
Citation: Al-Dwairi, M.; Shatnawi,

A.S.; Al-Khaleel, O.;Al-Duwairi, B.

Ransomware-Resilient Self-Healing

XML Documents. Future Internet

2022, 14, 115. https://doi.org/

10.3390/fi14040115

Academic Editor: Leandros

Maglaras

Received: 12 March 2022

Accepted: 5 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Ransomware-Resilient Self-Healing XML Documents
Mahmoud Al-Dwairi 1,†, Ahmed S. Shatnawi 2,*,† , Osama Al-Khaleel 1,† and Basheer Al-Duwairi 3,†

1 Department of Computer Engineering, Jordan University of Science and Technology, P.O. Box 3030,
Irbid 22110, Jordan; mndwairi14@cit.just.edu.jo (M.A.-D.); oda@just.edu.jo (O.A.-K.)

2 Department of Software Engineering, Jordan University of Science and Technology, P.O. Box 3030,
Irbid 22110, Jordan

3 Depatment of Network Engineering & Security, Jordan University of Science and Technology, P.O. Box 3030,
Irbid 22110, Jordan; basheer@just.edu.jo

* Correspondence: ahmedshatnawi@just.edu.jo; Tel.: +962-7910-803-57
† These authors contributed equally to this work.

Abstract: In recent years, various platforms have witnessed an unprecedented increase in the number
of ransomware attacks targeting hospitals, governments, enterprises, and end-users. The purpose
of this is to maliciously encrypt documents and files on infected machines, depriving victims of
access to their data, whereupon attackers would seek some sort of a ransom in return for restoring
access to the legitimate owners; hence the name. This cybersecurity threat would inherently cause
substantial financial losses and time wastage for affected organizations and users. A great deal
of research has taken place across academia and around the industry to combat this threat and
mitigate its danger. These ongoing endeavors have resulted in several detection and prevention
schemas. Nonetheless, these approaches do not cover all possible risks of losing data. In this paper,
we address this facet and provide an efficient solution that would ensure an efficient recovery of XML
documents from ransomware attacks. This paper proposes a self-healing version-aware ransomware
recovery (SH-VARR) framework for XML documents. The proposed framework is based on the
novel idea of using the link concept to maintain file versions in a distributed manner while applying
access-control mechanisms to protect these versions from being encrypted or deleted. The proposed
SH-VARR framework is experimentally evaluated in terms of storage overhead, time requirement,
CPU utilization, and memory usage. Results show that the snapshot size increases proportionately
with the original size; the time required is less than 120 ms for files that are less than 1 MB in size;
and the highest CPU utilization occurs when using the bzip2. Moreover, when the zip and gzip are
used, the memory usage is almost fixed (around 6.8 KBs). In contrast, it increases to around 28 KBs
when the bzip2 is used.

Keywords: ransomware; XML documents; secure document engineering self-healing

1. Introduction

The progression of cybercrime and the development and adoption of new techniques
to jeopardize sensitive information and impart damage across the Internet present an alarm-
ing threat to businesses, governments, and nations. Recent cybersecurity research (e.g., the
works in [1–6]) confirms cybercriminals’ determination to develop newer techniques for
achieving their malicious objectives. Ransomware is just one of the methods that have
been used recently by cybercriminals to achieve financial gains in return for releasing
ransomware-encrypted files to their rightful owners. Ransomware attacks represent a real
security threat to users’ data files and various network resources that would contain backup
files. Amongst others, a conservative estimate is that ransomware criminals received USD
412 million in payments in 2020 [7]. Ransomware attacks impact individuals and orga-
nizations in the public and private sectors, including, amongst many, the health sector,
e-commerce, educational institutions, government agencies, and the business sectors, in a

Future Internet 2022, 14, 115. https://doi.org/10.3390/fi14040115 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14040115
https://doi.org/10.3390/fi14040115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-6239-3298
https://doi.org/10.3390/fi14040115
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14040115?type=check_update&version=3


Future Internet 2022, 14, 115 2 of 19

manner that leads to economic and moral loss. In 2017, the WannaCry Ransomware [8], a
recent massive Ransomware attack, impacted up to 300,000 users in 150 countries world-
wide, preventing them from accessing their devices and demanding Bitcoin payments in
exchange for unlocking the files involved.

With an ever-increasing rate of storing and sharing data, document security is becom-
ing one of the biggest challenges that faces both individuals and organizations. Here, digital
documents are represented in many formats, one of the most popular of which includes
the Extensible Markup Language (XML). When Ransomware attacks victims’ machines,
it will seek to lock or encrypt users’ crucial files and documents, including XML-based
documents such as “.docx” and “.odt” file types.

Since 2010, the rate of infection by Ransomware has increased significantly. This
growing threat has received significant attention from both academia and industry. Many
research studies have intensely served to analyze Ransomware and develop new techniques
to detect it, as long as it considers backup. However, a significant portion of all proposed
detection techniques claims to have a high detection success rate. Nonetheless, most
detection and protection systems in use have several limitations.

In this study, we address the problem of recovering XML documents once a ran-
somware attack has taken place. We propose a self-healing version-aware XML recovery
framework to combat Ransomware to achieve this goal. The proposed framework takes
advantage of the structure of XML documents and combines link-based version control
with well-known access-control mechanisms.

The Version-Control System (VCS) manages all the changes made to documents,
including tracking and storing versioning data. In this paper, VCS will be tapped into by
presenting a novel approach directed at recovering ransomware-infected XML-based files
and documents. Version-Aware XML-based documents are part of a distributed version-
control system that does not rely on a central repository but refers to the document file
itself in tracking each subsequent version of a document.

The work presented in this paper focuses mainly on protecting XML-based documents
such as “.docx” and “.odt” files from being encrypted by Ransomware. The proposed frame-
work integrates decentralized version control that utilizes file links with access-control
mechanisms to prevent Ransomware from tampering with the protected file version. There-
fore, It ensures complete recovery of protected XML-based documents from ransomware
infection. To that end, the main contributions of this work are as follows:

• A self-healing version-aware ransomware recovery framework for XML-based docu-
ments is identified.

• The proposed framework is evaluated according to different performance metrics, includ-
ing storage overhead, CPU utilization, and memory requirements for about 500 XML-based
documents of various sizes, ranging from a few kilobytes to 30 Megabytes.

The rest of this paper is organized as follows: Section 2 provides background informa-
tion on information security, Ransomware, and version-control systems. Section 3 reviews
some pieces of related work. Section 4 presents the proposed system. The performance
evaluation part is presented in Section 5. Finally, we conclude in Section 6.

2. Background

The field of Information Security is one of the most critical fields in the IT world.
Ensuring the protection of information assets is a top priority for users and organizations
because the data stored on a computer are certainly worth more than the computer itself.
Cybersecurity’s critical goal is to protect data transferred over the network and its connected
resources against any security threat. There are three main objectives for information
security that are deemed primary pillars of cybersecurity. These pillars are Confidentiality,
Integrity, and Availability; otherwise referred to as the Security Requirements Triad [9] or
the CIA triangle. These three objectives are highly recognized across the security-concerned
communities. Confidentiality means that the information is accessed only by authorized
parties with sufficient privileges. It guarantees privacy, meaning that the individuals control



Future Internet 2022, 14, 115 3 of 19

what information is related to them, who can collect such information, and to whom a
set of given data can be revealed. Integrity guarantees that the data stored on computers
and other resources are correct and that either unauthorized people or malware do not
manipulate pieces of data. It is more critical than availability and confidentiality. On the
other hand, availability ensures connectivity for authorized users of network resources.

Two additional objectives are sometimes added to these pillars: Authenticity and
Accountability. The extended model is known as the CIA+ model, as elaborated in [10]. Au-
thenticity ensures that the message received is the same as the one sent without alteration
or tampering; it ensures that it was sent from trusted sources; something that warrants
truthfulness of origins. Accountability is related to the individual or organization’s re-
sponsibility to trace the actions performed on their systems and perform preventive and
defensive measures to counter these threats. This includes taking backup for essential data,
instating fault isolation, ensuring proper intrusion detection and prevention, conducting
after-action recovery, and taking legal action.

2.1. Ransomware

Ransomware is defined as a form of malware that prevents users from accessing their
resources and files either by encryption or blockage until a ransom is rendered to restore
access to infected files. It provides a means for money-based extortion that affects both
individuals and organizations [11]. It is a piece of software designed and implemented by
cybercriminals to gain access to legitimate users without their knowledge and to perform
malicious activities such stealing sensitive data and asking for a ransom. Due to a lack of
proper technical background with little knowledge of how to preserve their data, short of
making necessary file backups, some users, especially naive ones, end up paying ransom to
restore access to their files. This ultimately leads cybercriminals and attackers to gain more
significant revenues and helps to make this an opportunity for thriving businesses [12].

In 1989, the first ransomware attack was reported when infected floppy disks with
AIDS Trojan were distributed amongst biologists. The malware encrypted all the victims’
system files with a ransom of USD 189 to undo the damage. The earliest variants of
Ransomware were developed in 1980 [13]. Ransom was paid via postal mail. Today,
ransomware authors order that payment is rendered via credit cards or cryptocurrency
such as bitcoin [14].

In recent years there has been an increasing proliferation rate of different types of
ransomware families that are spread like a worm, which involve advanced recovery-
prevention schemes. This impacts home users, organizations, and the infrastructures of
vital governmental establishments around the world [11].

WannaCry and Petaya [8] are examples of recent Ransomware which spreads through
insecure compromised websites, exploiting weaknesses inherent in Microsoft Windows. On
12 May 2017, WannaCry was first observed as part of massive attacks over multiple coun-
tries [15]. These attacks affected many vital sectors, including government organizations
and the healthcare and telecommunications sectors. WannaCry is an example of crypto
Ransomware that is based on public-key cryptography; something that is rather challenging
to mitigate or recover from, as the encryption keys are stored on a remote command and
control server (C&C). In the following subsections, we explain the ransomware lifecycle
and main ransomware categories:

2.1.1. Ransomware Lifecycle

The authors of [16] analyzed 25 ransomware families and found that they all possess
similar dynamics. They differ somewhat, however, according to the ransomware versions in
place, but exhibit a similar overall high-level pattern. In general, the ransomware lifecycle
spans the following six steps [16]:

• Ransomware distribution: Like other malicious software programs, Ransomware uses
social-engineering strategies to seduce victims to click links that lead to ridiculous
content or download a malicious dropper or payload that causes infection.



Future Internet 2022, 14, 115 4 of 19

• Infection: The malicious code is downloaded at this stage, and the execution of the code
begins. At this stage, a victim’s machine will have been compromised by Ransomware,
with the underlying files still not yet encrypted. Encryption is a reversible process,
involving highly intensive CPU calculations operations. Encryption does not readily
happen in a typical ransomware attack as it requires time for data evaluation by the
malware and the scope for data encryption. Once this stage becomes active, all the
automatic detection systems will have stopped. The firewall, proxy, antivirus, and
intrusion detection programs will have been compromised to allow all malicious
communications to take place, ultimately putting the ransomware in total control.

• C2 Communications: The malicious code continues to maintain access to its command-
and-control server (C2) at this stage. Here, an attacker manages a C2 server and begins
to send commands to the compromised system. The primary C2 communications
objective with Ransomware entails the acquisition of an encryption key. Once that is
complete, different systems are changed, and persistence is determined.

• File search-scanning: This is when things start to slow down a bit. The malware
searches the computer to find files to encrypt first. It also scans for cloud data that are
synced through folders and shown as local data. Then it starts searching for file shares.
This may take time, depending on how much activity there is across the network.
The goal is to examine the available information and determine the victim’s level of
permissions (e.g., list, published, delete).

• Encryption: The encryption starts once all data have been inventoried. Local file
encryption may take minutes, but it may take several hours to encrypt a network
file; this is because data on network file shares are locally copied and encrypted in
most ransomware attacks. Then this is followed by uploading the encrypted files and
removing the original ones. This phase takes a bit of extra time.

• Ransom demand: At this stage, a victim will receive a ransom message instructing
them to render ransom; the Ransomware message is issued immediately once en-
cryption has taken place. The Ransomware shows a screen that instructs its victim
to pay before criminals delete the key to decrypt the files. The last function usually
performed by Ransomware is to end and uninstall itself from a victim’s machine. At
this point, the hackers are ready to receive the ransom to their Bitcoin wallet.

2.1.2. Ransomware Categories

Ransomware falls under three main categories ranging from severe to damaging:
Scareware, Locker Ransomware, and crypto Ransomware. Table 1 summarizes these
categories. Scareware is a form of malicious software that overwhelms users’ screens with
warnings and pop-ups claiming that issues are detected on the users’ PC and it requires
money to fix them. If the victim falls in for this trick and installs the malware on their
machines, the cybercriminal/s would use this malware to access their files, send out fake
emails in their names, and/or track their online activity. Locker Ransomware is malicious
software that infects the operating system and prevents users from accessing their files and
data. It hijacks one or more of the victim’s system services, such as desktops, smartphones,
and applications, depriving users of those tools from accessing them [11]. This attack
usually takes the form of a locking computer interface asking the user to pay a ransom for
re-access. Often, infected computers are left with limited capabilities to allow the user to
communicate with ransomware and conduct-related activities to pay the requested ransom.
For example, W32. Rasith is a worm that locks the victim’s desktop, making the system
unusable [17]. This type is not limited to PCs or servers alone, but it also affects mobile
devices. Android.Lockdroid.H is an example of a trojan that locks the screen of mobile
devices and displays a ransom message [17]. Since Locker ransomware is designed to
prevent access to the device’s interface, the underlying system and files are left untouched.
It is possible to restore the computer to a state close to its original condition. Thus, Locker
ransomware is less effective at eliciting ransom payments.



Future Internet 2022, 14, 115 5 of 19

Although cryptography is regarded as a critical defense mechanism in computer
and network applications [18], it can also be used to perform crypto crimes. The work
in [19] is one of the earliest research studies on fraudulent cryptographic use. What
distinguishes Ransomware from conventional malware is that it utilizes cryptography
techniques, including symmetric and asymmetric key-based encryption, against victims, as
discussed in [20]. This type is the most common type of Ransomware. It is the most harmful
type and can cause a great deal of damage, thereby extorting vast amounts of money. This
type of Ransomware is considered the most dangerous because once the attacker gets hold
of the files, there is no way to restore them until a ransom is rendered for file restoration.
Here, WannaCry [8] is one famous example.

Crypto ransomware encrypts victims’ files, file contents, and file names without
notification by utilizing different cryptographic methods and notifies victims that their data
have been encrypted, forcing them to pay a ransom to decrypt files [12]. Since 2016, crypto
Ransomware attacks have increased dramatically. According to a report by [21], 58.43%
of ransomware attacks are conducted by a crypto Ransomware strain called TeslaCrypt.
CTB-Locker was considered one of the primary ransomware attacks in 2016. CTB-Locker
can attack multiple victims at the same time. Thus, during the same attack, it can extort
several victims. This infects web servers by encrypting webroot, causing web servers, host
applications, and websites to become paralyzed [21].

Table 1. Ransomware Categories.

Category Symptoms Example

Locker prevents users from accessing their files and data W32. Rasith
Data

Crypto

Encrypts victims’ files, file contents, and file names without
notification by utilizing different cryptographic methods
and notifies victims that their data have been encrypted,
forcing them to pay a ransom to decrypt files.

WannaCry

Double
extortion

Encrypts files and asks victims to pay a ransom.
Attackers threaten to publicize stolen data if their
demands are not met.

Maze

RaaS Involves perpetrators leasing access to ransomware
from the ransomware author, who delivers it as a paid service. Locky

2.2. Version-Control System (VCS)

Version-control systems (VCS) are used to manage all changes made to documents,
including tracking and storing version data. In this paper, VCS will be tapped into by
presenting a novel approach to recovering XML documents affected when Ransomware
attacks victims’ machines, causing locking of file encryption. Version-Aware XML-based
documents is a distributed version-control system that does not rely on a central repository
but refers to the document file to utilize the changes between different versions of the same
document. version-control is a system used for tracking all files or file set changes over time
to allow for the subsequent release of a specific version of the file so that you can obtain
a specific version of the file later. As VCS became popular, new techniques continued to
evolve. It uses two main techniques to store versions of data. The first one is to keep a
copy of each new version of the file, while the second one would keep only the deltas,
which are the data differences between the two versions of the file. There are two major
version-control types: centralized and distributed. A centralized version-control system is
based on client–server architecture where a central repository is used to store the document
versions. Centralized VCS must be used online as it requires the end-user (client) to be
connected to the system (central repository) at all times. Using this approach makes it
possible to elicit single points of failure [22].



Future Internet 2022, 14, 115 6 of 19

A distributed version-control system, also known as Version-Aware XML document
(used in our approach) was first introduced in [22]. In contrast to centralized VCS, ver-
sion–aware VCS does not depend on a central repository to store versions data. It utilizes
reverse deltas stored inside the document file itself, which are the data differences between
the two versions of a file, rather than storing the whole document every time. By using
Version-Aware XML document technology, users are not worried about the need to use
a repository or network connection to remote servers. LibreOffice documents (ODT) are
XML schemas that store files, styles, and settings. The authors of [23] created a Custom
Microsoft Word plugin to support Version-Aware XML documents technology. Revisions
of the document content are stored as a separate copy (snapshot) in a sub-directory inside
the document. Shatnawi et al. [24,25] proposed a secure framework for XML documents
that improves security for XML documents and their provenance and provides persis-
tent integrity, detects tampering, and provides tools for performing forensics by utilizing
version-aware XML document technology. Their approach provides an extensive document
history with author signatures at each step, which also enhances the performance when
applying security policies applied to documents.

3. Related Work

Cybersecurity researchers have extensively investigated malware attacks over the last
few years. In particular, Ransomware has received significant attention among existing
research works. Many researchers have studied Ransomware, analyzed its characteristics
and properties, and explored how it affects impacted victims. Meanwhile, they have
conducted their research work by proposing different approaches to detect and recover
from ransomware attacks.

3.1. Ransomware Analysis

To recover from a ransomware attack and mitigate its impacts, we should understand
how Ransomware is staged and, in the process, analyze what takes place. Analysis can
be achieved by looking at the structure of Ransomware and what it does by invoking a
reverse-engineering approach for multiple occurrences. The authors of [26] used reverse
engineering to study ransomware samples based on code quality, functionality, and crypto-
graphic primitives, if any. In their study, they concluded that the code is relatively basic
for the most part, with high-level languages used in most instances. Both symmetric and
asymmetric cryptography were employed. The analyzed samples were mainly purposed
to masses, with no specific objects being targeted. While reverse engineering provides
an in-depth look inside the structure of Ransomware, it is not considered a cost-effective
alternative to performing reverse engineering for every ransomware sample to find a way
to prevent attacks due to the complications and overheads involved.

The work in [27] performed a long-term ransomware attack analysis and reports
the results of examining over 1300 samples collected between 2006 and 2014 belonging
to 15 separate Ransomware families. They show that monitoring the activities in the
file system would help with Ransomware detection. They concluded that families of
Ransomware share very similar features in their core part, though their implementation
differs. The author of [28] conducted their study on malware samples, which is readily
valid for Ransomware. They proposed TTAnalyze, which can analyze the behavior of
malware that comes as a Windows-executable file process on a virtual processor under
an isolated environment. Other researchers were involved in studying the behavior of
ransomware families on the network rather than on the local machine. The authors of [29]
have, in particular, sought to analyze the network behavior of the CryptoWall Ransomware
family. Here, they used HoneyPot technology, which is based on dynamic analysis concepts
and an automatic run-time malware analytical system. They completed their study with
the conclusion that they could identify infected machines in a dedicated environment
and understand ransomware samples’ network behavior. Malicious parties commonly
associate Ransomware with a particular type of server called Command and Control (C&C)



Future Internet 2022, 14, 115 7 of 19

servers. These are used to automatically control Ransomware and anonymously instruct it
on what to do to infect other machines on the network. An approach is presented in [30]
to detect communication activities between infected hosts and Command and Control
servers by finding communication aggregates from multiple internal hosts that share
common characteristics. The authors concluded that three aggregation functions could
detect communication based on the hosts’ destination, payload, and platform.

Another research effort was conducted in [31] to study how Command and Control
servers operate. Instead of detecting communication activities to these servers, the authors
proposed a way to make automata that can reveal the hidden specification of closed-type
protocols. The solution they created does not require any information upfront, such as
source code or specifications about the implementation, and was found to be able to suc-
cessfully develop automata for FTP traces. The same principle could be applied to C&C
servers, which are closed-type protocol automata that send replies to ransomware requests.
The work in [32] presents the analysis of 14 strains of ransomware families that infect Win-
dows platforms. This study compares the baseline of standard operating-system behavior
operations, and Windows Application Programming Interface (API) calls made through
Ransomware processes. This study reports notable features of Ransomware, as indicated
by the frequency of API calls, without identifying code signatures within the ransomware
code in order to provide a better understanding of what a particular Ransomware does
to the system in API calls. The work in [33] applies data-mining techniques to connect
components of multi-level code to find unique association rules to classify ransomware
families through implementing static or dynamic reverse-engineering processes. The au-
thors carried out this study using 450 ransomware samples in which they were able to
identify the strong connection between the different code components that emerged from
the experiments.

In [34], the authors examined ransomware attacks in a healthcare setting, duties, and
the costs related to such infections as they would affect the healthcare business in general.
They also discussed risk-impacts mitigation. They suggested that healthcare facilities
should have a disaster plan with appropriate data backups and recovery plans and increase
employees’ awareness.

3.2. Ransomware Detection

In this section, we discuss the main research efforts for ransomware detection, mitiga-
tion and prevention. Detection methods rely on ransomware attack behaviors that affect
computer systems such as files or network systems. They give an alarming signal to the
end-users to prompt responses towards their files and important data. A SDN-based system
that can improve protection against Ransomware by observing the ransomware attack is
presented in [29]. By analyzing the behavior of two popular Ransomware, Cryp-toWall
and Locky, they could be leveraged to detect Ransomware based on HTTPS messaging
sequences and content size based on network-communication observations.

The authors of [35] proposed a Paybreak recovery solution to recover corrupted files
on a victim’s machine by extracting the encryption keys used to decrypt infected files
following a Ransomware attack. PayBreak effectively implements a key escrow mechanism
to store session keys in a key vault that can be encoded with a public user key; thus, the user
may decrypt the key vault with his private key following ransomware attack. In another
research work, Continella proposed ShieldFS in [36]. In this approach, the proposed scheme
acts upon the operating and file system levels and serves as a shield to detect and correct
any suspicious activities.

Kharraz in [27] carried out a long-term study of ransomware attacks and presents
results leveraging analysis of more than 1300 samples collected between 2006 and 2014 that
belong to 15 different Ransomware families. Further, the study showed that monitoring
activities in the file system would ultimately help with Ransomware detection. R-locker,
a general technique intended to prevent crypto Ransomware action, was first introduced
by [37]. The researchers used the honeyfile technique to prevent a ransom once it accessed



Future Internet 2022, 14, 115 8 of 19

a trap file. Therefore, the honeyfile technique helps to preserve the data on the system.
Moreover, while the ransom is blocked, a countermeasure to eliminate the issue would be
beneficial to eradicate the environment’s problem.

The study presented in [29] came with the ultimate objective of detecting the underly-
ing Ransomware and mitigating its impact on the systems. The work in [38] provides a
signature-based detection approach by observing the original semantics of the dataset of
malware. Here, semantics are required to be as effective as malware. However, the authors
conclude that malware could be detected commensurate with these signatures at higher
error rates with broad classes such as Trojans. In [39], the authors introduced CryptoDrop;
an early warning system for ransomware attacks to notify users during any unusual file
operation. Based on popular ransomware behavior criteria, the proposed solution tracks
victim data and identified Ransomware in the process. Their study conducted experi-
ments on 492 real-world samples of Ransomware, representing 14 families, and was able to
achieve high detection rates with low false positives. Ransomware designers continually
keep improving their techniques to spread their attacks, especially for Ransomware types
that are not easily detected. They use encryption algorithms to hide malicious code within
benign code to be executed later.

Shafiqq, Khayam, and Farooq [40] proposed a detection scheme to detect embedded
malware, malicious code that is hidden within benign files, using statistical abnormal
detection. Yfuksel, den Hartog, and Etalle [41] described a protocol-aware anomaly de-
tection framework that aims to monitor a network from embedded malware access by
scanning a network for SBM and Microsoft Remote Procedure Call (RPC) messages. The
work presented in [42] studies the whole life cycle of Ransomware creation, design, and
implementation using Dynamic Data Exchange (DDE) in Python scripting language and
REST APIs in PHP, with the back-end being a MySQL database. Their study aimed to
prove that even though many security measures and several top-quality antivirus pro-
grams are currently in use, ransomware authors continue to develop and write dangerous
malicious codes that can be distributed easily through connected devices. Meanwhile,
various research endeavors have widely explored analysis and detection of Ransomware
based on its characteristics, leveraging machine learning techniques. In [43], Lim and Ramli
applied machine learning techniques to classify extracted static and behavioral analysis,
and they developed an efficient malware analysis framework based on the mentioned
analysis features addressed thus far.

An approach to efficiently detect Ransomware was presented in [44]. The authors
incorporated feature-generation engines and machine learning in a reverse-engineering
framework. The purpose of malware code segments is to achieve better examination and
interpretation in the proposed framework by performing multilevel analyses such as raw
binaries, libraries, function calls, and assembly language. Binaries are decoded to assembly
level instructions and DLL libraries using the object-code dump tool (Linux) and portable
executable (PE) parser. The experiments were conducted using supervised ML techniques
on both Ransomware and normal binaries. Seven of the eight ML classifiers that were
tested had a detection rate of at least 90%.

In [45], G. Cusack, O. Michel, and E. Keller proposed a solution using programmable
data-transmission from the network-traffic-monitoring engines between the infected com-
puter and command and control server. They derived high-level flow features from this
traffic and used this dataset to detect Ransomware. A detection rate of around 0.86 was
achieved in this classification model.

While Ransomware is commonly found to infect personal computers rather more
frequently, the rapid spread and increased usage of mobile devices and smartphones have
often led Ransomware writers and hackers to pay particular attention to this evolving
market. Although mobile applications are subject to specific standards by stores before they
are made available to end-users, users can still find and download infected applications
from these stores. Andronio, Zanero, and Maggi [46] developed a detection scheme based
on training ransomware samples called HelDriod. Their approach detects whether a



Future Internet 2022, 14, 115 9 of 19

particular application will attempt to lock or encrypt a mobile device without the user’s
approval. It can also detect ransom requests from within the text of the application itself.

Stokkel, M. [47] proposed a code using an open-source intrusion detection system
called Bro to detect many samples. Alfredo Cuzzocrea, Fabio Martinelli, and Francesco
Mercaldo [48] presented a fuzzy logic classification method to identify whether a mobile
application exhibits Ransomware behavior; they performed their evaluation based on a
dataset containing 10,052 legitimate and illegitimate android mobile applications.

The work presented in [49] proposed a detection method leveraging a Support Vector
Machine (SVM). This, inherently, is considered one of a group of supervised algorithms
for machine learning. By using this approach, they can identify the API calls logs of
Ransomware samples based on their features. These authors evaluated this scheme using
276 real Ransomware samples and they concluded that their technique indeed increases
the predictive accuracy and the correct Ransomware detection rate. Ref. [50] conducted
a survey on Ransomware Detection Using the Dynamic Analysis and Machine Learning
from 2019 to 2021.

3.3. Recovery from Ransomware

This section provides an overview of the literature for recovery from ransomware
attacks, the proposed schemes to counter them, and the efficiencies involved. Zimba A,
Wang Z, and Simukonda in [51] examined samples from crypto Ransomware through
reverse engineering and dynamic analysis to evaluate a Ransomware’s underlying attack
structures and deletion techniques. They conclude that no matter how disruptive a crypto
Ransomware attack is, the key to data recovery is the underlying attack structure and
the deletion technique applied. They show that data recovery based on the structure of
the attack is possible. The work presented in [52] studies the recovery of lost files due to
ransomware attacks in a network-shared volume scenario. It presents a software tool that
monitors the traffic and records all user actions on the file. The authors demonstrate that
their proposed tool can recover the file from previous and subsequent operations without
taking the encrypted content as valid data. This tool, which could recover files successfully,
is evaluated based on test-traffic records of 18 different families. The work presented in [53]
presents a tool to perform evaluations for Ransomware backup systems during security-
risk assessment; this study would make auditors analyze backup systems effectively and
improve organizational abilities to detect and recover from Ransomware attacks.

RDS3 is a novel Ransomware Defense Strategy in which it stealthily backs up data
in the spare space of a computing device so that the data encrypted by ransomware can
be restored [54,55]. Kim et al. [56] proposed a method to decrypt Hive ransomware and
recover infected data. Continella et al. [36] described a self-healing, ransomware-aware
file system by monitoring low-level filesystem activity. If a process violates a previously
trained model, its operations are deemed malicious, and the side-effects on the filesystem
are transparently rolled back. The work carried out by Ye et al. [57] suggests monitoring
and analyzing operating systems events to ensure that a back up is created whenever a
suspicious event is detected. In case the misgiving comes true, it can be rolled back.

4. Proposed Version-Aware Ransomware Recovery Framework

In this section, we describe the proposed framework for Self-Healing Version-Aware
Ransomware Recovery (SH-VARR). The main goal of the proposed framework is to serve
as a version-control system and assist in recovery against ransomware attacks targeting
XML-based documents. To achieve this goal, we implemented a distributed version-control
system by adding the absolute URL path of the original file to keep track of file versions.
Further, we employed access-control techniques to protect file versions from modification
or deletion. These techniques ensure protection from ransomware attacks while allowing
users to keep track of older versions of their files. Here, we point out that the novelty
of our proposed framework relies on the way we combine well-known techniques from



Future Internet 2022, 14, 115 10 of 19

access-control theory and version-control mechanisms to achieve the desired Self-Healing
Version-Aware Ransomware Recovery of XM-based documents.

Figure 1 depicts the overall framework architecture. In this framework, all XML-based
documents in a predefined directory go through the version-control module at the time of
file closing to maintain the latest version of each document. The access-control module is
activated by invoking the root daemon service to perform write protection for the snapshot
version, which would be already pointing to the original file.

Figure 1. The overall architecture of SH-VARR framework.

4.1. Details of the Proposed SH-VARR Framework

We first describe the version-control module, illustrating the importance of using
absolute URL links to keep track of old versions of a file. This is followed by a detailed
description of the access-control module.

4.1.1. Version-Control Module

The version-control module is designed to maintain a copy of the XML-based file at
the time of file closure so that the latest version can be retrieved in case of any corruption
or system failure. We use the term snapshot to refer to the resulting file version. This can
be achieved by adding a special plugin for Microsoft Word or LibreOffice. As part of this
work, we have implemented a custom plugin for Microsoft Word 2013.

Our framework is specifically designed to recover XML-based documents in a prede-
fined folder/directory in case of a ransomware attack. Microsoft documents and LibreOffice
documents are XML-based documents that are originally compressed using the zip com-
pression algorithm. To create a snapshot of a .odt or .docx file, the plugin performs the
following steps:

• Step 1: Changing the .odt/.docx extension of the file to .zip.
• Step 2: Extracting the document archive. By unzipping the resulting .zip file, we

obtain the document structure containing XML-based files and directories generated
originally by Microsoft Word or LibreOffice. This includes configurations, meta
information, content, settings, etc.



Future Internet 2022, 14, 115 11 of 19

• Step 3: Adding a new XML file (link.XML) to the file archive that contains an absolute
URL (i.e., a link) of the file version to be created in step 5.

• Step 4: Compressing the resulting ZIP archive, including the link.XML file.
• Step 5: Copying the resulting .zip file to a predefined directory that stores the protected

versions. Access control permissions are added by the access control module as
discussed in Section 4.1.2.

• Step 6: Changing the .zip extension of the file to .odt.

As an illustrative example, consider Figure 2, which shows the main steps performed by our
distributed version-control module to obtain a new version for an XML-based file abc.odt. In this
example, we assume that the file is in the user directory /home/user/documents. The version
(i.e., a file snapshot) is created by renaming the file to abc.zip and then unzipping the re-
sulting file to obtain the XML file archive. The main reason for performing this step is to add
an absolute path (i.e., a link) to the location of the newly introduced version. Assuming that
the file version will be stored in: /home/user/versions with the nameabc-version1.zip,
then the absolute path /home/user/versions/abc-version1.zip will be saved in the
link.XML file that is added to the document archive in step 3. In step 4, the XML-based doc-
ument archive is compressed back to obtain abc.zip. At this point, the file is copied to the
predefined protected versions directory /home/user/versions. Finally, the file extension
is changed to .odt.

Here, note that the version-control module is invoked at the time of closing the
document. This ensures that a new snapshot of the XML-based document is saved each
time the user closes the file. Here, we emphasize that keeping track of document history
(i.e., versions) is achieved by following the absolute path stored in the link.XML file stored
in each version. Figure 3 shows the approach used to retrieve older versions. Staring with
the newest version (VN ), it is possible to retrieve the preceding version by following the
link found in the link.XML file stored in the version itself. Older versions can be retrieved
similarly. For recovery from a ransomware attack, it would be sufficient to keep the latest
version only. However, suppose the objective was to retrieve older file versions while
providing ransomware recovery capability. In that case, the system can be configured to
store protected versions in precisely the same way as described in this section.

Figure 2. An illustrative example of the main steps of the version-control module.



Future Internet 2022, 14, 115 12 of 19

Figure 3. Keeping track of file version history based on link concept.

4.1.2. Access-Control Module

The access-control module is implemented as a root daemon that performs write/delete
protection for the files produced by the version-control module each time a file version is
created. This is achieved by running the chattr command (Change Attribute) with root
privileges. chattr is a command line in Linux that is used to set/unset specific attributes to
a file in a Linux environment to secure accidental deletion or modification of important files
and folders, even by root users. Through this process, file snapshots are protected from cor-
ruption or deletion by using the change file attribute permissions with the immutable flag
(i) under the Linux environment, preventing any user, including the root, from accidentally
modifying and/or deleting files. An example using this command is shown in Figure 4.

Figure 4. An example using chattr command to perform file write/delete protection.

It is important to note that the default setting for standard users is assumed to be non-
admins, with the access-control module configured as a system daemon with root access
privileges executing the chattr command; this would inherently ensure the protection of
newly created versions in the version-control directory. Any attempt to modify or delete a
protected file will not be permitted, as shown in the example in Figure 5. This is considered
a valid setting for two reasons: (i) users usually do not log into their systems as admins.
In fact, one of the best practices of computer usage emphasizes that users never log in as
admins. (ii) A recent report showed that 90% of ransomware instances in the wild could
infect systems and encrypt files without administrative privileges [58]. This indicates that
while users log in as non-admins, there is still a high possibility that Ransomware may
encrypt their files. In our proposed solution, ensuring a specific access control process with
administrative privileges will protect files created/edited by non-admin users.

Figure 5. The file is immutable when trying to write or delete.

4.2. Recovery from Ransomware Attack

The focus of our framework for ransomware recovery is all about maintaining control
of the latest possible versions of the files. As the proposed framework preserves protected



Future Internet 2022, 14, 115 13 of 19

versions of the files, we can gain access to the files in case of a ransomware attack. The
result of the attack will corrupt the original file or even delete it. However, self-healing
is achieved using the proposed SH-VARR framework by retrieving the protected version
for each file stored in the version-control directory. In case the original file is deleted or
encrypted by Ransomware, our SH-VARR framework allows immediate recovery of the
last protected version of the file(s) involved, fulfilling the self-healing property. Based on
the proposed framework, the protected snapshots will not be affected and can be recovered
under root privileges assumed to be protected. The recovery process is performed by
removing the sticky bit attribute to ensure that the file extension is .odt. Recovering a file
from the protected versions directory is performed as follows:

• Removing the immutable flag (i) attribute. This is achieved by performing the com-
mand with root privileges only:
$chattr -i file.dot.

• Changing the file name extension from .zip to .odt for Linux or .docx for a Win-
dows environment.

4.3. Implementation Challenges and Limitations

Throughout this work, we conducted several experiments to ascertain that our goal
of keeping a protected version of our XML-based files was achieved. Having set out to
build a distributed version-aware control system for XML-based documents that ensures
portability that would not depend on a centralized repository, the implemented approach
was indeed found to warrant portability as it keeps a link to the original file as described
above. During the implementation phase, the system was found to experience certain
limitations, which can be summarized as follows:

• The proposed approach assumes a daemon is running with root privileges to keep
versions protected.

• Under the Windows environment, and to ensure that our framework was well in place,
we implemented a Microsoft office plugin working as a version-control system by
keeping a complete snapshot of the active Word document inside the document itself
upon document closure. A background process goes through iterations to span all
files inside a directory or folder by calling this function. The main challenge here deals
primarily with applying the permissions to the created version of each file; this is so
because, under a Windows operating system, the read–write operation does not fall
under permissions, but file attributes, which will be readily lost after compressing the
file archive.

5. Performance Evaluation

In this section, we evaluate the proposed approach in terms of several performance
metrics. To conduct our experiments, we use a repository of 500 .odt files collected from
different sources, with different sizes ranging from 10 KB to 30 MB. All experiments were
conducted on a Ubuntu 18.0 machine with a Core i5-1.8 GHz Intel processor and 4 GB
RAM. Creating a protected version of each file was achieved by running a shell script
that included all the steps outlined in the proposed framework discussed in Section 4. We
performed multiple experiments to measure the performance of the proposed SH-VARR
framework. SH-VARR uses zip/unzip for file compression/decompression as it is the
default compression/decompression algorithm used in connection with XML documents.
Meanwhile, SH-VARR still has the flexibility of operating with any other compression
algorithm. Therefore, different compression algorithms were investigated investigated (zip,
gzip, and bzip2) under our experimental set up. In this effort, we evaluate our proposed
SH-VARR framework opposite storage overhead, time requirement, CPU utilization, and
memory usage.

Creating a protected version of a file (i.e., a snapshot) represents a major step in our
framework which results in extra storage requirements. Hence, our objective is to quantify
the amount of the resulting storage. This overhead depends mainly on the compression



Future Internet 2022, 14, 115 14 of 19

algorithm used to create the snapshot. Figure 6a–c show how the storage overhead increases
with the original file size for the cases when using the zip, gzip, and bzip2 compression
algorithms. Figure 6d illustrates all cases together for the purpose of comparison. Generally,
by increasing the file size, the size of the resulting snapshot increases proportionately. With
that said, the size of the resulting file remains smaller than that of the original file. It is
quite evident from the comparison that the bzip2-based SH-VARR slightly outperforms
the other two versions. However, it consumes more time, as we will discuss next. This
would also imply that there is a trade-off between time and storage overhead. Meanwhile,
given the lower storage costs involved in today’s technologies, the time required to create a
protected snapshot may play out as a more pronounced factor.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

S
to

ra
g
e
 O

v
e
rh

e
a
d
 (

M
B

)

File Size (MB)

zip

(a)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30
S

to
ra

g
e
 O

v
e
rh

e
a
d
 (

M
B

)

File Size (MB)

gzip

(b)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

S
to

ra
g
e
 O

v
e
rh

e
a
d
 (

M
B

)

File Size (MB)

bzip2

(c)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

S
to

ra
g
e
 O

v
e
rh

e
a
d
 (

M
B

)

File Size (MB)

zip
gzip

bzip2

(d)

Figure 6. Storage overhead by SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.

The proposed SH-VARR framework involves several steps to create a protected snap-
shot for each file version. Therefore, it is important to measure the amount of time required
to perform such an operation. Figure 7a–c show how the time requirement increases with
the original file size for creating the snapshot in the proposed SH-VARR approach when
leveraging the zip, gzip, and bzip2 compression algorithms, respectively. Figure 7d illus-
trates all cases together for comparison purposes. Creating a protected version for small
files (e.g., less than 1 MB) takes a negligible amount of time that would, on average, not
exceed 120 ms. However, for larger file sizes exceeding 10 MBs, more time is required
to create the protected version. It can be observed that the amount of time varies as file
compression depends on the amount of redundancy in each file and the type of content
(e.g., text, images, etc.) contained in each file. It is evident from the outcomes of using both
the zip and the gzip algorithms that the results are fairly comparable and they are seen
to offer much better results than when using the bzip2 algorithm. In fact, the bzip2 is ob-
served to consume considerable amounts of time to create the protected version, especially
when the file sizes involved are quite large.



Future Internet 2022, 14, 115 15 of 19

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30

T
im

e
 (

m
s
)

File Size (MB)

zip

(a)

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30

T
im

e
 (

m
s
)

File Size (MB)

gzip

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  5  10  15  20  25  30

T
im

e
 (

m
s
)

File Size (MB)

bzip2

(c)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  5  10  15  20  25  30

T
im

e
 (

m
s
)

File Size (MB)

zip
gzip

bzip2

(d)

Figure 7. Time requirement for SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.

Figure 8a–c show how the CPU utilization varies against the original file size for
creating the snapshot in the proposed SH-VARR schema when leveraging the zip, gzip,
and bzip2 compression algorithms, respectively. Figure 8d illustrates all cases together
for the purpose of comparison. Here, CPU utilization is the amount of work handled by
the CPU while creating a protected version for each file. Generally, for small files, CPU
utilization increases with increasing file size. However, for larger file sizes, it levels off to
some decent value. By monitoring the CPU utilization for each job executed when creating
a protected version, we observed that when the bzip2 compression algorithm was used
the CPU utilization was evidently the highest.

Figure 9a–c show how the memory usage changes against the original file size to
create the snapshot in the proposed SH-VARR schema when leveraging the zip, gzip,
and bzip2 compression algorithms. Figure 9d illustrates all cases together for comparison
purposes. It is readily seen that the memory usage, for the cases when the zip and gzip
compression algorithms are used, is almost fixed (around 6.8 KBs) where it does not show
any dependence on file size. Meanwhile, memory usage for the case involving the bzip2
compression algorithm is seen to increase with increasing file size, then it remains constant
(around 28 KBs) for files with large sizes. This is because all the compression algorithms
(zip, gzip, and bzip2) involved in our assessment of the proposed framework do not
capture the entire file into the memory. Instead, they acquire it as a stream requiring a
specific amount of memory each time (i.e., takes a chunk of data of a specific size each
time), and the amount needed depends on the compression method used and the file
size involved.



Future Internet 2022, 14, 115 16 of 19

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30

C
P

U
 U

ti
liz

a
ti
o
n
 %

File Size (MB)

zip

(a)

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30

C
P

U
 U

ti
liz

a
ti
o
n
 %

File Size (MB)

gzip

(b)

 70

 75

 80

 85

 90

 95

 100

 0  5  10  15  20  25  30

C
P

U
 U

ti
liz

a
ti
o
n
 %

File Size (MB)

bzip2

(c)

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30

C
P

U
 U

ti
liz

a
ti
o
n
 %

File Size (MB)

zip
gzip

bzip2

(d)

Figure 8. CPU utilization by SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.

 6.7

 6.75

 6.8

 6.85

 6.9

 6.95

 7

 0  5  10  15  20  25  30

M
e
m

o
ry

 U
s
a
g
e
 (

K
B

)

File Size (MB)

zip

(a)

 6.7

 6.72

 6.74

 6.76

 6.78

 6.8

 6.82

 0  5  10  15  20  25  30

M
e
m

o
ry

 U
s
a
g
e
 (

K
B

)

File Size (MB)

gzip

(b)

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0  5  10  15  20  25  30

M
e
m

o
ry

 U
s
a
g
e
 (

K
B

)

File Size (MB)

bzip2

(c)

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

M
e
m

o
ry

 U
s
a
g
e
 (

K
B

)

File Size (MB)

zip
gzip

bzip2

(d)

Figure 9. Memory usage by SH-VARR snapshot based on three compression algorithms. (a) Using
zip algorithm; (b) Using gzip algorithm; (c) Using bzip2 algorithm; (d) All algorithms.



Future Internet 2022, 14, 115 17 of 19

Finally, we compare the proposed mechanism with the work presented in [54,55].
In [55], the authors presented a Ransomware protection framework that depends on a
network connection to backup files on a local or a remote server. However, they did not
provide any performance evaluation of their framework in terms of time and storage
requirements. In [54], the authors proposed backing up critical data in a fully isolated
spare space that is not reachable by Ransomware, regardless of what privilege it can obtain.
The authors assumed that the computing device has a particular portion of extra space,
which can be utilized to create the backup volume to store encoded files with reverse
deltas. This is different than the proposed work, where we can hold both reverse deltas
and complete snapshots of files. We also used compression techniques to utilize the storage
better. Moreover, our proposed work is portable because it can be shipped as a plugin that
can be attached to documents; a feature that is not supported by [55] or [54].

6. Conclusions

In this paper, we introduced a Self-Healing Version-Aware Ransomware Recovery
Approach (SH-VARR) of XML-based documents. This proposed system consists mainly of
two modules. The first is a decentralized version-aware control system that periodically
takes a backup version for each file and keeps the latest one. The second is the access-
control module that executes special commands to protect the resulting versions from
corruption or deletion caused by ransomware attacks; something that is carried out under
administrator privileges.

The conducted set of experiments to assess the system focused on measuring the
system performance in terms of the performance metrics: time, storage overhead, memory
usage, and CPU utilization. Since compression is one of the main steps in the version-
control system module, we evaluated these metrics by considering two commonly used
compression algorithms: bzip2 and gzip. Our technique (SH-VARR), introduced in this
paper, uses the default zip algorithm. Comparisons show that the zip algorithm has the
minimum time, size, utilization, and memory usage requirements. We conclude that this
solution would protect XML-based files such as .docx and .odt files from ransomware
attacks. The user can recover from such attacks even when the original files are deleted or
encrypted. This is based on the assumption that these file types are compressed structures.
In addition, we used a distributed version-aware control system to acquire a backup and
keep track of each version. We observed access-control rules on these versions to achieve
the core pillars of information security: Confidentiality, Integrity, and Availability.

Author Contributions: Conceptualization, A.S.S., O.A.-K. and B.A.-D.; methodology, M.A.-D.; soft-
ware, M.A.-D. and A.S.S.; validation, M.A.-D.; writing—original draft preparation, M.A.-D.; writing—
review and editing, M.A.-D., A.S.S., O.A.-K. and B.A.-D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mashtalyar, N.; Ntaganzwa, U.N.; Santos, T.; Hakak, S.; Ray, S. Social Engineering Attacks: Recent Advances and Challenges, HCI for

Cybersecurity, Privacy and Trust; Springer: New York, NY, USA, 2021; pp. 417–431
2. Mukhopadhyay, I. Cyber Threats Landscape Overview Under the New Normal. In ICT Analysis and Applications; Fong, S., Dey,

N., Joshi, A., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 314. [CrossRef]
3. Djenna, A.; Harous, S.; Saidouni, D.E. Internet of Things Meet Internet of Threats: New Concern Cyber Security Issues of Critical

Cyber Infrastructure. Appl. Sci. 2021, 11, 4580. [CrossRef]
4. Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
5. Zong, S.; Ritter, A.; Mueller, G.; Wright, E. Analyzing the Perceived Severity of Cybersecurity Threats Reported on Social Media.

arXiv 2019, arXiv:1902.10680.
6. Rudd, E.; Rozsa, A.; Günther, M.; Boult, T. A Survey of Stealth Malware Attacks, Mitigation Measures, and Steps Toward

Autonomous Open World Solutions. IEEE Commun. Surv. Tutor. 2017, 19, 1145–1172. [CrossRef]

http://doi.org/10.1007/978-981-16-5655-2-7
http://dx.doi.org/10.3390/app11104580
http://dx.doi.org/10.1016/j.jcss.2014.02.005
http://dx.doi.org/10.1109/COMST.2016.2636078


Future Internet 2022, 14, 115 18 of 19

7. Nakashima, E.U.S. Aims to Thwart Ransomware Attacks by Cracking Down on Crypto Payments. The Washington Post. 2021.
Available online: https://www.washingtonpost.com/business/2021/09/17/biden-sanctions-ransomware-crypto (accessed on
19 October 2021).

8. Kumar, M.; Ben-Othman, J.; Srinivasagan, K. An Investigation on Wannacry Ransomware and its Detection. In Proceedings of the
2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 1–6.

9. Stallings, W. Network Security Essentials: Applications and Standards; Pearson: London, UK, 2016.
10. Peter, A.; Peter, S.; Van Ekert, L. An ontology for network security attacks. In Proceedings of the 2nd Asian Applied Computing

Conference (AACC’04), LNCS 3285; Springer: Berlin/Heidelberg, Germany, 2004.
11. Richardson, R.; North, M. Ransomware: Evolution, mitigation and prevention. Int. Manag. Rev. 2017, 13, 10.
12. Everett, C. Ransomware: To pay or not to pay? Comput. Fraud Secur. 2016, 2016, 8–12. [CrossRef]
13. Yaqoob, I.; Ahmed, E.; Rehman, M.; Ahmed, A.; Al-garadi, M.; Imran, M.; Guizani, M. The rise of ransomware and emerging

security challenges in the Internet of Things. Comput. Netw. 2017, 129, 444–458. [CrossRef]
14. Shashank, M.; Agrawal, A.K. Multi Pronged Approach for Ransomware Analysis. Available online: https://deliverypdf.ssrn.

com/delivery.php?ID=5291060930870770081250660870070081260610690290530590240230240481190070441091000580110161
11014009004006028061086001098107006013106127099006095000116044119113035023073115003083030043113078009059098044
124031019004068007115065011000084085080125073117006075066113004076094086068087090001095082&EXT=pdf&INDEX=
TRUE (accessed on 10 March 2022).

15. What You Need to Know about the WannaCry Ransomware. Available online: https://symantec-enterprise-blogs.security.com/
blogs/threat-intelligence/wannacry-ransomware-attack (accessed on 10 March 2022).

16. Leong, R.; Beek, C.; Cochin, C.; Cowie, N.; Schmugar, C. Understanding Ransomware and Strategies to Defeat It. 2016. Available
online: https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-understanding-ransomware-strategies-defeat.
pdf (accessed on 10 March 2022).

17. Al-rimy, B.; Maarof, M.; Shaid, S. Ransomware threat success factors, taxonomy, and countermeasures: A survey and research
directions. Comput. Secur. 2018, 74, 144–166. [CrossRef]

18. Young, A.; Yung, M. Cryptovirology: The birth, neglect, and explosion of ransomware. Commun. ACM 2017, 60, 24–26. [CrossRef]
19. Young, A.; Yung, M. Cryptovirology: Extortion-based security threats and countermeasures. In Proceedings of the 1996 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, 6–8 May 1996; pp. 129–140.
20. Luo, X.; Liao, Q. Awareness education as the key to ransomware prevention. Inf. Syst. Secur. 2007, 16, 195–202. [CrossRef]
21. Gostev, A.; Unuchek, R.; Garnaeva, M.; Makrushin, D.; Ivanov, A. IT Threat Evolution in Q1 2016. Kapersky 2015 Report,

Kapersky L. 2016. Available online: https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/0719261
7/Q1_2016_MW_report_FINAL_eng.pdf (accessed on 10 March 2022).

22. Thao, C.; Munson, E. Version-aware XML documents. In Proceedings of the 11th ACM Symposium on Document Engineering,
Mountain View, CA, USA, 19–22 September 2011; pp. 97–100.

23. Coakley, S.; Mischka, J.; Thao, C. Version-Aware Word Documents. In Proceedings of the 2nd International Workshop on
(Document) Changes: Modeling, Detection, Storage and Visualization, Fort Collins, CO, USA, 16 September 2014; p. 2.

24. Shatnawi, A.; Ethan, V.M.; Cheng, T. Maintaining integrity and non-repudiation in secure offline documents. In Proceedings of
the 2017 ACM Symposium on Document Engineering, Valletta, Malta, 4–7 September 2017; pp. 59–62.

25. Shatnawi, A.S.; Ethan, V.M. Enhanced Automated Policy Enforcement eXchange framework (eAPEX). In Proceedings of the ACM
Symposium on Document Engineering 2019, Berlin, Germany, 23–26 September 2019; pp. 1–4.

26. Gazet, A. Comparative analysis of various ransomware virii. J. Comput. Virol. 2010, 6, 77–90. [CrossRef]
27. Kharraz, A.; Kirda, E. Redemption: Real-time protection against ransomware at end-hosts. In International Symposium on Research

in Attacks, Intrusions, and Defenses; Springer: Cham, Switzerland, 2017; pp. 98–119.
28. Bayer, U.; Kruegel, C.; Kirda, E. TTAnalyze: A Tool for Analyzing Malware. 2006. Available online: https://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.60.7584&rep=rep1&type=pdf (accessed on 10 March 2022).
29. Cabaj, K.; Mazurczyk, W. Using software-defined networking for ransomware mitigation: The case of cryptowall. IEEE Netw.

2016, 30, 14–20. [CrossRef]
30. Yen, T.; Heorhiadi, V.; Oprea, A.; Reiter, M.; Juels, A. An epidemiological study of malware encounters in a large enterprise.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7
November 2014; pp. 1117–1130.

31. Zhang, T.; Antunes, H.; Aggarwal, S. Defending connected vehicles against malware: Challenges and a solution framework. IEEE
Internet Things J. 2014, 1, 10–21. [CrossRef]

32. Hampton, N.; Baig, Z.; Zeadally, S. Ransomware behavioural analysis on windows platforms. J. Inf. Secur. Appl. 2018, 40, 44–51.
[CrossRef]

33. Subedi, K.; Budhathoki, D.; Dasgupta, D. Forensic analysis of ransomware families using static and dynamic analysis. In
Proceedings of the 2018 IEEE Security And Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 180–185.

34. Mansfield-Devine, S. Leaks and ransoms–the key threats to healthcare organisations. Netw. Secur. 2017, 2017, 14–19. [CrossRef]
35. Kolodenker, E.; Koch, W.; Stringhini, G.; Egele, M. PayBreak: Defense against cryptographic ransomware. In Proceedings of the

2017 ACM on Asia Conference on Computer And Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017;
pp. 599–611.

https://www.washingtonpost.com/business/ 2021/09/17/biden-sanctions-ransomware-crypto
http://dx.doi.org/10.1016/S1361-3723(16)30036-7
http://dx.doi.org/10.1016/j.comnet.2017.09.003
https://deliverypdf.ssrn.com/delivery.php?ID=529106093087077008125066087007008126061069029053059024023024048119007044109100058011016111014009004006028061086001098107006013106127099006095000116044119113035023073115003083030043113078009059098044124031019004068007115065011000084085080125073117006075066113004076094086068087090001095082&EXT=pdf&INDEX=TRUE
https://deliverypdf.ssrn.com/delivery.php?ID=529106093087077008125066087007008126061069029053059024023024048119007044109100058011016111014009004006028061086001098107006013106127099006095000116044119113035023073115003083030043113078009059098044124031019004068007115065011000084085080125073117006075066113004076094086068087090001095082&EXT=pdf&INDEX=TRUE
https://deliverypdf.ssrn.com/delivery.php?ID=529106093087077008125066087007008126061069029053059024023024048119007044109100058011016111014009004006028061086001098107006013106127099006095000116044119113035023073115003083030043113078009059098044124031019004068007115065011000084085080125073117006075066113004076094086068087090001095082&EXT=pdf&INDEX=TRUE
https://deliverypdf.ssrn.com/delivery.php?ID=529106093087077008125066087007008126061069029053059024023024048119007044109100058011016111014009004006028061086001098107006013106127099006095000116044119113035023073115003083030043113078009059098044124031019004068007115065011000084085080125073117006075066113004076094086068087090001095082&EXT=pdf&INDEX=TRUE
https://deliverypdf.ssrn.com/delivery.php?ID=529106093087077008125066087007008126061069029053059024023024048119007044109100058011016111014009004006028061086001098107006013106127099006095000116044119113035023073115003083030043113078009059098044124031019004068007115065011000084085080125073117006075066113004076094086068087090001095082&EXT=pdf&INDEX=TRUE
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/wannacry-ransomware-attack
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/wannacry-ransomware-attack
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
http://dx.doi.org/10.1016/j.cose.2018.01.001
http://dx.doi.org/10.1145/3097347
http://dx.doi.org/10.1080/10658980701576412
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07192617/Q1_2016_MW_report_FINAL_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07192617/Q1_2016_MW_report_FINAL_eng.pdf
http://dx.doi.org/10.1007/s11416-008-0092-2
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.7584&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.7584&rep=rep1&type=pdf
http://dx.doi.org/10.1109/MNET.2016.1600110NM
http://dx.doi.org/10.1109/JIOT.2014.2302386
http://dx.doi.org/10.1016/j.jisa.2018.02.008
http://dx.doi.org/10.1016/S1353-4858(17)30062-4


Future Internet 2022, 14, 115 19 of 19

36. Continella, A.; Guagnelli, A.; Zingaro, G.; De Pasquale, G.; Barenghi, A.; Zanero, S.; Maggi, F. ShieldFS: A self-healing,
ransomware-aware filesystem. In Proceedings of the 32nd Annual Conference on Computer Security Applications, Los Angeles,
CA, USA, 5–8 December 2016; pp. 336–347.

37. Gomez-Hernandez, J.; Gonzalez, L.; Garcia-Teodoro, P. R-Locker: Thwarting ransomware action through a honeyfile-based
approach. Comput. Secur. 2018, 73, 389–398. [CrossRef]

38. Sathyanarayan, V.; Kohli, P.; Bruhadeshwar, B. Signature generation and detection of malware families. In Australasian Conference
on Information Security And Privacy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 336–349.

39. Scaife, N.; Carter, H.; Traynor, P.; Butler, K. Cryptolock (and drop it): Stopping ransomware attacks on user data. In Proceedings
of the 2016 IEEE 36th International Conference On Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016;
pp. 303–312.

40. Shafiq, M.; Khayam, S.; Farooq, M. Improving accuracy of immune-inspired malware detectors by using intelligent features. In
Proceedings of the 10th Annual Conference On Genetic And Evolutionary Computation, Atlanta, GA, USA, 12–16 July 2008;
pp. 119–126.

41. Yüksel, Ö.; Hartog, J.; Etalle, S. Towards useful anomaly detection for back office networks. In International Conference on
Information Systems Security; Springer: Cham, Switzerland, 2016; pp. 509–520.

42. Hurtuk, J.; Chovanec, M.; Kičina, M.; Billik, R. Case Study of Ransomware Malware Hiding Using Obfuscation Methods. In
Proceedings of the 2018 16th International Conference on Emerging ELearning Technologies and Applications (ICETA), Stary
Smokovec, Slovakia, 15–16 November 2018; pp. 215–220.

43. Lim, C.; Ramli, K. Mal-ONE: A unified framework for fast and efficient malware detection. In Proceedings of the 2014 2nd
International Conference on Technology, Informatics, Management, Engineering & Environment, Bandung, Indonesia, 19–21
August 2014; pp. 1–6.

44. Poudyal, S.; Subedi, K.; Dasgupta, D. A Framework for Analyzing Ransomware using Machine Learning. In Proceedings of the
2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1692–1699.

45. Cusack, G.; Michel, O.; Keller, E. Machine learning-based detection of ransomware using sdn. In Proceedings of the 2018 ACM
International Workshop on Security In Software Defined Networks & Network Function Virtualization, Tempe, AZ, USA, 21
March 2018; pp. 1–6.

46. Andronio, N.; Zanero, S.; Maggi, F. Heldroid: Dissecting and detecting mobile ransomware. In International Symposium On Recent
Advances in Intrusion Detection; Springer: Cham, Switzerland, 2015; pp. 382–404.

47. Stokkel, M. Ransomware Detection with bro. Talk at BroCon ‘16. Available online: https://old.zeek.org/brocon2016/brocon201
6_abstracts.html#toc-top (accessed on 20 January 2020).

48. Cuzzocrea, A.; Martinelli, F.; Mercaldo, F. A Novel Structural-Entropy-based Classification Technique for Supporting Android
Ransomware Detection and Analysis. In Proceedings of the 2018 IEEE International Conference On Fuzzy Systems (FUZZ-IEEE),
Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7.

49. Takeuchi, Y.; Sakai, K.; Fukumoto, S. Detecting ransomware using support vector machines. In Proceedings of the 47th
International Conference on Parallel Processing Companion, Eugene, OR, USA, 13–16 August 2018; p. 1.

50. Urooj, U.; Al-rimy, B.A.S.; Zainal, A.; Ghaleb, F.A.; Rassam, M.A. Ransomware Detection Using the Dynamic Analysis and
Machine Learning: A Survey and Research Directions. Appl. Sci. 2022, 12, 172. [CrossRef]

51. Zimba, A.; Wang, Z.; Simukonda, L. Towards data resilience: The analytical case of crypto ransomware data recovery techniques.
Int. J. Inf. Technol. Comput. Sci. 2018, 10, 40–51. [CrossRef]

52. Berrueta Irigoyen, E.; Morató Osés, D.; Magaña Lizarrondo, E.; Izal Azcárate, M. Ransomware encrypted your files but you
restored them from network traffic. In Proceedings of the 2018 2nd Cyber Security in Networking Conference, CSnet 2018, Paris,
France, 24–26 October 2018.

53. Thomas, J.; Galligher, G. Improving backup system evaluations in information security risk assessments to combat ransomware.
Comput. Inf. Sci. 2018, 11. [CrossRef]

54. Subedi, K.P.; Budhathoki, D.R.; Chen, B.; Dasgupta, D. RDS3: Ransomware defense strategy by using stealthily spare space. In
Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1
December 2017; pp. 1–8.

55. Martínez-García, H.A. Facing ransomware: An approach with private cloud and sentinel software. Comput. Fraud. Secur. 2020,
2020, 16–19. [CrossRef]

56. Kim, G.; Kim, S.; Kang, S.; Kim, J. A Method for Decrypting Data Infected with Hive Ransomware. arXiv 2022, arXiv:2202.08477.
57. Ye, H.; Dai, W.; Huang, X. File Backup to Combat Ransomware. U.S. Patent 9,317,686, 19 April 2016.
58. 90 Percent of Ransomware Can Execute without Administrator Rights-Business Reporter. Available online: https://engageemployee.

com/90-per-cent-ransomware-can-execute-without-administrator-rights/ (accessed on 30 December 2019).

http://dx.doi.org/10.1016/j.cose.2017.11.019
https://old.zeek.org/brocon2016/brocon2016_abstracts.html#toc-top
https://old.zeek.org/brocon2016/brocon2016_abstracts.html#toc-top
http://dx.doi.org/10.3390/app12010172
http://dx.doi.org/10.5815/ijitcs.2018.01.05
http://dx.doi.org/10.5539/cis.v11n1p14
http://dx.doi.org/10.1016/S1361-3723(20)30087-7
https://engageemployee.com/90-per-cent-ransomware-can-execute-without-administrator-rights/
https://engageemployee.com/90-per-cent-ransomware-can-execute-without-administrator-rights/

	Introduction
	Background
	Ransomware
	Ransomware Lifecycle
	Ransomware Categories

	Version-Control System (VCS)

	Related Work
	Ransomware Analysis
	Ransomware Detection
	Recovery from Ransomware

	Proposed Version-Aware Ransomware Recovery Framework
	Details of the Proposed SH-VARR Framework
	Version-Control Module
	Access-Control Module

	Recovery from Ransomware Attack
	Implementation Challenges and Limitations

	Performance Evaluation
	Conclusions
	References

