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Abstract: Many IoT use cases can benefit from group communication, where a user requests an IoT
resource and this request can be handled by multiple IoT devices, each of which may respond back to
the user. IoT group communication involves one-to-many requests and many-to-one responses, and
this creates security challenges. In this paper, we focus on the provenance that has been received by an
authorized device. We provide an effective and flexible solution for securing IoT group communication
using CoAP, where a CoAP client sends a request to a CoAP group and receives multiple responses
by many IoT devices, acting as CoAP servers. We design a solution that allows CoAP servers to
digitally sign their responses in a way that clients can verify that a response has been generated by
an authorized member of the CoAP group. In order to achieve our goal, we leverage Decentralized
Identifiers (DIDs) and Verifiable Credentials (VCs). In particular, we consider that each group is
identified by a DID, and each group member has received a VC that allows it to participate in that
group. The only information a client needs to know is the DID of the group, which is learned using
DNSSEC. Our solution allows group members to rotate their signing keys, it achieves group member
revocation, and it has minimal communication and computational overhead.

Keywords: CoAP; group management; DNSSEC

1. Introduction

Traditional Internet-based systems involve one-to-one communication, where a client
request a resource from a server (e.g., a web browser requests a web page from an HTTP
server). IoT systems, on the other hand, involve uses cases where one-to-many and many-
to-one communication patterns can be the norm and not an exceptional case: for example,
mass actuation (e.g., turn on the lights of a smart city), or location-dependent queries (e.g.,
obtain the temperature as measured by all sensors in a smart building), or subscription to
alerts (e.g., subscribe for a fire alert from any fire sensor in a building). In this paper, we
are considering an IoT system where multiple IoT devices or gateways can provide the
same “type” of information (e.g., temperature measurements), and all similar information
items can be accessed through the same “channel”, e.g., a user can collect all temperature
measurements through that channel: as a channel abstraction, we are considering URIs
used by the Constrained Application Protocol (CoAP) group communication [1]. Using
CoAP group communication, IoT endpoints can become members of groups that can be
accessed by CoAP clients using multicast IP. In this context, new security challenges arise.
Our paper focuses on the provenance verification security challenge, i.e., how CoAP clients
can verify that a response has been received by an IoT device authorized to participate in
the corresponding CoAP group. In order to achieve our goal, we leverage Decentralized
Identifiers (DIDs) [2] and Verifiable Credentials (VCs) [3].

A DID is a new form of identification under standardization by W3C. A DID is a
URI that can be resolved to cryptographic material that can be used for authenticating the
corresponding DID holder. Similarly a VC is a standardized method for asserting attributes
of a subject using a machine-readable encoding. In the proposed solution, a DID is used
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for authenticating IoT endpoints as well as for protecting CoAP groups. Similarly, VCs
are used for asserting CoAP groups membership for IoT endpoints. From a high-level
perspective, the proposed system operates as follows. Each CoAP group is associated with
a DID and the corresponding DID document includes public key(s) used for signing group
membership VCs for IoT device owners. VCs map the DIDs of IoT device owners to groups
in which their devices are allowed to participate. Then, each IoT device owner configures
their devices with a signing key, an appropriate DID document and the corresponding
membership VC. Using these, IoT endpoints can sign CoAP responses by generating a
signature that can be verified using information included in the configured DID document.
With our solution, we make the following contributions:

• Given the DID of a group, any entity can verify that a signed item has been produced
by an authorized member of that group.

• The signing keys of the IoT devices can be rotated without requiring any communica-
tion with the group administrator, or other group members, or clients.

• IoT endpoints can be easily added to or removed from a CoAP group.
• IoT endpoints have only to implement legacy digital signature algorithms in order to

support our solution.
• Breached singing keys can be easily detected.

The remainder of this paper is organized as follows. We introduce CoAP group
communication, DIDs, and VCs, and we discuss related work in Section 2. In Section 3, we
detail our design. In Section 4, we present the implementation and the evaluation of our
solution. Finally, we conclude our paper and we discuss future work items in Section 5.

2. Background and Related Work
2.1. CoAP Group Communication

CoAP [4] is a lightweight protocol, which is designed to be the “HTTP of the IoT”.
CoAP resources are identified by a URI scheme, similar to HTTP URIs, and the CoAP
interaction model is similar to the client–server model of HTTP. Therefore, IoT endpoints
act as CoAP “servers”, exposing one or more CoAP URIs that can be accessed by CoAP
“clients” using a suitable CoAP “method”.

CoAP group communication is a CoAP extension that allows CoAP clients to retrieve
(or set) resources from a group of CoAP servers, e.g., retrieve the temperature measurements
from all sensors of a building, turn on and off all the lights of a smart city and so forth.
With CoAP group communication, a request to a CoAP URI is received by all group
members. An approach for realizing CoAP group communication is by using IP multicast
(Section 2 of [1]). With this approach, CoAP servers belonging to the same group join an
IP multicast address, and CoAP clients learn the IP multicast address of a group using
DNS resolution. Then, CoAP clients can send CoAP requests to an IP multicast address
and receive the corresponding response(s) using unicast.

The RFC-recommended approach for realizing CoAP group communication is the fol-
lowing: CoAP group URIs are associated with an IP multicast group, all CoAP servers join
the appropriate IP multicast groups, and DNS servers map group URIs to the corresponding
IP multicast address.

2.2. Decentralized Identifiers

Decentralized Identifiers (DIDs) is a new identification system under standardization
by W3C. The goal of DIDs is to enable individuals and organizations to generate their own
identifiers using systems they trust [2]. In a DID architecture, the Decentralized Identifier
(DID) is associated with a DID document. A DID document includes, among other things,
public keys (or “pointers” to public keys) that can be used as verification methods, e.g., for
authenticating the DID “owner”, or for verifying digital signatures generated by the DID
owner. DID documents are usually maintained by a DID registry, e.g., a web server or
even a blockchain system. Registries are responsible for implementing proper security and
access control mechanisms. Registries allow 3rd parties to securely resolve DID documents.
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Our system uses the did:self DID method and leverages DNS servers and the DNSSEC
protocol to implement a DID document registry.

2.3. Verifiable Credentials

A Verifiable Credential (VC) [3] allows a issuer to assert some attributes about an entity
referred to as the VC subject. A VC includes information about the issuer, the subject,
the asserted attributes, as well as possible constrains (e.g., expiration date). To facilitate
interoperability, the VC data model allows different VC types that defines the attributes a
VC should include. Our system creates a new VC type named membership, and that includes
a list of groups in which the VC subject is allowed to participate.

2.4. Related Work

The use of DIDs and VCs has been explored in the context of the IoT by some research
efforts. Ansay et al. [5] are using DIDs and VCs to provide secure firmware/software update
on IoT devices. In that system, DIDs and VCs are used for authenticating software providers
to IoT devices. Our system, on the other hand, uses DIDs and VCs for authenticating IoT
devices to clients, as well as to prove CoAP group membership. Lorenzo et al. [6] leverage
DIDs to provide IoT device authentication for the Modbus protocol. Their approach
leverages a DID method which is based on Hyperledger Fabric blockchain. Terzi et al. [7]
use DIDs and VCs to express access rights related to vehicles as well as to implement the
delegation of these rights. Similar to [6], they rely on a blockchain for implementing a DID
registry. Fan et al. [8] also utilize blockchain (and smart contracts) to implement a DID
registry for DIDs used by IoT devices and manufacturers. Our solution does not require
any external entity (such as a blockchain) for retrieving DID documents; instead, all the
required information is stored in a DNS server, and it is resolved as part of the CoAP group
URI DNS resolution. Diego et al. [9] study the business aspects of DIDs in the context of
“IoT as a service” platforms. Their work is orthogonal to our approach, which proposes a
security solution for the IoT using DIDs and VCs.

In our previous work, we use DIDs to protect the routing layer of a Next-Generation
Internet architecture from poisoning attacks [10], as well as for providing authenticity for
content items stored in the Inter-Planetary File System (IPFS) [11]. In those systems, all DID
documents are integrated in the protected resources, and these resources are identified by a
DID (i.e., a public key). In our system, we leverage DNSSEC to store some DID documents.
This has the following advantages: (i) protected resources’ identifiers (i.e., CoAP group
URIs) can be of arbitrary form (including human readable and memorable names), (ii) every
time a DID is revoked, the corresponding protected resource does not have to be renamed.

3. Design
3.1. The Did:Self Method

DID specifications allow DID methods implementors to decide the information that
will be included in the DID documents of their method as well as how DID documents will
be resolved. Our system uses the did:self DID method (did:self specifications can be found
at https://github.com/mmlab-aueb/did-self (accessed on 25 April 2022)) that neither
restricts the type of information that can be included in a DID document nor imposes
any particular registry type. In particular, owners of did:self DIDs are responsible for
disseminating their DID documents by themselves, e.g., by directly transmitting them to
interested parties, or by storing them in a Web server: did:self assures that a DID document
is correct even if is retrieved over an unsecured channel. Another salient feature of did:self
is that it permits multiple valid DID documents for a specific DID to co-exist. In our system,
we can take advantage of this feature to allow each IoT device to be configured with a
different DID document of the same did:self DID (that of the device owner).

A did:self -based DID is a base64url [12] encoded Ed22519 public key [13] prefixed with
the string “did:self :”.

A DID document in did:self may include any of the properties defined by the DID speci-
fications, and it is encoded using JSON. However, and as we detail in Section 4, in this paper,

https://github.com/mmlab-aueb/did-self
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we experiment with the “Concise Binary Object Representation” (CBOR) [14], which results
in smaller representations. It should be noted that CBOR representations are compliant to
DID specifications. A DID document in our system includes the following properties:

• id: The DID which the document concerns.
• verificationMethod: A list of public keys expressed using the “JsonWebKey2020”

notation [15]. Each key in the list is identified by an id.
• authentication: A list of public keys, or public key identifiers that can be used to

authenticate the DID holder.
• assertion: A list of public keys or public key identifiers that can be used to verify

digital signatures of VCs.

The private key that corresponds to an assertion key is used in our system for signing
issued VCs; hence, the corresponding public key is used for verifying these signatures.
Similarly, the private key that corresponds to an authentication key is used for signing CoAP
messages; hence, the corresponding public key is used for authenticating message senders.
Each public key included in the verificationMethod property is identified by a unique
id: there cannot be two keys with same id for the same did:self DID even if these keys are
defined in different DID documents. In our system, we take advantage of this property in
order to achieve efficient authentication key rotation as well as for detecting breaches of the
private key used by an authentication method. These two security properties are achieved
by following a “use the most recent key” principle. In particular, given two keys with the
same id, the one included in the older DID document will be considered invalid, and it wil
be discarded.

Each DID document in did:self is associated with a proof which is a compact encoded
JSON Web Signature (JWS) [16]. However, in this paper, we use CBOR Object Signing and
Encryption (COSE) [17] instead. The payload of the proof is a CBOR object that includes
the following claims:

• jti: The DID the proof refers to.
• iat: The date and time of the proof’s generation.
• exp: An expiration time.
• s256: The base64url encoded hash of the DID document, calculated using SHA-256.

The signature of the proof is generated using the private key that corresponds to the
did:self DID and the Edwards-curve Digital Signature Algorithm (EdDSA). Given a did:self
DID, a DID document, and the document proof, any entity can trivially verify the binding
between the DID and the document by executing the following steps:

1. Verify that the DID is equal to the jti claim of the proof.
2. Verify that the digest of the DID document is equal to the s256 claim of the proof.
3. Verify that the proof has not expired.
4. Verify the signature of the proof using the did:self DID (recall that a did:self DID is a

public key.)

3.2. System Entities

Our solution considers IoT-based services, e.g., a smart building management system,
where IoT endpoints can be grouped together. An IoT endpoint can be an IoT device
or gateway.

IoT endpoints are owned by an endpoint owner. Each IoT endpoint acts as a CoAP
server that “hosts” a number of IoT resources. A CoAP client can access simultaneously
“similar” resources using CoAP group communication.

A group is administrated by a group administrator and involves multiple IoT endpoints.
Moreover, a group is associated with a did:self DID denoted by GroupDID and a Fully
Qualified Domain Name (FQDN). The DID document of a GroupDID includes the assertion
verification method: the public key defined in this method can be used for verifying VCs
issued by the group administrator. A group may include endpoints from multiple owners.
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Group administrators are responsible for controlling which owners can can be part of
a group.

The FQDN of each group is associated with an IP multicast address: all CoAP servers
are assumed to have joined the appropriate IP multicast groups. The semantics of a
group FQDN are deployment specific; e.g., group FQDNs can be location specific such
as “building1.floor1”; then, a CoAP client may read the temperature measurements of
all sensors deployed in the “first floor of building 1” using a CoAP group URI such as
“coap://building1.floor1/temperature”.

CoAP clients are pre-configured with the required group FQDNs (or they are con-
figured with appropriate discovery mechanisms). Finally, it is assumed that the DNS
resolution process is secured (e.g., using DNSSEC).

3.3. Owner Onboarding and Endpoint Management

Endpoint owners generate one or more did:self DIDs referred to as OwnerDID. More-
over, for each of their IoT endpoints, owners generate a public–private key pair and a DID
document that includes the public key in the authentication verification method; keys and
documents are then installed in the IoT endpoint. Therefore, for each OwnerDID, there are
as many DID documents as the IoT endpoints of the owner. IoT endpoints will use private
keys for signing CoAP responses and the installed DID documents for authenticating them-
selves. Device owners update periodically the keys and the corresponding DID documents
of their IoT endpoints. Our system follows the convention that the new keys will use the
same key identifier as the one used by the keys being replaced.

A group administrator can authorize an endpoint owner to participate in a group
simply by issuing a membership VC. In our system, VCs are encoded as CBOR objects
and are signed by the group administrator using CBOR Object Signing and Encryption.
A CBOR-encoded VC in our system includes (among others) the following claims:

• jti: An issuer-specific VC identifier.
• iss: The GroupDID.
• sub: The OwnerDID.
• iat: A timestamp indicating the VC’s issuance time.
• exp: A timestamp indicating the VC’s expiration time.
• vc: The actual VC (see the following).

The vc property of a membership VC includes a claim, named group, that contains
the FQDN of the group the endpoint owner is allowed to participate. An example of
membership VC is presented in the following Listing 1 (in this example, we are using JSON
representation for clarity reasons).

Listing 1. Example of membership VC.

1 {
2 “jti": “member1",
3 “iss": “did:self:...",
4 “sub": “did:self:...’’,
5 “iat": 1650558962,
6 “exp": 1681663521,
7 “vc": {
8 “type":[“membership’’],
9 “credentialSubject": {

10 “group": “building1.floor1",
11 }
12 }
13 }

Owners will receive as many VCs as the number of groups in which they can par-
ticipate. Owners, finally, install the VC(s) to the corresponding IoT endpoints. Figure 1
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provides an example of the onboarding process. In this example, an owner has configured
two IoT endpoints with the appropriate DID documents. Then, the owner receives two
VCs one for the group “/building1/energy” and another for the group “/building1/roof”.
Finally, the owner installs to each endpoint the appropriate VCs. As it can be observed, the
roof panel is configured with two VCs which means it can participate to both groups.

{
"iss":   "<GroupDID>"
"sub": "<OwnerDID>",
…
"vc": {
"credentialSubject": {

"group":  "/building1/energy"
}

}
}

Group 
administrator

Building1

{
"id": "<OwnerDID>",
"verificationMethod": [{

"id": "#panel",
…

]} ,
"authentication":["#panel"] 

}

{
"id": "<OwnerDID>",
"verificationMethod": [{

"id": "#light1",
…

]} ,
"authentication":["light1"] 

}

Endpoint owner

{
"iss":   "<GroupDID>"
"sub": "<OwnerDID>",
…
"vc": {
"credentialSubject": {

"group": "/building1/roof"
}

}
}

Figure 1. Endpoint onboarding example.

3.4. CoAP Request

In order for a client to send a CoAP request to a CoAP group, it needs to know the
IP multicast address of that group as well as the GroupDID and the corresponding DID
document; GroupDID is later used for verifying CoAP responses (see Section 3.5). A CoAP
client learns the required information using DNS. The IP multicast address of the CoAP
group is stored in a type A DNS record that maps the CoAP group FQDN to an IP multicast
address. The DID document that corresponds to the GroupDID is stored in a TXT DNS
record of the group FQDN, which is a similar approach to that used by “DNS-Based
Authentication of Named Entities” [18].

CoAP clients construct their request and send it to the appropriate IP multicast address.
Requests include a token, which is then used to match the received responses (the token
format and usage are defined in Section 5.3.1 of [4]).

3.5. CoAP Response

Each CoAP response in our system includes three CoAP options (i.e., a structure akin
to HTTP headers, see Section 3.1 of [4] for more details). These options, defined by our
solution, are membership, endpoint, and attestation.

The membership option includes the membership VC (and the corresponding proof),
which is installed in the IoT device during the onboarding process. The endpoint option
includes the DID document (and the corresponding proof) of OwnerDID. Finally, the attes-
tation option is a COSE signature. The payload of that signature is a structure that includes
the following fields:

• URI: The CoAP URI of the requested resource.
• token: The token included in the CoAP request.
• s256: The hash of the CoAP response payload, calculated using SHA-256.

The digital signature for that option is generated using the private key that corresponds
to the authentication key defined in the DID document included in the endpoint option.
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3.6. CoAP Response Verification

Upon receiving a CoAP response, a CoAP client executes the following steps:

1. Initially, it extracts the membership VC included in the membership option and verifies
its proof using the appropriate assertion key defined in the DID document of the group
administrator. If the proof includes an expiration time, the client verifies that this time
has not passed. If all verifications are successful, the client validates that the groups
claim includes the requested group and that the sub claim includes the OwnerDID of
the endpoint that responded.

2. The client extracts the DID document of OwnerDID included in the endpoint option
and verifies its proof. Then, it retrieves from that DID document the public key which
has been used as the authentication key.

3. The client verifies that the attestation option includes the correct values for the URI,
token, and sha-256 fields. Then, it verifies the digital signature of that option using
the extracted authentication key.

The first step of this process verifies that the received response has been generated by
an endpoint authorized by the group administrator to provide responses for that particular
CoAP URI. The next steps of this process verify the integrity and the authenticity of the
received response.

3.7. Membership Cancellation

Membership to a group can be cancelled either at the endpoint owner level or at the
endpoint device level. In the former case, the corresponding membership VC is revoked, and
all IoT endpoints of the affected provider are removed from the group. In the latter case, the
corresponding DID document is deleted from the IoT endpoint, and the affected endpoint
is removed from the group (since it cannot generate any more valid singed responses).

Membership VC Revocation

As discussed in Section 3.1, a membership VC has an expiration time. Therefore, a trivial
approach for removing an endpoint owner from a group is to not update the corresponding
membership VC. Of course, on the other hand, this creates a security–performance tradeoff.

An alternative solution is to use the revocation scheme described in [19] for verifying
the status of a membership VC. Based on this scheme, the group administrator maintains
a revocation list that concerns all non-expired VCs it has issued. This list is a bitstring,
and each VC is associated with a position in the list. Revoking a VC means setting the
bit corresponding to the VC to 1. Furthermore, each issued VC includes a field named
“revocationListIndex” that specifies the position of the VC in the revocation list. Therefore,
given a revocation list and the revocationListIndex of a non-expired VC, a client can learn
the status of that VC.

This revocation scheme implies that clients can access the revocation list. This problem
is solved in [19] by requiring from issuers (i.e., the group administrators in our system)
to “publish” the revocation list under a URL and include this URL in the VCs. In our
solution, we follow an alternative approach: since the size of a revocation list will be small,
we include it in a TXT DNS record of the group FQDN with the name “RevocationList”.
Therefore, clients can easily retrieve it with the DNS resolutions that take place before
sending a CoAP message (described in Section 3.4).

4. Implementation and Evaluation
4.1. Performance Evaluation

We have implemented the DID-related operations of our system in Python3 using the
cbor2 library (https://pypi.org/project/cbor2/) and the cose library (https://pypi.org/
project/cose/).

The size of a DID document that includes a public key is 242 bytes, and the size of the
corresponding proof is 124 bytes. The size of a membership VC is 127 bytes, and the size of
a corresponding proof is 112 bytes.

https://pypi.org/project/cbor2/
https://pypi.org/project/cose/
https://pypi.org/project/cose/
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In our system, the following cryptographic operations are needed. For DID creation,
an Ed22519 key pair, a DID document, and the corresponding proof have to be generated.
Additionally, a group administrator has to generate a membership VC, and an IoT device
has to sign the “attestation” CoAP header. Finally, for the CoAP response verification,
the CoAP client has to verify the DID document, the membership VC and the attestation
signature included in the corresponding CoAP headers. Table 1 shows the time required
(in ms) to perform the cryptographic operations of our system, as measured in a Raspberry
Pi 4 model B with 2 GB of RAM, as well as in a Espressif ESP32 WROOM-32 IoT device
(240MHz dual-core Xtensa LX7 CPU).

Table 1. Cryptographic operations and their overhead.

Operation Time (ms) Using RPi Time (ms) Using ESP32

Ed22519 pair generation 46 452
DID document and proof
generation using COSE 2.7 293

Membership VC generation
using COSE 2.7 293

Attestation generation using
COSE 0.7 82

DID document verification 1.5 160
Membership VC verification 1.5 160

Attestation verification 1.5 160

It should be noted, however, that IoT devices are expected to perform only the attesta-
tion generation. For a memory-efficient implementation of the required signing algorithms,
as well as for a discussion related to their energy consumptions, interested readers are
referred to [20].

4.2. Security Properties

Assuming that the DNSSEC resolution processes is secured, our solution has the
following security-related properties:

The integrity of the CoAP response payload is protected. A digest of the CoAP
response payload is recorded in the attestation option. Since the attestation option also
includes the CoAP request token, an attacker cannot replace the payload using an old, valid
one. On the other hand, an attacker can replace a payload (and the attestation) with the
corresponding fields of a CoAP response generated by another endpoint but for the same
request. In that case, the CoAP client will receive twice the same response, signed by the
same key; hence, the attack will be detected.

The authenticity of the CoAP response is protected. The authenticity of a CoAP
response, i.e., the verification of the “binding” between the response payload and the
requested CoAP URI, is achieved by including the CoAP URI in the attestation field. If the
CoAP URI was not included in the attestation, an attacker could send a CoAP request to
a different CoAP URI using the same token as a legitimate request, and then replace a
legitimate response with the response it received to his request. Furthermore, the attestation
is signed by an endpoint authorized by the publisher to make attestation for that particular
URI. Hence, a malicious but authorized endpoint cannot generate responses for URIs other
than those for which it has been authorized.

Authorized endpoints can easily rotate keys. An endpoint can replace its authenti-
cation key with a new one by generating a new DID document; apart from that, no more
actions are required, e.g., the endpoint does not have to receive a new membership VC. In
a certificate-based solution, on the other hand, an endpoint would have to receive a new
certificate from the group administrator.
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Resilience to Attacks

A did:self DID is associated with a private key, which is used for signing the proofs of
the corresponding DID documents. In our system, we have two important did:self DIDs: the
GroupDID and the OwnerDID. If the private key that corresponds to GroupDID is breached
(or lost), then the GroupDID must change. This means that the corresponding DNS record
must be updated, all generated membership VCs must be revoked, and new membership
VCs must be generated. If the private key that corresponds to an OwnerDID is breached (or
lost), then the corresponding endpoint owner must generate a new DID and receive new
membership VCs. Old VCs must be revoked, and the IoT devices must be re-configured
with the new VCs and DID documents.

The most risky component of our system is the private key of the IoT endpoints, since
IoT endpoints are usually exposed to attackers. A breached private key can be used for
signing fake CoAP responses. In order to mitigate this attack, we take advantage of the key
id uniqueness property of did:self. In particular, in order for attackers to use a breached
key, they must include in the generated responses a valid DID document. However, since
DID documents are signed by the endpoint owner, the attacker can only use the same
DID document as the victim endpoint. This means that a CoAP client will receive two
responses signed by the same key. The simplest strategy in that case is to ignore both
these responses. In order to evaluate the effectiveness of this countermeasure, we emulated
an attack scenario. In particular, we consider a group of 100 endpoints. These endpoints
produce an integer measurement that follows a uniform distribution between 40 and
60 every 1 min, and a CoAP client is interested in learning the average value of these
measurements. We assume that an attacker has breached the private keys of half of these
devices and produces fake measurements with a value equal to 100. We emulated a period
of one hour; i.e., the CoAP client calculated 60 times the average value. Each average
calculation is independent of the previous one, and the client does not apply any heuristic
for detecting abnormal values. Figure 2 shows the impact of this attack. The blue line
shows the average value of the measurements produced only by the legitimate devices.
The yellow line shows the average value calculated by a “naive” client that takes into
consideration all 150 received measurements (100 valid and 50 malicious). Finally, the black
dotted line shows the average value calculated by a client that filters out measurements
that include duplicate keys. As it can be seen, the value calculated by the user that filters
out the measurements with the same public key is very close to the real one; nevertheless,
there are differences due to the lower number of samples.
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Figure 2. Impact of an active attacker that generates fake measurements with a valid signature.
The blue line indicates the correct value that a device would have calculated if there was not an
attack. The orange line indicates the estimated value if no defense is considered. The black dotted
line indicates the estimated value if duplicate public keys are omitted.
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4.3. Comparison to Other Approaches
4.3.1. Registry-Based DID Methods

Being registry-less, the did:self DID method allows a DID identifier to be mapped
to multiple DID documents. Our system takes advantage of this property and allows
endpoint owners to define a single DID and then use a different DID document for each
IoT endpoint, each of which includes only a single key used by that particular endpoint.
This makes the management of IoT endpoints easier, since an endpoint owner can easily
add or remove an IoT endpoint. On the other hand, if a registry-based approach was used
(e.g., did:web), all public keys of all IoT endpoints should had been included in the (single)
DID document; hence, adding or removing an IoT endpoint means that the corresponding
DID document must be updated as well.

Additionally, since DID documents in did:self are “self-protected” (as they are signed
by the DID owner), they can be included directly in CoAP responses. On the other hand,
in a registry-based system, DID documents must be resolved from a registry. This not only
adds communication overhead (e.g., extra roundtrips for resolving the DID document) but
it also creates new security threats since the registry must be trusted, secured, and available.

4.3.2. Lightweight Certificates

Certificate-based solutions, such as the Simple Public Key Infrastructure (SPKI) [21],
can be used as a mechanism alternative to VCs in our system. The advantage of VCs is that
it is easier to extend their data model to include new features. For example, our system
uses such a data model extension to include information that can be used for determining
the revocation status of a VC. Furthermore, VCs allow using DIDs for describing the VC
subject, and when a VC is combined with a DID method, such as did:self, many entities
can securely share the same VC. Using a certificate-based approach with a certificate that
includes the public key of the endpoint owner would require the endpoint owner to issue
another certificate for each IoT endpoint. Therefore, if an owner manages x IoT endpoints,
each of which participates in the same y groups, using our approach, the owner has to
generate x public key pairs and copy y VCs to each IoT endpoint, whereas in another
approach, the owner would have to generate x public key pairs, sign x × y certificates and
install y certificates to each endpoint.

4.3.3. VC-Less Approach

An alternative approach for achieving the same functionality of our system is to not
use VC at all and instead include the DIDs of endpoint owner to the DID documents of
GroupDID. This has the advantage that CoAP responses become shorter (since they do
not include a membership VC), and revocation becomes simpler (since the group owner
has simply to update the corresponding DID document). On the other hand, adding or
removing a new endpoint owner requires modification of the corresponding DNS record,
so depending on the frequency with which endpoint owners are added or removed to a
group, the VC-less approach may be a better or worse option. In any case, VCs allow to
express more complex relationships than a DID document. For example, there can be cases
where an endpoint owner is allowed to participate in a group only during specific times:
such advanced trust relationships can be easily expressed using VCs.

5. Conclusions and Future Work

In this paper, we presented a solution for securing group communications with an ap-
plication to IoT CoAP-based group communication. Our solution leverages Decentralized
Identifiers (DIDs) and Verifiable Credentials (VCs) to offer efficient group administration,
increased security, and better key management. Our solution is lightweight with low
computational and communication overhead, and it builds on well-supported and widely
used digital signature schemes.
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Our solution uses the did:self method, which is a DID method that does not impose
particular technology for implementing the registry that maintains DID documents. Future
work in this area includes the investigation of alternative DID methods.

Although we presented our solution in the context of IoT group communication,
our goal was to provide a generic design that can be used in other group communica-
tion systems. For this reason, we did not consider security mechanisms related to CoAP,
such as “ Object Security for Constrained RESTful Environments (OSCORE)”; a realiza-
tion of our system specifically for CoAP group communication would probably consider
these solutions. Similarly, our solution assumed IP multicast as the enabler of group com-
munication; nevertheless, related efforts have investigated alternative solutions such as
Software-Defined Networking-based group communication or even group communication
based on the Information-Centric Networking (ICN) paradigm; our solution is agnostic
to the group communication mechanism, but we expect that there will be mutual benefits
from an integrated approach.
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