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Abstract: Analyzing and predicting community evolution has many important applications in
criminology, sociology, and other fields. In community evolution prediction, most of the existing
research is simply calculating the features of the community, and then predicting the evolution
event through the classifier. However, these methods do not consider the complex characteristics
of community evolution, and only predict the community’s evolution from a single level. To solve
these problems, this paper proposes an algorithm called multi-layer feature fusion-based community
evolution prediction, which obtains features from the community layer and node layer. The final
community feature is the fusion of the two layer features. At the node layer, this paper proposes a
global and local-based role-extraction algorithm. This algorithm can effectively discover different
roles in the community. In this way, we can distinguish the influence of nodes with different
characteristics on the community evolution. At the community layer, this paper proposes to use
the community hypergraph to obtain the inter-community interaction relationship. After all the
features are obtained, this paper trains a classifier through these features and uses them in community
evolution prediction. The experimental results show that the algorithm proposed in this paper is
better than other algorithms in terms of prediction effect.

Keywords: community evolution prediction; non-negative matrix factorization; multi-layer features;
role extraction

1. Introduction

Many complex networks show the structure of communities. A community is a set
of nodes, where connections within the community are relatively dense, and connections
between communities are relatively sparse [1]. The community is the basic structure of
the network, and has many important applications, such as influence maximization [2,3]
and rumor tracing. Due to the wide application of community, ever since the concept of
community has been proposed, many scholars have devoted themselves to related research
on community. These studies include community discovery [4,5], community evolution
analysis [6], and community evolution prediction.

Among many research directions related to communities, community evolution pre-
diction is an important direction. In dynamic networks, communities change over time,
which we have called community evolution. Community evolution prediction can be
defined as predicting the future evolution of a community when its historical evolution
is known.

Community evolution prediction has many important applications in many fields.
For example, in criminology [7], a criminal group can be regarded as a community, and
tracking and predicting its changes can help to control them over time. In an infectious dis-
ease transmission network, by tracking the changes in infected communities, the structural
characteristics of highly infectious communities can be found to predict the future spread
of infectious diseases.
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Although community evolution prediction has important applications in many fields,
there are few related studies. Most of the existing research simply calculates community
features based on manually selected features and then uses classifiers to make predictions.
Most of the differences among these algorithms lie in the way they calculate features [8–15].
For example, in references [8,11], the authors simply calculate features based on manual
selection. In references [9,10], the authors take into account the influence of the leader node
on the evolution of the community. In the reference [15], the author automatically selects
relevant features through pre-training classifiers.

Although the existing algorithms can achieve good effects, they still have some short-
comings. First, the existing research does not consider the impact of the nodes with different
features on the evolution of the community. To solve this problem, in references [9,10],
the authors introduced leader nodes when calculating community features. However,
in reality, there are not only leader nodes in the community, but also other types of nodes.
These nodes also affects the community evolution. For example, in a community, there
may be nodes that want to separate. If there are many such nodes, the community is likely
to split in the future. Therefore, when predicting the evolution of a community, it is not
enough to only consider the features of influence nodes. Second, the existing algorithms
do not consider mutual influence between communities when calculating community
features. Obviously, the relationship between communities will affect the evolution of the
community. For example, if there are more edges between two communities, these two
communities are more likely to merge in the future.

To solve the above problems, this paper proposes multi-layer feature fusion-based
community evolution prediction (MCEP). MCEP obtains features from the node layer and
the community layer. Then MCEP merges the obtained features and uses the merged
features to predict the evolution of the community. At the node layer, we give community
roles to different types of nodes in the community. In contrast to the traditional definition of
the role, community roles need to consider both the global scope and local scope features of
nodes. Therefore, the traditional role-discovery algorithm [16] cannot be used to discover
community roles. To accurately discover community roles, we propose the global and local-
based community role-extraction algorithm. The algorithm first constructs the global and
local feature matrices of nodes in the same community. Then MCEP performs non-negative
matrix factorization (NMF) on these two matrices to obtain the role of the node. At the
community layer, because the community is a mesoscopic structure, we call the features of
the mutual influence between communities the community mesoscopic features. To obtain
the community mesoscopic features, we regard the community as a hypernode and use the
hypernode to construct the hypergraph. Then, we perform NMF on the adjacency matrix
of the hypergraph to obtain the community mesoscopic features. After all the features
are obtained, we merge the obtained features. The merged feature is the final feature
representation of the community. In addition, to incorporate time information into the
training set, we integrate the features of the community into multiple snapshots. Finally,
MCEP constructs a training set according to the obtained features and then trains a classifier
as the final community evolution prediction model. Experimental results show that the
algorithm proposed in this paper is better than other algorithms.

The main contributions of this paper can be summarized as follows:

• We propose to obtain features from the node layer and the community layer, re-
spectively. In this way, the features of nodes and the influence of inter-community
relationships on community evolution can be better captured.

• We propose the global and local-based community role-extraction algorithm. The
algorithm first obtains the features of the node from the global scope and the local
scope. Then, global and local feature matrices are constructed based on the obtained
node features. Finally, we obtain the role attribution matrix of the node through NMF.
Through the role attribution matrix, we can assign community roles to each node.

• We propose the obtaining of the community mesoscopic features through a community
hypergraph. To obtain the community mesoscopic features, we first construct the
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hypergraph according to the similarity between the communities. Then we perform
NMF on the adjacency matrix corresponding to the hypergraph to obtain the mutual
influence between the communities.

The rest of the paper is organized as follows: Section 2 introduces the overall process
of community evolution prediction and related work. Section 3 introduces the MCEP
algorithm proposed in this paper in detail. Section 4 shows the results of the comparative
experiment and other related experiments. Section 5 summarizes the full paper.

2. Related Work
2.1. Community Evolution

In a dynamic network, a community will evolve with a change in the network. To study
the changes in a community in a relevant snapshot, scholars have proposed relevant
community evolution models. These models define community evolution events. For the
specific definition of community evolution events, different models will be different, and the
most commonly used model is group evolution discovery (GED). Since the algorithm
proposed in this paper analyzes community evolution through GED, this section will
briefly introduce community evolution events in GED.

In GED, community evolution events are divided into seven categories:

• Birth: a community exists in the current snapshot, but in the previous snapshot, no
community could match that community.

• Survive: two communities in the adjacent snapshot are identical or only a small
number of nodes are different.

• Dissolve: a community existed in the previous snapshot, and no community can
match it in the current snapshot.

• Grow: in the current snapshot, some new nodes join the community, and make the
size of community bigger than the previous snapshot.

• Shrink: shrinking is the opposite process growing; a community is reduced in size
compared to the previous snapshot.

• Merge: a community in the current snapshot is formed by merging several communi-
ties in the previous snapshot.

• Split: a community divides into several small communities in the current snapshot.

2.2. Community Evolution Prediction

Most of the existing research on community evolution prediction uses four steps to
make predictions. The four steps are network data split, community discovery, evolution
analysis, obtaining relevant features, and making predictions. In these four steps, most of
the papers focus on the last step, which is the obtaining of features.

The existing algorithms can be divided into two types: (a) methods that do not contain
historical information; and (b) methods that contain historical information. The difference
between the two types of method is whether to use historical information.

The method that does not contain historical information only uses the community
of the current snapshot for prediction. The advantage of these methods is that it is rel-
atively simple, and at the same time, the obtained feature dimension is lower, so the
prediction can be made more quickly. Takaffoli et al. [12] proposed the concept of the
meta-community. Through the meta-community, the evolutionary relationship of the non-
adjacent snapshot can be tracked. In addition, they used properties of influential nodes,
properties of the community, and temporal changes in these properties predict community
evolution. Ilhan et al. [15] pre-trained a multi-classifier through many synthetic networks.
The multi-classifier can automatically select features useful for prediction from a feature set
before prediction.

Community evolution is a sequential process. The historical evolution of the com-
munity will affect the current evolution. The method that contains historical information
considers the historical evolution, so the effect is better than the method that does not
contain historical information. Diakidis et al. [13] hypothesized that communities in social
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networks are the result of user interaction. Therefore, they selected structure, content,
contextual features, and the previous state of community as community features. However,
their method does not consider the split and merge events of the community. İlhan et al. [14]
used ARIMA (autoregressive integrated moving average) to predict the future changes in
community features. Then, they spliced the predicted features with the community features
of the historical snapshot to obtain the final feature representation. Dakiche et al. [10]
considered historical community features and the influence of leader nodes on community
evolution prediction, and used the change rate of community features to predict community
evolution. The above methods are mainly based on GED (group evolution discovery) [17]
for community evolution analysis. Gliwa et al. [8] proposed a new community evolution
model called stable group change identification (SGCI) and used it to predict community
evolution. SGCI used leadership, community density, cohesion, and group size to predict
the future evolution of the community.

Although the above methods have been able to achieve good results, these algorithms
do not consider the complex characteristics of the community evolution. Specifically,
the existing algorithms have the following drawbacks: first, although existing algorithms
consider the influence of leader nodes on the prediction results, it is obvious that there are
other types of nodes in the community. The influence of these nodes on the evolution of the
community has not been considered. Second, the existing algorithms do not consider the
influence between communities. The relationship between communities is an important
factor affecting the evolution of the community.

To solve the above problems, this paper proposes multi-layer feature fusion-based
community evolution prediction (MCEP).

3. Multi-Layer Feature Fusion-Based Community Evolution Prediction

This section will introduce the MCEP algorithm in detail. As mentioned in the related
work section, community evolution prediction is mainly divided into four steps. The main
work of this paper is the last step, which obtains the corresponding features.

The structure of this section is as follows. Section 3.1 will briefly introduce the features
used in the MCEP. Section 3.2 will introduce the global and local-based community role-
extraction algorithm proposed in this paper. Section 3.3 will introduce the algorithm
for discovering the community mesoscopic features. Section 3.4 briefly introduces the
prediction process of the MCEP algorithm.

Before introducing MCEP, we first briefly introduce the related symbols used in
this paper.

In this paper, the dynamic network is defined as G = (Vt, Et), where Vt is the node in
the network at time t, Et is the edge in the network at time t, t = 1, 2, . . . , T, and T is the
number of the snapshot in the network. Nt = |Vt| represents the number of nodes in the
network at time t. Ct represents the community structure at time t, C(t,i) represents the i-th
community at time t, and RoleC represents the division of roles in community C. The main
symbols used in this article are given in Table 1.

Table 1. Notations.

Symbol Meaning

Gt The network of snapshot t
Ct Community set at snapshot t
Ct,i Community j at snapshot t

ξC ∈ R|Ci |×M The global feature matrix of community C
`C ∈ R|Ci |×M The local feature matrix of community C
FC ∈ R|C|×L The mesoscopic feature of community C
WC ∈ RK×M The global feature contribution matrix
HC ∈ RK×M The local feature contribution matrix
<C ∈ R|Ci |×K The role attribution matrix

In the above table, |C| is the number of communities in the network, |Ci | is the number of nodes in the community
C, K is the number of roles, and L is the number of community mesoscopic features.
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3.1. Community Features

Similar to other community evolution prediction algorithms, MCEP also needs to
construct a training set by calculating related features. This section will introduce the
features used in MCEP.

The features used in MCEP can be divided into three types: overall community
features, node features, and community mesoscopic features. Compared with the first two
features, the calculation of community mesoscopic features is more complicated. We will
introduce it in detail in Section 3.3. This section mainly introduces the overall community
features and node features used in MCEP. It is worth pointing out that because different
networks have different properties, finding a suitable feature set to make it effective for
all networks is difficult. The experimental part will also illustrate this point. The features
listed below are just some of the general features. In practical applications, the user should
make a choice based on specific conditions.

The overall community features measure the community from an overall perspec-
tive. This measurement mainly reflects the features of the community at the macro level.
The overall community features used by MCEP are community size, density, and cohesion.
The community size measures the number of nodes in the community. Both the density
and the cohesion are measures of the closeness of the connections within the community.
The density of the community pays more attention to the connections within the commu-
nity. The cohesion considers the number of internal connections while also considering the
connections outside the community.

The overall community features are macroscopic reflections of the community features.
In addition to the macro features, the community also has its micro features. Micro features
refer to the features of nodes in the community. To obtain the micro features, MCEP
calculates the features of each node in the community and then calculates its average value.
The average value is the micro features of the community. The node features used in MCEP
are degree, clustering coefficient [18], betweenness centrality [19], closeness centrality,
and eigenvector centrality [20]. Among them, clustering coefficient and closeness centrality
mainly measure the tightness of connections around nodes. Centrality and eigenvector
centrality mainly measure the importance of nodes in the network.

The relevant calculation formulas and symbol meanings of the above features are
given in Table 2.

Table 2. Community features.

Feature Calculation Formula

degree Dv = |Neiv|
Size S = |V|

Density den(C) = ∑a Dv
|C|×(|C|−1)

Cohesion ζc =
den(C)

Oc
|C|×(N−|C|)

Clustering Coefficient cluseter(v) = PLv
Lv

Betweenness Centrality BCv = ∑
s 6=v 6=t

σst(v)
σst

Closeness centrality CCv = 1
∑u∈G Dis(v,u)

Eigenvector Centrality ECv = xv

In the above table, Neiv is the set of neighbor nodes of node v of node v, Oc is the number of edges between
nodes in community C and external nodes, and PLv represents the maximum number of possible connections
of node v’s neighbors, Lv represents the actual number of connections of the neighbors of node v, σst represents
the number of shortest paths from node s to node v, σst(v) represents the number of paths that the shortest path
number passes through v, Dis(v, u) represents the distance from node v to node u, and xv represents the feature
vector of node v.

3.2. Global- and Local-Based Community Role Extraction

This section introduces the global and local-based community role-extraction algo-
rithm in detail.
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As mentioned above, in addition to leader nodes, there are many other types of nodes
in the community, which will also affect the evolution of the community. We refer to
different types of nodes in the community as community roles, which are specifically
defined as follows:

Definition 1 (Community role). The community role classifies nodes according to the structural
features of nodes. Community role describes the different features of nodes in the community. Nodes
belonging to different roles will have different effects on the evolution of the community.

In contrast to traditional role extraction, the discovery of community role not only
needs to consider the network structure features of the node, but also needs to consider the
community structure features of the node. Therefore, it is difficult to accurately discover
community roles using traditional role-extraction algorithms. To accurately discover the
community role, we propose the global- and local-based community role-extraction algo-
rithm (GLRE). In this algorithm, global refers to the whole network, and local refers to the
community where the node is located.

GLRE obtains the community role mainly by obtaining the community role attribution
matrix. The definition of the community role attribution matrix is as follows:

Definition 2 (Community role attribution matrix). The community role attribution matrix R
reflects the probability that a node belongs to each community role. The role can be assigned to nodes
in the community through this matrix.

To obtain the community role attribution matrix, GLRE first calculates the structural
features of the node from the global scope and the local scope. Then, GLRE constructs the
global and local feature matrix. The features used in GLRE are the node features mentioned
in Section 3.1. After obtaining the global and local feature matrices, GLRE decomposes
the two matrices simultaneously through NMF to obtain the community role attribution
matrix. The rest of this section will introduce the process of the GLRE algorithm in detail.

First, GLRE calculates the features of nodes in the global and local scopes and con-
structs the global and local feature matrix ξC and `C.

It is worth pointing out that when calculating the features of a node from a local scope,
GLRE will ignore nodes that do not belong to the community. Figure 1 is an example.
Among them, nodes of the same color belong to the same community. For node 1 in the
graph, its degree is 4. Among the neighbors of node 1, two nodes belong to the same
community as node 1, and two nodes belong to different communities from node 1. When
computing node features from the global scope, the degree of node 1 is 4, as shown on the
left. When computing node features from a local scope, the degree of node 1 is 2, as shown
on the right.

After obtaining the global and local feature matrices of the community, GLRE uses
NMF to decompose matrix ξC and `C to obtain the community role attribution matrix.

To consider both the global and local features of the node in the NMF, we design an
effective loss function so that GLRE can decompose matrix ξC and `C at the same time in
the NMF. The loss function is as follows:

Cost = ||`C −<C HC||2F + ||ξC −<CWC||2F (1)

where ξC is the global feature matrix of community C, `C is the local feature matrix of
community C, WC ∈ RM×K is the global feature contribution matrix of nodes in C, and HC ∈
RM×K is the local feature contribution matrix of nodes in C, and <C ∈ RM×K is the role
attribution matrix of nodes in community C.

After obtaining the loss function, the GLRE algorithm uses the multiplicative update
rule [21] to minimize the loss function to obtain WC, HC and <C. The final update formula
is as follows:
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HC = HC
<T

C`C

<T
C<C HC

(2)

<C = <C
`C HT

C + ξCWT
C

<C HC HT
C +<CWCWT

C
(3)

WC = WC
<T

CξC

<T
C<CWC

(4)

Figure 1. Calculate degree from global scope and local scope.

After obtaining the community role attribution matrix <C, we can obtain the commu-
nity role of each node. Each row in <C represents the probability that the node belongs
to each community role. The nodes in the community can be assigned roles through the
elements in <C:

<C,i = argmax
k
<C,ik (5)

The process of the GLRE algorithm is shown in Algorithm 1.

Algorithm 1 GLRE

Require: network structure G, community C
1: Calculate the node features of each node from the global and local, respectively
2: Construct matrices ξC and `C according to the obtained node features
3: Get HC, WC, <C, according to Formulas (2)–(4)
4: Obtain the role distribution <C,i of each node according to Formula (5)
5: Output division result <C

After obtaining the roles of nodes in the community through GLRE, for nodes with
the same role, MCEP calculates the node features and uses the average value as the features
of this type of role.

3.3. Community Mesoscopic Feature Mining

This section will first introduce the definition of community mesoscopic features
proposed in this paper. Then, this section will propose the corresponding mesoscopic
feature-mining algorithm based on the community hypergraph.
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Community is a mesoscopic structure in the network. In the real world, there is much
interaction between communities. These interactions will also have an impact on the future
evolution of the community. To consider the influence relationship between communities,
we define the community mesoscopic feature, which is defined as follows:

Definition 3 (Community mesoscopic feature). Community mesoscopic feature describes the
mutual influence relationship between communities. It is a concrete manifestation of the influence
of other communities on this community. In this paper, the community mesoscopic feature of
community C is represented by FC. The mesoscopic features of all communities are represented by
matrix F.

Since the interaction between communities is a complex and abstract effect, the meso-
scopic features of the community cannot be obtained through simple calculation. To
accurately discover the community mesoscopic features, we propose an algorithm for min-
ing mesoscopic features. This algorithm first treats the community as a hypernode in the
network, then constructs a community hypergraph based on the similarity between hyper-
nodes. Finally, the algorithm obtains the community mesoscopic features through NMF.

We first give the definition of the community hypergraph, as follows:

Definition 4 (Community hypergraph). Hypergraph is a concept opposite to the simple graph.
A node in a hypergraph is a set of nodes, and the edges in a hypergraph describe the relationship
between the set of nodes. A community hypergraph is a hypergraph constructed by treating a
community as a node. We refer to the community in the hypergraph as community hyper-nodes.

Figure 2 shows an example of a community hypergraph. In Figure 2, the network on
the left is the original network, in which the nodes of the same color belong to the same
community. The network on the right is the community hypergraph constructed from
the original network, and the relationship between the hypernode and the community is
given by the solid arrow. As can be seen from Figure 2, by constructing the community
hypergraph, the algorithm can ignore the complexity of the internal connections of the
community, and it can focus on mining the influence relationship between the communi-
ties. In addition, in the original network, there is no direct connection between the blue
community and the green community. But in the hypergraph, the blue node and the green
node are connected, because in the real network, the influence between the community can
be generated not only through the interconnection of nodes between communities, but also
through other means, such as mutual attention between communities and so on.

Figure 2. The example of hypergraph.
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In this paper, the community hypergraph is constructed by calculating the similarity of
community hyper-nodes. The weight of the edges in the hypergraph is the corresponding
hypernode similarity. The definition of hypernode similarity is as follows:

Definition 5 (Hypernode similarity). Hypernode similarity describes the degree of similarity
between community hyper-nodes. The calculation of the hypernode similarity of the community
hypernode Ci and Cj is as follows:

SCi ,Cj =
zCiz

T
Cj√∣∣∣∣zCi

∣∣∣∣2√∣∣∣∣∣∣zCj

∣∣∣∣∣∣2 (6)

where SCi ,Cj is the hypernode similarity of the community hyper-nodes Ci and Cj, and zCi and zCj
are the features of zCi and zCj , which are obtained by the GLRE algorithm.

The reason for using similarity to construct a community hypergraph is as follows:
a community is not isolated in the network. Its future evolution will be affected by other
communities. This impact can be direct or indirect. If the two communities are more
similar, they are more likely to influence each other. For example, in a social network,
if two communities have the same interests, the two communities may follow each other.
Therefore, even if the two communities are not connected, the evolution of one community
is likely to lead to corresponding changes in the other community.

Finally, MCEP decomposes the similarity matrix S of the community hypergraph
through NMF. After NMF, MCEP obtains the community mesoscopic features according to
mesoscopic feature matrix. The optimization goals of NMF are as follows:

min
M≥0,F≥0

Cost = ||S−MF||2F (7)

where S is the hypergraph similarity matrix, F is the community mesoscopic feature matrix,
each row in F is the mesoscopic feature of the corresponding community, and M is the
mapping matrix, which reflects the mapping relationship from S to F.

3.4. Community Evolution Prediction

This section will explain the feature set construction method used for prediction, and
the overall process of MCEP.

Suppose that, for the community i at time t, the overall community features obtained
by MCEP are represented by TFt,i, and the community role features are represented by
RFt,i,1, RFt,i,2, RFt,i,3 (assuming that the number of roles is 3), the community mesoscopic
feature is represented by MFt,i. The final community feature is obtained by splicing the
above features:

F = [TFt,i, RFt,i,1, RFt,i,2, RFt,i,3, MFt,i] (8)

Because the future evolution of the community will be affected by its historical evo-
lution, to take time information into account, MCEP obtains the evolution sequence by
tracking the evolution process of the community. Then MCEP splices the corresponding
community features and their evolution events to obtain the features for training and
prediction. The feature structure of community i at time t is as follows:

Tt,i = [Ft−2,i, Et−2,i,Ft−1,i, Et−1,i,Ft,i] (9)

where Tt,i represents the total feature of community i at time t, Ft,i is the feature of commu-
nity i at time t, and Et,i is the evolution event of the community i at time t. Because MCEP
uses binary classification in evolution prediction, i.e., for each evolution event, MCEP
trains a separate classifier to predict. Therefore, Et,i has only two values: Et,i is 1 when the
corresponding evolution event occurs, and Et,i is 0 when it does not occur.
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After the feature set is constructed, MCEP uses the classifier for training and prediction.
For each community evolution event, MCEP constructs a corresponding training set. Then
MCEP uses logistic regression for training and prediction. Although MCEP uses logistic
regression as the classifier, and the main focus of MCEP is the obtaining of community
features and the construction of the training set, so MCEP can also use other classifiers.

The process of the MCEP algorithm is shown in Algorithm 2.

Algorithm 2 MCEP

Require: Network structure G
1: Split the network to obtain G1, G2, . . . , Gt
2: Perform community discovery on different snapshots, and get the community structure

of each snapshot C1, C2, . . . , Ct
3: Use the GED algorithm to obtain the evolutionary relationship between communities
4: For the community Ct,i, calculate the overall community features TFt,i
5: Use the GLRE to obtain the role features of the community RFt,i,1, RFt,i,2, . . . , RFt,i,r
6: Obtain the community mesoscopic feature MFt,i according to the algorithm described

in Section 4.3
7: Combine the obtained features to obtain community features Ft,i
8: Construct feature set according to Formula (9)
9: Train the classifier based on the constructed feature set

4. Experiment

This section will show the effectiveness of the MCEP through experiments. In this
paper, five representative algorithms are chosen as baselines. The five algorithms are
CFCR [10], SGCI [8], PATOC [9], node2vec [22], and LINE [23]. For the first two algorithms,
since the author did not give the abbreviations of the algorithm, for the convenience of
subsequent presentation, we have named these two algorithms. In addition, since the repre-
sentation of the community can also be obtained through graph representation learning, we
use two well-known graph representation learning algorithms as comparison algorithms;
these are node2vec and LINE. To prevent confusion with the original algorithm, we use Cn-
ode2vec and CLINE to represent the corresponding algorithms. To use these two algorithms
for community evolution prediction, after obtaining the node representation, we calculate
the average value of the node representation of each community. The average value is the
feature corresponding to the community; we can use these features to make predictions.

We conducted experiments on three real datasets, which are DBLP [24], ia-reality-call
https://networkrepository.com/ia-reality-call.php (accessed on 12 March 2022), and sx-
askubuntu-c2qhttp://snap.stanford.edu/data/sx-askubuntu-c2q.txt.gz (accessed on 12
March 2022). Table 3 shows the dataset used in the experiment. As can be seen from
Table 3, the three networks are small, medium and large, respectively. In addition, the types
of these three networks are also different, where DBLP is a citation network, ia-reality-
call is a mobile phone network, and sx-askubuntu-c2q is a question-answering network.
Since networks vary in size and type, we believe using these three datasets is sufficient to
demonstrate the effectiveness of our proposed algorithm.

All algorithms use logistic regression as the classifier. To increase the number of
community events, ia-reality-call has one snapshot overlap, and sx-askubuntu-c2q has
two snapshots overlap. To ensure the stability of the experimental results, the experiment
used ten-fold cross-validation and was repeated 20 times; each time, the order of the
data was randomly shuffled. The final experimental result was an average of 20 times.
The experiment uses accuracy as a measure.

Since the main difference of the comparison algorithm lies in feature selection, to en-
sure a fair comparison, all algorithms use the same steps in the first three steps of commu-
nity evolution prediction. The algorithm used in the community discovery part is LFM [25].
The algorithm used in the evolution analysis part is GED [17]. The two parameters in
the GED algorithm are both 0.5. Since the final training set has the problem of imbalance

https://networkrepository.com/ia-reality-call.php
http://snap.stanford.edu/data/sx-askubuntu-c2q.txt.gz
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between positive and negative samples, we use SMOTE [26] to balance the positive and
negative samples before training the classifier.

Table 3. Datasets.

Dataset Number of Nodes Number of Edges Maximum Degree Minimum Degree Average Degree Density

DBLP 2423 54,001 144 1 40.52 0.01
ia-reality-call 6809 52,050 261 1 15.28 0.002

sx-askubuntu-c2q 79,155 327,513 3116 1 8.27 0.0001

4.1. Parameter Selection

MCEP has two parameters, the number of community roles K and the number of
community mesoscopic features L. Obviously, choosing an appropriate number of roles and
community mesoscopic features can effectively improve the effect of the algorithm. When
the number of roles is too small, the algorithm cannot completely divide the community
roles in the community, which will reduce the effect of the algorithm. When the number of
roles is too large, the algorithm may easily divide the roles of the nodes incorrectly, and the
number of mesoscopic features. Therefore, an appropriate number of roles and mesoscopic
features are very important for the algorithm.

This section studies the influence of the number of roles and the number of commu-
nity mesoscopic features on the MCEP. The datasets used are DBLP and ia-reality-call.
The results of the experiment are shown in Tables 4 and 5.

Table 4. The accuracy of MCEP different parameters: DBLP dataset.

Event
K = 3 K = 5 K = 7

L = 5 L = 10 L = 15 L = 20 L = 5 L = 10 L = 15 L = 20 L = 5 L = 10 L = 15 L = 20

Survive 94.90% 96.29% 97.10% 97.05% 96.94% 97.21% 98.18% 97.99% 97.15% 97.30% 97.82% 97.79%
Dissolve 71.14% 72.20% 75.60% 75.70% 75.54% 74.22% 75.19% 76.02% 72.20% 73.58% 72.49% 75.27%
Grow 82.83% 84.71% 83.17% 85.43% 83.33% 85.54% 86.74% 84.81% 82.63% 83.75% 84.23% 85.64%
Merge 85.52% 83.05% 86.64% 88.05% 85.82% 87.10% 88.47% 90.31% 86.38% 86.45% 88.66% 89.05%
Shrink 95.66% 98.80% 99.41% 99.40% 98.50% 99.01% 99.44% 99.46% 99.19% 99.30% 99.47% 99.88%
Split 83.21% 84.25% 85.08% 86.75% 86.30% 86.33% 87.14% 88.93% 87.77% 87.77% 88.83% 89.89%

Aver 85.54% 86.55% 87.83% 88.73% 87.74% 88.24% 89.19% 89.59% 88.03% 88.03% 88.58% 89.59%

Table 5. The accuracy of MCEP different parameters: ia-reality-call dataset.

Event
K = 3 K = 5 K = 7

L = 5 L = 10 L = 15 L = 20 L = 5 L = 10 L = 15 L = 20 L = 5 L = 10 L = 15 L = 20

Survive 88.87% 93.44% 92.01% 94.62% 93.98% 94.27% 94.36% 94.53% 92.63% 93.56% 94.34% 94.98%
Dissolve 70.62% 72.15% 76.06% 78.48% 77.33% 78.81% 80.74% 83.46% 78.83% 79.68% 83.55% 84.16%
Grow 69.33% 69.72% 69.88% 73.84% 66.89% 68.26% 75.64% 75.11% 71.06% 70.33% 73.21% 72.27%
Merge 92.32% 95.91% 97.63% 97.52% 95.75% 96.37% 97.82% 97.78% 96.07% 97.82% 97.21% 97.89%
Shrink 68.05% 69.66% 71.35% 75.59% 75.31% 73.72% 81.92% 79.76% 76.14% 79.98% 81.57% 89.51%
Split 70.11% 71.15% 69.49% 75.07% 71.27% 79.08% 77.85% 76.43% 74.44% 74.32% 73.90% 76.26%

Aver 76.55% 78.67% 79.40% 82.52% 80.09% 82.25% 84.72% 84.51% 81.53% 82.61% 83.96% 84.84%

As shown in Tables 4 and 5, we can see that with the increase of K and L, the effect of
the MCEP algorithm presents a gradual upward trend on the average. From the perspec-
tive of the number of roles, when K is 5, the MCEP algorithm can achieve the best effect.
When K is greater than 5, the effect of MCEP increases slowly. Therefore, the value of K
in the subsequent experiments in this paper is 5. From the perspective of the number of
community mesoscopic features, when the number of roles is fixed at 5, the best community
mesoscopic features on the two datasets are slightly different. On the DBLP dataset, when
L = 20, the prediction effect is the best. On the ia-reality-call dataset, when L = 15, the pre-
diction effect is the best. Regardless of the dataset, when the number of mesoscopic features
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is large, the effect of MCEP is better. This may be because the community mesoscopic
features involve complex relationships among communities, so MCEP needs a larger value
to capture the community mesoscopic features. In the subsequent experiments, the number
of features between communities is selected from 15 and 20.

From the perspective of the prediction accuracy of a single community event, the num-
ber of roles and the number of community mesoscopic features that make the evolution-
ary event achieve the best results are different in different events and different datasets,
and there is no obvious rule. This shows that different community evolution events have
their unique characteristics, so it is difficult to find a fixed pattern that can achieve the best
results in all events.

4.2. Comparison Results between MCEP and Baselines

This section shows the effects of MCEP and other algorithms on three datasets. The ex-
perimental results are shown in Figures 3–8. The last column in each figure is the average
value of each algorithm on the corresponding dataset. On the sx-askubuntu-c2q dataset,
because the number of negative samples of survival events is too small, the prediction
accuracy of the events cannot be compared. The experimental results show that the MCEP
achieves the best results in most of the evolutionary events of the three datasets, which
shows the effectiveness of the MCEP. For some evolutionary events, such as the survival
event of ia-reality-call, the effect of MCEP algorithm is slightly worse than other algorithms.
This may be because different community evolution events often present different fea-
tures, and these features will also be different on the different datasets. Therefore, it is
difficult to find a common feature set that enables the MCEP to have the best effect on all
evolutionary events.
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Figure 3. Comparing the accuracy of the algorithms on the DBLP dataset.
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Figure 4. Comparing the f1 score of the algorithms on the DBLP dataset.
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Figure 5. Comparing the accuracy of the algorithms on ia-reality-call dataset.

As can be seen from Figures 3–8, the effect of the Cnode2vec and CLINE algorithms is
slightly lower than the effect of the MCEP algorithm on the three datasets. But the effect
of the Cnode2vec and CLINE algorithm is better than other algorithms. The common
point of MCEP, Cnode2vec, and CLINE algorithms is that these three algorithms use a
relatively complex method to construct feature sets. MCEP is based on community roles
and mesoscopic features, and Cnode2vec and CLINE are based on graph representation
learning. In addition, the dimensionality of the features obtained by these three methods
is also more than other algorithms, so it is more able to capture the characteristics of
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community evolution. This shows that due to the complex characteristics of the community
evolution, it is difficult to achieve a satisfactory effect for community evolution prediction
only by selecting a few suitable features.
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Figure 6. Comparing the f1 score of the algorithms on ia-reality-call dataset.
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Figure 7. Comparing the accuracy of the algorithms on sx-askubuntu-c2q dataset.
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Figure 8. Comparing the f1 score of the algorithms on sx-askubuntu-c2q dataset.

4.3. Ablation Experiments

Compared to the previous algorithm, MCEP mainly made two improvements. First,
MCEP proposed the GLRE for discovering the community role. Second, MCEP uses NMF
to discover the community mesoscopic features. This section will prove the effectiveness of
the above two improvements through ablation experiments.

First, we construct three algorithms by deleting the related improvements. In order
to distinguish these three algorithms from the original MCEP algorithm, we name these
algorithms as follows:

1. GL-B-MCEP: The GLRE algorithm is used, and the community mesoscopic features
are considered.

2. G-B-MCEP: The traditional role-extraction algorithm is used and the community
mesoscopic features are considered.

3. GL-MCEP: The GLRE algorithm is used, and the community mesoscopic features are
not considered.

4. G-MCEP: The traditional role-extraction algorithm is used, and the community meso-
scopic features are not considered.

Then, we conduct comparative experiments on the three datasets. To reduce the
influence of other factors on the experimental results, for each algorithm, we use the
same number of roles and mesoscopic features. On the DBLP dataset, the number of
roles is 5 and the number of mesoscopic features is 20. On the ia-reality-call dataset and
sx-askubuntu-c2q dataset, the number of roles is 5 and the number of mesoscopic features
is 15. The experimental results are shown in Tables 6–8.

Table 6. Results of ablation experiments: DBLP.

Event GL-B-MCEP GL-MCEP G-B-MCEP G-MCEP

Survive 97.99% 96.48% 97.52% 95.28%
Dissolve 76.02% 72.37% 76.01% 71.48%

Grow 84.81% 81.09% 86.71% 82.39%
Merge 90.31% 85.05% 89.61% 83.45%
Shrink 99.46% 98.35% 99.02% 98.67%
Split 88.93% 85.55% 87.34% 85.26%
Aver 89.59% 86.48% 89.37% 86.09%
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Table 7. Results of ablation experiments:ia-reality-call.

Event GL-B-MCEP GL-MCEP G-B-MCEP G-MCEP

Survive 94.36% 90.81% 94.71% 88.31%
Dissolve 80.74% 76.83% 83.30% 74.90%

Grow 75.64% 67.54% 75.18% 68.10%
Merge 97.82% 94.08% 97.79% 96.05%
Shrink 81.92% 73.49% 73.95% 69.64%
Split 77.85% 70.26% 74.92% 71.36%
Aver 84.72% 78.84% 83.31% 78.06%

Table 8. Results of ablation experiments: sx-askubuntu-c2q.

Event GL-B-MCEP GL-MCEP G-B-MCEP G-MCEP

Dissolve 71.16% 72.49% 70.54% 72.02%
Grow 92.42% 84.02% 89.16% 87.69%
Merge 98.45% 97.12% 97.86% 96.24%
Shrink 96.11% 91.14% 92.77% 89.49%
Split 79.68% 73.98% 72.98% 71.76%
Aver 87.56% 83.75% 84.66% 83.44%

The experiment result shows that the GL-B-MCEP algorithm can achieve the best
results on the three datasets. Due to the complex characteristics of community evolution
events, GL-B-MCEP did not achieve the best results in all community evolution events,
which is the same as the results of the comparative experiment. But from an average point
of view, the effect of GL-B-MCEP is the best.

In addition, on the DBLP dataset, the introduction of community mesoscopic features
has greatly improved the prediction effect of the algorithm, while the improvement of the
GLRE algorithm is not obvious. This may be because the DBLP dataset has only 2423 nodes.
On this small-scale network, the local features of the community are not obvious. On the
other two datasets, it can be seen that with the increase of network scale, the improvement
of the prediction effect of the GLRE algorithm is gradually obvious, which shows that
GLRE can be more effective on large-scale networks.

4.4. Different Community Discovery Algorithms

In the above experiment, we use LFM as the community discovery algorithm. In addi-
tion to the LFM algorithm, there are many other efficient community discovery algorithms.
This section studies the performance of MCEP on several commonly used community
discovery algorithms. These community discovery algorithms are the LFM algorithm [25],
the Cluster Percolation method [27], the greedy algorithm [28], and the Louvain algo-
rithm [29]. Among these four algorithms, the first two are overlapping community discov-
ery algorithms, and the latter two are non-overlapping community discovery algorithms.
The experimental results are shown in Table 9. We conducted a comparative experiment
on the DBLP dataset. For the greedy algorithm and the Louvain algorithm, because the
number of positive samples of shrink events is too small, there is no way to predict its
accuracy, so there is no result in that part. The experimental results are shown in Table 9.

Table 9. The results of MCEP under different community algorithms.

Event LFM CPM Greedy Louvain

Survive 97.99% 81.18% 96.32% 95.88%
Dissolve 76.02% 80.78% 80.12% 87.30%

Grow 84.81% 97.15% 95.10% 87.60%
Merge 90.31% 93.39% 94.53% 94.19%
Shrink 99.46% 96.90% - -
Split 88.93% 99.82% 90.80% 91.92%
Aver 89.59% 91.54% 91.38% 91.38%
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From Table 5, we can see that different community discovery algorithms have a signif-
icant impact on the results of MCEP. For example, when using the CPM algorithm, MCEP
prediction accuracy of survival events is significantly lower than the other three algorithms,
and its prediction accuracy of split events is significantly higher than other algorithms. This
fact shows that the communities discovered by different community discovery algorithms
have their characteristics. The choice of community discovery algorithms will also have a
significant impact on the prediction effect. Therefore, when making community evolution
prediction, the choice of community discovery algorithm should be decided according to
specific conditions.

4.5. Dimensionality Reduction

In the above experiment, we do not restrict the final dimension of the training set
obtained by each algorithm, i.e., the feature dimension of the training set obtained by the
above experiment is different. Different algorithms use different methods for obtaining the
training set, so it is normal for the dimensions of the training set to be different.

This section compares the performance of different algorithms when the dimensions
of the training set are the same. The specific method is that after obtaining the final
features, we use PCA to reduce the dimensionality of the obtained features. The result
after dimensionality reduction is used for prediction. We compare the effects of different
algorithms in 5 different dimensions. We conducted experiments on the DBLP dataset
and the ia-reality-call dataset. The experimental results are shown in Figures 9 and 10,
which only shows the average value of the final prediction results. In addition, since the
dimensionality of the training set obtained by the SGCI algorithm is only 15 dimensions,
when the dimensions exceed 15 dimensions, we set the effect of SGCI to be the same as the
effect of 15 dimensions.
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Figure 9. Comparison of algorithm effects in different dimensions: DBLP.
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Figure 10. Comparison of algorithm effects in different dimensions: ia-reality-call.

5. Conclusions and Future Work

In this paper, we studied a novel community evolution prediction algorithm. The exist-
ing community evolution prediction algorithm only obtains the features of the community
from a single level and then uses it for community evolution prediction. These approaches
are neither comprehensive nor detailed enough, so they cannot obtain good results. To solve
these problems, the MCEP algorithm is proposed to obtain features from two layers: the
node layer, and the community layer. At the node layer, we propose the global and local
community role-extraction algorithm. MCEP can accurately divide the nodes with different
characteristics in the community using GLRE. Second, at the community layer, MCEP
discovers community mesoscopic features by constructing a community hypergraph and
using NMF. The related experimental results verify the effectiveness of the MCEP algorithm.

Although the MCEP can improve the effectiveness of community evolution prediction,
the algorithm still has some shortcomings. First, in the stage of calculating community
features, the algorithm needs to manually select relevant features. Obviously, this is a very
inefficient way, and it is difficult to obtain the best results. Second, the MCEP algorithm has
two parameters: the number of roles, and the number of mesoscopic features. These two
parameters also need to be set in advance. In many cases, choosing an optimal parameter
is quite difficult. Therefore, how to automatically select effective features and how to
automatically select algorithm parameters is the future research direction from this paper.
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