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Abstract: Drones are increasingly adopted to serve a smart city through their ability to render
quick and adaptive services. They are also known as unmanned aerial vehicles (UAVs) and are
deployed to conduct area surveillance, monitor road networks for traffic, deliver goods and observe
environmental phenomena. Cyber threats posed through compromised drones contribute to sabotage
in a smart city’s airspace, can prove to be catastrophic to its operations, and can also cause fatalities.
In this contribution, we propose a machine learning-based approach for detecting hijacking, GPS
signal jamming and denial of service (DoS) attacks that can be carried out against a drone. A detailed
machine learning-based classification of drone datasets for the DJI Phantom 4 model, compromising
both normal and malicious signatures, is conducted, and results obtained yield advisory to foster
futuristic opportunities to safeguard a drone system against such cyber threats.

Keywords: drones; criminal activity; machine learning; cyber attacks

1. Introduction

A smart city provides convenient and better quality services in large scale and inter-
connected urban dwellings. It can be defined as a confluence of a multitude of information
and communication technologies to render services such as traffic management, logistics
and delivery of goods. This facilitates automated, intelligent and adaptive service delivery
to its citizens. During the COVID-19 crisis, the smart city global market was estimated
at USD 741.6 Billion in 2020, projected to reach USD 2.5 Trillion in 2026 [1]. This rapid
growth in digitally-enabled services during the COVID-19 crisis can be attributed to ready
adoption of technology to enable remote access to services by the masses.

A smart city can comprise a range of traditional services that can be automated and be
driven through Artificial Intelligence (AI)-based decision making. For instance, a traffic
light can be presented with real-time traffic data that flows in from various locales in a smart
city, to enable intelligence and adaptive signal transition timings, which improve traffic
flow and lessen the chances of a jam. Similarly, a traditional electricity grid can be converted
into a smart electricity grid to facilitate real-time energy utility information for end users
as well as the grid operators. The smart energy segment is forecast to reach a global market
of the value of USD 652.9 Billion by 2026 [1].

Unmanned aerial vehicles (UAVs), commonly known as drones, are an emerging
facilitator of several smart city services. UAVs are controlled through a ground controller
unit. They typically provide services such as observations of weather phenomena, aerial
photography, product delivery and surveillance. Other examples of UAVs include re-
motely operated and unmanned flights, such as the S-100 Camcopter, designed to carry
defense service payloads to remote and hard to reach locales [2]. Rapid proliferation
of drones in the commercial market is evident with an estimate of its market share to reach
USD 58.4 Billion by 2026 [3].
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The benefits to both civilian as well as defence applications through adoption of drones
are aplenty. For instance, monitoring of road traffic in a city grid through static cameras
is limited by the scope of data collection. On the contrary, a drone can fly across a city’s
aerospace and gather data from numerous locales to help the city administrators identify
traffic congestion points and take necessary action to enable smooth traffic flow. Such
live feeds of data can be transmitted by the drone to a central smart city cloud service
center for further processing (can be routed via the drone’s Internet-connected ground
controller). Smart city curb-side sensors can also be integrated with a central smart city
facility comprising the cloud, drones, IoT sensors as well as smart vehicles, to facilitate
a fully integrated platform of heterogeneous objects. Such a facility can be harnessed
to enable the identification of available parking spots (rendered to a smart vehicle in real-
time), identify emergency zones, which can be avoided by vehicles and assess threats
from weather phenomena (including heavy rainfalls and tornado warnings) [4].

The benefits of having drones as part of a smart city landscape are aplenty, as described
above. However, there is no holistic and comprehensive framework in place to identify, prevent
or even detect cyber threats that are posed through the introduction of drones in a smart city’s
airspace. The intrusion of drones into no-fly zones poses a threat to public safety, compromised
of a secure premise including penetrating an airport’s airspace and posing threats to aircraft and
airport operations, and the dropping of illegal goods (including delivery of unlawful products
to prisons). Research and development in this space have seen significant advancement in recent
times. For instance, Dedrone has proposed an AI-enabled portable drone detection unit (tower)
for detecting unauthorized drone intrusions into no-fly zones through deployment of such
monitoring towers at specific locales [5].

Whilst ongoing research in the domain of cyber attacks that involve drones is expand-
ing very quickly, there is still a need to identify drone-based cyber attacks, assess the types
of threats posed on a smart city’s airspace and the impact of a drone-based attack to a city’s
economy. In this research, we present a novel scheme for identifying malicious drone
behavior through a deep analysis of routine (normal) drone operations when obtained
from actual drone flight data, reverse engineering of patterns of normal drone flight behav-
ior, synthesis of drone attack traffic, specifically for hijacking, GPS signal jamming and DoS
attacks and the adoption of machine learning techniques to classify the synthesized drone
data into normal or malicious.

The rest of the paper is organized as follows. Section 2 provides a background
to the study, including a discussion on the various types of threat models for drones. In
Section 3, we present the acquired dataset representing normal drone data and an ex-
ploratory analysis approach for generating attack vector data. In Section 4, we present the
intrusion detection framework for detecting malicious drone behavior through adoption of
machine learning. The simulation setup and results analysis are provided in Section 5. The
paper is concluded in Section 6.

2. Background

A smart city comprises a number of integrated components that enable its functioning
and rendering of automated services to its citizens. Data generated by smart city com-
ponents is facilitated for transmission across the ICT network to the next hop devices
of the communication network topology. Data collection on a large scale is referred to
as data volume. Analytics of collected data is contingent on the level of urgency and the
computational capabilities of the controllers, edge devices and the geographic proximity
of these to the central cloud platform. For instance, IoT data obtained from curb-side
sensors will have to be communicated to the next hop edge device, whereupon further
data processing can take place in the cloud. Data volume at a large scale is constantly
communicated from resource-constrained devices, including drones, to a central cloud, for
processing and subsequent decision making. Artificial Intelligence (AI) plays a significant
role in accurate decision making from collected data in a smart city platform. In Figure 1,
we present a smart city architecture.
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Figure 1. Smart city with drones—illustration of a potential threat.

2.1. Drone Attack Models

Drones, by design, do not comprise a fool-proof end-to-end security solution to reduce
design and manufacturing costs. Common security gaps that persist within commercial
drones are: vulnerability to firmware manipulation, lack of encryption of static data as well
as communicated data (to the ground controller) [6].

Some drone manufacturers provide over-the-air (OTA) firmware updates analogous to
mobile phone software patches (updates). Through such practice, vulnerabilities identified
in drones post-purchase can be patched to avoid a compromise.

A software or firmware vulnerability in a drone can be exploited by the adversary
through the modification of strings of data causing the drone to malfunction. Consequent
adversarial actions can include flight trajectory changes and failure to encrypt flight logs [6].

On-device drone data is critical to operations, but also the transit from the drone to a
ground-based controller in an unencrypted form could lead to a compromise. If the data are
sensitive they could fall into adversarial hands and could subsequently be misused. Legacy
network communication protocols would not encrypt drone data by default before it is
communicated wirelessly to a ground controller. Additionally, the exposed vulnerabilities
through unhardened firmware could lead to the disablement of encryption features, even if
they exist on a drone.

In [7], the impact of drone-based threats to its operations have been categorized into
the following:

1. Unavailability of a UAV;
2. Disruption of UAV operations;
3. Performance degradation and disconnection with ground controller;
4. Misleading GPS information;
5. Exposure of confidential UAV information;
6. Damage to infrastructure;
7. Compromised and misbehaving UAV.

The standard process to weigh in all parameters for a threat model, as proposed in [7]
compromise: threat identification, severity estimator, likelihood of an attack, attack ranking
and risk scores. The adversarial goals, as listed above, can be mapped to various threats
that can be presented to a drone’s software/firmware, a ground controller and the central
cloud services that a drone connects to.
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Additionally, an adversary may also pose a threat by hijacking a communication signal
by either disrupting the signal or replacing the same with a malicious one. Consequently,
the drone will operate outside its routine mode of operation.

Tran et al. [8] extend the specific operations risk assessment (SORA) [9] to include
cybersecurity risks. They have proposed threat and harm extensions to the SORA method-
ology. Threat extension covers different cybersecurity threats that can occur to drones,
which could make drone operations out of control. In other words, the threats are the main
reason for drone-related hazards. SORA represents the potential outcomes of the Hazards
as Harms. Cyber Harms primarily considers the privacy issues that can occur because of
cyberattacks. It also considers physical and digital damages that could occur because of
cyberattacks on drones. SORA includes two types of barriers: threat and harm barriers.
Threat barriers prevent the Hazard incidence once a threat incident has occurred. Similarly,
Harm barriers avert the Harm after a Hazard incident.

2.1.1. Denial of Service

In [10], a denial of service (DoS) attack was tested against the Parrot ANAFI Drone.
The drone was connected to a Wi-Fi access point, that emulates a ground controller. The
identified threat was the compromise of the Wi-Fi password, which can foster adversarial
attempts to send falsified flight commands. With no knowledge of the password, the
adversary may still be able to perform a deauthentication attack and attempt to crack the
same. A third option could simply be an attempt to disconnect communication between
the drone and the access point (ground controller).

A DoS attack can also be perpetrated through an adversary who is able to disrupt
a drone-to-ground controller or ground controller-to-cloud communication channels by
flooding the communication channel with a large volume of ficititious network traffic, con-
sequently overwhelming the computational assets, and preventing them from continuing
with routine operations. Such an attack can be carried out using a technique such as ’Low
Orbit Ion Cannon’ with TCP flooding attack enabled on port 80 if the communication
between the ground controller and the cloud services adopts the TCP protocol. The Hping3
is command-line software that can also be deployed to carry out a TCP SYN flood attack
(DoS) against a drone system asset [10].

A ground controller station can also be compromised by the adversary, which will
then send a suspicious signal to mislead a drone or even cause a crash. Through an analysis
of the receiver signal strength indicator (RSSI) values and by triangulating the numbers
with neighboring drones and their data, the scheme proposed in [11] can prove to be
resilient to DoS attacks.

2.1.2. Hijacking

Disruption of drone operations through modification of software can also be staged
at the adversarial machine learning level. The drone quadrotor can be programmed to
disrupt drone flight when it is subject to fictitious objects that can be observed through its
sensors during flight, causing it to trigger a hazard avoidance routine and thus leading to a
variation in flight trajectory. This can also be defined as a hijacking attack.

Quadrotors typically have a return to home (RTH) state, that may be induced by
the adversary so as to cause abandonment of the next waypoint. Typically, a drone that
runs low on battery or is disconnected from the ground controller would have the RTH
state activated. However, the authors in [12] have identified four threat models, namely,
jamming of the communication channel, obscuring the main sensor/mirror, duplicating
the target image and disrupting the object tracker (hide or change object makeup). Subject
to these threats, the drone can not simply be forced to change to an RTH state, but can
also be misconfigured and forced to reach an incorrect waypoint. Deliberate attempt to
present to the drone’s vision sensors images, reflections or other attack vectors (visual) can
be adopted by the adversary to cause such disruptions [12].
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2.1.3. GPS Signal Jamming/Spoofing

GPS spoofing entails the presentation of inaccurate geo-location/coordinates to a UAV
in-flight. GPS blueprints are widely available and can therefore easily be spoofed [13].
Such a malicious attack can be perpetrated simply by setting up a power amplifier and
a transmission antenna that relays RF signals to a target. As drones are programmed to
accept unencrypted GPS signals, spoofing of the data is a feasible attack and can lead to
catastrophic results for the target drone. A varied coordinate signal could cause the drone
to change its flight path and trajectory and may lead to a crash, with affected entities,
including human citizens of the smart city, power lines, vehicles in commute and other
ground objects [14].

Table 1 summarizes security property compromised, threat types and their impact analysis.

Table 1. Attack impact analysis.

Level Resources Affected Motive Impact

Hardware Drone, ground
controller

Sabotage, data
exfiltration Flight path, crash

Firmware Drone, ground
controller

Process and state
tampering,

Incapacitation
Crash, data loss

Software
Drone, ground
controller, edge

devices

Sabotage,
compromise

Process disruption,
Flight path/services

crippled

Network Communication
channel

Data exfiltration,
modification

Flight disruption,
access denial

Process Drone, ground
controller, edge, cloud Software malfunction Flight disruption,

data loss

2.2. IDS Design

Drone-based attacker tactics against heterogeneous smart city ICT platforms are reliant
upon the ability of the threat actor to intrude the drone firmware and/or the ground
controller with the intent to either divert the same to an unwarranted locale, to cause it
to crash or to modify its trajectory and make it observe and report phenomena back to a
rogue command and control center (C2). Traditionally, intrusion detection for cyber physical
systems can be categorized into signature-based and anomaly-based. For the former, the
detection system has to be pre-configured with signatures of known attacks, which can
subsequently be matched with live/observed drone data, possibly at the ground controller
unit. Anomaly-based systems, on the other hand, are trained to identify normal/legitimate
data flow, including network traffic which refers to routine drone behavior. Deviation from
the norm is subsequently tagged as an attack. Contemporary intrusion detection system
design comprises robust machine learning techniques that allow for correlation of multiple
data streams that can emanate from the drone, ground controllers and edge nodes of a drone
control system. Popular techniques that can be adopted for detecting adversarial attempts
to penetrate the drone system include support vector machines (SVMs), deep learning,
and extreme learning machines (ELMs) [15]. To place an intrusion detection system as an
overlay on a ground controller would entail significant computing and storage usage.

The concept of training an intrusion detection system with known or malicious signa-
tures, for subsequent detection, can be adopted without modification albeit the data itself
will require massaging and preparation for presentation to the intrusion detection system
during the training as well as the testing phases.

Whilst an intrusion detection system can be placed in a high performance device, in-
cluding a ground controller to detect adversarial attempts to compromise a drone, the ability
of such a system to function on resource-constrained devices, such as drones, is a challenge.
We present an approach based on random forest machine learning, to enable a drone
to re-train on classification data, with minimal overhead (see Section 5).
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2.3. Machine Learning for Intrusion Detection

According to the Capgemini report, 61% of organizations confirm that they will not be
able to identify critical threats without Artificial Intelligence [16]. AI-driven cybersecurity
controls can detect a malicious attack before it achieves its malicious goals, predict future
attacks through intelligent forecasting based on analysis of empirical data and present mech-
anisms for automated response to threats through generation and rendering of software
patches to digital assets [16].

Machine learning can be defined as a category of Artificial Intelligence, wherein
the notion of mathematical modeling of data is adopted to train the machine learning
classifier. The classifier subsequently is subject to test data, which it classifies based on its
developed capability during the training phase. Broadly, machine learning classifiers can
be categorized into the following four categories:

• Supervised learning—the data presented to the machine learning classifier is labeled
as per its class definition. For instance, in a drone attack the label can be placed for those
data samples (rows of data) that represent an attack vector. Similarly, routine drone flight
data can be categorized as normal, which can serve as the second label for data samples.
During the testing phase, data samples are presented to the trained classifier (model)
without labels, and performance measurements of the classifier are measured through
comparison of its classification outcomes to the actual class lables of the test dataset.

• Unsupervised learning—the data presented to the classifier are unlabeled, and the clas-
sification procedure in itself follows the process of clustering similar data samples into
a given cluster and through differentiation at the inter-cluster levels.

• Reinforcement learning—the concept is based upon producing a ’rewarding function’,
which produces an optimal or a near-optimal classification of data samples, without
the dependence upon labels or supervision. Typical reinforcement learning algorithms
adopt Markov decision models to assess input data samples to attain the highest cu-
mulative reward, when the classification is performed. This concept can be combined
with supervised learning (for labeled data samples) to enhance the overall accuracy
of the classifier.

Popular machine learning classifiers for drone applications include Naive Bayes,
support vector machines (SVMs) and random classifiers. Random forest classifiers are
ensemble-based classifiers known for their robustness in image classification. In [17],
random forest classifiers are adopted for classification of images captured by a drone
to identify vegetation in remote sensing fields. The first step of the classification is to adopt
a bootstrap strategy wherein, nearly two-thirds of the training data samples are consumed
to produce a decision tree. The remainder data samples are named out-of-bag data, which
are subsequently used for inner cross validation of the trained random forest decision tree
model, for accuracy.

Support vector machines (SVMs) are supervised machine learning algorithms that
belong to the family of linear classifiers. The objective of the SVM training algorithm is
to build a hyperplane in an N-dimension space that maximizes the margin between the two
classes of data. Hyperplanes are typically decision boundaries that enable the distinguish-
ing of data points of one class from another.

The Naive Bayes (NB) classifier is a simple probabilistic technique that is based
on the concept of the Bayes theorem. It functions by assigning a posterior probability
to a data sample for belonging to a class, Y, based on the a priori training of the classification
algorithm on a dataset. Attributes are assumed to be independent of each other, i.e., feature
dependence is not a criteria for training and testing. NB classifiers are known for their high
accuracy in classifying string data.
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Supervised learning techniques have been previously adopted to identify cyber threats
in a drone system. In [18], a framework is presented for the classification of drone data
into malicious or normal through adoption of standard drone data for presenting to a post-
incident machine learning classifier, in order to infer a cyber criminal activity as part
of digital forensic investigations.

3. Data Acquisition and Attack Vector Generation

Considering the wide spread adoption of drones for smart cities, to undertake oper-
ations and render timely services, associated cyber threats need to be highlighted. Once
an intruder is successful in gaining access to a UAV, it can carry out other attacks such as
data theft (of sensitive video and image recordings from drone), data corruption, Denial
of Service (DoS) or signal jamming, with a motive to sabotage a UAV in flight or to modify
its flight path and fly it to an unwarranted waypoint. A compromised drone can be forced
to crash through GPS spoofing techniques or by deliberately powering-off the motors
in an attempt to rapidly drop its altitude, with an intent to incapacitate (or completely
damage) the drone.

Detecting anomalies in a drone through the analysis of its on-device data is, therefore,
imperative to foster a secure drone flight and to prevent a cyber attack from occurring.
To our knowledge, there does not exist a robust and labeled flight dataset for UAVs
to introduce an anomaly detection exercise, and therefore, we proposed a methodology
wherein abnormal (outlier) events are found through analysis of flight logs of a DJI Phantom
drone are reverse engineered to construe attacks.

Several references discuss the presence of anomalies in drone data. We examine
references [19–21] to interpret the possibility of anomalous flight patterns in drones. In [21],
motor temperature monitoring is undertaken to identify beyond-normal patterns. In [19],
drone in-flight faults that could cause a crash have been highlighted. To detect such faults,
motor speeds and drone altitudes are examined to identify potentially anomalous events
in drone logs. Similarly, drone log analysis techniques described in [22] illustrate the use
of drone flight logs for detecting a drone crash. The proposed scheme adopts the analysis
of data obtained from the accelerometer, drone motor and altitude, to detect a crash. Based
on this, it can be concluded that flight logs are an important source of information, which
comprise both normal and anomalous drone flight operation data.

As part of our proposed attack model, we first identify the potentially anomalous
flight operations using exploratory data analysis and then identify potential scenarios that
might closely match cyber attacks.

3.1. DJI Phantom 4 Data

The DJI Phantom 4 drone dataset was acquired from VTO Labs [23], comprising DAT
files of flight logs, obtained from various flights undertaken by a single drone. The dataset
includes 40 flight logs. However, only 18 logs could be adopted for our experiments
due to the presence of inconsistencies and errors such as missing parameter values and
lack of GPS data or the occurrence of truncated files, which were consequently discarded.
These flight logs comprised information recorded by the main components of the UAV,
including the flight controller, gyro stabilizer, on-board flight computer communication
system, power supply, GPS modules and the likes [24]. The DAT files were processed and
converted into CSV files using the CSVView and DatCon tools as also adopted in previous
studies [25]. The sampling rate chosen in the DatCon tool to extract the CSV formatted file,
was set at 10 Hz.

CSV files thus obtained comprised 289 fields (column labels). Categories of data
available in these flight logs are listed as follows:

• State Signals;
• Time-Series Signals (including):

– Air Speed,
– ATTI_MINI (Attitude Mode),
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– Battery Info,
– Batter Status,
– Clock,
– Compass Filter,
– Controller,
– GPS,
– IMU_ATTI (inertial measurement unit),
– Motor and Motor Control,
– osd Data (on screen display),
– RC_info (radio controller information).

State signals are categorical fields indicating the state of the drone whilst in flight.
In contrast, the time-series signals are numerical fields with some observed value of vari-
ous fields related to its flight. In this work, we only study the time-series fields to avoid
unpredictable behavior of machine learning algorithms, given the variability of time se-
ries data (i.e., entropy). Specifically, the flight logs from the following file path within
the DJI Phantom memory system were considered: “Drone_Forensics > DJI_phantom_4 >
df005_DJI_Phantom_4 > 2018_June > flight_logs > flight_logs.zip“. To perform exploratory
analysis and classification tasks, only data files that contained the full set of 288 features
were considered. Some of the important features related to flight logs are listed in Table 2.

Table 2. Important flight data features for intrusion detection tasks.

Field Description

Clock:offsetTime Time since the start of the flight

’IMU_ATTI(0):Longitude’ Drone’s geographic east-west location
on Earth’s surface

’IMU_ATTI(0):Latitude’ Drone’s geographic north-south location
on Earth’s surface

’IMU_ATTI(0):relativeHeight:C’ Altitude of the drone

’IMU_ATTI(0):roll:C’ Left-right movement angle of the drone
horizontally

’IMU_ATTI(0):pitch:C’ Forward and backwards movement angle
of the drone

’IMU_ATTI(0):yaw:C’ Rotation around the drone’s central axis

’IMU_ATTI(0):distanceTravelled:C’ Distance travelled by the drone from the start
point

’Controller:ctrl_throttle:D’ Throttle given to the drone usually
for providing lift.

IMU_ATTI(0):numSats Number of satellites that the drone is
connected to

Controller:motor_average_speed:D Average speed of the drone’s four motors.

osd_data:navHealth

The navigation health of drone in terms
of number of GPS satellites it is connected to.

Value of zero indicates unreliable GPS data and
value of five indicates good signal reception.

RC_info:frame_lost This field indicates the connectivity between
radio controller and the drone.
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Table 2. Cont.

Field Description

ctrl_throttle:D This indicates the throttle given to the drone
from the user.

BatteryStatus:volLevel This field indicates the voltage level
of the battery.

Motor:Speed:RFront Drone’s right front motor speed

Motor:Speed:LFront Drone’s left front motor speed

Motor:Speed:LBack Drone’s left back motor speed

Motor:Speed:RBack Drone’s right back motor speed

3.2. Exploratory Analysis—Discerning Malicious Outliers

In order to conduct an exploratory analysis, we first adopted the commonly used
clustering algorithm, namely, unsupervised Gaussian mixture models (GMM) for cluster
and outlier analysis as shown in Figure 2. This procedure was undertaken to identify
potential anomalous points in the dataset. For the exploratory analysis, we only considered
a subset of flight logs. Instead of using Euclidean distances, GMM uses probability distri-
bution of various points (of the feature-value tuples of the dataset), to identify various data
distributions that exist in the dataset. The advantage of using GMM is that it considers
data points that belong to the same cluster and which follow a Gaussian distribution.
Hence, each distribution is defined as a unique cluster. Figure 3 presents the various
clusters formed in the partial dataset, which also contains outlier samples. Further analysis
of the flight path data for this data subset yields the finding that there are anomalous flight
events in flight log 19, as shown in Figure 3.

Figure 2. Pitch vs. roll in flight trajectory clusters obtained from GMM.

Figure 3. Identifying the flight number with abnormal pitch values.
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Further analysis of flight19 logs using the CSVView tool indicates more anomalous
events during the flight. The data revealed that an anomalous event occurred in the initial
stages of the flight operations, which comprised a sharp increase in the pitch angle and
a sharp descent of the drone along with a low/zero thrust to the drone, as shown in Figure 4.
The sudden drop in the flight altitude can also be attributed to a cyber attack wherein
an intruder deliberately hijacks the drone and suddenly impedes throttle to cause the drone
to descend steeply and crash and get destroyed.

Figure 4. Abnormal operations in flight-log-19.

The GPS jamming attack comprises a disruption of GPS signals through jamming
of signals (radio) that are transmitted and received between a drone and a ground controller
unit. Figure 5 shows the time window of the flight operation wherein the GPS signals
become unreliable. A GPS jamming attack results in a similar situation wherein, GPS signals
can be disrupted to cause the drone to loose the ability to identify its flying coordinates,
and possibly trigger a Return To Home (RTH) routine [14].

Figure 5. Unreliable GPS signal observed in the drone.

A DoS event is the occurrence of a sudden loss in the power supply to the drone
motors/rotors (hijacking). The thrust to the drone is provided by its four motors (two
in front and two in the back), in a typical quadcoptor model. Through switching of these
motors, the drones are maneuvered and its height is controlled.
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In regard to hijacking attacks, a sudden drop in motor speeds can occur when an in-
truder successfully gains access to the drone’s ground controller or is successful in hijacking
a remote asset such as an intermediary device that the ground controller is communicating
with, and can thus deliberately power off the motors. This potential anomalous event is
illustrated in Figure 6.

Figure 6. Sudden drop in motor speeds observed in the drone.

A variant denial of service (DoS) attack scenario causes the data communication
flow between a ground-based radio controller and resulting in significant communication
loss. In-flight parameters, namely, ’osd_data:connectedToRC’ and ’RC_Info:frame_lost:D’
capture the status of the connection between the radio controller and the drone. During
in-flight drone operations, situations may arise wherein communication between a radio
controller and the drone is lost under certain natural weather phenomena. We argue that
in the presence of a DoS attack, a similar situation may arise due to the communication
between the drone and controller being lost, not as a consequence of a natural phenomena
but rather through a malicious event of sabotage perpetrated by the adversary. Hence,
we identify the instances of the dataset wherein communication is disrupted, to mark
a potential anomaly representative of a DoS attack. It may be noted that a DoS attack even
for legacy systems is hard to distinguish from flash crowds comprising legitimate network
traffic, though their impact on the victim device (drones in our case) is the same [26].

For routine operations, DJI drones communicate with the radio controller using some
form of wireless communication technology (i.e., ocusync or other versions also use Wi-Fi).
If the communication channel is under attack the drone can lose communication with
the radio controller. The logs record the communication health with the radio controller
using the rc-info-frameloss variable. We ignore arbitrary frame loss for the study, however,
we label a continuous frame loss as being part of adversarial dirsuptions, that can refer
to a DoS attack.

In addition, we also replicate the frame loss events obtained from flight logs and
increase the number of such instances wherein a frame loss has occurred, to add a range
of random anomalous (DoS) events to the log file (and to obtain a good balance between
normal and anomalous data samples). Similarly, instances where the connection between
the radio control (RC) and the drone is lost (indicated by frame_loss) are also marked
as a DoS attack, as shown in Figure 7. Variant versions of DoS attacks (including stealthy
attacks) were not considered for our experimental analysis.
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Figure 7. Continuous frame loss due to DoS attacks against the drone.

As shown in Figure 8, the parameter rc_connect changes the state to zero, indicating
a DoS attack. In Figure 7, blue lines indicate frame-loss recorded in the flight logs and
orange lines indicate the label given to these instances.

Figure 8. Drone and radio control disconnected.
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4. Proposed Intrusion Detection Framework

The proposed framework used in this work is presented in Figure 9. The first stage
comprises obtaining the flight logs as DAT files from the VTO labs drone dataset repository.
The DAT files were then converted into CSV files using the tools and processes mentioned
in [27]. The extracted dataset was then analyzed for various anomalous data points that match
the attack scenarios listed, namely, GPS signal loss, jamming and DoS attacks.

Flight logs 
DAT files

Covert to 
CSV 
format

Pre-
processing

Training Testing

Deploy 
modelMachine Learning

Detect 
attacks

Insert / label 
anomalous 
scenarios

Figure 9. Framework to detect malicious attacks in UAVs.

Based on the types of cyber attacks that target UAVs, the abnormal data points
were labeled as attack and remaining data points as normal. For the DoS attack sce-
nario, additional data points that replicate frame loss were inserted into the dataset that
reflect the drone state during the attack. The various flight logs were then combined
to form a single dataset with multiple flight scenarios. From the dataset, features that
highlight the flight path were extracted for classification tasks. The features extracted
were: ’IMU_ATTI(0):Longitude’, ’IMU_ATTI(0):Latitude’, ’IMU_ATTI(0):relativeHeight:C’,
’IMU_ATTI(0):roll:C’, ’IMU_ATTI(0):pitch:C’, ’IMU_ATTI(0):yaw:C’, ’IMU_ATTI(0): dis-
tanceTravelled:C’, ’RC_Info:frame_lost:D’, ’Motor:Speed:RFront’, ’Motor:Speed:LFront’,
’Motor:Speed:LBack’, ’Motor:Speed:RBack’, ’osd_data:navHealth’, ’IMU_ATTI(0):numSats’
and ’Output’. The pre-processing stage then further removes data points with valid values,
such ’NAN’ are removed from the dataset before the classification task.The dataset details
are listed in Table 3.

Table 3. Dataset description.

Categories Dataset Total Flights Types of Attacks Included

Normal 97255 18

- Deliberate motor shutdown
(all four motors speed = 0)

- DoS attacks (frame loss = 1)
- GPS jamming (navhealth = 0)

Attack 14590

navHealth is a log feature that indicates the health of communication messages
between a drone and GPS satellites. Anomalous navHealth values can be attributed
to a drone’s inability to communicate properly with satellites, and this can also potentially
be attributed to a GPS jamming attack wherein, radio signals are impeded to prevent
routine drone to satellite communication, and thus disrupting flight operations. Figure 5
presents the anomalies as obtained through analysis of the navHealth parameter values.

Once the pre-processing is completed, the dataset is then fed to a machine learn-
ing algorithms such as random forest, navie bayes, linear regression and SVM. The best
performing model is then selected for deployment for intrusion detection in drones.
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5. Simulations and Analysis
5.1. Setup

The exploratory analysis and machine learning tasks were performed on a machine
with a Windows 10 Laptop, 16 GB RAM running on an 11th Generation Intel(R) Core(TM)
i7-1185G7 3.00 GHz. The simulations and machine learning-based data clustering tasks
were performed using Python Scikit-learn libraries [28].

5.2. Data Split and Metrics

The dataset for the DJI Phantom 4 was split into a 80–20 configuration with 80%
used for training and the remainder 20% for testing of the trained models. The splitting
method chosen was based on the Pareto principle wherein an 80/20 rule is adopted to split
the dataset into training and testing samples. The following performance metrics were
considered, and associated values were generated by the simulator:

• Accuracy:
TP + TN

TP + FP + TN + FN
is the number of instances correctly classified given

all the instance predictions, where true positive is TP, true negative is TN, false
positive is FP and false negative is FN.

• Recall:
TP

TP + FN
indicates the number of TPs compared to the positive class in-

stances. A low recall value represents a high number of attack instances missclassified
as normal.

• Precision:
TP

TP + FP
indicates the number of TPs predicted correctly. A low value

of precision represents a high proportion of false positives whereby normal instances
are marked as attack instances.

• Area under the curve (AUC): ∫ 1

0
TPR(x) dx

where TPR is the true positive rate and x is the false positive rate. Values range
between 0 and 1.

Furthermore, the performance of the random forest classifier was evaluated for various
values of the max-depth parameter and variable number of estimators. Max-depth and number
of estimators are hyperparameters of a random forest classifier that can tuned for identifying
the best performing settings. Max-depth controls the tree depth of the random forest, which,
in turn, controls the complexity of the generated decision tree. Increasing the tree depth can
increase the complexity of the decision tree and can also impact training time. A high value
of max-depth can cause the random forest to over-fit it and, hence, it is not a recommended
practice [29]. Through our studies, we explored the values of max-depth in the range of two
to six and considered the number of estimators to control the number of trees generated
for the random forest. The value explored was between 5 and 15.

5.3. Analysis

Results obtained through experiments yielded an outcome that showed superior
classification accuracy of the random forest classifier in detecting the three UAV attacks
presented in this work. Table 4 shows the impact of choosing different values for the max-
depth parameter and the resulting best detection results were obtained with a setting,
max depth = 6. In contrast, the results obtained for varying the number of estimators
presented in Table 5 and Figure 10 show that the accuracy of the model first increases with
the number of estimators and then reduces after the value of nine is reached. Hence, we
can conclude that the optimal number of estimators for random forest in detecting UAV
attacks is nine.
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Table 4. Impact of max_depth on accuracy, precision and recall rates for the random forest classifier.

max_depth Accuracy Precision Recall Training Time

2 0.9517 0.8767 0.7518 0.2288

3 0.9796 0.9818 0.8666 0.2599

4 0.9782 0.9979 0.8421 0.3401

5 0.9914 0.9930 0.9436 0.3846

6 0.9947 0.9960 0.9653 0.4455

Table 5. Impact of number of estimators on accuracy, precision and recall rates for the random
forest classifier.

n_estimators Accuracy Precision Recall Training Time

5 0.9636 0.9847 0.7448 0.1424

7 0.9651 0.9841 0.7567 0.1862

9 0.9784 0.9759 0.8631 0.2544

11 0.9615 0.8843 0.8264 0.3371

13 0.9763 0.9848 0.8393 0.3557

15 0.9757 0.9896 0.8309 0.4062

Figure 10. Impact on random forest accuracy for increasing numbers of estimators.

Similar observations can be made from the receiver operating characteristics (ROC)
curve that illustrate the model performance, as shown in Figures 11 and 12. The ROC
curves plot the false positive rate against the true positive rate indicating the discrimina-
tion capability between classes for the generated models. A higher area under the curve
indicates better capability of models to distinguish between UAV attacks and normal
UAV flight operations. Comparing the two hyper-parameters, namely, the max depth and
the number of estimators, it is found that the max-depth increases the ability of the gener-
ated/trained model to differentiate between the attack and normal classes but may also
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lead to overfitting. However, the number of estimators with a value of nine showed the best
differentiation capability between normal and malicious drone flight logs.

Figure 11. ROC curve comparing the performances with varying values of max_depth.

Figure 12. ROC curve comparing the performances with varying values of numbers of estimators.

The random forest classifier also outperformed other classifiers, namely, Naivee Bayes
(NB), linear regression (LR) and support vector machines (SVM). Table 6 presents the com-
parison of individual classifier performances against the random forest scheme. The results
show that random forest with a max-depth set to three and number of estimators set to nine
obtained better accuracy, precision and reasonably good recall rates. Especially with large
differences noted between the normal and attack categories, the precision and recall results
are essential metrics to justify classifier performance in terms of the number of UAV attacks
and normal instances to be correctly labeled as belonging to attack and normal classes,
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respectively. The results also show that random forest had very high precision values
when compared to other models indicating it was able to detect most attacks and normal
instances correctly with low false positives. On the other hand, the other classifiers had
higher recall rates when compared to random forest, indicating that certain attack instances
of the UAV flight were classified as normal. The reason for this could be that the attacks, such
as frame loss, occuring during a DoS attack may also occur due to various other non-adversarial
causes, including the longer distance of the drone (in-flight) from the ground controller, terrain
specifications and weather conditions. Hence, it is challenging to detect attack instances when
drones are operated in difficult conditions, and to differentiate the same against naturally
caused malfunctioning.

To further compare the generalization performance of classifiers, we obtained flight
logs from a second DJI Phantom 4 drone obtained, from the VTO labs repository [23] com-
prising eight usable log files. After following a similar labeling process as was undertaken
for the first dataset, we compared the performance of the four classifiers on the combined
dataset, with results illustrated in Table 7. A comparison of classifier accuracies for both
a single drone as well as a combined drone dataset is presented in Figure 13. For the com-
bined datset, the results show that the accuracy of the RF classifier slightly drops and
slightly increases for other classifiers. However, looking at the precision and recall val-
ues in Table 7, all classifiers yielded a degraded performance. This could be due to an
increased number of normal data samples when compared to attack samples in the com-
bined dataset. These results also indicate that the RF classifier still outperforms the other
classifiers in terms of accuracy and precision rates, making it more suitable for detecting
DoS and GPS jamming attacks.

Finally, looking at the time required to build the models by various classifiers, Naive
Bayes yielded the lowest training time and SVM yielded the highest with just 5000 data
samples. This is an important aspect to be considered when developing models for UAV
intrusion detection. With low computation capabilities on a typical drone, on-device rapid
training on smaller datasets is thus more realizable.

Table 6. Comparison of various machine learning models for detection rates.

Classifier Accuracy Precision Recall Training Time

RF 0.9784 0.9759 0.8631 0.2544

NB 0.8595 0.4930 0.9958 0.0306

LR 0.8595 0.4930 0.9958 0.4992

SVM (5000 samples) 0.848 0.4773 0.9856 130.086

Table 7. Comparison of various machine learning models for combined dataset from two drones.

Classifier Accuracy Precision Recall Training Time

RF 0.9686 0.8919 0.7905 1.3088

NB 0.8837 0.4679 0.9639 0.0458

LR 0.8837 0.4679 0.9639 1.0421

SVM (10,000 samples) 0.877 0.4261 0.9781 155.509
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Figure 13. Comparison of model accuracy for datasets obtained from (blue) single and (orange)
combined (two drones).

6. Conclusions

The performance evaluation of UAV attack detection was performed using various
machine learning algorithms. The results showed that random forest had superior detection
capabilities. In future work, we would like to include more attack types as well include
flight logs from different drones. The current dataset contains flight logs only from single
drone and hence the developed models must be trained on dataset from different drones
to better generalize.

Author Contributions: Conceptualization, Z.B. and N.M.; methodology, N.S. and Z.B.; validation,
N.M. and Z.B.; project administration, Z.B and N.M.; Experimentation and Analysis, N.S. All authors
have read and agreed to the published version of the manuscript

Funding: This research was funded by Prince Mohammad Bin Fahd University Futuristic Cen-
ter Grant.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The researchers would like to acknowledge Deakin University and
Prince Mohammad Bin Fahd University (PMU Futuristic Center Grant) for their continuing support
for research and development.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GlobeNewswire, Global Smart Cities Market to Reach $2.5 Trillion by 2026. Report Linker. Available online: https://www.globen

ewswire.com/en/news-release/2022/02/22/2389027/0/en/Global-Smart-Cities-Market-to-Reach-2-5-Trillion-by-2026.html
(accessed on 26 May 2022).

2. Royal Australian Army, S-100 Camcopter. The Australian Navy. Available online: https://www.navy.gov.au/unmanned-systems
/s-100-camcopter (accessed on 26 May 2022).

3. MARKETSANDMARKETS, Unmanned Aerial Vehicle (UAV) Market by Point of Sale, Systems, Platform (Civil & Commercial,
and Defense & Governement), Function, End Use, Application, Type, Mode of Operation, MTOW, Range, and Region (2021–2026);
2022. Available online: https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.h
tml?gclid=CjwKCAjw4ayUBhA4EiwATWyBrm97qtgMfNVJnoGd6RBQnk2bvtZc3B_4rQATLR3DW2oIU8HA_206bhoCu6EQ
AvD_BwE (accessed on 26 May 2022).

4. Browning, D. UAVs Can Play a Vital Role in the Future of Smart Cities. SmartCitiesDive 2020. Available online: https:
//www.smartcitiesdive.com/news/uavs-can-play-a-vital-role-in-the-future-of-smart-cities/586857/ (accessed on 26 May 2022).

https://www.globenewswire.com/en/news-release/2022/02/22/2389027/0/en/Global-Smart-Cities-Market-to-Reach-2-5-Trillion-by-2026.html
https://www.globenewswire.com/en/news-release/2022/02/22/2389027/0/en/Global-Smart-Cities-Market-to-Reach-2-5-Trillion-by-2026.html
https://www.navy.gov.au/unmanned-systems/s-100-camcopter
https://www.navy.gov.au/unmanned-systems/s-100-camcopter
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html?gclid=CjwKCAjw4ayUBhA4EiwATWyBrm97qtgMfNVJnoGd6RBQnk2bvtZc3B_4rQATLR3DW2oIU8HA_206bhoCu6EQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html?gclid=CjwKCAjw4ayUBhA4EiwATWyBrm97qtgMfNVJnoGd6RBQnk2bvtZc3B_4rQATLR3DW2oIU8HA_206bhoCu6EQAvD_BwE
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html?gclid=CjwKCAjw4ayUBhA4EiwATWyBrm97qtgMfNVJnoGd6RBQnk2bvtZc3B_4rQATLR3DW2oIU8HA_206bhoCu6EQAvD_BwE
https://www.smartcitiesdive.com/news/uavs-can-play-a-vital-role-in-the-future-of-smart-cities/586857/
https://www.smartcitiesdive.com/news/uavs-can-play-a-vital-role-in-the-future-of-smart-cities/586857/


Future Internet 2022, 14, 205 19 of 19

5. Dedrone Rolls Out Portable AI-Powered Drone Detection Unit. Res. Rep. 2022. Available online: https://www.verdict.co.uk/de
drone-rolls-out-portable-ai-powered-drone-detection-unit/ (accessed on 26 May 2022).

6. Salamh, F.E.; Karabiyik, U.; Rogers, M. A Constructive DIREST Security Threat Modeling for Drone as a Service. J. Digit. Forensics
Secur. Law 2021, 16. Available online: https://commons.erau.edu/cgi/viewcontent.cgi?article=1695&context=jdfsl (accessed on
26 May 2022). [CrossRef]

7. Singh, K.; Verma, A.K. Threat modeling for multi-UAV adhoc networks. In Proceedings of the TENCON 2017—2017 IEEE Region
10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 1544–1549.

8. Tran, T.D.; Thiriet, J.M.; Marchand, N.; El Mrabti, A. A Cybersecurity Risk Framework for Unmanned Aircraft Systems under
Specific Category. J. Intell. Robot. Syst. 2022, 104, 1–15. [CrossRef]

9. Specific Operations Risk Assessment (SORA). 2021. Available online: https://www.eurocockpit.be/sites/default/files/2019-01
/SORA_ECA_Position_Paper_19_0128_F.pdf (accessed on 26 May 2022).

10. Feng, J.; Tornert, J. Denial-of-Service Attacks Against the Parrot ANAFI Drone. Batchelor Thesis, KTH Royal Institute of Technol-
ogy, Stockholm, Sweden, 2021.

11. Chibi, N.; El Ghazi, H.; Fihri, W. Drone cyber-attack: An intrusion detection technique based on RSSI and trilateration.
In Proceedings of the Third International Conference on Transportation and Smart Technologies, Tangier, Morocco, 27–28 May
2021; pp. 42–45.

12. Doyle, M.; Harguess, J.; Manville, K.; Rodriguez, M. The vulnerability of UAVs: An adversarial machine learning perspective.
In Geospatial Informatics XI; SPIE: Bellingham, WA USA, 2021. [CrossRef]

13. Pardhasaradhi, B.; Cenkeramaddi, L.R. GPS Spoofing Detection and Mitigation for Drones Using Distributed Radar Tracking and
Fusion. IEEE Sens. J. 2022, 22, 11122–11134. [CrossRef]

14. Security analysis of drones systems: Attacks, limitations, and recommendations. Internet Things 2020, 11, 100218. [CrossRef]
15. You, I.; Yim, K.; Sharma, V.; Choudhary, G.; Chen, I.R.; Cho, J.H. On IoT misbehavior detection in Cyber physical systems.

In Proceedings of the 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), Taipei, Taiwan,
4–7 December 2018; pp. 189–190. [CrossRef]

16. How Sailpoint, AI and Machine Learning Are Improving Cybersecurity. SailPoint 2022. Available online: https://www.sailpoint.
com/topics/ai-machine-learning/?gclid=EAIaIQobChMIgOj71d7U-AIVlGSLCh2UqQssEAAYASAAEgJYtvD_BwE (accessed on
26 May 2022).

17. Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis.
Remote Sens. 2015, 7, 1074–1094. [CrossRef]

18. Baig, Z.; Khan, M.; Mohammad, N.; Brahim, G.B. Drone forensics and machine learning: Sustaining the investigation process.
Sustainability 2022, 14, 4861. [CrossRef]

19. Zibaei, E.; Banescu, S.; Pretschner, A. Diagnosis of safety incidents for cyber-physical systems: A UAV example. In Proceedings
of the 2018 3rd International Conference on System Reliability and Safety (ICSRS), Barcelona, Spain, 23–25 November 2018;
pp. 120–129. [CrossRef]

20. Bronz, M.; Baskaya, E.; Delahaye, D.; Puechmore, S. Real-time fault detection on small fixed-wing UAVs using machine learning.
In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–16 October
2020; pp. 1–10.

21. Lu, H.; Li, Y.; Mu, S.; Wang, D.; Kim, H.; Serikawa, S. Motor anomaly detection for unmanned aerial vehicles using reinforcement
learning. IEEE Internet Things J. 2017, 5, 2315–2322. [CrossRef]

22. DJI. Flight Records Analysis Tutorial. 2018. Available online: https://dl.djicdn.com/downloads/DJI+Support/Flight+Controlle
r+Data+Analysis+Series+Tutorials+V1.0.pdf (accessed on 15 June 2022).

23. Labs, V. Drone Forensics. 2020. Available online: https://www.vtolabs.com/drone-forensics (accessed on 15 April 2022).
24. Siddiqi, M.A.; Iwendi, C.; Jaroslava, K.; Anumbe, N. Analysis on security-related concerns of unmanned aerial vehicle: Attacks,

limitations, and recommendations. Math. Biosci. Eng. 2022, 19, 2641–2670. [CrossRef] [PubMed]
25. Mekala, S.H.; Baig, Z. Digital forensics for drone data–intelligent clustering using self organising maps. In Proceedings of the

International Conference on Future Network Systems and Security, Melbourne, VIC, Australia, 27–29 November 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 172–189.

26. Adi, E.; Baig, Z.A.; Hingston, P.; Lam, C.P. Distributed denial-of service attacks against HTTP/2 services. Clust. Comput. 2016,
19, 79–86. [CrossRef]

27. Kumar, R.; Agrawal, A.K. Drone GPS data analysis for flight path reconstruction: A study on DJI, Parrot & Yuneec make drones.
Forensic Sci. Int. Digit. Investig. 2021, 38, 301182. [CrossRef]

28. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

29. Liu, C.; Chamberlain, B.P.; Little, D.A.; Cardoso, A. Generalising random forest parameter optimisation to include stability and
cost. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Antwerp,
Belgium, 15–19 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 102–113.

https://www.verdict.co.uk/dedrone-rolls-out-portable-ai-powered-drone-detection-unit/
https://www.verdict.co.uk/dedrone-rolls-out-portable-ai-powered-drone-detection-unit/
https://commons.erau.edu/cgi/viewcontent.cgi?article=1695&context=jdfsl
http://doi.org/10.15394/jdfsl.2021.1695
http://dx.doi.org/10.1007/s10846-021-01512-0
https://www.eurocockpit.be/sites/default/files/2019-01/SORA_ECA_Position_Paper_19_0128_F.pdf
https://www.eurocockpit.be/sites/default/files/2019-01/SORA_ECA_Position_Paper_19_0128_F.pdf
http://dx.doi.org/10.1117/12.2589538
http://dx.doi.org/10.1109/JSEN.2022.3168940
http://dx.doi.org/10.1016/j.iot.2020.100218
http://dx.doi.org/10.1109/PRDC.2018.00033
https://www.sailpoint.com/topics/ai-machine-learning/?gclid=EAIaIQobChMIgOj71d7U-AIVlGSLCh2UqQssEAAYASAAEgJYtvD_BwE
https://www.sailpoint.com/topics/ai-machine-learning/?gclid=EAIaIQobChMIgOj71d7U-AIVlGSLCh2UqQssEAAYASAAEgJYtvD_BwE
http://dx.doi.org/10.3390/rs70101074
http://dx.doi.org/10.3390/su14084861
http://dx.doi.org/10.1109/ICSRS.2018.8688886
http://dx.doi.org/10.1109/JIOT.2017.2737479
https://dl.djicdn.com/downloads/DJI+Support/Flight+Controller+Data+Analysis+Series+Tutorials+V1.0.pdf
https://dl.djicdn.com/downloads/DJI+Support/Flight+Controller+Data+Analysis+Series+Tutorials+V1.0.pdf
https://www.vtolabs.com/drone-forensics
http://dx.doi.org/10.3934/mbe.2022121
http://www.ncbi.nlm.nih.gov/pubmed/35240800
http://dx.doi.org/10.1007/s10586-015-0528-7
http://dx.doi.org/10.1016/j.fsidi.2021.301182

	Introduction
	Background
	Drone Attack Models
	Denial of Service
	Hijacking
	GPS Signal Jamming/Spoofing

	IDS Design
	Machine Learning for Intrusion Detection

	Data Acquisition and Attack Vector Generation
	DJI Phantom 4 Data
	Exploratory Analysis—Discerning Malicious Outliers

	Proposed Intrusion Detection Framework
	Simulations and Analysis
	Setup
	Data Split and Metrics
	Analysis

	Conclusions
	References

