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Abstract: To help developers discover libraries suited to their software projects, automated ap-
proaches often start from already employed libraries and recommend more based on co-occurrence
patterns in other projects. The most accurate project–library recommendation systems employ Graph
Neural Networks (GNNs) that learn latent node representations for link prediction. However, GNNs
need to be retrained when dependency graphs are updated, for example, to recommend libraries
for new projects, and are thus unwieldy for scalable deployment. To avoid retraining, we pro-
pose that recommendations can instead be performed with graph filters; by analyzing dependency
graph dynamics emulating human-driven library discovery, we identify low-pass filtering with
memory as a promising direction and introduce a novel filter, called symmetric partially absorbing
random walks, which infers rather than trains the parameters of filters with node-specific memory to
guarantee low-pass filtering. Experiments on a dependency graph between Android projects and
third-party libraries show that our approach makes recommendations with a quality and diversifica-
tion loosely comparable to those state-of-the-art GNNs without computationally intensive retraining
for new predictions.

Keywords: Software Library Recommendation; graph filters; dependency graphs; link prediction

1. Introduction

The pervasive integration of mobile phones in everyday life and the digitization of
practically all aspects of human activities have led to a constant need for new software
services, applications and platforms. This need drives a highly motivated software de-
velopment industry, whose aim is to cater quickly to user needs with new or repurposed
software. In this regime, agile and component-based engineering practices are predomi-
nantly adopted [1] that reuse previously developed software and quickly share it between
developers, mostly in the form of well-documented and tested libraries. These are dis-
tributed by online services such as the Maven repository of Java libraries [2], the PyPI
repository of Python libraries [3], and the npm registry of Javascript libraries [4].

However, the sheer size of coding ecosystems/repositories [5] makes it a daunting
prospect to find which libraries would best support new projects. For example, as of writ-
ing, Maven hosts more than three million software artifacts. In this setting, programmers,
especially those working in unfamiliar domains, need to conduct time-consuming research
through many libraries to select those suited to their needs, or else they risk incurring
technical debt to their projects in the long run [6]. To reduce search effort, automated
tools have been proposed to recommend which libraries to use (Section 2.1). This is often
achieved by analyzing the dependencies between projects and libraries and adopting a col-
laborative filtering outlook [7] that recommends additional libraries based on those already
used. For example, the inclusion of server-related libraries could imply potential interest in
database management libraries frequently used together in other projects. Collaborative
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filtering approaches organize projects and libraries in graphs, whose edges correspond
to project–library dependencies. These then mine structural patterns to recommend new
dependencies, for example, with Graph Neural Networks (GNNs—Section 2.3).

As far as predictive accuracy is concerned, collaborative filtering approaches yield
high-quality recommendations. To achieve this, they typically learn latent representa-
tions (e.g., embeddings) for all software projects and libraries and let pairwise project
and library representation comparisons (e.g., the cosine similarity of their embeddings)
rank libraries based on their similarity to projects under examination. The most similar
libraries are considered to implement the functionality needed by projects and are thus
recommended for adoption. However, when dependency graphs evolve with more li-
braries and—importantly—projects for which to make recommendations, these approaches
need to be retrained to create representations accounting for new nodes and dependencies.
In practice, this translates to usability costs by locking recommendation pipelines until
training is over (Section 3).

To create deployment-friendly library recommendation services, in this work, we
argue that collaborative filtering can be conducted with no-learning alternatives that make
informed ad hoc assumptions about which co-usage patterns to mine. These alternatives
sacrifice some predictive quality for the benefit of avoiding training and its associated
costs. In particular, we look at graph filters (Section 2.2) to recommend libraries based
on how structurally proximate they are within dependency graphs to libraries already
being used. Graph filters are computationally efficient (their running times scale near-
linearly with the number of dependencies and their outcomes can be quickly computed,
even without high-end GPU hardware) and only rely on their chosen understanding of
structural proximity. We specifically choose absorbing random walks’ filters that emulate
human-driven library discovery combining co-usage exploration and memory of previous
discoveries (Section 4.3); we employ such filters with the goal of quickly finding libraries
similar to those that humans use in their projects and hence reduce the effort of searching
for these.

Our contribution lies in (a) proposing graph filters as a viable alternative to more
sophisticated but ultimately unwieldy library recommendation tools; (b) analyzing which
types of filters to employ for high-quality library recommendations; and (c) introducing a
new variation of absorbing random walk filters, called symmetric partially absorbing ran-
dom walks for link prediction that has no learnable parameters—not even hyperparameters.
The usefulness of our approach is experimentally demonstrated on a large real-world de-
pendency graph of third-party library dependencies, where it outperforms representation
learning based on matrix factorization in terms of the predictive quality and diversification
of results and lags only a little behind state-of-the-art GNNs that require computationally
intensive retraining for every new recommendation task.

The rest of this paper is organized as follows. In Section 2, we overview the related
literature and present theoretical concepts needed to position our analysis, namely from the
domains of graph signal processing and GNNs. In Section 3, we showcase practical issues
with deploying representation learning for library recommendation and explain how these
can be resolved when switching to graph filters. Based on this explanation, in Section 4, we
analyze real-world library discovery practices and selected the appropriate filters that are
automated yet emulate human-driven discovery. To show the effectiveness of these filters,
in Section 5, we organize experiments to compare our approach with existing alternatives.
In Section 6, we discuss the experimental results in terms of real-world usefulness, address
threats to validity, and point out promising future work. Finally, in Section 7, we summarize
our work and conclude the paper.

2. Background and Related Work
2.1. Library Recommendation

Many recommendation system approaches are applied in the field of assisted software
engineering [8,9]. Among other tasks, these have also been used to recommend relevant
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libraries to developers to commence their work. Originally, library recommendation tools
were similar to other search engines in that they used query terms pertaining to project
keywords (e.g., extracted from source code). However, state-of-the-art systems employ
co-usage patterns of libraries to recommend new ones based on those already included in
projects [10–12]. This is effectively a type of collaborative filtering [13] which eventually
coalesced to the matrix factorization of the LibSeek tool [14].

In practice, library recommendation is conducted on project–library dependency
graphs, where software projects and libraries are nodes that are linked based on usage.
That is, projects are linked to libraries they import. In terms of collaborative filtering,
which aims to produce item recommendations for users based on item co-usage patterns
(e.g., being bought by the same users in e-commerce platforms), libraries would corre-
spond to items and software projects to users. Assuming that only links between projects
and libraries are captured and not dependencies between libraries, dependency graphs
are bipartite and described by matrices Abip : P× I of P rows and I columns, where P
is the number of projects and I the number of libraries. Their elements obtain values
Abip[u, v] = {1 if project u depends on library v, 0 otherwise}. For this formulation, ma-
trix factorization approaches aim to generate representation matrices Hproj : P× h and
Hlib : I × h whose rows correspond to underlying h-dimensional representations (embed-
dings) of projects and libraries, respectively. These representations are trained so that the
dot product (the dot product between representations also models cosine similarity if L2
normalization is applied on representations) is higher between projects and their used
libraries than between projects and unrelated libraries. In matrix form, the representation
matching would ideally be able to reconstruct the bipartite graph per:

Abip ≈ HprojHT
lib (1)

For example, LibSeek learns to approximate this factorization through stochastic
gradient descent [15] on a loss function that heuristically weighs the differences between
matrix elements, introduces L2 regularization on the representation matrices, and penalizes
dissimilar representations of libraries and projects of similar graph neighborhoods.

A natural evolution of matrix factorization is to detect more complex library co-
usage patterns with Graph Neural Networks (GNNs—Section 2.3). This direction has
only recently been explored with the introduction of GRec [16] and similar works that
also account for metadata other than dependencies [17]. Approaches consider adjacency
matrices A : (P + I) × (P + I) describing the bipartite dependency graphs per A =
[0P Abip; AT

bip0I ], where 0X : X × X are square matrices of zeros. Adjacency matrices are
then input in the GNN link recommendation pipelines, such as the ones described in
Section 2.3.

2.2. Graph Signal Processing

Graph signal processing [18] is a way to systematize information propagation in graphs
through their edges. In particular, it starts from a similar definition of adjacency matrices
as above A = {1 if edge u, v exists, 0 otherwise}, which is modified to be applicable to any
type of graphs, not only bipartite ones. It then considers normalizations Â that reduce the
importance of profligately connected nodes’ edges. One popular type of normalization is
the symmetric expression

Â = D−1/2 AD−1/2 (2)

where D are diagonal matrices of node degrees with elements D[u, v] = {∑v′ A[u, v′]
if u = v, 0 otherwise}. This regards edges (u, v) as bidirectional and re-weighs them by
considering both endpoint degrees per Â[u, v] = A[u, v]/

√
D[u, u]D[v, v].

Given adjacency matrix normalizations Â, graph signal processing explores informa-
tion propagation through graphs by considering graph signals h0 whose elements h0[u]
hold values corresponding to nodes u. These values can be propagated to one-hop neigh-
bors through the matrix-vector multiplication operation Âh0. This is equivalent to the
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discrete signal processing shift operator (graph signal processing can model discrete signal
processing if points in time are expressed as a line graph whose edges connect points
with the next points) and is a type of additive aggregation across graph neighbor values,
where neighbors v of nodes u are weighted by Â[u, v]. Iterating the shift operator k times
per Âkh0 yields graph signal propagations k hops away from original values. Under this
formalization, graph filters are defined as a weighted averaging of multi-hop propagation
to obtain filtered signals h per:

h = F(Â)h0

F(Â) =
∞

∑
k=0

fk Âk (3)

where F(·) is the graph filter and fk are the weights placed on node values k hops away.
Notably, symmetrically normalized adjacency matrices Â can be decomposed into Â =
UΛU−1, where Λ are diagonal matrices of eigenvalues λ ∈ [−1, 1] and U is the orthonormal
base of eigenvectors. Applying graph filters on this decomposition yields:

F(Â) =
∞

∑
k=0

fk(UΛU−1)k =
∞

∑
k=0

fkUΛkU−1 = UF(Λ)U−1

Hence, graph filters transform normalized adjacency matrix eigenvalues from λ to:

F(λ) =
∞

∑
k=0

fkλk (4)

Based on the above properties, spectral graph theory generalizes the concept of Fourier
transformations to node-domain graph signals h0 as F{h0} = U−1h0 and the inverse
transform as F−1{h′0} = Uh′0. Analogously to traditional signal processing, graph (convo-
lutional) filtering is defined as element-by-element multiplication � in the Fourier domain.
The node-domain equivalent of filtering can be written as convolution with a Fourier-
domain filter F(λ̄) as:

F−1{F(λ̄)�F{h0}} = F−1{F(Λ)F{h0}} = UF(Λ)U−1h0 = F(Â)h0

where λ̄ is the vector of the adjacency matrix eigenvalues and is considered its spectrum,
whilst F(λ̄) is applied on all spectrum dimensions.

Since Fourier-domain operations can be translated into node-domain filtering compu-
tations, graph filters are easy to implement [19] and require only an informed assumption
of how the normalized adjacency matrix’s spectrum needs to be transformed. For in-
stance, two popular graph filters are (a) personalized PageRank [20–22], which arises from
Markovian-like equivalents to random walks with restart within graphs and have parame-
ters fk = (1− a)ak controlled by one hyperparameter a ∈ [0, 1]; and (b) HeatKernel [23,24]
which emulates heat diffusion dynamics in graphs with parameters fk = e−ttk/k!, where
k ∈ {1, 2, 3, . . . } is the number of hops away in which maximal importance is placed.

These filters are low-pass in the sense that parameters fk are generally larger for
smaller k, which in turn translates into a lesser impact on eigenvalues with absolute values
closer to 0 than high-frequency eigenvalues with larger absolute values. In practical terms
of node domain operations, low-pass filters place more emphasis onto diffusing node
values of fewer hops away and thus introduce a type of graph signal smoothing that
removes non-local implicit node relations, which can be thought of as high-frequency noise.

The above spectral analysis is tailored to the symmetric normalization of graph ad-
jacency matrices and undirected graphs, i.e., for which Â[u, v] = Â[v, u]. However, some
filters, such as personalized PageRank, are better known for non-symmetric normalizations
arising from Markov chain modeling, such as Â = AD−1, where graphs are defined by
directed edges. Spectral theories are also available for these filters, but lay outside the
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scope of our work. Instead, when analyzing bipartite project–library graphs, we work
with undirected edges that allow the transfer of graph signal values from both projects to
libraries and libraries to projects (otherwise, filtering with graph signals would be stuck
at recommending only immediate neighbors). Therefore, we adopt the adjacency matrix
normalization of (2).

2.3. Graph Neural Networks for Link Prediction

Graph Neural Networks (GNNs) [25,26] are a popular machine learning paradigm that
lets traditional feature-based neural network learning account for the relational information
of data samples organized into graphs. This is achieved through message-passing protocols
that gather and aggregate latent representations of graph neighbors, which are then trans-
formed with neural network layers shared between all nodes before being passed on. Many
industry-level applications focus exclusively on GNNs that employ the shift operation of
graph signal processing as the aggregation operation, since the latter performs a (weighted)
averaging of graph neighbor representations that can be efficiently implemented with
sparse matrix multiplication within GPUs.

All GNNs start from initial matrices of node representations H(0), whose rows H(0)[u]
correspond to features of nodes u. These could be unsupervised embeddings obtained
by multilayer architectures and trained end-to-end [27] or other pre-processed machine
learning features, such as weighted bag-of-word vectors. Then, given normalized adjacency
matrices Â, convolutional GNNs average graph neighbor representations where these
are weighted by corresponding edge weights. This kind of smoothing is understood
as a natural extension of graph signal processing to vector-valued graph signals can be
expressed in matrix form with the operation ÂH(`), where H(`) are matrices of (latent)
node representations.

Most GNNs add computational stability to the graph shift operation with a practice
dubbed the renormalization trick. This adds self-loops to all nodes before computing the
normalized adjacency matrix and will also be used throughout this work. Compared to the
original matrix, the renormalization trick computes Â = (I + D)−1/2(I + A)(I + D)−1/2,
where I the unit matrix. Since matrix multiplication can be efficiently computed by modern
GPUs, especially if graphs are not fully connected and sparse representations can be
leveraged to make computation time scales with the number of edges, convolutional
GNNs have become a widely popular variety for analyzing the graphs of many nodes and
edges [25,26].

Original GNN approaches (e.g., the architecture of Kipf and Welling [28] that helped
popularize the domain) defined graph convolutional layers per:

H(`) = σ(ÂH(`−1)W(`)) (5)

where σ(·) are nonlinear activation functions applied on matrices element-by-element,
such as rectified linear unit activations ReLU(x) = max{x, 0} [29] and W(`) are learnable
weights that help determine the output of GNN layers ` = 1, . . . , L. The output of the
final layer is used for predictions, which for node classification have dimensions equal
to the number of classes and arise from a softmax activation on the top layer to obtain
an estimation of a binary one-hot encoding of class labels. On the other hand, for link
prediction tasks, any number of latent representation dimensions can be outputted and
compared pairwise to select the most similar pairs of nodes to recommend links for, for
example, through a sigmoid activation of their dot product [30].

To avoid the oversmoothing of representations along multiple graph convolutions,
state-of-the-art GNNs often include recurrent terms in the predictions. This is achieved
either by adding feedback loops that trade-off between layer outputs (before being passed
through the activation function) and H(`) with linear or feature-specific terms [31,32], or by
aggregating the outcomes of all convolutional layers [27]. Recursive loops effectively inject
the graph signal transformations of trained features in all layers.
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One popular link prediction framework using GNNs is NGCF [27] which is also
employed by the aforementioned GRec library recommendation system. This calculates
the similarity between combined node representations found in the rows of the matrix:

H f inal = H(0)||H(1)|| . . . ||H(L) (6)

where || represents the horizontal matrix concatenation and L the number of graph con-
volutional layers. That is, the elements of (H f inal HT

f inal)[u, v] are considered the scores of
linking nodes u and v (in the case of library recommendation, only project–library scores
are kept from these to find the most related libraries to projects). The same framework also
refines the convolutional layers of (5) with a self-attention mechanism to node layers per:

H(`) = σ
(

ÂH(`−1)W(`) + ÂH(`−1) � H(`−1)W(`)
att
)

(7)

where � represents the element-by-element matrix product with lesser priority than matrix
multiplication and W(`), W(`)

att learnable parameters at layers `.

3. Deploying Library Recommendation Services

As per all software services, it is important to look at the deployment and usage flows
of library recommendation from a software engineering perspective. In this section, we
analyze how well real-world systems can adopt the flows of (a) existing representation-
based library recommendation algorithms overviewed in Section 2.1; and (b) no-learning
algorithms that perform inference based on informed ad hoc assumptions. We introduced
an algorithm of the second type in the next section. In both cases, we envisioned the
deployment of algorithms as online (e.g., RESTful [33]) services that developers query to
obtain recommendations for their software projects.

3.1. Deploying Representation Learning for Library Recommendations

Representation-based recommendation algorithms need to be retrained when new
nodes are added to dependency graphs, so as to arrive at representations that implicitly
capture both old and new node relational information. This does not scale well when many
recommendation requests are made for services for new projects or project prototypes, for
example, by many independent agile development teams. Accommodating requests for
yet-unseen graph nodes (projects) is more important in software engineering compared
to other domains where representation learning has been applied, because a primary use
case is to aid the development of new software rather than altering existing projects. In fact,
changing or integrating new dependencies mid-development requires rewriting software
project components and is a form of technical debt.

Keeping the above in mind, let us consider the recommendation system flow of
notifying users about interesting items, which is popular among previous library rec-
ommendation works, such as those overviewed in Section 2.1. These usually perform
real-world evaluation by first creating recommendations on the whole corpus of software
projects after one training run and then recommending those to developers. In practice,
developer notifications about potentially useful libraries translate to service subscription
models where developers sign up their projects and obtain periodic recommendations.

However, when deploying library recommendation systems “in the wild”, subscrip-
tion services neglect the practical needs of the software industry that require system
interfaces to be queried at will and immediately produce results for new projects. This
is particularly important for agile development, where delays to software project design,
especially at the first exploratory or rapid prototyping stages, can undermine the whole
development process [34]. At the same time, retraining accrues significant upkeep costs to
keep being deployed, as representations need to be extracted periodically using computa-
tionally savvy hardware, such as GPUs or clusters of GPUs able to fit large dependency
graphs in-memory. For example, if representation-based library recommendations were
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integrated in query-able online code repositories (e.g., GitHub), the latter would need to
periodically retrain library and project representations on snapshots of dependency graph
databases. Thus, to obtain recommendations for new projects, developers would need to
first upload their implementations to be integrated in the databases and wait for the next
training round to complete, as shown in Figure 1.

Figure 1. Integrating neural solutions in library recommendation pipelines. Periodic crawling of code
repositories integrates uploaded projects in neural training, thus delaying developers from accessing
recommendations for these projects.

To make matters worse, the above flow runs the risk of mining library usage from
projects for which recommendation is the goal and existing dependencies are hastily
selected. In particular, mining too many non-expert designs promotes co-usage pattern
recommendations that replicate the perfunctory knowledge of early designs rather than
well-maintained projects. To address this issue when designing real-world systems, there is
an uncomfortable balance to be found between allowing any project as system input and
letting hastily assembled projects (e.g., experimental versions during rapid prototyping)
potentially ruin recommendation quality. Even in the best of cases, it is difficult to create
tools that do not exclude the vast majority of experimental prototype queries. One realistic
solution is for training to be conducted by integrating only a few low-quality projects in
copies of dependency graphs, mining those for recommendations, and then discarding
the integrated changes. However, this practice is unsustainable if library recommendation
services are to become sufficiently popular for many hastily assembled recommendation
requests to be made back-to-back; these would require a proportional number of training
instances to run simultaneously.

Finally, beyond tangible workflow costs arising from long recommendation delays that
are not able to immediately access recommendations could also discourage developers from
adopting automated library recommendation. For instance, they could instead try to accel-
erate development cycles by ignoring automation and investing manual effort into library
discovery instead. If so, the high usefulness of library recommendation systems—even
high-quality ones— becomes obsolete once they fail to achieve high enough throughput.

3.2. Deploying No-Learning Library Recommendations

In this work, we propose moving away from representation learning and instead
employing no-learning graph inference that only requires forward passes. Given that such
algorithms exist and exhibit high enough predictive quality to be comparable to existing
representation learning approaches, their recommendations can be computed on-demand
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for new libraries. For example, project and dependency metadata can be uploaded to no-
learning recommendation systems to add them to dependency graphs just before inference
takes place.

The advantage of no-learning algorithms is that, even if we consider the periodical
mining of code repositories to extract new versions of dependency graphs, the latter do
not make recommendation pipelines wait for their completion. In particular, for new
project predictions, dependencies can be directly injected in the graphs before inference
and removed afterwards—two operations with the minimal cost of, respectively, adding
and removing one graph node and its edges. This is demonstrated in Figure 2, where
the recommendation flow (the data flow cycle between the developer, the project, and
the recommendation system) does not depend on the conclusion of periodical updates to
recommend libraries.

Figure 2. Recommendation pipelines based on no-learning graph inference. Periodic crawling only
helps improve the quality of recommendations, and given that projects using similar libraries have
already been crawled from code repositories, does not delay the recommendation.

Furthermore, the above-described recommendation flow can run in parallel to the
mechanism extracting dependency graphs, such as by crawling repositories; if dependency
graph snapshots already comprise enough usage patterns, mining the last known instead of
the next graph would minimally affect recommendation outcomes given that the two differ
only by a few nodes and edges. As a result, there would be a negligible impact on inference
quality. By comparison, representation learning discussed in the previous subsection cannot
make predictions with representations extracted by the last-known dependency graphs,
because these do not have entries for new query projects.

Finally, given that repository crawling takes care to not extract dependencies from
low-quality code (e.g., from recent projects with too few commits), the above flow sidesteps
the issue of mining many confounding dependency patterns by undoing changes after
inference. Since no training is required, and given that graph inference can be quickly
computed, we envision that queue-based sequential pipelines can support high query
loads before infrastructure parallelization (e.g., many servers providing access to the same
recommendation service) is to be considered.

4. Graph Filters for Library Recommendations

In this section, we introduce graph filters as a collaborative filtering approach ap-
plicable to library recommendation. Although vanilla filters are often outperformed by
state-of-the-art representation learning, we recognize that they also follow the no-learning
paradigm described in the previous section. Thus, they fit well into the real-world sensi-
bilities of deploying library recommendation services. Having identified this point, we
look at the promising filters that were previously neglected by the recommendation sys-
tem literature, but match high-level assumptions of how humans could go about mining
project–library dependency graphs.
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We start by describing the usage of graph filters for collaborative filtering and how
these translate into our setting (Section 4.1). We then theorize which types of library
co-usage patterns filters should model to emulate one potential human-driven library
discovery process in hyperlink-like dependency graph exploration. In this regard, we
identify the memory of past discoveries as a promising component often overlooked by
previous approaches (Section 4.2). Finally, we translate our analysis to existing absorbing
random walk filters, which model memory components for community detection tasks
but have not been used in collaborative filtering, and infer node-wise memory strength to
adhere to symmetric normalization principles instead of applying heuristics or training to
determine it (Section 4.3). Experimental probing to demonstrate practical usefulness and to
compare our approach to representation learning follows in the next section.

4.1. Revisiting Graph Filters for Collaborative Library Recommendations

We base our approach on collaborative filtering paradigms that run graph filters in
bipartite graphs to find nodes relevant to ones of interest. Graph filters, especially per-
sonalized PageRank, were at some point a popular collaborative filtering tool [22], but
this direction has in large part been abandoned in favor of the added accuracy offered by
representation learning approaches such as GNNs. Other graph-mining tasks, however,
have recently seen a resurgence of graph filters as equivalence to those is now understood
as a primary contributor towards the efficacy of many GNN architectures [31,32,35,36].
Therefore, given that GNNs already boast a high predictive quality for library recom-
mendations, we search for filters that are not lagging significantly behind with respect to
predictive performance, while also satisfying our no-learning requirement.

To reconcile the opposite trends of collaborative filtering having abandoned graph
filters and the latter being revisited by state-of-the-art research from other domains, we
theorize that widely adopted graph filters are missing crucial assumptions that more
sophisticated collaborative filtering mechanisms do not; these assumptions may not be
as important in other predictive tasks, but are crucial for recommendation systems. In
the next subsection, we identify lack of memory as one such assumption when emulating
human-driven library recommendation.

We consider a general formulation of graph filters F(Â) that can take any functional
form dependent on adjacency matrix normalizations Â such as those described in Section 2.
To recommend libraries for query projects with these, they need to parse project inputs.
However, singleton data samples can lead to non-informed graph mining due to a lack of
pairwise structural relations to mine. Thus, we employ the neighborhood inflation heuristic
of Gleich et al. [37] to expand the search terms by including the immediate neighborhood
of projects, i.e., their known dependent libraries, as query-able information to be included
within graph signals. This kind of information was already sent to graph inference systems
following the deployment of Figure 1 so that dependencies between the query project and
at least one library are added to the dependency graph. Hence, there are no additional
communication or computational costs associated with following this practice.

We hereby consider query graph signal h0 with elements

h0[v] = {1 if u = v or v is a dependency of u, 0 otherwise} (8)

where u are the projects for which we provide library recommendations. Given these query
signals, we pass them through filters of choice to obtain their structural proximity of all
graph nodes h = F(Â). Finally, our methodology focuses on the proximity scores h[v] of
libraries v, where higher scores are structurally “closer” to target projects and thus indicate
preferred recommendations.

4.2. Low-Pass Filters with Memory to Emulate Human-Driven Library Search

To design graph filters well-suited to library recommendation, we explore a search
procedure within dependency graphs that emulates human exploration if no external
sources of recommendation (e.g., expert guidance) was provided. In this, developers
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searching for the libraries best-fitting their projects look at projects using the same libraries
and investigate which other dependencies are found there. This process is iterated to find
projects and libraries that are more hops away, although presumably with lesser zeal, since
after some time, irrelevant projects and libraries would start being found. To avoid getting
“lost” in the dependency graph, the search would at some point restart. Up to this point,
this process applies the popular random walk with restart search, whose probability of
visiting nodes for stationary transition probabilities between pairs of nodes is proportional
to the elements of graph signal outcomes of personalized PageRank [38].

We already discussed that recommendation systems based on personalized PageRank
fail to reach a similar recommendation quality as more recent collaborative filtering ap-
proaches. For this reason, we argue that a missing assumption in the above exploration is
the lack of memory during random walks. In particular, we propose that developers would
not only backtrack during link-based exploration, but would also keep track of projects
and libraries highly related to their query to also restart from there in future walks. Overall,
we recognize four types of actions that can occur during human-driven random walks with
restart and memory, given that developers would have arrived on a particular node: (a)
visit a neighbor; (b) stay on the node; (c) remember the node; and (d) restart the random
walk. These are visually illustrated in Figure 3.

Due to the chance of restarting random walks at all steps, it becomes progressively
more likely to have restarted the more hops away developers move from query projects. In
other words, recommendations will be more concentrated on libraries laying fewer hops
away. In graph signal processing terms, the proposed filters would be low-pass and hence
would not excessively smoothen the query across dependency graph edges and instead
retain its original position within dependencies.

We stress that the theorization presented throughout this section is in large part
derived by graph mining literature. Our contribution lies in identifying the key points best
fitting the problem of automated library recommendation, and ultimately motivate the
usage of appropriate graph filters in this setting.

4.3. Symmetric Absorbing Random Walks

In this subsection, we transcribe the above human-driven library discovery process to
graph filters with minimal (ideally no) parameters. To do this, we make the assumption
that all choices during random walks follow static distributions that only depend the nodes
that developers are currently looking at. We also ignore real-world semantics, such as
project names or descriptions, whose exploration is left for future work. Instead, we only
use the structural characteristics of dependency graphs.

Given these assumptions, one possible tool to model random walks with memory
are partially absorbing random walks [39]. Instead of only defining one type of filter,
these introduce a framework for accounting for memory by letting a portion of random
walks passing through nodes stay there. In terms of our theorization, this corresponds
to developers remembering the nodes they visit and their relatedness to original queries.
Various graph filters arise for different assumptions of how memory works, such as the
probability of staying on nodes being proportional to node degrees, which is theoretically
equivalent to personalized PageRank (more details below), or the alternative of assigning
the same absorption rate to all nodes to retrieve tightly knit structural communities [39],
where the absorption rate effectively describes the memorability of nodes.

Partially absorbing random walks account for the four types of random walk with
memory actions described in the previous section and are recursively computable through
the following formula:

h = S(S + D̂)−1h0 + S(S + D̂)−1 ÂS−1h (9)

where Â are symmetric normalizations of adjacency matrices presented in (2), S is a diago-
nal matrix whose diagonal elements S[u, u] correspond to the absorption rates of nodes u,
and D̂ are diagonal matrices with elements D̂[u, v] = {∑v′ Â[u, v′] if u = v, 0 otherwise}.
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We stress that D̂ are the node degrees of the normalized (not the original) graph adja-
cency matrix. Correspondence between quantities appearing in (9) and the random walk
procedure with memory in dependency graphs is demonstrated in Figure 3.

Figure 3. Random walks with memory within a project (A1,A2,A3)-library (L1,L2,L3) dependency
graph. Dashed arrows represent the decisions available to developers when looking at project A3,
given that they search for libraries for project A1 with known dependency L1.

Partially absorbing random walks can implement different graph filters, depending
on chosen absorption rates S. For example, selecting S = 1−a

a D̂ for a parameter a ∈ (0, 1)
reduces this scheme to the power method iteration of computing personalized PageRank,
whereas S = 1−a

a I discovers tightly connected structural communities around query
nodes with high probability [39]. In both cases, absorption rates only depend on one
(hyper)parameter.

We now provide a novel way of selecting absorption rates. This starts by solving (9)
with respect to h and expressing the graph signal outcome h of partially absorbing random
walks per:

h = F(Â)ĥ0

F(Â) =
(
I − S(S + D̂)−1 ÂS−1)−1

ĥ0 = S(S + D̂)−1h0

In this context, ĥ0 is an adjusted version of the query graph signal that weighs the
query project and its dependencies based on their absorption rates. F(Â) is the graph
filter responsible for diffusing the adjusted query graph signal. Effectively, this can be
expressed as a spectral filter F(Â) = F̂( ˆ̂A) = (I − ˆ̂A)−1, where ˆ̂A = S(S + D̂)−1 ÂS−1 is a
new normalization applied on the normalized adjacency matrix Â (F(Â) is not a spectral
filter of Â because it arise from a non-polynomial graph operations of the latter, but F̂( ˆ̂A)

is a spectral filter of ˆ̂A).
In the previous section, we formulated that graph signal filtering should be low-pass

around query graph signals. To achieve this effect for F̂( ˆ̂A), one simple solution would be
to make ˆ̂A symmetric. This way, and given that this matrix effectively has a non-negative
shrunken version of Â’s elements, it would obtain eigenvalues λ in the range λ ∈ [−1, 1],
which in turn would be transformed into F̂(λ) = ∑∞

k=0 λk. Therefore, given that only
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positive absorption rates are accepted, i.e., visiting nodes lets developers retain at least some
memory of them, a satisfactory condition to achieve a symmetric normalization ˆ̂A of the
normalized adjacency matrix and hence a low-pass effect on the non-principal (i.e., those
less than 1) eigenvalues of Â can be computed per:

S(S + D̂)−1 = S−1 ⇔ S2 − S− D̂ = 0⇔ S = 1
2
(
I +

√
I + 4D̂

)
(10)

5. Experiments

In this section, we conduct the experiments to evaluate the efficacy of no-learning
library recommendation compared to existing representation learning alternatives. We
start by describing the evaluation dataset and measures used in experiments (Section 5.1),
outline competing approaches (Section 5.2), and present experimental results (Section 5.3).
Results and insights are discussed in the next section.

5.1. Experiment Setting

As a proof-of-concept for our proposed system, we experiment on the publicly avail-
able MALib dataset. This comprises 704,128 dependencies between a collection of 56,091
Android GitHub projects to 763 Android third-party libraries. To evaluate recommendation
quality, we follow a methodology common in library recommendation research [11,14,16].
In particular, we select all projects with at least 10 dependencies as test ones (these are
31,438 in total), by merit of them comprising enough dependencies to be considered high-
quality known ground truth. For these projects, we remove rm ∈ {1, 3, 5} dependencies
to emulate the real-world scenario where not all relevant libraries are used and conduct
experiments where we use the remaining dependencies to rediscovering the removed ones.

For each approach, the following measures assess the quality of the top T ∈ {5, 10}
library recommendations. All measures output values in the range [0, 1], with higher values
indicating recommendations closer to ideal ones.

MAP. The mean average precision of the top T recommendations. In detail, given
the notation Lproj[i] = {1 if the i-th top library recommendation for project proj is a true
positive, 0 otherwise}, we compute the average precision for each project’s top T library
recommendations per

APproj =
∑T

i=1 Lproj[i]∑T
j=1 Lproj[j]/i

∑T
i=1 Lproj[i]

and report its mean across all projects. Average precision provides a more granular un-
derstanding than precision by accounting for recommendation order and is thus able to
differentiate between recommendation algorithm quality even for large T.

MP. The mean precision of the top T recommendations across all projects. Higher
values indicate that there are fewer erroneous library recommendations in the list of top
ones. Perfect library recommendations yield MP equal to min{rm/T, 1}.

MR. The mean recall of the top T recommendations across all projects. Higher values
indicate that there are fewer desired library recommendations (i.e., from those of each
project’s test set) left out. Perfect library recommendations yield an MR equal to 1.

MF1. The mean F1 score of the top T recommendation across all projects. The F1 score
for a project is the harmonic mean between its precision and recall. Then, the mean of all
these scores is obtained.

Cov. The coverage of recommendations is the percentage of libraries that reside in the
top T recommendation of at least one software project. A coverage value of 1 means that all
libraries can be recommended, whereas low percentages indicate approaches that prioritize
a few well-known libraries—an undesirable outcome when the goal of recommendation is
also to discover fitting non-popular libraries.
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5.2. Compared Approaches

In addition to our approach (LibFilter), our experiments assess the following represen-
tation learning architectures and graph filters. These are summarized in Table 1 alongside
amortized training and inference (making recommendations for one project) times. Time
analysis holds for connected dependency graphs and explores terms pertaining to scal-
ability with regards to the numbers of dependencies E and of libraries I < E, as well as
architectural characteristics, namely the latent representation dimensions dims, the number
of training epochs, and the constant numerical tolerance ε of iterative methods computing
graph filters. In practice, the number of layers, dimensions and training epochs introduce
huge multiplicative terms to running times (in the tens or hundreds order of magnitude
each). They could also grow with the number of dependencies, as more effort is required
to learn from larger datasets. Thus, even when dimension terms can be removed with
parallelized GPU computing, representation training times could scale worse than linearly
with the number of mined dependencies.

GRec. A library recommendation approach based on state-of-the-art GNNs for link
prediction [16]. It implements convolutional self-attention layers of (7), whose outcomes
are concatenated and used as representations. Layers are trained with 10% dropout and
comprise 128 latent dimensions and representation matrices inputted to the first layer H(0)

are trained end-to-end. We refer to the architecture of the respective paper for more details.
This architecture’s latent representations need to be retrained to make predictions for new
software projects.

LibSeek. A matrix factorization approach [14] that aims to find project and library
representations able reconstruct dependency graph adjacency matrices per (1). It was the
previous and widely recognized state-of-the-art approaches before GRec and was one of
the first to explicitly recognize the diversification of recommendations (i.e., high coverage)
as an important goal of library recommendation. Notably, we do not compare against
previous works because these have been found to yield a similar or lower recommendation
quality across all measures on the dataset we experiment on [14].

LibPPR. Collaborative filtering that employs the personalized PageRank graph filter
for recommendation. As described by Bahmani et al. [22], this was once a popular approach.
Although it has since been abandoned in favor of GNNs, it is the approach that is closest
to ours since it also employs graph filters. Notably, personalized PageRank depends on
a diffusion parameter a ∈ [0, 1), which for smaller values creates lower-pass versions of
the graph filter. We follow a random walk with restart formulation that has an equal
chance to restart the walks as moving to neighbors and set this parameter to a = 0.5.
Given that 1

1−a = 2 is the average length of the random walk processes modeled by
personalized PageRank [40], this creates a receptive field that places emphasis on projects
and libraries co-used with the query ones, as these lie two hops away from the query ones.
We empirically corroborated that this is better-performing than the most widely adopted
alternative a = 0.85 or even shorter average random walk lengths arising from a = 0.25.

LibARW. Collaborative filtering that employs the partially absorbing random walks
of (9) for absorption rates S = 1−a

a I . This graph filter was proposed [39]. Given that the
parameter a ∈ (0, 1) is equivalent to the one of personalized PageRank, we select a = 0.5
for this approach, the same value as LibPPR. We also empirically corroborate that this is
performs better than alternatives, such as a = 0.25 and a = 0.85. Importantly, since LibARW
is not our proposed approach, empirical investigation does not introduce overtraining bias
to experiment results.

LibFilter. Collaborative filtering that employs our proposed symmetric partially ab-
sorbing random walks that apply on (9) the absorption rates determined by (10). This
approach is a true no-learning one in that it requires no parameter training and no
hyperparameter tuning.
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Table 1. Overview of compared library recommendation approaches, including training and inference
(for one project) times. Recommendation times are bottlenecked by both training and inference.

Approach Citation Type Training Time Inference Time

LibSeek [14] Repr. learning O (E · dims · layers · epochs) O (I · dims)
GRec [16] Repr. learning O (E · dims · epochs) O (I · dims)
LibPPR [22], this work Graph filter — O (−E · log ε)
LibARW [39], this work Graph filter — O (−E · log ε)
LibFilter [this work] Graph filter — O (−E · log ε)

5.3. Results

Table 2 presents the outcome of experimentally evaluating competing approaches.
Since GRec and LibSeek follow the same evaluation methodology as we do, we pull
evaluation results for these approaches from respective publications. We do not run
the publicly available code of GRec and LibSeek to avoid biasing our comparison with
lower-quality results arising from post-publication experimental probing by development
teams. For instance, we failed to set up GRec’s latest published code version to reach
the same high evaluation scores as those reported by their paper and found architectural
inconsistencies (including different types of layers and activations) between the paper and
the code while investigating the issue. Thus, we decided to err on the side of caution and
present the better reported values. Graph filters were implemented by building on the
filter definition framework provided by the pygrank Python package [19] and were run on
its numpy backend to 10−12 mean absolute error numerical tolerance. (pygrank’s numpy
backend implements the graph shift operator by wrapping the C++ code for sparse matrix
multiplication and runs faster than the respective operation provided by existing GPU
computing frameworks. We ran experiments five times and reported measure averages
across runs. Standard deviations are less than 0.007 for coverage and less than 0.002
for other recommendation quality measures and thus facilitate robust pairwise approach
comparisons. An implementation of the symmetric absorbing random walk filter and the
experiment methodology are publicly available online (https://github.com/maniospas/
libFilter accessed on 2 March 2022) .

For all recommendation quality measures aside from MAP, there is a clear evaluation
order where GRec is the best approach and is followed by LibFiter (our approach), where the
latter lags behind by an at most 5–23% relative decrease that shrinks as more dependencies
are omitted from the training graph. Although the two approaches do not always enjoy
similar levels of recommendation quality, they can be considered roughly comparable when
factoring in the much lower predictive quality of LibSeek and LibPPR. In fact, these last
two approaches lag significantly behind, especially in terms of coverage, for which they
exhibit near-half or less of GRec. Characteristically, LibFilter lies approximately mid-way
between GRec and LibSeek in terms of evaluation measures. Furthermore, it outperforms
the other two filter-based alternatives LibPPR and LibARW by a large and small margin,
respectively, across all experiments.

With regard to practical deployment, we ran graph filters (LibPPR, LibARW, LibFilter)
in a machine with 2.6 GHz CPU base clock and 16GB DDR3 RAM. This extracts library
recommendation scores for each project approximately within a fifth of a second—and
well within 0.1 second when LibFilter is deployed. By comparison, the out-of-the-box
running of the publicly available implementation of GRec on the same machine’s GPU
with 1680 MHz base clock and 6GB DDR6 graphics memory requires over 5.5 h for training
alone (approximately 25 s per training epoch for 800 epochs); this would be the minimum
recommendation delay in case of deployment as a query-able service.

https://github.com/maniospas/libFilter
https://github.com/maniospas/libFilter
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Table 2. Comparison of library recommendation approaches.

Top 5 Recommendations Top 10 Recommendations
Approach MP MR MF1 MAP Cov MP MR MF1 MAP Cov No-Learn

Leave out 1 test library per project

GRec 0.152 0.761 0.254 0.623 0.695 0.083 0.828 0.151 0.636 0.792 x
LibSeek 0.135 0.674 0.225 0.524 0.335 0.076 0.755 0.137 0.535 0.396 x
LibPPR 0.119 0.596 0.199 0.461 0.211 0.072 0.715 0.130 0.477 0.283 X
LibARW 0.135 0.676 0.226 0.528 0.520 0.077 0.772 0.140 0.541 0.602 X
LibFilter 0.140 0.700 0.234 0.552 0.544 0.079 0.789 0.143 0.564 0.620 X

Leave out 3 test libraries per project

GRec 0.410 0.692 0.514 0.797 0.685 0.234 0.788 0.360 0.761 0.782 x
LibSeek 0.371 0.618 0.464 0.728 0.325 0.216 0.719 0.332 0.697 0.391 x
LibPPR 0.330 0.550 0.413 0.575 0.241 0.207 0.691 0.319 0.509 0.324 X
LibARW 0.377 0.628 0.471 0.595 0.557 0.224 0.746 0.344 0.535 0.640 X
LibFilter 0.391 0.652 0.489 0.597 0.579 0.228 0.760 0.351 0.542 0.655 X

Leave out 5 test libraries per project

GRec 0.587 0.594 0.590 0.840 0.657 0.361 0.731 0.483 0.786 0.754 x
LibSeek 0.529 0.529 0.529 0.790 0.314 0.329 0.658 0.439 0.740 0.380 x
LibPPR 0.495 0.495 0.495 0.572 0.282 0.329 0.658 0.438 0.470 0.369 X
LibARW 0.570 0.570 0.570 0.562 0.599 0.357 0.714 0.476 0.474 0.689 X
LibFilter 0.588 0.588 0.588 0.558 0.602 0.363 0.725 0.484 0.476 0.688 X

6. Discussion

In this section, we discuss the experiment results and how these can be interpreted
within the scope of library recommendation. We also point out promising research direc-
tions motivated by our findings, both in automated software engineering and in broader
collaborative filtering research. We start by comparing our approach to representation
learning techniques (Section 6.1) and assess whether we meet the goal of performing fast
library recommendation without lagging excessively far behind in terms of recommenda-
tion quality. We also explore the role of filtering memory in improving recommendation
algorithms and propose that this direction needs to be explored more thoroughly in the
future. Furthermore, based on comparison between graph filter alternatives with different
memory mechanisms in their ability to predict relevant libraries to software projects, we
propose that searching for new libraries among popular ones is less important than looking
at the libraries employed by similar software projects (Section 6.2). Finally, we outline
the threats to evaluation validity and describe how these can be addressed when creating
real-world systems (Section 6.3).

6.1. Qualitative Approach Comparison

Looking at the experimental results of Table 2 in greater detail, our proposed LibFilter
system outperforms the matrix factorization of LibSeek in terms of recommendation quality,
which we attribute to the wider receptive field of graph filters that explicitly accounts for
co-usage patterns more than one hop away in dependency graphs. On the other hand,
LibFilter lags behind the GNN architecture of GRec, which both learns representations
and accounts for a wide receptive field. Nonetheless, evaluation in all experiments lies
significantly closer to GRec and we consider deviations from the latter small enough for
practical deployment sensibilities to play a greater role when choosing which approach
to employ. In fact, when dependency graphs have many missing links, as happens for
rm = 5, our approach catches up in terms of the MP, MR and MF1 measures. Therefore,
we argue that the usage of LibFilter should be preferred as an out-of-the-box solution in
place of more sophisticated representation-learning alternatives, as the latter need hours
instead of fractions of a second to recommend libraries for a new project and would require
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additional software engineering investigation to determine their viability for the services
being developed.

We then point out that the well-established practice of deploying personalized PageR-
ank filters, which we modeled with LibPPR, fails to achieve a similar recommendation
quality across all experiments and thus cannot be considered for real-world usage. In
fact, it is outperformed by LibSeek to say nothing of the more sophisticated GRec. This
result corroborates why collaborative filtering has moved away from graph filters and
towards representation learning. However, at least for library recommendation tasks, our
experiments suggest that the issue lies less with the inherent power of filters and more
with naive structural assumptions (e.g., memory-less random walks) firmly embedded in
popular literature, which tend to promote the blind usage of personalized PageRank filters.

Our research escapes from this line of thinking by theorizing that the explicit memory-
aware components of partially absorbing random walks can capture dynamics similar
to a human-driven library search. Although personalized PageRank is also a type of
partially absorbing random walk, it exhibits a memory strongly biased towards node
popularity rather than relevance to search outcomes, i.e., an equivalent human search
would prioritize remembering and looking at popular libraries (more on this in the next
subsection). The importance of search memory for library recommendation is further
accentuated if we consider that GRec introduces memory-like constructs in the form of
node self-attention terms that multiply incoming representations with those already found
in nodes. On the other hand, matrix factorization approaches, such as LibSeek, do not
model similar phenomena.

Together, these two findings indicate that, contrary to the popularity-based biasing
of results, node-specific memory could be the critical research direction for qualitative
collaborative filtering algorithms. Given the success of GNN attention in other link predic-
tion tasks, these findings could also translate to domains beyond library recommendation.
Furthermore, our research indicates that the usage of graph filters in link prediction systems
should be reconsidered as a viable alternative that can compete at, if not the same, at least
comparable levels to GNNs while accommodating practical considerations. In particular,
our approach is deployed in the form of a graph filter that can be applied to any structure-
based link prediction task, even in other domains where it can potentially remove the need
for GNN training. Nonetheless, its efficacy in new tasks should be investigated first.

6.2. Library Popularity and Memorability

Leaving aside representation learning for a moment, the three graph filters we experi-
mented with were derived from partially absorbing random walks and differ only with
respect to what type of memory they employ. In particular, LibPPR places higher emphasis
on remembering higher-degree nodes, LibARW places the same emphasis on remembering
all nodes, and LibFilter performs a type of trade-off between the two. The results indicate
that the trade-off yields better recommendations than the other two, thus validating our
symmetric principle. Nonetheless, LibARW follows closely behind, which indicates that
it is more important for mechanisms remembering relevant libraries to be near-unbiased
with respect to popularity, i.e., the number of projects using them.

Looking at this finding from a practical perspective, real-world popularity is only a
small indicator of library quality. That is, it is not always worth using popular libraries
marginally matching the project at hand. To the contrary, our findings indicate that using
highly specialized libraries should be preferred as long as they better fit target tasks—
though when suitability is a tie, then selecting the more popular ones to remember is
still a valid practice. By extension, we propose that popularity-based metrics (e.g., stars,
forks) often used as indicators of potential impact to development communities could be
misleading by themselves and new qualitative-based metrics should be introduced.

6.3. Threats to Validity

Before concluding this work, we outline potential threats to our research’s validity.
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First, we used popular measures to assess the quality of library recommendations.
Previous related works have often performed developer surveys to corroborate the efficacy
of experiments, for example, by emailing developers with libraries recommended for
their projects with multiple systems and obtaining feedback on whether these could be of
actual interest. In this work, we did not do this. However, we point out that developer
feedback for the assessment of previous systems (including those we compare our approach
against) has shown strong correlation between practical usefulness and the evaluation
measures we employ [14,16]. Therefore, recreating the same small-scale studies could
be considered redundant, especially since evaluation measure values lay in interpolate-
able points between existing approaches. That is, our approach does not further improve
recommendation quality but changes computational costs to be scalable. Thus, there exist
no reasonable concerns over employed metrics failing to capture a practical impact.

When interpreting training and inference time measures, we caution that different
approaches integrate different computing frameworks and exact numbers could be subject
to change depending on the hardware or algorithmic optimizations available. For example,
we run pygrank on its numpy backend because at the time of writing, it is faster than
GPU computing for sparse matrix multiplication, but this could change in the future.
Nonetheless, we expect that the amortized running times presented in Table 1 will yield the
similar scalability of approaches. In this case, the driving criteria of algorithmic comparisons
are still the training vs. no-training paradigm.

In a related vein, this work considers representation learning to be so time-consuming
that architectures cannot be quickly and repeatedly retrained. This is not likely to change in
the foreseeable future, especially since data tend to grow at faster rates than computational
resources. However, one promising alternative would be to perform the warm-start training
of GNNs to answer queries, for example, with streaming training principles [41]. Whether
this would be useful for a library recommendation is yet unknown, for instance, due to the
often degraded predictive quality of stream learning, or due to the local optimal regions
drifting substantially so that minor representation tweaks are not sufficient.

Another threat to validity comes from experimenting on only one dataset. Although
evaluation on this dataset is the gold standard in collaborative library recommendation
literature, we stress that competing approaches could exhibit different efficacies if applied
to different types of dependency graphs, such as the library-to-library dependency graphs,
which are not bipartite. Thus, we point out that future research could also move towards
benchmarking approaches on multiple datasets. We stress that this concern is shared across
the whole collaborative library recommendation literature and not only our approach. For
the time being, we propose that developers of real-world library recommendation services
perform experimental probings to verify that selected recommendation algorithms replicate
promised quality benefits on their own data, for example, with the evaluation methodology
described in this work.

Finally, in line with previous research, we follow a collaborative recommendation
approach. This makes use of known project–library dependencies to recommend more
links but ignores real-world semantics such as project names or descriptions. Enriching
library recommendations with semantics is a promising direction for future work as it
could potentially procure recommendations with no known dependencies, for example to
bootstrap development in unfamiliar domains. However, additional exploration is needed
to (a) formulate how to extend graph inference on content features without resorting to the
end-to-end training of latent representations; and (b) verify whether semantics are useful
for library recommendation.

7. Conclusions

In this work, we discussed the problem of recommending library dependencies for new
software projects based on co-usage patterns in other projects. For this task, we recognized
that existing representation learning approaches exhibit the practical limitation of needing
to retrain to make recommendations for new projects, hindering widespread adoption,
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and explained that no-learning project–library dependency graph inference circumvents
this shortcoming. We proposed that graph filters match this paradigm and introduced a
novel variation of partially absorbing random walk filters, which we theorized to emulate
human-driven library discovery by modeling the memorization of libraries and projects
similar to query ones. To show our approach’s efficacy, we experimented in a real-world
dependency graph of Android project third-party library dependencies, where we found
that it did not lag significantly behind state-of-the-art representation learning, where the
latter introduces long recommendation delays when deployed to factual systems.
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18. Ortega, A.; Frossard, P.; Kovačević, J.; Moura, J.M.; Vandergheynst, P. Graph signal processing: Overview, challenges, and
applications. Proc. IEEE 2018, 106, 808–828. [CrossRef]

19. Krasanakis, E.; Papadopoulos, S.; Kompatsiaris, I.; Symeonidis, A. pygrank: A Python Package for Graph Node Ranking. arXiv
2021, arXiv:2110.09274.

20. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford
InfoLab: Stanford, CA, USA, 1999.

21. Andersen, R.; Chung, F.; Lang, K. Local graph partitioning using pagerank vectors. In Proceedings of the 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), Berkeley, CA, USA, 21–24 October 2006; IEEE: Piscataway, NJ, USA,
2006; pp. 475–486.

22. Bahmani, B.; Chowdhury, A.; Goel, A. Fast incremental and personalized pagerank. arXiv 2010, arXiv:1006.2880.
23. Chung, F. The heat kernel as the pagerank of a graph. Proc. Natl. Acad. Sci. USA 2007, 104, 19735–19740. [CrossRef]
24. Kloster, K.; Gleich, D.F. Heat kernel based community detection. In Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1386–1395.
25. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]
26. Zhang, Z.; Cui, P.; Zhu, W. Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [CrossRef]
27. Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.S. Neural graph collaborative filtering. In Proceedings of the 42nd international

ACM SIGIR conference on Research and development in Information Retrieval, Paris, French, 21–25 July 2019; pp. 165–174.
28. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
29. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
30. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035.
31. Klicpera, J.; Bojchevski, A.; Günnemann, S. Predict then propagate: Graph neural networks meet personalized pagerank. arXiv

2018, arXiv:1810.05997.
32. Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and deep graph convolutional networks. In Proceedings of the International

Conference on Machine Learning. PMLR, Virtual Event, 13–18 July 2020; pp. 1725–1735.
33. Adamczyk, P.; Smith, P.H.; Johnson, R.E.; Hafiz, M. Rest and web services: In theory and in practice. In REST: From Research to

Practice; Springer: Berlin/Heidelberg, Germany, 2011; pp. 35–57.
34. Gunasekaran, A. Agile manufacturing: A framework for research and development. Int. J. Prod. Econ. 1999, 62, 87–105. [CrossRef]
35. Dong, H.; Chen, J.; Feng, F.; He, X.; Bi, S.; Ding, Z.; Cui, P. On the equivalence of decoupled graph convolution network and label

propagation. In Proceedings of the Web Conference 2021, New York, NY, USA, 19–23 April 2021; pp. 3651–3662.
36. Yang, F.; Zhang, H.; Tao, S.; Hao, S. Graph representation learning via simple jumping knowledge networks. Appl. Intell. 2022,

1–19. [CrossRef]
37. Gleich, D.F.; Seshadhri, C. Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In

Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China,
12–16 August 2012; pp. 597–605.

38. Tong, H.; Faloutsos, C.; Pan, J.Y. Fast random walk with restart and its applications. In Proceedings of the Sixth International
Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 613–622.

39. Wu, X.M.; Li, Z.; So, A.; Wright, J.; Chang, S.F. Learning with partially absorbing random walks. Adv. Neural Inf. Process. Syst.
2012, 25, 3077–3085 .

40. Krasanakis, E.; Papadopoulos, S.; Kompatsiaris, I. Stopping personalized PageRank without an error tolerance parameter. In
Proceedings of the 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM),
Hague, The Netherlands, 7–10 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 242–249.

41. Wang, J.; Song, G.; Wu, Y.; Wang, L. Streaming graph neural networks via continual learning. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, Virtual, 19–23 October 2020; pp. 1515–1524.

http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1109/TSE.2020.2982154
http://dx.doi.org/10.1109/JPROC.2018.2820126
http://dx.doi.org/10.1073/pnas.0708838104
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1016/S0925-5273(98)00222-9
http://dx.doi.org/10.1007/s10489-021-02889-z

	Introduction
	Background and Related Work
	Library Recommendation
	Graph Signal Processing
	Graph Neural Networks for Link Prediction

	Deploying Library Recommendation Services
	Deploying Representation Learning for Library Recommendations
	Deploying No-Learning Library Recommendations

	Graph Filters for Library Recommendations
	Revisiting Graph Filters for Collaborative Library Recommendations
	Low-Pass Filters with Memory to Emulate Human-Driven Library Search
	Symmetric Absorbing Random Walks

	Experiments
	Experiment Setting
	Compared Approaches
	Results

	Discussion
	Qualitative Approach Comparison
	Library Popularity and Memorability
	Threats to Validity

	Conclusions
	References

