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Abstract: Although deep learning has proven to be tremendously successful, the main issue is the
dependency of its performance on the quality and quantity of training datasets. Since the quality of
data can be affected by biases, a novel deep learning method based on decorrelation is presented in
this study. The decorrelation specifically learns bias invariant features by reducing the non-linear
statistical dependency between features and bias itself. This makes the deep learning models less
prone to biased decisions by addressing data bias issues. We introduce Decorrelated Deep Neural
Networks (DcDNN) or Decorrelated Convolutional Neural Networks (DcCNN) and Decorrelated
Artificial Neural Networks (DcANN) by applying decorrelation-based optimization to Deep Neural
Networks (DNN) and Artificial Neural Networks (ANN), respectively. Previous bias mitigation
methods result in a drastic loss in accuracy at the cost of bias reduction. Our study aims to resolve
this by controlling how strongly the decorrelation function for bias reduction and loss function
for accuracy affect the network objective function. The detailed analysis of the hyperparameter
shows that for the optimal value of hyperparameter, our model is capable of maintaining accuracy
while being bias invariant. The proposed method is evaluated on several benchmark datasets with
different types of biases such as age, gender, and color. Additionally, we test our approach along with
traditional approaches to analyze the bias mitigation in deep learning. Using simulated datasets, the
results of t-distributed stochastic neighbor embedding (t-SNE) of the proposed model validated the
effective removal of bias. An analysis of fairness metrics and accuracy comparisons shows that using
our proposed models reduces the biases without compromising accuracy significantly. Furthermore,
the comparison of our method with existing methods shows the superior performance of our model
in terms of bias mitigation, as well as simplicity of training.

Keywords: decorrelation; deep learning; DcCNN; DcANN; bias mitigation; fairness metrics; distance
correlation; hyperparameter; bias; features

1. Introduction

Modern machine learning techniques, especially deep learning models, have shown
tremendous improvement in various fields using limited, as well as large-scale, datasets to
perform different types of tasks. However, the reliability of these models is based solely
on the quality of training datasets. The quality of datasets can be dramatically affected by
different types of biases such as representation, measurement, algorithmic, temporal, social,
etc. [1]. These biases can induce irrelevant information in the training dataset and affect
model generalization and the performance of deep learning. Collecting datasets that are
free of bias and are well distributed is expensive and very time-consuming (e.g., medical
datasets). There are pre-existing large-scale datasets such as Yahoo YFCC100M Flickr [2]
and ImageNet [3] that already contain different types of biases and recollecting these
datasets is cumbersome and can be impossible.

Convolutional Neural Networks (CNN) [4] and Deep Neural Networks (DNN) are
rapidly evolving as an automated method of extracting high-level features from 2D and 3D
data. However, these features are prone to biases when dataset collections are not properly
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controlled. Recent work has focused on methods such as pre-processing of datasets,
sampling and reweighting [5], adversarial training to mitigate bias [6], and others [7].
However, these methods face the problem of instability and require additional careful
fine-tuning of hyperparameters. In order to resolve these issues, our work aims at creating
simple and stable models to mitigate biases while achieving high performance. This study
introduces a novel technique based on a distance correlation loss function to decorrelate
the features learned by the model with a bias. We term this model the Decorrelated Deep
Neural Network (DcDNN) and Decorrelated Artificial Neural Network (DcANN) when
applied to DNN and Artificial Neural Network (ANN) [8], respectively. To the best of
our knowledge, this study is the first example in which a simple and effective distance
correlation technique was used for bias mitigation in a deep learning context.

In this study, we will mainly focus on attributes related to data for bias mitigation.
These biases are color, gender, and age. These biases can impose severe challenges to the
decisions made by deep learning. The experiments were performed on five datasets to
show that our method can be generalized across different domains and different deep
learning models. For our proposed method, we assumed that the existence of data bias is
known for the training dataset. The main objective of our proposed models is to minimize
the correlation between the high-level features learned by the model and the bias variable.
Bias variables used in our study are color information, age, and gender.

Our main contributions in this study are:

• The introduction of a new loss function to ANN, CNN, and DNN to decorrelate bias
from the learned features, which helps in mitigating bias;

• Generalizing the idea of decorrelation across different domains and biases;
• Comparing our proposed DcDNN and DcANN methods to existing methods.

In all experiments with different datasets, we showed that our methods achieved better
performance as compared to existing methodologies. DcDNN and DcANN methods are
able to learn more relevant information for a given task by mitigating irrelevant bias-related
features. We can validate this by studying the t-SNE plots. We also show that using our
proposed method, accuracy is not largely compromised even after mitigating the biases. In
concurrent work, a similar notion of using distance correlation as a regularizer term was
developed, but it is used to achieve stability of network prediction and compared against
adversarial methods [9]. However, the ability of the distance correlation function is not
fully explored due to limiting the dimensions of input variables to be one-dimensional.

The rest of this paper is structured as follows: Section 2 presents a literature review
and focuses on the pros and cons of existing methods, whereas section 3 outlines the
proposed methodologies and used datasets; Section 4 discusses the results, evaluation
metrics, and comparison with existing methodologies; Section 5 discusses the performance
of our proposed method and Section 6 provides a conclusion and remarks and opportunities
for future work.

2. Related Studies

Data-driven deep learning frameworks are widely used in complex real-world appli-
cations, and the bias and the fairness of these frameworks is still an active and popular
topic of research in the field. Most machine learning algorithms fall into three categories:
pre-processing, in-processing, and post-processing, depending on how they tackle bias and
unfairness issues [1]. We focus on in-processing learning algorithms in this paper.

An algorithmic solution of reweighing or resampling the data to remove bias from
the training dataset is provided by [5]. However, this study is limited to using only binary
bias variables and a binary classification problem. Calmon et al. [10] demonstrated an
optimized pre-processing method that uses an optimization algorithm to transform datum
probabilistically to have a fairer classification. In order to minimize representation bias,
ref. [11] investigated a data resampling technique called Representation Bias Removal
(REPAIR). In this technique, optimization is performed by minimizing the representation
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bias to learn weights that penalize misclassified examples and maximizing the classification
loss on the reweighted dataset.

Recent studies [12–14] used adversarial learning based on the min–max objective to
remove confounds, such as scanners variation in medical data, by applying the domain
adaption framework to remove gender bias from word embeddings, or to remove race
from a hiring employees dataset and loan approvals using the Generative Adversarial
Network (GAN) framework. The Bias-Resilient Neural Network (BR-Net) is another adver-
sarial training-based approach used to learn bias-invariant features. The BR-Net applies
adversarial maximization of linear correlation between bias prediction and protected bias
variable and minimization of cross-entropy or mean squared error (MSE) loss for the clas-
sification task [7]. The basic foundation of the BR-net is based on GANs [15] used for
domain-adaptation. Similar approaches based on adversarial training to predict the bias
variable were proposed in [16–18]. Most of the adversarial methods require two separate
neural networks, which results in higher hyperparameters, requires extreme fine-tuning,
and is very unstable.

The domain and task-based approach for neural networks is implemented to remove
known bias and variations from the feature representations by using the joint learning and
unlearning algorithm [19]. In this algorithm, they used a joint loss function which includes
softmax loss for classifier prediction and cross-entropy loss between classifier output and
uniform distribution for the unlearning of spurious variations. Another way of using a joint
loss function to include distance correlation in deep learning is explored by [20]. This study
used autoencoders with distance correlation as an objective function for dimensionality
reduction. By maximizing the distance correlation loss function, autoencoders were able to
extract high-quality latent features representation, and it was also easily scalable to large
high-dimensional datasets.

Our method, unlike previous works, focuses on explicitly mitigating bias in a simple,
stable, and more effective way. The optimization used in this study does not rely on min–
max optimization or adversarial optimization which are unstable. We also went further
to show that the method can be generalized across different dataset sizes and dimensions,
domains, and biases.

3. Materials and Methods

Our proposed method focuses on using distance correlation in the objective function
to decorrelate bias from features learned by CNN and ANN architectures. To generalize our
proposed method across different domains, we used different datasets with various biases
and also implemented different architectures. This opens up new opportunities to utilize
this proposed approach across different deep learning or neural network architecture to
mitigate different types of biases.

3.1. Distance Correlation

Distance correlation measures not only linear, but also non-linear dependencies be-
tween two random variables B1,...,p and F1,...,p, unlike the Pearson correlation coefficient [21]
which measures only linear dependencies. In our proposed approach, B is the dataset bias
variable whereas F is features extracted from ANN and CNN and p is the total number of
samples. The distance correlation is the square root of:

DC2(B, F) =


V2(B,F)√

V2(B,B)V2(F,F)
if V2(B, B)V2(F, F) > 0

0 else 0
(1)

where DC2(B, F) varies between 0 and 1 and indicates that variables B and F have depen-
dencies, and DC(B, F) = 0 only when the variables B and F are independent. v2(B, F) is
the distance covariance between a pair of variables and v2(B, B), v2(F, F) is the distance
variance as defined in [22]. The distance covariance is normalized by the distance variances.
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3.2. Decorrelation in Objective Function

In our study, we use the squared distance correlation as a decorrelation function. This
function is minimized to decorrelate features learned by the networks from the biases. This
means that we want to find parameters of the network, such as F features, have a minimal
distance correlation with the B bias variable. We added the decorrelation function term to
the standard objective function. The objective function is given as:

J(θ) = min
θ

(1− λ)L(Y, Ŷ) + λDC2(B, F) (2)

The regular loss function (L) in Equation (2) could be binary cross-entropy, softmax
loss, or mean-squared error depending on the nature of the tasks. The λ in the objective
function is a hyperparameter that controls the relative importance of the decorrelation
function in relation to the loss function. Y and Ŷ are true and classifier outputs, respectively,
whereas B is bias variable and F is features extracted from the model. Optimizing the
combination of these two losses not only helps to mitigate bias but also tries to achieve
higher classification accuracy. Depending on the size of the dataset and the overfitting
issue, one can also add a regularizer L2 loss function in the objective function for weight
decay purposes.

3.3. DcANN and DcCNN

ANNs are suited for modeling complex small datasets. For DcANN, we use the same
architecture used in ANN which consists of an input layer, multiple hidden layers h1,...,l ,
and an output layer with only the difference of using hidden layer output values as feature
F in decorrelation loss function. The other input to the decorrelation loss function is bias B
which can be N-dimensional and include more than one bias type. The framework of our
model DcANN is shown in Figure 1. The output of first hidden layer [23] is given by:

h1
j =

p

∑
j=1

w1
ıj xi + b1

j where j = 1, . . . , s

F = h1,...,l

(3)

Here, x is the input size of p and after applying a transfer function to f (h1
j ) becomes the

output of the first hidden layer, whereas w and b are weights and biases, i.e., θ parameters
of the neural network. The variable (s) denotes the total number of hidden units in the
first hidden layer and (l) denotes the total number of layers. We use the output of the first
hidden layer h1 as input F to our decorrelation function to reduce the dependencies of
these output values on biases. Of course, it may be more appropriate to use just one or
combinations of other layer outputs depending on the types of applications.

For DcCNN or DcDNN, we follow the same technique used in ANN. We implemented
decorrelation loss function and applied either a CNN or DNN architecture. We propose
our DcCNN architecture as in Figure 2. The output of the first convolutional layer [23] is
given by:

Z1 = W1 ∗X

F = Z1,...,l
(4)

In Equation (4), X is the two-dimensional or three-dimensional input size of p. ∗ denotes
the convolution operation. We apply a transfer function and max-pooling to Z1,...,l to the
output of convolutional layers and concatenate them together to use as features for the
decorrelation function. We use the first layer output Z1 as input F to our decorrelation
function to reduce the dependencies of these output values on biases. As in the DcANN
case, using just one or combinations of other layer outputs as features might be more
beneficial depending on the complexity of task.
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Figure 1. Proposed DcANN architecture: Black dashed lines denote the output of hidden layers l
which are combined together to represent learned features. Green dashed lines indicate the start of
the learning process where backward arrows show back-propagation using their respective gradient
values while forward arrows show forward paths with updated parameters. Network parameters are
updated as per the objective function.

Figure 2. Proposed DcDNN architecture. Black dashed lines denote the output of convolutional
layers l which are combined together to represent learned features. Green dashed lines indicate the
start of the learning process where backward arrows show back-propagation using their respective
gradient values while forward arrows show forward paths with updated parameters. Network
parameters are updated as per the objective function.
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3.4. Experimental Setup

In order to evaluate our proposed generic method, we explore five different scenarios
and different types of biases. To validate our proposed approach, we utilize a simulated
biased dataset [7] generated specifically to check the performance of the model in mitigating
the bias. Datapoints are generated using four Gaussians whose magnitudes m1 and m2
are controlled by sampling from two different uniform distributions to classify into two
groups. We implement three layers of 3 × 3 convolutions followed by tanh activation and
max-pooling. This is followed by one hidden layer with 16 dimensions. The output of
the last convolutional layer is used as feature F, whereas m2 is a bias variable B since we
assume m1 is the main reason for discrimination between two groups. We use a mini-batch
size of 256 and the hyperparameter (λ) of 0.7.

We consider commonly used standard datasets such as the German credit dataset and
UCI adult dataset [24] which have been examined for biases. We consider age as a bias
variable for the German credit datasets and gender as a bias variable for the UCI Adult
dataset as shown in Table 1. The basic three- and two-layer DcANN model is implemented
for the adult and German datasets, respectively, and compared with existing mitigation
algorithms. For the German dataset, there are two layers with 50 and 10 dimensions with
ReLU activations except the last layer with sigmoid activation. We use a mini-btach size of
100 with a dropout of 0.5 and the hyperparameter (λ) of 0.9. Detailed analysis of λ is give
in Section 4. The regularization weight decay parameter is set to 0.05. For the adult dataset,
we construct three layers with 200, 100, and 50 dimensions. The rest of the configurations
used for the adult dataset is the same as for the German dataset except for the mini-batch
size of 1024. The output of the last hidden layer is used as feature F, whereas age and
gender are used as bias variable B for the German and adult dataset, respectively.

Table 1. Description of German Credit and Adult Datasets.

Datasets Bias Variable Class Labels

German Credit Age Good and Bad Credit
UCI Adult Gender Income: >50 K and ≤50 K

We also use the MNIST image dataset [25] to check the performance of the proposed
approach of DcCNN. Since the dataset is grayscale images with no bias and specifically
designed for digit classification, we decided to utilize [6] the approach of intentionally
planting color bias in the MNIST dataset. A few examples from the color-biased MNIST
dataset are shown in Figure 3a. The training dataset consists of colored digits which are
randomly sampled from the normal distribution of the corresponding mean and variance.
So, the ten colors with their mean color value are assigned to each digit. The variance
values such as 0.02, 0.03, 0.035, 0.045, 0.05 are also explored in this experiment. The smaller
variance value means more color bias. These variance values controlled the amount of
color bias in the training dataset. The testing dataset is unbiased. Colors are assigned
randomly to each digit in the testing dataset. For this dataset, we apply the DcCNN method
and implemented the same network architecture as in [6], i.e., four convolution layers,
followed by average pooling. We use softmax loss and decorrelation loss with λ = 0.9. For
decorrrelation loss, we use the output of the first convolutional layer as features F whereas
mean RGB color values are used as bias B. RMSprop optimizer with a mini-batch size of
1200 and a learning rate (lr) scheduler with an initial lr of 0.01 with a decay of 0.5 is used.

Another way of adding color bias in the MNIST dataset [26] is dividing the dataset to
predict binary labels where 0–4 digits are assigned as labels 0 and 5–9 digits are assigned as
label one and then flipping the label with a 25% probability and color with probability value
which depends on the training environment. We combine these two training environments
in one for our proposed method. According to labels in the training dataset, digit groups
(i.e., 0–4 digits group and 5–9 digits group) are assigned red or green colors in a way that
is strongly correlated with label 0 and label 1. For the testing dataset, the direction of
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correlation is changed; for example, if label 0 is red, then in the testing dataset, label 0 is
green. We term this as the reversed color-biased MNIST dataset since the relation with bias
variable in training and the testing dataset is exactly opposite. Figure 3b shows some of
the samples taken from the reversed color-biased MNIST dataset. We apply DcCNN with
CNN architecture by using two convolution layers and two fully connected layers. We use
the same batch size and optimizer as in the color-biased MNIST dataset. The network is
trained with λ = 0.99 and a learning rate (lr) scheduler with an initial lr of 0.001 with a
decay of 0.5. In addition to this, an optimizer weight decay of 0.005 is used. Similar to the
color-biased MNIST dataset, the output of the first convolutional layer is used to reduce
their association with mean RGB color values.

Figure 3. Colored MNIST Training and Testing Datasets Examples with color bias: (a) Some image
examples of color-biased MNIST dataset - Modified MNIST dataset with a color bias for each digit.
Taken from [6] (b) Some image examples of reversed color-biased MNIST dataset—Binary group
based color bias prepared for IRM [26].

We implemented DcCNNs to all our DcCNNs and DcANNs from scratch in python
on the AWS Deep Learning AMIs [27] to accelerate deep learning in the cloud, at any scale
using the TensorFlow platform [28] and cuDNN library [29]. An Amazon EC2 P2 Instance is
used to train the dataset using deep learning. P2 instances provide eight high-speed GPUs,
parallel processing cores, and single and double-precision floating-point performance to
speed up the training processes.

4. Results
4.1. Simulated Dataset

To validate the performance of our proposed approach DcCNN, we apply our method
and baseline to simulated the dataset to mitigate bias planted in the dataset. The baseline
model is trained with λ = 0 where decorrelation is not performed to mitigate the bias
m2. Figure 4 shows tSNE plots of learned features for baseline as well as DcCNN models.
The color bar indicates the value of bias variable m2. From the plots, we can see that
there is a correlation between features and m2 for the baseline model whereas features
learned by DcCNN have a roughly uniform distribution of features across all values of m2
indicating no dependency of features on bias m2. This indicates that our proposed DcCNN
successfully mitigates the bias present in the dataset.

We also plotted the decorrelation function against iterations in Figure 5 to compare the
performance of models in regards to reducing the statistical dependence between features
and bias variables. This figure shows the unsmoothed distance correlation values in light
blue and light orange colors. In contrast, dark blue and dark orange colors indicate the
smoothed distance correlation values which are calculated using exponential moving aver-
age. Smoothing is used to observe the overall trend. It shows that the distance correlation
between features and bias variable decreases as the number of iterations increases for
DcCNN as opposed to the baseline model.
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Figure 4. tSNE plots of learned features for different methods: (a) For Baseline CNN model [7] (b) For
DcCNN model.

Figure 5. Distance correlation between learned features and bias m2 for the simulated dataset.

4.2. Age Biased German Dataset

For the age-biased German dataset, we train a model to classify credit score levels and
to reduce the gender bias of the baseline model. Furthermore, we analyze the performance
of different bias mitigation approaches using fairness metrics.

4.2.1. Hyperparamter λ Analysis

The hyperparameter λ > 0 defines the strength or relative importance of the decorre-
lation function in relation to the loss function, and hence, it plays a crucial role in deciding
the importance of the decorrelation task for bias mitigation. The higher value of λ means
features learned by the network are highly decorrelated with bias which might impact the
ability of the network to do certain tasks such as classification. A lower value of λ would
mean less bias reduction relative to a higher value. The better performance is achieved by
trying different values of λ depending upon the requirement of applications.

Figure 6 plots fairness scores and accuracies for different values of λ for the age-biased
German dataset. We can infer from the plot Figure 6a that for the German dataset, SPD,
EOD, and AOD values somewhat decrease as the value of λ increases. The main reason
behind this is the decorrelation between features learned by the model and age bias in
the German dataset increases as the value of λ increases. In Figure 6b, we observe that DI
increases as the value of λ increases whereas there is a slight drop in balanced accuracy
as the value of λ increases. In order to achieve maximum fairness or bias reduction, we
select λ = 0.9 since the lowest values of SPD and EOD and the highest value of DI are
observed for the same. The values for λ may vary for different tasks depending upon
network architecture and the complexity of the task.
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(a) (b)

Figure 6. Fairness scores and accuracies for different values of λ: (a) SPD, EOD and AOD scores Vs λ

(b) DI scores and Accuracies Vs λ.

4.2.2. Evaluation Fairness Metrics

In general, to access the performance of the fair model which indicates no discrimina-
tion against the bias or protected attribute, we report widely-used fairness metrics for bias
mitigation methods. These protected attributes include gender, age, color, race, religion, etc.
In this study, we will focus on metrics to evaluate group fairness based on age and gender.
The fair model will provide predictions that are not influenced by protected attributes.
Four metrics have been selected to evaluate the bias mitigation ability of the proposed
approach since testing datasets of age-biased German and gender-biased adult datasets are
not unbiased and contain age and gender bias, respectively.

We use the Demographic Parity or Statistical Parity Difference (SPD) fairness met-
ric [30] to check if decisions are independent of protected attributes. Disparate Impact
(DI) [31] is the same as SPD but formulated as proportion, respectively. SPD and DI are
given as:

SPD = P(Ŷ = 1|B = 0)− P(Ŷ = 1|B = 1) (5)

DI =
P(Ŷ = 1|B = 1)
P(Ŷ = 1|B = 0)

(6)

The Equality of Odds Difference (EOD) metric [32] is used for separation, i.e., to check
the independence of the decision and protected attribute separately for individuals. EOD
measures the difference in true positive rates for protected and unprotected groups whereas
Average Odds Difference (AOD) [32] measures the difference between the true-positive
rates as well as false-positive rates for each group. EOD and AOD are formulated as:

EOD = TPRB=0 − TPRB=1 (7)

AOD = 0.5 ∗ [(FPRB=0 − FPRB=1) + (TPRB=0 − TPRB=1)] (8)

In the above Equations (5)–(8), B is bias variable which can be age or gender and is
0 when it represents a privileged group and 1 when it represents an unprivileged group.
P is the classification probability whereas Ŷ is model prediction. FPR and TPR represent
a false positive rate and true positive rate, respectively. Lower values of SPD, EOD, and
AOD indicate less bias, and higher values of DI show more fairness and less bias. Balanced
accuracy is calculated as the average of sensitivity and specificity.

4.2.3. Comparative Evaluations

We compare the performance of our proposed DcANN with other existing pre-
processing methods as shown in Table 2 on a holdout testing dataset. We report all
fairness metrics and balanced accuracies for all the methods. The existing methods such
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as the baseline model, reweighing, optimized pre-processing, and adversarial debiasing
are implemented using the AIF360 [33] open source Python toolkit. The baseline model is
simple the ANN model where unprocessed data are used and bias mitigation method is not
applied. Baseline DcANN (B-DcANN) has the same architecture as DcANN but with λ = 0
which means decorrelation is not present for bias mitigation. The main difference between
the baseline model and B-DcANN is that B-DcANN uses regularization parameters such
as dropout and weight decay. We notice that regularization helps the model in achieving
higher accuracy as can be seen in Table 2.

Table 2. Fairness scores and Balanced accuracies of predictions for age-biased German dataset for
different methods.

Methods SPD EOD AOD DI BA

Baseline −0.3162 −0.318 −0.2876 0.3112 0.6534
Reweighing −0.2049 −0.2318 −0.2016 0.6229 0.6687

Optimized pre −0.0351 0.0254 −0.0639 0.9421 0.6872
Advers-Debias 0.0713 0.0393 0.0931 1.0834 0.6633

B-DcANN (λ = 0) −0.1491 −0.1 −0.0642 0.7798 0.7262
DcANN −0.03144 −0.03918 0.06223 0.95927 0.7093

As we can see, our proposed method DcANN significantly reduces SPD, EOD, and
AOD as compared to other methods without compromising the accuracy. The DI is higher
for our DcANN method compared to other methods except for adversarial debiasing.
However, as we can see from other fairness metrics and especially accuracy, adversarial
debiasing does not provide a significant reduction in bias without significantly comprising
accuracy when compared to our DcANN method. In general, we can say that our model
performs best on all fairness metrics.

4.3. Gender-Biased Adult Dataset

The UCI adult dataset is used to classify income levels and we consider gender as bias.
We use the same evaluation metrics as defined in Section 4.2.2 and compare with the same
existing mitigation methods mentioned in Section 4.2.3 on a holdout testing dataset for
the gender-biased adult dataset. We also compare the performance of our model with the
method of fusion introduced in [34]. Authors used the fusion of different combinations of
existing bias mitigation methods such as Disparate Impact Remover (DIR) [31], Adversarial
Debiasing (Advers-Debias) [13], and Calibrated Equalized Odds (CEO) [35] to provide
end-to-end bias mitigation. We use their best method for the comparison.

The results for each method are displayed in Table 3. The results show that the DcANN
model achieves the lowest EOD and AOD and highest DI amongst all methods while the
balanced accuracy slightly decreases. The SPD and EOD scores of Adversarial Debiasing
are almost similar to the DcANN method. However, as it is seen in the German dataset
case, Adversarial Debiasing helps to reduce bias but at the cost of a significant reduction
in the accuracy. The fusion model (IR + Advers-Debias + CEO) has the lowest SPD and
highest accuracy but it does not perform well on other fairness metrics. Thus, the results
suggest that DcANN reduces bias fairly by achieving good results on almost all fairness
metrics without significantly compromising balanced accuracy.
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Table 3. Fairness scores and balanced accuracies of predictions for gender-biased adult dataset for
different models.

Methods SPD EOD AOD DI BA

Baseline −0.3752 −0.3716 −0.3258 0.2876 0.7472
Reweighing −0.2924 −0.3815 −0.3234 0.3831 0.7110

Optimized pre −0.2144 −0.1991 −0.1945 0.568 0.7231
Advers-Debias −0.0876 −0.0592 −0.0373 0.5775 0.6656

DIR + Advers-Debias + CEO −0.0301 0.0785 0.051 - 0.8113
B-DcANN (λ = 0) −0.3394 −0.1545 −0.1965 0.3025 0.8226

DcANN −0.0964 0.0657 0.0325 0.8063 0.7747

4.4. Color-Biased MNIST Dataset

The color introduced in the dataset misled the model while performing the digit
classification task. The model learns the color features instead of learning digit features to
categorize the digits. We use the DcCNN model to remove color bias from features learned
by the network. The performance of the DcCNN model is compared with existing methods
such as Adversarial Training [6] and the Blind Eye method [19]. Adversarial Training
without Pre-trained model (Advers Training-no Pretrain) is the same as the Adversarial
Training model but it is trained from scratch without using any pre-trained parameters.
The baseline model is trained with no decorrelation function, i.e., λ = 0 which means bias
mitigation is not performed. The results are included in the Table 4 and the variance values
(Var) control the amount of color bias in the dataset.

Table 4. Comparison of accuracies for color-biased MNIST dataset for different values of variances
among existing methods. Results are calculated on the testing dataset.

Methods Var = 0.02 Var = 0.03 Var = 0.035 Var = 0.045 Var = 0.05

Baseline 0.4055 0.5996 0.6626 0.7973 0.845
BlindEye 0.6741 0.7883 0.8203 0.8927 0.9159

Advers Training 0.8185 0.9137 0.9306 0.9555 0.9618
Advers Training-no Pretrain 0.7336 0.8516 0.8781 0.9277 0.9429

DcCNN 0.8100 0.8910 0.9250 0.9500 0.9604

The results show that our model DcCNN achieves almost the same accuracies as
adversarial training and is better than all other methods for all values of variances. However,
in order to achieve the same results using the Adversarial Training method, we need to
use pre-trained parameters. If we don’t utilize a pre-trained model and train the model
from scratch, then there is a lot of fluctuation in the accuracies. In fact, as shown in Table 4,
accuracies dropped by a significant amount for low variance values for Adversarial Training
without using the pre-trained model. This indicates that the Adversarial training algorithm
is very unstable, and it also requires a lot of fine-tuning. Thus, the DcCNN model is simple
and requires less fine-tuning since it has only one hyperparameter (λ) for fine-tuning to
successfully mitigate the color bias while achieving high performance.

4.5. Reversed Color-Biased MNIST Dataset

To analyze the reversed effect of bias and the proposed approach, we use the reversed
color-biased MNIST dataset where the bias present in the testing dataset is exactly the
opposite of the bias present in the training dataset. This is to validate how well the
proposed approach generalizes to the unseen test dataset. In the paper [26], Arjovsky et.al.
used an Invariant Risk Minimization (IRM) causal-invariant based approach in multiple
training environments to promote out-of-distribution (OOD) generalization by assuming
the different environments share the same underlying structural equation model. An ANN
classifier is implemented to achieve the same. However, for comparison purposes, we use
the same CNN architecture as mentioned in Section 3.4 for all existing methods. Empirical
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Risk Minimization (ERM) combines the data from all the training environments and uses
all features which is similar to the baseline model principle.

The Table 5 presents the comparison where the ERM method classifies digits based on
color bias and hence the lowest accuracy whereas IRM and DcCNN remove the color bias
information from the features and classify based on features relevant to digits. The results
show that DcCNN achieved an accuracy of 66.30% which is the best across all methods and
can successfully mitigate the color bias by learning more digit-relevant features.

Table 5. Comparison of accuracies for reversed color-biased MNIST dataset among different methods.
Results are calculated on testing dataset.

Methods Accuracy

Baseline: ERM 0.1115
IRM 0.6208

DcCNN 0.6630

5. Discussion

One of the crucial aspects of our proposed method is to mitigate bias without compro-
mising the performance of the model by optimizing the decorrelation loss along with loss
related to the task and tuning hyperparameter (λ). The choice of λ depends on the complex-
ity of the task and network architecture. The results from all five datasets outperformed
the traditional approaches in mitigating different types of biases. This higher performance
indicates that the DcCNN and DcANN models significantly mitigate the bias and present
relevant feature information to the network compared to other methods. Further, this also
demonstrates the generalization ability of the proposed approach across different domains
for bias mitigation.

In Figure 5, we observe the oscillations in distance correlation values. From our ex-
periments, we verify that these oscillations are due to the size of mini-batches. Increasing
the batch size not only reduces the oscillations but also leads to an unbiased estimate of
distance correlation. We also notice that regularization such as dropout and weight decay
helps the baseline model to improve its performance. As for our proposed approach, the
input bias variable also plays a vital role and it should clearly define the bias present in
the data or task. For example, a possible concern is our proposed method might not show
significant improvement for the domain adaptation tasks due to the lack of enough quanti-
tative information about different domains and a limited number of domains. We apply
our method for digit domain adaptation tasks [36] where we use MNIST, USPS, SVHN, and
synthetic numbers datasets as training and validation datasets. We evaluated the results on
the MNIST-M dataset as a test dataset. However, we observed that the improvement using
our approach is not that significant. For such cases, we simply recommend collecting and
using more domain-relevant information as a bias variable or using domain distributions
as a bias variable.

6. Conclusions

The performance of deep learning mainly depends on the quality of data. Failure to
account for the quality of data, e.g., biased data in deep learning can lead to erroneous
decisions. We propose a new method based on the core idea of reducing the association
between features learned by the ANN or CNN models and bias. Additionally, we evaluated
proposed models, which we name the DcANN and DcCNN, on five different datasets
with different biases such as age, gender, and color. The experimental results demonstrate
that features learned by our models are statistically independent of biases or confounds
present in the dataset. Our proposed method leverages the ability of the distance correla-
tion function in decorrelation features from data bias without significantly impacting the
performance of a network. Furthermore, we observe that our method also performs better
than previous approaches to mitigate the bias. Our models are easy, simple, and require
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fewer hyperparameters to optimize compared to adversarial training. Thus, our models
DcCNN and DcANN, despite having numerous methods to achieve bias mitigation, is a
promising and effective novel method. Future work will investigate the use of DcDNN in
the medical domain to mitigate bias or confounding effects or any irrelevant dependency
issues. In addition, we plan to further evaluate the expansion of the proposed method
by applying it to pre-trained models and to different types of data variations. Although
we did not observe significant change in training times for all our proposed models in
comparison with baseline models, we intend to perform a time complexity analysis in the
future by measuring the whole training process in terms of training time as the number of
dimensions, the complexity of tasks, and the number of layers increases.
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