statistically significant.

Now, we pass on to an analysis of the detrended time series. First, let us examine
the fractal autocorrelations in terms of univariate fluctuation functions FXX

q (s). The results
for all time series of interest are plotted in Figure 3. All plots exhibit clear scaling for
2–3 decades for a range of q, which indicates that the time series are fractal. Moreover, a
‘broom’-like shape of the function plots for different values of q may be interpreted as a
signature of the multifractal nature of time series. This result is parallel to that previously
reported for the mean number of transactions executed on different trading platforms [21].
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For q = 2, we obtain the Hurst exponent H, which serves as a measure of long-term
autocorrelations. One can notice that the time series for V∆t and N∆t are more persistent (a
steeper ascent of FXY

q=2(s)) than the time series for r∆t (a milder ascent).
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Figure 3. Univariate fluctuation functions FXX
q (s) calculated for time series of price returns r∆t(t)

(left column), volume traded V∆t(t) (middle column), and the number of transactions N∆t(t)
(right column) for two cryptocurrencies expressed in USDT: BTC (top) and ETH (bottom). In each
panel, vertical dashed lines denote a range of time scales s for which a power-law model can be fitted
to the fluctuation functions. A range of values of q is also shown.

Encouraged by the values included in Figure 2 and our previous results on the price
returns in the pre-COVID-19 era [44], which proved to be fractally cross-correlated, we now
study the detrended cross-correlations between the time series representing BTC/USDT
and ETH/USDT cross-rates. Figure 4 (top) shows the bivariate fluctuation functions
obtained for three particular time series arrangements. The original time series, parallel
in time, develop FXY

q (s) that scales over ∼2.5 decades for −1.8 ≤ q ≤ 4, which is quite
extraordinary, because cross-correlations typically only scale for positive q. The insets
in Figure 4 show the q-dependence of the bivariate scaling exponent λ(q) and the mean
univariate one: hXY(q) = (1/2)[hX(q) + hY(q)]. Both are decreasing functions of q, which
is a signature of multiscaling, and for −2 ≤ q ≤ 4 they are equal up to their standard
errors. This equality suggests that there is little difference in the scaling properties of both
time series. If we look at this gap as a separate quantity dXY(q) = λ(q)− hXY(q), we see
that for q ≥ 2 it starts to increase again slightly—Figure 5b (blue line in top panel). A
relative behaviour of λ(q) and hXY(q) is associated with the coefficient ρq(s) in such a way
that if λ(q) > hXY(q) for a given q, then ρq(s) increases with s as the difference becomes
larger. Consequently, the convergent exponents indicate that this increase in the detrended
cross-correlations loses momentum with increasing q, while the divergent ones indicate the
opposite [42]. Indeed, the coefficient ρq(s) shows steeper growth for q = 4 than for q = 2 in
the top panels of Figure 5a (blue lines). For q = 2, it is even roughly constant, with only a
minor decrease for the shortest scales and the longest ones.
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Figure 4. (Main panels) Fluctuation functions FXY
q (s) calculated for the time series of logarithmic

price returns r∆t(t) for X = BTC and Y = ETH. In each panel, vertical dashed lines denote a range
of time scales s for which a power-law model can be fitted to Fq

XY(s). Extreme values of q are also
shown. Three cases are considered: both time series are simultaneous (top), time series representing
BTC is advanced by τ = 1 min (middle), and time series representing ETH is advanced by τ = 1
min (bottom). (Insets) The bivariate scaling exponent λ(q) vs. the mean univariate scaling exponent
hXY(q) calculated for the same time series. Error bars denote the standard errors.

The middle and bottom panels of Figure 4 present FXY
q (s) for the time series that are

shifted relative to each other by τ = 1 min: either BTC leads by τ (middle) or ETH leads
by τ (bottom). In both cases, we see similar power-law dependence over ∼two decades,
but for larger s than in the τ = 0 case. We consider this shift toward longer s as expected,
because asset prices need time to build up the cross-correlations if they are weakened by
the relative shifts. The bivariate and mean univariate scaling exponents shown in the insets
reveal a gap between them that is largest for q < 1, while if q increases, both quantities
gradually converge. Compare this with Figure 5b (top panel, green and red lines) for
even better visibility. The plots for τ = 0 and τ = ±1 clearly differ from each other: for
the shifted time series, ρq(s) is more variable than for the simultaneous ones. However,
what is similar is that here, ρq(s) also shows steeper growth for q = 2 than for q = 4—see
Figure 5a (top panels, green and red lines). For q = 2, there is no visible difference between
the results if either BTC or ETH leads (top left). This changes after we move to higher
qs: for q = 4 there is a noticeable difference between the corresponding lines, with higher
values of ρq(s) if BTC leads. This difference, however, is much smaller that that between
the results for τ = 0 and τ = ±1. This result is somehow expected, because contemporary
markets operate at scales that are much shorter than 1 min. However, due to the long-range
temporal autocorrelation in volatility lasting up to a few trading days [44] even if we shift
one time series with respect to the other by 1 min, the fractal structure of the detrended
cross-correlations can still be observed for these time series.
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Figure 5. (a) The q-dependent detrended cross-correlation coefficient ρq(s) for q = 2 (left) and q = 4
(right) calculated for time series of price returns r∆t(t) (top), volume traded V∆t(t) (middle), and the
number of transactions N∆t(t) in ∆t (bottom) for X = BTC and Y = ETH. Three cases are considered:
both time series are simultaneous (solid blue), time series representing BTC is advanced by τ = 1
min (short-dashed green), and time series representing ETH is advanced by τ = 1 min (long-dashed
red). (b) Difference dXY(q) between the bivariate scaling exponent λ(q) and the mean univariate
exponent hXY(q).

We apply the same formalism to the volume traded V∆t(t) and plot the corresponding
quantities in Figure 6. There is a slightly broader range of scales for which a power-law
dependence can be seen (almost two decades for the simultaneous time series and two
decades for the lagged ones) than was seen for r∆t(t) in Figure 4. The range of q over
which multiscaling can be detected is, however, narrower than for r∆t(t) in each case, and
is restricted to positive values of q only. Another significant difference concerns λ(q) and
hXY(q), which are sizeably separated even for τ = 0. For τ = ±1 min, this difference is
also more pronounced than for the price returns, but here, one can notice broken symmetry
between the BTC- and ETH-led time series even in the case of q = 2: for the advanced ETH,
the difference dXY(q) is larger than in the opposite case. This effect is also seen in Figure 5b
(middle). Despite the fact that these gaps are larger, they asymptotically decrease with
increasing q, suggesting that in the case of volume, ρq(s) increases more slowly with s for
larger q. Examples of this increase in ρq(s) are plotted in Figure 5a for q = 2 (middle left)
and q = 4 (middle right). For short scales, the detrended coefficient for the simultaneous
time series (τ = 0) is substantially larger than for the lagged ones, while for s > 1000
(10,000 s), this difference vanishes in both cases (for both q = 2 and q = 4). This effect can
be understood to be such that, on sufficiently long scales, all the information that has any
meaning to the market has already managed to be exchanged by the major cryptocurrencies.
On the other hand, the larger values of ρq(s) for τ = 1 min suggest that information is
transferred slightly faster from BTC to ETH than in the opposite direction. This can be
explained by the BTC dominance in the market. There is consistency between the respective
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plots for ρq(s) and dXY(q) regarding the growth ratio of the former and the magnitude of
the latter for each τ and each presented q.
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Figure 6. (Main panels) Fluctuation functions FXY
q (s) calculated for the time series of volume traded

V∆t(t) for X = BTC and Y = ETH. In each panel, vertical dashed lines denote a range of time scales s
for which a power-law model can be fitted to Fq

XY(s). Extreme values of q are also shown. Three cases
are considered: both time series are simultaneous (top), time series representing BTC is advanced by
τ = 1 min (middle), and time series representing ETH is advanced by τ = 1 min (bottom). (Insets)
The bivariate scaling exponent λ(q) vs. the mean univariate scaling exponent hXY(q) calculated for
the same time series. Error bars denote the standard errors.

The behaviour of FXY
q (s) for the time series of the mean number of transactions N∆t(t)

resembles that of V∆t(t)—see Figure 7 (main plots). What is different is the behaviour of the
exponents λ(q) and hXY(q), because while we increase q, we observe that they are growing
closer to each other first, then somewhere around 1.5 < q < 2, they reach a minimum
distance and start to diverge for larger qs (insets in Figure 7). This is even more visible in
their difference in Figure 5b (bottom), which is associated with a moderate increase in ρq(s)
for q = 2 (bottom left) of Figure 7a and a more pronounced increase for q = 4 (bottom
right). As in the case of volume, up to a scale of s ≈ 1000 (i.e., 10,000 s) the coefficient is
higher for the simultaneous signals than it is for the shifted ones.
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Figure 7. (Main panels) Fluctuation functions FXY
q (s) calculated for time series of the number of

transactions N∆t(t) in ∆t for X = BTC and Y = ETH. In each panel, vertical dashed lines denote a range
of time scales s for which a power-law model can be fitted to FXY

q (s). Extreme values of q are also
shown. Three cases are considered: both time series are simultaneous (top), time series representing
BTC is advanced by τ = 1 min (middle), and time series representing ETH is advanced by τ = 1
min (bottom). (Insets) The bivariate scaling exponent λ(q) vs. the mean univariate scaling exponent
hXY(q) calculated for the same time series. Error bars denote the standard errors.

4. Discussion and Conclusions

In this work, we studied the detrended cross-correlations between three trading
characteristics of two major cryptocurrencies, BTC and ETH, over the last 2 years. This
period was characterised by the profound stress imposed on the global economy by the
COVID-19 pandemic, but after the initial shock of early 2020, when most of the markets
experienced heavy losses, there was a quick rebound to new all-time highs in the second
half of the year. During the pandemic, both the traditional markets and the cryptocurrency
market passed through different stages, alternately governed by strong “bears” and “bulls”.
Recently, the military escalation in Ukraine has also been exerting a heavy impact on the
markets, including the cryptocurrency market, leading them to suffer from extra draw-
downs that added momentum to the bear market dominating the scene since December
2021. From the cryptocurrency perspective, another interesting structural phenomenon
is an emergent, strong permanent coupling of the cryptocurrency market and the stock
market [9,44–47]—a phenomenon that, prior to the pandemic, used to be observed only
occasionally [8,48–53].

Financial market data are well-known for their nonstationarity. This is why the
classical approach to quantifying correlations among such data in terms of, for instance,
the Pearson coefficient can overlook important properties of the data. The formalism
based on the detrended fluctuation analysis [54] and its further generalisations [37–40] are
much more suited for non-stationary signals, as their inherent feature is the elimination
of multiscale trends. At present, this approach is favoured and becomes a standard tool
of time series analysis. In our work, this formalism was employed to investigate cross-
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correlations between two major cryptocurrencies—BTC and ETH. We selected three trading
characteristics: price returns, volume, and number of transactions in a time unit (for which
we chose 10 s). We did not restrict the analysis to the time series collated parallel in
time, but we also analysed the ones that were shifted relative to each other by 1 min. By
looking at the univariate and bivariate fluctuation functions, we found that both were
manifesting the multifractal property. Only the results for the price returns can be directly
compared with the analogous results obtained for the data covering earlier periods before
COVID-19 [44,55–59]. In this case, we see that the fractal properties of the price returns
have not changed much. This is true not only if we look at the fluctuation functions, but
also at the bivariate and mean univariate scaling exponents, which are almost equal in
this case.

We also analysed the lagged cross-correlations between the time series representing
BTC and ETH for the first time in the literature. We found that shifting one of the time
series suppresses the cross-correlation magnitude, but nevertheless, the remaining cross-
correlations are still significant, especially for the scales larger than a few hours, during
which the information that arrives on the market is able to disperse. The time series of
the price returns did not reveal any asymmetry between the cases, in which either BTC or
ETH is lagged, for q = 2. However, the time series of the volume traded and the number of
transactions showed a small effect of such an asymmetry: if BTC led, the cross-correlation
was slightly stronger, which we interpreted as an effect of faster information transfer in the
direction BTC→ETH than in the opposite direction, which we related to the BTC dominance
on the cryptocurrency market. Interestingly, for q = 4, this asymmetry is easy to notice in
the case of the returns as well—a manifestation of a fact that the correlations associated with
the returns of large amplitude are more direction sensitive than the correlations associated
with the small and medium returns. Another observation was that, for short scales, the
strength of the cross-correlations between the simultaneous time series representing BTC
and ETH was the largest for the price returns, whereas for the volume and the number of
transactions, it was substantially smaller. This effect was less pronounced for the lagged
time series, and it gradually disappeared for the longer scales.

A general conclusion that we can draw from this study is that the overall fractal
properties of the major cryptocurrency time series are stable regarding the pre-COVID-19,
COVID-19, and post-COVID-19 periods. We can interpret this stability as related to the
fact that the processes that govern the fractal organisation of the cryptocurrency trading
data are so fundamental that they can resist the social and economical forces perturbing the
market. This conclusion apparently challenges some earlier reports based on stock market
data, whose fractal properties were market-phase dependent (e.g., [60]), but actually it
must be noticed that here, we did not attempt to decompose the market dynamics, and we
presented the average market properties only. As the fractality indicates that the processes
driving the cross-asset trading characteristics are largely scale invariant, our result can be
of significance from the market-modelling perspective. It also provides further support for
the thesis that the cryptocurrency market has reached maturity, at least from the statistical
and dynamical points of view.

It should be noted, however, that our study has its inherent limitations. We analysed
two major cryptocurrencies only; it is thus conceivable that results for other cryptoassets,
especially those with much worse liquidity, would potentially diverge from the results
presented here. We also stress that we restricted our analysis to a few values of time
lag. If another study considered different lags, especially the shorter ones, both the the
cross-correlation magnitude and the asymmetry effect could be different. We also analysed
a particular time period only, while the history of the cryptocurrency market is much longer.
We could thus expect that the properties of the lagged cross-correlations evolve in time as
well. Each of these limitations should be overcome in future research based on extended
data. Another issue to be considered in future is to focus on short periods of time in order
to gain some insight into how the fractal cross-correlation magnitude and lag asymmetry
depend on the market situation (the bull and bear markets, for instance).
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