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Abstract: The digital transformation is exciting the uptake of Internet-of-Things technologies, and
raises the questions surrounding our knowledge of the positions of many of these things. A review
of indoor localization technologies summarized in this paper shows that with conventional RF-
based techniques, a significant challenge exists in terms of achieving good accuracy with a low
power consumption at the device side. We present hybrid RF-acoustic approaches as an interesting
alternative: the slow propagation speed of sound allows for accurate distance measurements, while RF
can easily provide synchronization, data, and power to the devices. We explain how the combination
of adequate signaling realizing a late wake-up of the devices with backscattering could position
energy-neutral devices. Experiments in a real-life testbed confirmed the potential 10 cm-accuracy
based on RF-harvested energy. Nonetheless, these also expose open challenges to be resolved in order
to achieve accurate 3D positioning.

Keywords: localization; acoustic signals; IoT; energy harvesting; backscattering; experiments

1. Introduction

Digital technologies are increasingly adopted in diverse sectors to increase efficiency
and to offer new and improved services. Through IoT technology, a huge number of
common objects are given an ID in the virtual world. Ever-more autonomous vehicles (from
cobots to drones) handle these IoT devices. For many applications and services, in business,
societal, and personal contexts, information about the position of these IoT devices is
essential. Examples include finding people in emergency situations, localizing equipment
and goods, offering context-relevant information, and delivering proximity-restricted
services. Indoor positioning technology has progressed in recent decades. However, a
major hurdle in the uptake of these systems is the energy they require from the devices
to be located. Moreover, the quest for improving the accuracy and reliability of position
information leads to more complex processing, which logically counteracts potential power
savings. Disruptive methods are needed to ultimately enable the indoor positioning
of energy-neutral devices, which can operate purely based on the energy they harvest
from their environment (as further defined in Section 2). This paper elaborates on the
status of positioning technologies for devices with a very limited energy budget, and in
particular, demonstrates the potential in novel hybrid RF-acoustic solutions to achieve
energy neutrality.

The contributions of this paper are:

1. A comprehensive overview on the up-to-date state of the art of indoor positioning
technologies.

2. A discussion of different hybrid RF-acoustic systems zooming in on methods to
achieve the positioning of energy-neutral devices.

3. Presentation and analysis of ranging experiments demonstrating the opportunities
and open challenges to accurate 3D positioning.
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This paper is further organized as follows. In the next section, the basic set-up of
a positioning system and related terminology are introduced and the state of the art is
summarized. Section 3 presents hybrid RF-acoustic positioning approaches, highlighting
signaling and backscattering technologies that have the potential to achieve energy neutral-
ity at the device side. Experiments in a real-life testbed are provided in Section 4. Finally,
Section 5 summarizes the main conclusions and envisions the road ahead.

2. Preliminaries and State of the Art

Extensive research has been conducted regarding indoor localization systems, and
products are available. This section provides a SOTA overview in which, in addition to the
performance of different systems, the energy consumption of a mobile node is also assessed
as there is increasing demand for the indoor positioning of energy-neutral devices. The
emphasis in this paper is on acoustic and hybrid RF-acoustic systems given their promising
capabilities in terms of accuracy and low-power.

2.1. Interacting with Ultra-Low Power and Energy-Neutral Devices

A sought-after feature in many applications is interaction with energy-neutral devices.
An energy-neutral device is defined in this paper as a passive or active device with a
guaranteed continuity of use through a WPT or energy harvesting link that offers sufficient
energy (see Figure 1). In other words, the device experiences no net negative effect on its
potential energy resources from its harvesting (Ein) and consumption operations (Econs).
An active device contains an internal energy source such as a battery, (super)capacitor, etc.,
while a passive device contains no internal energy source and depends entirely on the WPT
or energy harvesting link. Since the energy used is equal to or less than the energy received,
the device can be defined as an energy-neutral device. An energy-neutral device is classified
under low-power devices, given its low power consumption. A low-power device may
have a net negative value on the incoming and consumed energy and is therefore an active
device with the need for energy storage.

Energy Neutral Devices
Ein ≥ Econs

Passive Devices

Ein

Econs

Ein Econs

Active Devices

Ein

Econs

Ein Econs

Ein ≥ Econs Ein    Econs

Active Devices

Ein

Econs

Ein Econs

Ein     Econs

Ein     Econs

Low-Power Devices

Figure 1. Classification of low-energy devices illustrating the definition of energy neutrality for both
active and passive devices.

Energy-neutral operation hence creates the opportunity to eliminate the need for a
battery in a device which in turn reduces the cost and maintenance and enables a small form
factor. Furthermore, the localization possibility of the device could theoretically be extended
to an unlimited lifetime since the harvesting of the necessary energy is inherently present.
Energy can be harvested from a variety of sources and through different techniques [1], and
recently, solutions were also specifically designed for small IoT devices [2,3]. In view of the
objective to position size-constrained devices indoors, solar energy is typically not a viable
option. Coupled inductive power transfer is a very efficient solution for wireless charging
in close proximity of devices reaching > 90% efficiency, however, the coupling deteriorates
rapidly over distances larger than a few centimeters. Harvesting mechanical energy can
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only be relied on when devices are repeatedly and significantly moving, and the form
factor of the device allows the integration of a rather bulky harvester. APT is considered
for reaching devices where inductive or RF transfer is prohibited, e.g., through human skin
for biomedical implants or when metallic surfaces obstruct RF waves [4]. However, the
power density is low (<0.1 nW cm−2) [4] and the conversion to electrical energy requires
large transducers with rather low efficiencies. In recent years, RFPT has received significant
interest as radio waves offer the advantage of being ubiquitous, and energy can hence be
obtained over a large area, even in inaccessible places. RF power provides a density varying
between 0.2 nW cm−2 and 1 µW cm−2 [5]. Practically, this results in a received power in the
range of µW at the size-constrained sensor or actuator node. This makes the harvesting
of RF signals highly suitable for the remote powering of small devices from a distance
of several meters in indoor environments. Nonetheless, since the total amount of energy
that can be transferred is very limited, innovative approaches for the positioning of these
devices need to be developed.

2.2. Indoor Positioning Technologies

Indoor positioning is made possible via many technologies, each with their own
advantages and disadvantages. Several overview papers are available, with some having
over 300 references [6], reviewing the vast amount of positioning research from different
points of view. The subjects vary from system requirements such as robustness [7] and
accuracy for mobile targets [8] to dedicated positioning methods such as fingerprinting [9].
This section mainly discusses the current SOTA of acoustic and hybrid RF-acoustic systems,
and compares them with the capabilities of UWB on the one hand, which achieves best in
class accuracy in RF-based technologies, and RFID on the other hand, providing energy-
neutral operation. An overview of innovative indoor positioning systems selected from the
perspective of this paper is presented in Table 1. In addition to the accuracy, the low-power
character of the mobile node is also examined. Most research does not consider strict energy
constraints, which is nevertheless required to allow operation purely based on harvested
energy. A checkmark (X) is given when a systems has a power consumption below 100 µW.
It should be noted that a quantitative comparison of reported results is not straightforward.
Different room sizes and materials in experiments highly influence the reflections that
waves encounter in a venue, and consequently, the typical accuracy and precision achieved
in the positioning. In this paper, we will further assess precision by means of the CDF of
the distance error.

RFID is currently the most established and deployed technology for positioning
energy-neutral devices. Hereby, the RF signal is used for activating and positioning the
device at the same time. A backscattering mechanism is used, altering the characteristics
of an incident RF wave based on some unique parameter(s) of the passive device. This
technology offers an elegant and low-complexity approach. However, the accuracy of RFID
localization systems is defined by the limited read range, and false or missed detections
occur due to multipath [10]. In [11], an overview is given of current RFID positioning
systems, dividing them in three classes based on the underlying positioning technology. For
RSSI-based systems, the accuracy is very limited, in the order of meters for larger distances,
and the reliability is strongly affected by multipath effects and tag orientation [12,13]. For
smaller distances, sub-decimeter can be achieved with machine learning algorithms using
extensive data sets [11]. PoA methods typically show a better localization accuracy, but
currently suffer from two main issues: ambiguity due to phase periodicity and phase
offset [14].

The most promising RF-based technologies that meet many quality metrics for indoor
positioning are typically based on UWB signaling. In UWB localization, the system usually
relies on the ToF of sub-nanosecond pulses to calculate the distance between the transmitter
and the target [15]. Since UWB uses a very large frequency bandwidth (>500 MHz), a high
resolution in time and thus distance can be obtained, resulting in a positioning accuracy in
the order of tens of centimeters [16]. In addition, the high bandwidth enables great resis-
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tance against multipath fading and consequently makes UWB highly attractive for indoor
environments. The average power consumption of commercial UWB systems depends
on the device mode, but even in idle mode, this value, which is heavily influenced by the
design, is larger than 5 mW [17]. There is still room for lower power design optimization
for this technology. In order to coexist with narrowband system architectures, the spectral
power density in UWB is limited to −41.3 dBm/MHz by regulations. Unfortunately, this is
insufficient to remotely power UWB tags at useful distances [15,18]. In combination with
the higher power consumption, the latter makes the design of an energy-neutral UWB tag
at the current time of writing practically impossible.

Extensive research was conducted on acoustic localization systems [19–21]. As acoustic
signals have a relative low propagation speed (343 m/s), centimeter positioning accuracy
can be achieved based on ToF measurements without the need for high-resolution clocks
and high-speed and hence power-hungry electronics [22–29]. Figure 2 depicts a typical
hybrid RF-acoustic positioning set-up with at least three fixed nodes for 2D positioning
and four for 3D positioning with a known position in the system which we call anchors,
and also are referred to as beacons in the literature. Possibly more anchor nodes are desired
to obtain better coverage and precision. The mobile node operating in energy-neutral mode
can be implemented as a tag. Distance measurements from the anchors to the mobile node,
hereafter called ranging, are at the basis of determining the position of the mobile node.
When using TDoA measurements [24,30–35], no synchronization is needed between the
mobile node and anchor node, which is an additional advantage compared to the ToF
system. Nevertheless, the anchor nodes must still be mutually synchronized. Usually,
ultrasonic signals are used in acoustic localization systems given that these are not audible
to humans.

A1

A2

A3

M1

M2

Ax

Mx

Mx

Anchor node

Mobile Device

d1,2

d1,1

d2,2

d2,1

d3,2

d3,1

Figure 2. Overview of a hybrid RF-acoustic indoor positioning setup

Acoustic-based positioning systems were developed, for example, the LOCATE-US
system [19,30], and more R&D is being conducted on custom designs, for example for
ultrasonic transducers [33,34], to provide low-power functionality since these ultrasonic
transducers can require a lot of power. The emergence of MEMS technology is highly
interesting due to their ultra-low power character. Smartphones are often used as mo-
bile nodes in acoustic localization systems since they are widespread and have a built-in
speaker, microphone, and available computing power [31,32]. However, these are not
low-power devices and are not designed to deal with ultrasonic sound signals as the audio
components are usually limited to the audible region given their primary functions. More-
over, RF-based positioning for smartphones is more straightforward, given the presence of
appropriate antennas.
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A disadvantage of acoustic localization in contrast to, e.g., UWB, is that acoustic signals
are susceptible to room acoustics (reverberation) and current low-power acoustic electronics
have limited bandwidth compared to RF. Reverberation in acoustic signaling is the main
source of self-interference, resulting in ambiguity in acoustic indoor positioning systems.
When tests are performed in an ideal free-space environment, e.g., through simulation [23],
then high accuracy can be achieved, which shows that acoustic systems can be an interesting
technology for positioning. In highly reverberating situations, optimizations to improve
accuracy such as Doppler compensation [36], likelihood expressions [24], or additional
anchor nodes to increase spatial diversity [30,37] are required.

In some acoustic localization architectures, the acoustic channel is combined with an
RF channel to form a hybrid system. Early hybrid systems adopted the RF signal for both
synchronization and communication. A previous overview paper from Holm et al. [38]
bundles these first generation RF-acoustic positioning systems. The papers discussed in
this work [22,25–29,35,39] focus more on recent energy-efficient systems. Although the
energy efficiency of wireless acoustic sensor nodes has significantly progressed by the
developments in MEMS and CMUT microphones and low-energy computing, current
hybrid RF-acoustic solutions have not achieved fully energy-neutral operation for long-
range (>10 m), centimeter-accurate and multiple access operation, with RF communication
as the main limiting factor to achieve this [40]. Active low-power wireless standards such
as Ant+ [25,26] achieve a long range but are still power hungry, taking up a large part of the
energy budget in energy-constrained devices. RFID, although being passive and making
use of energy harvesting, also has a limited reading range for communication [28,35]
or synchronization [29]. A promising hybrid method makes use of the backscattering
technology refined in RFID systems, and directly communicates the received acoustic
signals back [41]. In [27], the acoustic signal coming from a CMUT transceiver is modulated
around the carrier, making it vulnerable to self-interference and prohibiting multiple access
when several mobile nodes are present.

Table 1. Comparative summary of indoor positioning systems.

Technology Reference Technique Accuracy [cm] Ultra-Low Power Energy
Harvesting

RFID [12] RSSI 75 X (passive) X
[13] RSSI 10 X (passive) X

RFID/ML [11] RSSI 5 X (passive) X
RFID/odometry [14] PoA 4

UWB [16] TDoA 11.4
[17] ToA 13.2 7 (6.6 mW idle)

UWB/RFID [15] ToF <10

Acoustic

[30] TDoA 22
[23] ToF 0.05
[31] TDoA 20
[32] TDoA 50
[33] TDoA 3 X (100 µW)
[34] TDoA <0.5
[24] ToF, TDoA <24
[24] AoA <400

RF-Acoustic

[22] ToF <1 7 (150 mW)
[39] RSS, AoA <50

[25,26] ToF <0.2 7 (21.7 mW)
[27] ToF <1 X (passive) X
[28] ToF 13 X (81 µW) X
[29] ToF 5
[35] TDoA <0.5 7 (26.4 mW) (X)
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3. Hybrid Acoustic-RF Approaches for Positioning Energy-Neutral Devices

Unambiguously positioning a mobile device in 3D space requires the distance to
at least four anchor nodes. These anchor nodes are distributed across the room and
their locations are known by the positioning system (Figure 2). Particular challenges
in positioning and tracking arise when the energy budget of the mobile device is very
constrained. Clear insights into the mobile device’s energy budget are therefore essential.
In this section, we inspect the different components in a hybrid RF-acoustic positioning
system and identify which key parameters affect the energy consumption. Based on this
analysis, an optimized system design is presented. In the following subsections, we first
focus on the setup options and signaling approaches for hybrid acoustic-RF positioning,
and in the following, focus on tailored backscattering technology.

3.1. Setup

Two approaches can be followed to perform the necessary distance measurements. In
the first, the anchor nodes emit the acoustic signals, which are subsequently captured by
the mobile device through a microphone. In the other case, the mobile device broadcasts
an acoustic signal and the anchor nodes fulfills the role of acoustic receiver.

Given the energy constraints of the mobile device, the transmission of acoustic signals
is preferably left to anchor nodes. To pick up acoustic signals at useful distances, the power
consumption of speakers easily amounts to several hundred milliwatt or even a couple of
watt. In contrast, MEMS microphones only have a power consumption in the order of a
few milliwatt. This leaves a reception window for the mobile device that can be two or
three orders larger than the time window for transmission before both energy requirements
equalize. Considering a LOS distance in the order of 10 m for a typical room, such a
long reception window will generally not be needed. On the other hand, some energy-
demanding signal processing may be involved in the receiver contrast to transmission, e.g.,
for filtering or information extraction. Depending on the needs of the application, this
speaker–microphone power consumption imbalance will impact the architectural decisions.

In terms of physical dimensions, preference is again mainly given to the anchor-
transmission setup. Since speakers are relatively large, a small MEMS microphone is
preferred for the mobile device. Moreover, the small dimensions of the microphone cause
the beam pattern to be omnidirectional, even at low ultrasound frequencies, which guaran-
tees acoustic pick-up from all directions. At the same operating frequency, a larger speaker
will exhibit a more directional beam pattern. Consequently, multiple speakers may have
to be used at the mobile device to ensure acoustic transmission to sufficient anchor nodes,
which increases cost and complexity.

3.2. Signaling

To obtain accurate distance measurements with low-energy consumption in the mobile
device requires a well-considered design of system signaling. To this end, two classes of
ToF-based hybrid RF-acoustic ranging strategies are discussed: (I) schemes performing an
early wake-up; and (II) schemes realizing a late wake-up.

Two-class I, i.e., early wake-up signaling schemes are presented in Figure 3. The
distance measurements are initiated by the anchor nodes. In the first case, the anchor node
sends out an RF signal to indicate the start of acoustic transmission, and the mobile device
times the propagation delay. In the second case, the anchor node transmits an acoustic
signal, waits for a confirmation of reception from the mobile device, and measures the
ToF itself. Either way, the mobile device does not know when to expect the acoustic wave
from the anchor node in time. If a maximum distance of 10 m is assumed, the mobile
device may need to wait actively for a full period of 29.15 ms. From an energy consumption
perspective, these scenarios are not optimal, however, they can be easily deployed in
situations where there is not prior knowledge of the expected range or when the distances
can significantly differ.
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M

sleep active sleep t

wake-up
and sync

ToF

(a)

A

M

sleep active sleep t

wake-up sync

ToF

RF

Acoustic

TX RX

TX RX (b)

Figure 3. Two hybrid RF-acoustic ranging strategies considering acoustic transmission by the anchor
node(s). The ToF is either measured by (a) the mobile device M or (b) the anchor node A. In each
case, the mobile device needs to actively wait for the arrival of the acoustic signal, which entails poor
energy efficiency.

Rather than actively timing the propagation of an acoustic signal, class II, i.e., late
wake-up signaling schemes have been introduced to improve energy efficiency. Such an
energy-efficient ranging scheme was proposed in [42,43] and is shown in Figure 4. At a
time T0, an ultrasonic chirp of duration τTX is transmitted by an anchor node. Mobile
devices M1 and M2 remain in a sleep mode to limit their energy consumption. At time
T0 + τTX , the end of the acoustic transmission, the anchor node broadcasts a signal through
RF, waking up the mobile devices quasi-immediately. Once active, both mobile devices
capture a part of the propagating chirp signal for a time interval τRX. Depending on the
distance to the anchor node, a different frequency interval of the ultrasonic chirp signal will
be picked up. Each mobile device sends the sampled microphone signal back to the anchor
node and goes back to sleep mode afterwards. The distance information is contained in
the part of the captured chirp signal, which can be obtained through correlation with the
transmitted chirp signal. Using this late wake-up signaling scheme, a mobile device no
longer has to wait actively for the acoustic signal to arrive. A fixed wake-up interval τRX of
1 ms is employed in [42], which contrasts sharply with the active time in aforementioned
early wake-up signaling schemes. One critical side note, however, is that the maximum
ranging distance is limited to the duration of the chirp signal τTX , however, increasing τTX
negatively affects the signal correlation due to self-interference.

A

M1

M2

tT0 T0 + τTX

t

t

f

f

f

sleep sleep

sleep sleep

active

active

τRX

Figure 4. The hybrid acoustic-RF positioning system realizing a late wake-up of the mobile nodes.
Depending on the distance to the anchor node (A), each mobile device (M1/M2) captures a different
part of the emitted acoustic chirp signal at RF wake-up. In this case, M2 is located at a larger distance
from the anchor node than M1. Both mobile devices only sample the acoustic signal during a short
time period τRX , minimizing the energy consumption.
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3.3. RF Backscattering

Antenna scattering theory has gained a lot of interest in recent years as a compelling
research domain for (near) passive communications. Stemming from the RFID research
wave of the 1990s, where the backscattering of incoming antenna signals was used for
identification [44], more recent research [45] has focused on data-intensive wireless com-
munication. Eliminating active RF transceivers could resolve major hurdles in massive IoT
and its future applications, targeting near passive communication between sensor/actuator
devices and the Internet [45,46]. We here elaborate on the potential of backscattering ap-
proaches to achieve full energy neutrality for ranging operations, which can be further
processed for determining the position of devices. Thereto, we first clarify the antenna
scattering principles and its major parameters, and we then apply these to the case of
backscattering modulation to be used for hybrid RF-acoustic ranging.

3.3.1. Antenna Scattering

In this paper, we adopt customized backscattering for the energy-neutral localization
of a mobile device, by which it will communicate the information embedded in the received
acoustic signals back to a central system. Backscattering is based on radar principles.
The far-field parameter used to characterize the scattering properties of a radar target
is the RCS (σ). According to [47], it is defined as a fictive area intercepting that amount of
power, which, when scattered isotropically, produces at the receiver a density which is equal to that
scattered by the actual target. This depends on the relative position between the target and
transmitter/receiver, target geometry and material, frequency, angular orientation and
transmitter/receiver polarization [48].

A more intuitive approach for the RCS in a bistatic setup, in which the transmitter
and receiver at the infrastructure side are separated, is depicted in Figure 5. In this bistatic
setup, R1 represents the distance between the transmitting antenna and the backscatter
device and R2 is the distance between the backscatter device and receiving antenna. The
transmitted power (Pt) is observed by a target, at a distance R1 from the source. The
incident power (Pi) that is intercepted by the target is determined by the incident power
density (Wi) and the cross-section σ, so that the captured power is σWi. This intercepted
power is either reradiated as scattered power or absorbed as heat. Isotropical reradiation
delivers a scattered power density at distance R2 from the target given by:

Wi =
Pt

4πR2
1

(1)

Ws =
σWi

4πR2
2

(2)

Combining the above equations with the radar range equation gives the relation
between the radar cross-section, the power transmitted by the transmitting antenna, and
the power received by the receiving antenna as a function of the different distances and the
RCS in the case of polarization matched and aligned antennas:

Pr = σ
GtGr

4π

(
λ

4πR1R2

)2
(3)

A digital or analog signal can be backscattered by altering this RCS value. The above
equation provides a description of the RCS but does not clearly state how it can be altered at
the hardware level. Green [49] introduced a load-dependent radar cross-section defined as:

σi =
λ2

4π
G2

0 |Γi − As|2. (4)
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With the load-dependent term:

Γi ,
Zi − Z∗a
Zi + Za

, (5)

where Za is the antenna and Zi is the load impedance. This term refers to the antenna mode
and depends on the power absorbed in the load of a lossless antenna and the power which
is reradiated by the antenna due to load mismatch. The second mode that can be derived
from Equation (4) is the structural mode (AS) scattering term which depends on the antenna
geometry and materials [50,51].

Target σ 

Transmitting Antenna
(Pt , Gt , Dt , Γt)

Receiving Antenna
(Pr, Gr, Dr, Γr)

R1

R2

Target σ Target σ 

σWi [W] 

Target 
Captured
Power

Incident 
Power
Density

Target Reradiated 
Power
Density

Wi [    ] m2 
W  Ws  =                 [      ] 

σPt 

4 π R1 m2 
W  

2 

Figure 5. Simplified visualization of the radar cross-section (RCS).

By varying the antenna load, only the structural mode of the RCS value is altered,
resulting in a changing electromagnetic field at the receiving antenna. For analog signals,
a linear load, such as the transimpedance of a JFET, can be changed depending on the
incoming signal. For digital signals, the difference in RCS between a ‘1’ and a ‘0’ should be
optimized for a maximal reading distance. Ideally, this should incorporate both the antenna
and structural modes. However, complex measurements are necessary to determine the
structural mode of the RCS. As a solution, the antenna commonly switches between the
short and open state, trading the potential improved reading distance in for ease of use.

3.3.2. Backscatter Modulation

In the system description described in Section 3.2, the acoustic signals contain the
necessary data to perform the ranging measurements. RF backscattering exploits the
instantaneous character of electromagnetic waves and can directly transmit the received
information embedded in the acoustic signals to an anchor node for further processing.
The frequency of the received acoustic signals should be modulated on an RF signal.

The load switching of a single-tone incident wave can be seen as the most simple form
of ASK modulation, i.e., OOK. It is easy to implement and therefore inexpensive. However,
this modulation method has a major drawback, namely the fact that it is highly susceptible
to noise. In the time domain, an RF source sends out the carrier wave S( fc, t), a single tone
sine wave with a frequency of fc and the backscatter device changes the RCS at a frequency
of ∆ fa. This latter represents the received acoustic chirp in the time window τrx. A1 and
A2 represent the path loss of the electromagnetic waves. In the bistatic setup, a separate
antenna receives the sum of the carrier wave and the backscattered OOK demodulated
signal:

R(t) = A1 S( fc, t) + A2 σ(∆ fa, t) · A1 S( fc, t) (6)

As backscattering is a mixing process, the OOK backscattered signals appear on the
positive and negative sides of the single-tone carrier wave in the spectrum. In other
words, the reflective and incoming wave spectra overlap. These reflected waves suffer
from self-interference as ∆ fa is relatively small, and without proper cancellation, cannot
be distinguished from the carrier wave due to the limited resolution of the receiver. With
the increasing distance, these signals ultimately become too weak to be separated from the
noise floor.
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A solution for the self-interference problem is achieved through frequency translation
backscatter [52], where the mixing capabilities of the backscatter principle are used to its
advantage. This requires an extra component on the backscatter device, a local oscillator
generating a sine wave at a frequency fclo. In the frequency domain, this moves the
signal away from the direct carrier with an offset of fc ± fclo at both sides. On these two
mirror frequencies, the received acoustic chirp signal again appears as a double sideband-
modulated signal. In total, four mirror frequencies of this acoustic signal can be seen
in Figure 6. Assuming the RCS variation is defined by a sine wave, the second term of
Equation (6) can be rewritten with the product to sum identities as:

sin( fa t) · sin( fclo t) · sin( fc t) =
1
4

(
sin

(
( fc − ∆ fa + fclo) t

)
+ sin

(
( fc + ∆ fa − fclo) t

))
− 1

4

(
sin

(
( fc − ∆ fa − fclo) t

)
+ sin

(
( fc + ∆ fa + fclo) t

)) (7)

The added local oscillator contributes to a higher-power consumption, however, it is
an excellent compromise for the gained reading distance. Additionally, as this proposed
method does not require any complex self-interference cancellation mechanism on a hard-
ware or software level, a simple radio can be used to demodulate the backscatter signal. A
major downside of this method occurs when extending the approach to a multiple-access
system. By adapting the local oscillator frequency, FDMA could be adapted to localize
multiple nodes at the same time. However, due to the double sideband modulation, the
maximum amount of simultaneous localized nodes defined by both the acoustic chirp
and RF bandwidth is halved. Complex single sideband mixers, such as in [53], with two
separate loads, could cancel out one band but at the same time consume more energy on
the mobile node.
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Figure 6. Frequency spectra of the combined direct and backscattered received RF signals without
the local oscillator at the backscatter device (left). The blue and orange lines in both figures represent
the spectra for, respectively, a small and a large resolution bandwidth. By adding the local oscillator,
the backscattered signals were shifted away from the carrier, improving distinctiveness and enabling
reception at lower spectral resolution.

3.4. Hardware Implementation, Power Consumption and Backscatter Demodulation.

Here, we put the theory into practice and present the implementation of a frequency
shifted, load switching backscatter mechanism in hardware. In addition, we evaluate the
power consumption of the contributing components and introduce the signal demodulation.

3.4.1. Hardware Implementation and Power Review

Previous implementations [53–55] demonstrate the backscatter capabilities for IoT
applications based on custom ICs. Their small form factor and ultra-low power consump-
tion, often orders of magnitude lower than systems built with lumped components, are
attractive features. Due to time and resource constraints in prototyping for R&D, we used
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off-the-shelf components, selecting options with low-energy consumption in both the active
and sleep usage. An overview of this system is depicted in Figure 7 and can be divided
into two parts: (I) the acoustic section in which the analog ultrasound signals are captured
and transformed into a digitized version, and (II) the RF section, which uses these digital
signals to switch the load of the antenna.

The acoustic section consists of:

• MEMS microphone (Vesper VM1000): key specifications in addition to its low-power
consumption include its short wake-up time (below 200 µs), high sensitivity, and wide
frequency response. In-house measurements show that frequencies over 80 kHz can be
received sufficiently, much higher than stated in the audible domain-focused datasheet
(Note that this frequency range is true for the tested microphone’s batch. No guarantee
can be given that other future batches of this microphone type will behave similarly).

• Amplifier (TI TLV341): this low-noise amplifier has a high UGB, providing a gain
up to 34.8 dB for a 40 kHz signal in a single stage. Amplifying and filtering before
zero-crossing by the comparator is more noise resilient and therefore gives better
results. The single-supply rail-to-rail capability of this opamp makes for an easy
implementation and for maximum signal amplitude swings.

• Comparator (TI TLV7031): the rise and fall time are specified below 5 nanoseconds,
giving a quasi-instant change of state when a zero-crossing occurs.

The output of the comparator containing the digitized microphone signal is connected
to an SPDT-switch (AD ADG839). This acts as a multiplexer, passing either the local
oscillator signal (AD LTC6906) with a frequency of fclo or a low-voltage signal. The local
oscillator frequency is set with two resistors, and can take values between 10 kHz and
1 MHz. Implementing double sideband modulation, we accommodate for a total bandwidth
of 80 kHz defined by the maximum chirp frequency fa,max = 40 kHz. With the local oscillator
bandwidth limitation, this allows for only 12 backscatter nodes to be active at the same
time in the same acoustic area. The last part of this RF hardware section are the RF load
switches (ADG904). A dipole PCB antenna consists of two λ/4 copper strips with a small
gap between them. For this antenna, at least two load switches are required to correctly
short and open these two sides. The ADG904 has four multiplexer channels. This means
that there are two more multiplexer inputs available on both of these chips, and other
resistors, inductors and capacitors could be used as a complex serial load between the
two copper traces, enabling additional antenna loads for improved reading distance, as
proposed in [56]. An LDO voltage converter is missing from the schematic overview in
Figure 7a. This LDO regulator converts a higher input voltage coming from an energy
buffer into a lower voltage for a DC-offset in the acoustic signal and for powering the
low-voltage components.

Amplifier Comparator

Oscillator

Multiplexer

RF Switch

Load 1Load 2

Acoustic
RF

MEMS microphone

Backscatter
Antenna

E-Harvester
+

Wake-Up

(a)

1 cm

MEMS Microphone

RF Switch

LDO

FrontBack

Amplifier

Comparator

Oscillator

Multiplexer

(b)

Figure 7. (a) Block diagram and (b) PCB layout of the backscatter module.
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The total energy consumption and awake time of the chosen hardware components are
shown in Table 2. Current measurements were performed with nanoampere precision on an
Otii Arc precision power analyzer and used for the stable power consumption calculations.
The reference voltage was fixed at 2.5 V. A Keysight DSO-X 2002A digital scope with
reference resistor and precision power source was chosen to measure the transient currents
of the system at startup. For the active power consumption, a wake-up time (τrx) of only
1 ms was set. Measurements were performed in [57] to calculate the necessary power
budget for RF energy harvesting. From this table, a total energy consumption below 5 µJ
can be calculated to perform a single distance measurement. For complete energy-neutral
operation, the current hardware should be extended with an energy harvesting circuit,
e.g., E-Peas AEM 40940 and an RF wake-up detector for synchronized wake-ups. In active
modus, the total power consumption is 755 µW. Without a reference wake-up and in always-
active modus, this system could last for 894.04 hours or 37.25 days on a lithium CR2032 coin
cell battery with a nominal voltage of 3 V and a 225 mAh capacitance. With an RF wake-up,
where the wake-up time is 986 µS, the awake time is limited to 1 ms, and the measured
transient energy consumption is 1.66 µJ, the lifetime of such a node could be extended to
213,646.13 hours, or 8901.92 days, or 24.38 years, without the power consumption of the
awake circuit and self-discharge of the battery into account.

Table 2. Overview of the measured power consumption per component and their wake-up time.
Precision current measurements were performed at a reference voltage fixed at 2.5 V.

Microphone Amplifier Comparator Oscillator Mulitplexer Switches LDO

Pavg,stable (µW) 213 185 2.5 112.5 197.5 2.5 42
∆ton (µS) 140.5 932 452 223 986 842 810

Eavg,trans,all (µJ) 1.66

3.4.2. Backscatter Demodulation

With the addition of the local oscillator on the backscatter device, demodulation
needs to be performed at the bistatic receiver. For this type of backscattering, two types of
demodulation can be performed:

1. OOK demodulation. The digitized acoustic signal drives a multiplexer that forwards
either the local oscillator or no signal at all. Consequently, the load is switched at the
local oscillator frequency fclo or it is not switched. In the spectrum, this appears as a
signal fclo away from the RF carrier frequency that is turned on and off. As mentioned
previously, OOK is very susceptible to noise, and the drift of the local oscillators can
make the amplitude demodulation on the receiving radio impossible.

2. FSK demodulation. As the acoustic chirp ∆ fa can be considered as a signal modulated
in frequency, this chirp signal can be observed on both sides of the local oscillator
frequency. The demodulation is done by performing a frequency translation and
a decimating FIR filter on one of the sidebands. With this, only the portion of the
wideband signal with the frequency decreasing chirp signal is saved to a buffer for
later use.

In this paper, FSK is used for demodulating the backscattered acoustic signal. In
Figure 8, a snapshot of both the spectrum and the received signal in the time domain can
be observed. The two sides of the spectrum are plotted, clearly showing the powerful RF
carrier wave, the local oscillator frequency, and the two acoustic sidebands.
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Figure 8. (a) Spectrum of the received backscattered signal, showing the two symmetric sidebands
with the RF carrier frequency at the center; and (b) 1 ms of samples from the received backscattered
signal in the time domain before the cross-correlation (∆xa = 200 cm).

4. Experiments Demonstrating Opportunities and Challenges in Hybrid
RF-Acoustic Positioning

To analyze the approach from Section 3 for realistic positioning scenarios, experiments
were performed in a true-to-life test environment. In this section, we first describe the test
environment and hardware used in the bistatic measurement setup. Consequently, three
types of measurements were conducted. In the first two, the interdistance between the
microphone–speaker pair and the transmitting and backscatter antenna is increased. In the
latter, the angle between the transmitting and backscatter antenna is changed. This paper
limits itself to ranging capabilities when acoustic and RF LOS is assured. With median
errors below 10 cm for most distances, these experiments show the potential of low-power
hybrid RF-acoustic ranging for 3D positioning.

4.1. Experimental Environment and Measurement Setup

The experiments are performed in a multi-functional measurement infrastructure
named Techtile, depicted in Figure 9b. This is a 8 × 4 × 2.4 m modular structure built
for distributed sensing and communication technologies [58] with 140 tiles covering the
walls, ceiling and floor, each equipped with a power, radio, processing and communication
module. A DAQ-setup with 384 single-ended, synchronized, 16-bit, analog input channels
enables the fast sampling (3.3 MS/s) of sensors and actuators. This offers a true-to-life,
modular testbed for both acoustic and RF-based research.

The acoustic characteristics of this room are defined by the RT60 value, the time it
takes for the room to attenuate an impulse signal with 60 dB and linked critical distance.
With an RT60 value of 0.41 s above 8 kHz for a volume of 77 m³ [59], this room has a critical
distance of only 0.75 m. At this distance, the direct and reverberated sound signals can
exhibit equal SPL, making this an acoustically harsh environment to conduct measurements
in. Additionally, SPL measurements with an 60 Hz of 80 kHz frequency and a 10 s time
window show different sources contributing to the ambient noise. In the audible domain,
peaks over the 60 dB can be detected close to the server and networking rack, whilst a
40.9 dB peak is measured in the ultrasonic domain, coming from switched power supplies.
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Figure 9. (a) Top view of the measurement setup in the Techtile environment; and (b) actual measure-
ment infrastructure.

Figure 9a depicts the top view of the experimental setup in the Techtile environment.
The following elements can be distinguished:

• RF source: a single frequency carrier sine wave of 868 MHz with an output power of
12 dBm is sent out by R&S SMC100a signal generator. A directional patch antenna
with a 6.15 dBi gain is attached to this setup, contributing to a total output power
of 18.15 dBm, well below the 27 dBm EIRP upper limit imposed by the ETSI regula-
tions. The antenna is mounted on a pole, at the same height as the antenna of the
backscatter device.

• Processing unit for audio transmission (@anchor node): The acoustic signal is gen-
erated on a Raspberry Pi 4 running a Debian-based operating system. A C library
PiGPIO is used for sending out the chirp with a frequency between 40 kHz and 20 kHz
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by binary switching a GPIO pin for 30 ms. The audio signal is amplified with an
off-the-shelf amplifier with a frequency range over 45 kHz. The audio signals are
transmitted by a Fostex FT17H ultrasonic tweeter with a HPBW below 30° in the
xy-plane at 25 kHz. Similar to the RF source, the speaker is mounted on a pole and
directed towards the MEMS microphone of the backscatter device.

• Backscatter device (@mobile device): Consists of both RF and audio components and
was detailed in Section 3.4.

• Processing unit with SDR (@anchor node): The same Raspberry Pi 4 is used as pro-
cessing unit running Python-based GNU radio in parallel with custom C++ timing
and an acoustic signal-generating code. The RF backscattered waves were received by
a dipole antenna connected to an Ettus B210 USRP SDR, and converted, filtered, and
handled by signal-processing blocks in GNU radio. These FM-demodulated signals
are stored in the hard drive for further distance range calculations. Interrupt-based
precise timing between the start-up of the acoustic chirp and the RF wake-up time is
performed by the software as well, with a maximum measured offset of 10 µs.

4.2. Conducted Experiments

Three types of experiments were conducted to test the accuracy and precision of
the ranging method. The first two test the distant-dependent performance between the
backscatter device and the audio or RF-source. In the third test, the angle of arrival (α)
between the RF source and device is varied. All measurements are realized in quasi-ideal
circumstances, as there is a direct LOS between the source and receiver and both audio
and RF-sources and receivers are pointed towards each other. Interfering sources are kept
to a minimum, but could not be totally excluded as the room was used under normal
conditions with persons walking in and out and other equipment turned on and off at
certain moments in time. The current setup lacks the RF wake-up system described in the
previous section. This means that in the reported experiments, there was a continuous
backscatter communication of the received acoustic signal. To simulate the synchronization
and the limited awake time of the mobile node, a 1 ms sampling window was chosen at the
end of the acoustic chirp.

4.2.1. Ranging Audio

As sound pressure is subject to the inverse square law, with sound pressure decreasing
by 50% when the distance doubles, an experiment of interest is that of the investigation of
how well the ranging method performs if the audio distance (∆xa) is increased by moving
the backscatter device in a linear, stepwise motion. The RF source and accompanying
antenna are moved along, keeping the distance (∆xr f < 2 m) and angle of the incoming
RF wave (α) similar in all test cases. This minimizes the potential influence of the RF
source and receiver spacing. Nevertheless, since the receiving antenna of the anchor node
is connected through an SDR with the centrally positioned processing unit, there is still
some unavoidable influence of the increased RF distance.

Figure 10 plots the CDF of the measured error for 10 distances ranging from 50 to
500 cm. For each distance, at least 150 measurements were performed. The error is the
absolute difference of the calculated hybrid ranging measurement and a reference value
measured with a laser-based instrument. The results show an initial steep slope and
sudden increase in the outliers. This leads to the initial conclusion that at the acoustic
level, the ranging performs well. Only at the 350 cm distance in Figure 10a can a more
gradual increasing graph be observed. This anomaly can be addressed to path loss or
reverberation in the acoustic or the RF medium, as better results are obtained with larger
distances. However, the initial rapid incline of this graph shows that the system is capable
of calculating the correct distance which rules out errors in the calculations or constructive
interference at another fixed frequency. At the larger distances between the acoustic source
and backscatter device, the method behaves as expected and increases with the interdistance
(∆xa). A detail of the acoustic CDF plot is depicted in Figure 10b. Here, it can be seen that
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most of the experiments have a P90 value below 20 centimeters. All except two have a
median error within a 10 cm error, a favorable result for indoor positioning where outlier
detection algorithms can be used to optimize the results. The 400 cm curves on both plots
show that even for larger distances, excellent results can be obtained. For the largest two
distances, a plateau can be noticed on the CDF plot. This plateau can be explained by the
fact that, wrongfully, the index of the maximum correlation coefficient is used to estimate
the distance, as can be seen in Figure 11. The red line on this correlation plot describes
the actual distance, whilst the orange lines indicate the peak selected based on the overall
maximum. In case of this sample set, adopting an advanced peak selection method would
improve the distance error drastically. From Table 3, similar results can be deduced. The
difference between the mean and P50 error can be attributed to the high outlier errors.
How early these outliers occur is described by the P90 value. The last metric in this table is
the mean value of the STMR. Here, the second highest correlation peak is divided by the
highest which gives an index in how distinct the correlation peak is.

mean STMR =
n

∑
i=0

1
n

max2( f (t) ? g(t))
max( f (t) ? g(t))

(8)

With f (t) as the received backscatter signal, g(t) is the transmitted chirp signal and
max2 is the second highest value of the cross-correlation between these two. Values closer
to 1 indicate that these peaks have similar heights and can often be caused by noise-induced
backscatter signals. For ranging calculations with a high STMR, refined peak selection
methods could have a great impact on the results.
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Figure 10. (a) General acoustic CDF plot of the measured distance error for different inter-speaker
and backscatter distances; and (b) detail of the general acoustic CDF plot for distance errors smaller
than 1 m.

Table 3. Metrics overview of the acoustic ranging.

∆xa (m) 0.501 1.010 1.515 1.998 2.473 3.024 3.499 3.993 4.512 4.992

Mean error (m) 0.211 0.119 0.125 0.539 0.423 0.335 1.063 0.087 0.294 0.314
P50 error (m) 0.081 0.080 0.069 0.095 0.058 0.063 0.212 0.036 0.112 0.096
P90 Error (m) 0.351 0.115 0.136 1.268 1.909 0.197 3.704 0.094 0.657 0.746
Mean STMR (m) 0.245 0.249 0.332 0.659 0.474 0.606 0.786 0.470 0.667 0.644
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Figure 11. Example of a correlation plot between the received RF samples and the original transmitted
chirp for an interdistance of ∆xa = 5 m. The red line is the actual distance, whilst the orange line is
the selected maximum peak for the used distance estimation.

4.2.2. Ranging-RF

A second parameter to test is the influence of the distance between the RF-source
and the antenna of the backscatter device. In the first set of acoustic measurements, this
distance was kept above the far field distance and below 2 m. In the next measurements,
we gradually increase the distance ∆xr f while keeping the distance between the acoustic
transmitter and receiver constant. The influence of the inter-RF distance can be seen in two
selected CDF plots, for ∆xa 300 cm and 400 cm, respectively, in Figure 12a,b.
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Figure 12. (a) CDF plot of the measured distance error for ∆xa = 300 cm and different ∆xr f ; and
(b) the fixed acoustic distance is here ∆xa= 400 cm.

The left plot shows that for smaller values of ∆xr f , some interference at a fixed
frequency occurs. This results in a more prominent peak than the correct distance peak after
correlation. This interference was only noted at this distance, and its influence diminishes
with the increasing distance. This diminution potentially highlights the influence of the RF
wave’s incoming angle (α), as this angle decreases when the RF source linearly moves away
from the backscatter device in parallel with the backscatter–audio source axis. Out of the



Future Internet 2022, 14, 156 18 of 22

second CDF figure, it can be understood that for a well-performing ranging measurement,
there is no influence from the interference or the distance, as some larger distances of ∆xa
show better results. However, as not all lines follow the same course, the interference effect
must come from somewhere else. As in this measurement set, the angle of arrival from the
incoming RF-wave (α) was kept as consistent as possible but was not actively monitored.

To assess this influence of the angle, a last set of measurements was performed. Here,
the backscatter device is kept at a constant distance of 250 cm from the acoustic source.
The RF-source antenna moves around this device on a 190 cm radius, with the incoming
angle (α) going from 0◦ to 180◦ in steps of 27.5◦. With this increasing angle, the ranging
performance drops drastically, as can be seen in Figure 13 and confirms our previously
hypothesis stated. For angles of 27.5◦ and above, the curves behave similarly to how they
do in Figure 12a. Again, some fixed frequency interference in the received backscatter signal
can be observed, with a larger influence on the cross-correlation and ranging measurements,
resulting in the known plateaus. Only at 90◦does the shape of the plot differ and incline
more uniformly. The source antenna is herein perpendicular to the PCB dipole antenna.
From a backscatter perspective, only a small surface of this latter dipole antenna can be
seen by the source antenna, leading to poor absorption and reflection capabilities. This can
be attributed to the directivity of the half-wave dipole backscatter antenna and is normally
embedded in the extended radar range equation from which the incident power density Wi
is derived. Half-wave dipoles have a three-dimensional toroid shape. In this measurement
setup, the radiation peaks when the transmission antenna faces the backscatter dipole
(α = 0◦) and goes towards zero when it is positioned in perpendicular to the antenna
(α = 90◦). The cause of the deviations in the previous ranging measurements depicted in
Figures 10a and 12a can thus be explained by the incoming angle, which in most cases, is
best kept low. With this, it can be seen that it is better to position the RF side along the
acoustic source rather than opposite it. Another solution would be to position the dipole
antenna on the perpendicular axis since it has an omnidirectional radiation pattern in
this plane.
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Figure 13. CDF plot of the influence of the angle between the RF source and backscatter with
∆xa = 250 cm and ∆xr f = 190 cm.

5. Conclusions and Road Ahead

The accurate positioning of energy-neutral devices could significantly extend cur-
rent battery-driven location-based applications. A comprehensive overview of the active
research in low-power indoor positioning systems shows that there are plenty of open
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research challenges and opportunities to progress towards the ambitious goal of the ac-
curate and precise 3D positioning of energy-neutral devices. Our assessment shows that
disruptive methods are needed, putting the energy neutrality of the mobile node as a
fundamental objective when designing. A key example preaching this design method
can be found in RFID. However, its solid identification capabilities cannot be straight-
forwardly scaled up to positioning. The results presented in this paper demonstrate the
very promising potential of the combination of slower propagating acoustic waves with
low-power backscatter RF communication technology to enable this sought-after feature in
location based services. The measurements of the proposed hybrid RF-acoustic ranging
system show that this technology is mature enough to be exploited for 3D positioning.
With an energy consumption below 5 µJ per distance measurement, energy harvesting
methods should be able to provide enough power for standalone operation. The 10 cm
median accuracy error could be reduced by implementing better peak selection methods,
adapting omnidirectional backscatter antennas, and selecting optimal impedances for the
load modulation of the antenna.

The road ahead requires first of all further R&D to develop the full 3D positioning
solution for possibly a large amount of energy-neutral devices. This requires (I) the imple-
mentation of the RF wake-up necessary for synchronization purposes; (II) the development
of adequate algorithms to determine accurate 3D positions based on the ranging mea-
surements; and (III) the extension of these ranging methods to provide multiple access
capabilities. Furthermore, solutions to increase precision and reliability in challenging
reflective indoor environments are to be researched. For example, simultaneous localization
and mapping techniques (SLAMs) could help combat bad outliers. Furthermore, physics-
inspired learning methods taking into account high-level information on the surroundings,
e.g., position of walls, are also promising.
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Abbreviations
The following abbreviations are used in this manuscript:

DAQ data acquisition system
PoE power-over-Ethernet
USRP universal software radio peripheral
MEMS micro-electro-mechanical system
ADC analog-to-digital converter
DAC digital-to-analog converter
FS full scale
RFPT radio frequency power transmission
SoC system on chip
SDR software-defined radio
LIDAR laser imaging detection and ranging
DDS direct digital synthesis
RT reverberation time
RTA real-time analyzer
SPL sound pressure level
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TP test point
TDoA time difference of arrival
SLAM simultaneous localization and mapping
PTP precision time protocol
NLoS non-line of sight
WPT wireless power transfer
RF radio frequency
LOS line of sight
EIRP effective isotropic radiated power
HPBW half power beam width
APT acoustic power transfer
IoT Internet of Things
RSSI received signal strength indicator
UWB ultra wideband
PoA phase of arrival
ToF time of flight
RFID radio-frequency identification
CDF cumulative distribution function
MIMO multiple-input–multiple-output
STMR side lobe-to-main lobe ratio
PCB printed circuit board
RCS radar cross-section
OOK on–off keying
ASK amplitude shift keying
FSK frequency shift keying
IC integrated circuit
UGB unity gain bandwidth
CMUT capacitive micro-machined ultrasonic transducers
FMDA frequency division multiple access
LDO low dropout
SOTA state of the art
RT60 reverberation time (60 dB)
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