
����������
�������

Citation: Ayaida, M.; Messai, N.;

Valentin, F.; Marcheras, D.

TalkRoBots: A Middleware for

Robotic Systems in Industry 4.0.

Future Internet 2022, 14, 109.

https://doi.org/10.3390/

fi14040109

Academic Editor: Vijayakumar

Varadarajan

Received: 16 February 2022

Accepted: 20 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

TalkRoBots: A Middleware for Robotic Systems in Industry 4.0 †

Marwane Ayaida 1,* , Nadhir Messai 1 , Frederic Valentin 1 and Dimitri Marcheras 2

1 CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51097 Reims, France;
nadhir.messai@univ-reims.fr (N.M.); frederic.valentin@univ-reims.fr (F.V.)

2 SATT Nord, 25 Avenue Charles Saint-Venant, 59800 Lille, France; dimitri.marcheras@univ-reims.fr
* Correspondence: marwane.ayaida@univ-reims.fr; Tel.: +33-698-959-387
† This paper is an extended version of “A new middleware for managing heterogeneous robot in ubiquitous

environments” published in the Proceedings of 2020 8th International Conference on Wireless Networks and
Mobile Communications (WINCOM), Reims, France, 27–29 October 2020.

Abstract: This paper proposes a middleware called TalkRoBots that handles interoperability issues,
which could be encountered in Industry 4.0. The latter proposes a unified communication approach
facilitating the collaboration between heterogeneous equipment without needing to change neither
the already used software nor the existing hardware. It allows heterogeneous robots, using both
open and proprietary robotic frameworks (i.e., ROS, ABB, Universal Robots, etc.), to communicate
and to share information in a transparent manner. It allows robots and Industrial Internet of Things
(IIoT) devices to communicate together. Furthermore, a resilience mechanism based on an Artificial
Intelligence (AI) approach was designed in order to allow automatically replacing a defective robot
with an optimal alternatively available robot. Finally, a remote interface, which could be run through
the Cloud, allows users to manipulate fleets of robots from anywhere and to obtain access to sensors’
data. A practical scenario using five different robots has been realized to demonstrate the different
possibilities. This demonstrates the cost effectiveness of our middleware in terms of its impacts on the
communication network. Finally, a simulation study that evaluates the scalability of our middleware
clearly shows that TalkRoBots can be used efficiently in industrial scenarios involving a huge number
of heterogeneous robots and IIoT devices.

Keywords: middleware; communications; IIoT; AI; robots; resilience; ROS

1. Introduction

The concept of Industry 4.0 is currently changing both the manner in which manu-
facturing systems as well as production business models have been thought of [1]. Smart
Factories, which are a key feature of Industry 4.0, can be built to manufacture “Smart
Products” with more flexibility. They are composed of several inter-connected advanced
devices, including networked sensors, conveyor, robots or Cloud servers. Flexible Manu-
facturing Systems (FMS) are increasingly studied due to the evolving nature of industrial
requirements. Hence, there is an emerging interest to consider cooperation between sev-
eral heterogeneous robots evolving in ubiquitous environments [2]. These robots are not
only limited to classical industrial ones, but they are increasingly including co-bots, Au-
tonomous Guided Vehicles (AGVs), drones, etc. In fact, mobile robots enable, by essence,
the enlargement of the scope of reactive behaviors in the dynamic products’ routing since
they navigate freely in the production floor or in the warehouse [3]. Moreover, this free
guidance brings a higher level of manufacturing flexibility. As an example, commercial
AGVs such as Kuka LMR IIWA can receive task orders from real-time production systems
and manufacture execution systems.

Moreover, the technological evolution in mechatronics, computer engineering and
Information and Communication Technologies (ICT) allows the deployment of flexible
manufacturing applications including a fleet of heterogeneous robots that share data

Future Internet 2022, 14, 109. https://doi.org/10.3390/fi14040109 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14040109
https://doi.org/10.3390/fi14040109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2319-3493
https://orcid.org/0000-0001-8248-9839
https://doi.org/10.3390/fi14040109
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14040109?type=check_update&version=1


Future Internet 2022, 14, 109 2 of 25

between them, with Industrial Internet of Things (IIoT) devices and Cloud servers [4].
These heterogeneous robots are not de facto easily interoperable since they are built by
different manufacturers supporting various programming frameworks, which are not
standardized. A fleet of heterogeneous AGVs, such as as KMP omniMove, Ridgeback and
AGV MIR can, for instance, cooperate together to transport big products. Note also that a
new generation of mobile robots is currently developed for warehouses to reduce travel
time, improve safety or increase productivity.

The implementation of cooperative tasks involving heterogeneous robots in FMS or
warehouse needs, however, to consider several communication and interoperability aspects
for a powerful and cost-efficient operation of plants. Due to the increase in system com-
plexity and intelligence, there is a growing need for transparent communication and data
sharing between multi-robot systems, IIoT devices and the human operators who supervise
the production tasks, especially in the case of resilient flexible manufacturing scenarios.
Therefore, the design of a new middleware allowing a transparent communication between
heterogeneous devices and an easy dynamical tasks’ scheduling becomes crucial in the
context of agile manufacturing systems.

This work proposes a new middleware, denoted TalkRoBots, that has been recently
patented [5]. It allows several industrial robots (ABB, Universal Robots, KUKA, etc.), AGV
and drones that support both open and proprietary robotic frameworks (ROS, ABB, etc.)
to communicate, share information and cooperate in a transparent manner. Our technology
allows robots to acquire information about the environment (temperature, light, humidity,
video, sound, etc.) from ubiquitous sensors. TalkRoBots includes a Cloud server that allows
operators to schedule dynamically the manufacturing scenarios, supervise their status,
obtain access to sensors’ data and re-configure a scenario when a fault occurs, for example,
when using an Artificial Intelligence (AI) mechanism based on an Analytic Hierarchy Pro-
cess (AHP) [6]. Note here that once the scenario is launched, the robots will automatically
handle their tasks in a fully distributed manner, without needing any exchange with the
Cloud platform. The deployment of such technologies is easy and cost-efficient since it
requires only the integration of an embedded PC into existing production systems.

This paper extends our first study presented in [7] and proposes the following main
contributions:

• An architecture for the proposed Middleware is presented and compared with existing
works.

• The supervision of a monitoring Cloud application is detailed.
• A resilience mechanism based on IA is integrated in Middleware.
• An analytical study related to the performances of the suggested Middleware is

introduced.
• A simulator was developed in order to validate the results of the analytical study.
• Real experimental results are discussed.

The next section of this paper provides an overview about the works related to the
existing robotic frameworks and middleware. Then, Section 3 describes the architecture
of our middleware, namely TalkRoBots. This section provides also some details about the
differently used exchanging modes and some aspects related to the security of the middle-
ware. Section 4 presents Cloud services offered by TalkRoBots. After that, the performances
of the TalkRoBots are mathematically analyzed and evaluated by simulations in Section 5.
Experimental results are presented in Section 6. This paper finishes with a conclusion that
summarizes our contributions and provides some hints about future works.

2. Related Works

The current section contains a review of the most well-known robotic frameworks
and middleware. Although TalkRoBots is not really a framework, the lack of technology
surrounding interoperability between robots makes it legit to compare our framework to
existing frameworks and middleware that are close to what TalkRoBots achieves and the
way it is related with robots. A robotic framework is a set of programming tools and libraries



Future Internet 2022, 14, 109 3 of 25

targeting, simplifying and accelerating the development of a complex robotic system.
The Robotic middleware’s definition is similar. The term “robotic middleware” is used to
describe something that binds various modules of a robotic framework. Thus, the most
essential task of a middleware is to provide an infrastructure to allow communication
between several software parts within a robotic system, including robotic framework tools.
Therefore, the robotic frameworks and middleware will be introduced together.

First, we introduce the most well-known robotic framework: Robot Operating System
(ROS). The latter is completely distributed and considered as a meta-operating system [8],
which provides several services that are close to those of classical operating systems, such
as hardware abstraction and low-level device control, as well as some high level libraries
and tools, such as rviz and rqt (for data visualization and experimentation).

Convincingly, ROS tends to be a standard in robotic development and this reality is
upheld by several publications, such as in [9–12].

Player is one of the pioneer well-known robotic frameworks [13]. Its main advantage
consists in a client/server architecture allowing the development of robotic tasks using
any programming language supporting Transmission Control Protocol/Internet Protocol
(TCP/IP) communication protocols. Moreover, robot control can be performed from any
computer as long as a network connection is available. In addition to the fact that Player
supports a wide variety of physical robots and accessories, it is usually used in simulation
together with either the Stage 2D simulator [14] or Gazebo (for 3D simulations) [15,16].
However, the server, running on the robot, offers only a few pre-configured functionalities
that allow collecting data from robots and control their actuators. Furthermore, Player is
only compatible with some specific robots, since the server must be able to translate API
commands into the actual robotic native language.

ARIA (Adaptive Robot-Mediated Intervention Architecture) is fundamentally a C++
library that provides different tools allowing the control of mobile robots (https://www.
eecs.yorku.ca/course_archive/2010-11/W/4421/doc/pioneer/aria/main.html, accessed
on 15 February 2022) [17]. In addition, with the integration of the software input/output
(I/O) with custom equipment and the support of all MobileRobots/ActivMedia devices,
ARIA provides a tool called ArNetworking, which implements simple remote system
activities and user interfaces. Furthermore, ARIA is a client-side software for low and
high level robotic control that can be run in single or multi-threaded processes. However,
ARIA supports only a limited number of robots that are manufactured by MobileRobots
and ActivMedia.

ASEBA is a robotic framework that is built using an event-based architecture for the
distributed control of mobile robots [18]. It aims to assist user in the control of multi-
processors robots or groups of single-processor units that are real or simulated. Its main
advantage is to provide access to microcontrollers using high-level languages. Note that
ASEBA has been integrated with D-Bus, making it a robotic middleware [19]. However,
ASEBA is still suitable for programming educational robots, such as Thymio, which is
manufactured by Young Generations.

Carmen [20] is an open-source set of software for mobile robot control made by the
Carnegie Mellon College. It integrates all basic algorithms, including base and sensor
control, logging, obstacle avoidance, localization and mapping, which are handled in a
modular manner and use IPCs (InterProcess Communication) to communicate and to allow
process monitoring. Moreover, it provides robot equipment support for various platforms,
such as iRobot’s ATRV and B21R, ActivMedia’s Pioneer I and II, Nomadic Technology’s
Scout and XR4000. Aside from robotic devices, some robotic sensors, such as the Sick LMS
laser range finder, the GPS devices using the NMEA protocol or sonars and Hokuyo’s
IR sensors (Hokuyo URG-04LX, www.hokuyo-aut.jp, accessed on 15 February 2022), are
handled through different APIs. It is noted that Carmen, running under Linux operating
system and programmed with C++ language, is not control or real-time focused.

OpenRDK is another framework made to accelerate the building of robotic systems.
It is built in a modular manner with a main object called agent. Inside this agent, several

https://www.eecs.yorku.ca/course_archive/2010-11/W/4421/doc/pioneer/aria/main.html
https://www.eecs.yorku.ca/course_archive/2010-11/W/4421/doc/pioneer/aria/main.html
www.hokuyo-aut.jp


Future Internet 2022, 14, 109 4 of 25

modules, meaning threads, can be launched dynamically. Since OpenRDK relies on a
distributed architecture, modules can be launched on different machines and communicate
through what is called a repository. It could be described as publish/subscribe system,
but for more details, an extensive description is presented in [21,22].

Orca is an open-source C++ framework supporting Linux, Windows and QNX Neu-
trino operating systems. It is meant to allow great reusability by the normalization of
interfaces and providing high-level API to make repositories of components. The idea
around the components is detailed in [23,24] while [25] describes the lightweight character-
istics of Orca.

Orocos is a free software project written in C++. Once again, it is mainly component
based and it supports a few different vendors. Focusing on the real-time control of robots,
it relies on three parts: a kinematics and dynamics library, a Bayesian filtering library and
Orocos Toolchain. The last part allows interactive scripting, the use of distributed processes
and code generation. In [26], a more detailed description of Orocos is available and [27]
describes how to use it for indoor navigation. It can also be integrated relative to ROS with
Orocos RTT since 2009.

Urbi is divided into two parts. Firstly, it has a component library developed in
C++ and is called UObject. It specifies a standard method for using motors, sensors and
algorithms. To handle the interaction between the different modules of the system, the Urbi
script language is used. It is a high-level language that shares similarities with Python
and LUA and supports event-based programming to be used in asynchronous systems.
Similarly to almost all frameworks, Urbi wants to help seamlessly integrate different robotic
software modules. The architecture software design for an exploration robot is presented
in [28]. Although it can be interfaced with ROS for an extended toolset, only some robots
are compatible.

There are also few researchers that focused on the cooperation between robots frame-
works and IoT. For example, in [29], authors proposed a semantic-driven framework for
coordination between robots and IoT devices. They proposed a test-bed experiment. How-
ever, they did not consider any interoperability issues between robots and IoT devices and
even between the robots themselves.

There are also some attempts to propose a Middleware for Intelligent Automation
(MIA) that acts as a gateway between field devices and Decision Support Systems (DSSs),
supporting integration software such as industrial communication standards, fog comput-
ing, and Big Data warehousing such as in [30]. This work targets interoperability and
Cloud functionality. However, it neglects fleet management and resilience capability.

As summarized in Table 1, contrary to several of these middleware and frameworks,
TalkRoBots’ goal is not to offer an abstraction level for robot programming or an easier
method to control and monitor robots through APIs. TalkRoBots is only here to provide
a simple message format with which robots can communicate between each other and
become aware of their environment with the integration of external devices. TalkRoBots
introduces a real decentralized horizontal communication between robots without typical
client/server architecture. Moreover, using TalkRoBots, the robotician’s work will not
change since he will still program his robots in their native language. Thus, there is no
need for a specific driver for each robot’s model in order to use TalkRoBots. Secondly,
TalkRoBots offers a web application that we call a robotic Cloud, which can be used for
monitoring and to control some aspects of fleet management.



Future Internet 2022, 14, 109 5 of 25

Table 1. Frameworks/middleware comparison (× not implemented/designed for; Xfulfilled).

R
ob

ot
ic

Fr
am

ew
or

ks

Pr
og

ra
m

m
in

g
La

ng
ua

ge

O
pe

nS
ou

rc
e

D
is

tr
ib

ut
ed

A
rc

hi
te

ct
ur

e

Fl
ee

t
M

an
ag

em
en

t

R
ob

ot
ic

C
lo

ud

R
es

il
ie

nc
e

D
yn

am
ic

Sc
he

du
li

ng

Si
m

ul
at

io
n

R
ob

ot
/R

ob
ot

C
om

m
un

ic
at

io
n

ROS Python, C++ X X X × × × X ×
Player C++, Tcl, Java, Python X × X × × X × ×
ARIA C++, Python, Java X × X × × × × ×

ASEBA Aseba X X X × × × × ×
Carmen C++ X X X × × × X ×

OpenRDK C++ X X × × × × × ×
Orca C++ X X × × × × × ×

Orocos C++ X X X × × × × ×
Urbi C++ like X × X × × × × ×

TalkRoBots Python X X X X X X X X

3. TalkRoBots Middleware Presentation

This section presents the main contributions of our patented Middleware denoted by
TalkRoBots. It provides a description of TalkRoBots’ architecture, as well as the messages’
exchange procedure and some considered security aspects.

3.1. Architecture

The proposed TalkRoBots Middleware architecture is organized in several layers that
interact between them, as depicted in Figure 1. They include the Robotic Applicative layer
and the Robotic Framework layer, such as ROS, ABB, ARIA, ASEBA, etc. The former
interacts with remote monitoring and supervision applications. The latter controls directly
the hardware of the heterogeneous robots. Moreover, since TalkRoBots is designed to allow
an easy integration of heterogeneous robots in the same fleet, a package, named “TalkRoBots
Package”, is integrated in the Robotic Framework in order to allow communication between
the native robot’s programming language and the first level of the Middleware TalkRoBots
by defining how to receive, send and handle messages. The other layers are detailed below:

• TalkRoBots Layer 1: This layer is designed as a gateway that handles the mes-
sages exchanged between the “TalkRoBots Package” and either ConnectToBots or
the TalkRoBots Layer 2. On the one hand, it allows transparent and homogeneous
communication between the heterogeneous robots and the external devices of the fleet.
On the other hand, it handles the exchange between the Robotic Framework by using
the “TalkRoBots Package” and the second level of Middleware TalkRoBots through
ConnectToBots.

• ConnectToBots Layer: This layer acts as a communication bus that monitors the
different connection ports of the embedded PC (USB, Serial port, etc.), which is
connected to the robot. Then, it allows the identification and recognition of the plugged
devices, including external sensors and actuators (temperature sensor, camera, RFID
tag, etc.). Therefore, it allows adding new capacities to the concerned robots related to
the plugged devices and makes them available to all those in the fleet.

• TalkRoBots Layer 2: It includes all services that are developed by the operator, such as
the “Collaboration” and “Election” services. It is responsible for sharing data between
the Cloud and the robotic fleet.



Future Internet 2022, 14, 109 6 of 25

Figure 1. TalkRoBots Middleware.

For more details about the architecture of TalkRoBots Middleware, the reader is
refereed to Patent [5].

3.2. Communication

In this section, we detail the mechanism used for the exchanges between the robots and
IIoT devices. It involves the robots’ detection and the configuration procedures allowing the
identification of how to handle messages related to the robotic framework and IIoT devices.

First, we will present how a given robot is handled by the middleware. In fact, each
robot will typically receive a task to be launched. Thus, the middleware must be able to
know the method of transmitting this task to the robot. To do that, three configuration files
were specified, as described in Appendix A.

3.2.1. Routing

The routing allows the communication with all other robots of the fleet. It is ensured
thanks to routing tables stored at the first level of the middleware associated with each
robot. Within this table, a route is defined by the following:

• Transmission Control Protocol (TCP) sockets used to communicate with the other
robots and devices;

• The ID of the robot or the device associated with each socket;
• The list of sensors plugged on the remote robot.

To build this table, each robot/device has to register, according to the procedure
presented in Figure 2a, the details of the integration of a new robot/device in a given fleet.
Moreover, an example that illustrates the messages exchanged when a Pioneer robot joins
a fleet is provided in Figure 2b. In fact, once a robot is connected to layer 1, middleware
broadcasts a message including its listening interface (IP address), its ID and the list of its
plugged sensors. Once this message is received, the other robots establish encrypted (cf.
Section 3.3) TCP connections with the newly integrated robot. Then, they exchange their
IDs and their list of available sensors. In this manner, the linked middleware has a routing
table including all the other robots and their available sensors. From now on, each robot is
able to communicate with the others or any sensor connected to the middleware using this
routing table.



Future Internet 2022, 14, 109 7 of 25

Figure 2. Procedure to register a new robot into the fleet.

3.2.2. Sensors Integration

This feature, which allows the automatic detection and recognition of the devices’
connection, is based on D-Bus associated with udev software. In fact, D-Bus, a software
bus, is an InterProcess Communication (IPC) and Remote Procedure Call (RPC) mechanism
that allows communication between multiple computer programs concurrently running
on the same machine. On the other hand, udev is a device manager for the Linux kernel.
By using it, we can handle new sensors in a generic manner without limitation and with
almost no effort when, usually, only a restricted set of devices is compatible with other
middleware. Each time udev detects a new sensor, a signal is sent on the bus; thus, each
actor listening in is noticed. TalkRoBots is one of these actor we are concerned about. Once
the signal is received and the sensor is identified, our middleware broadcasts a message to
register it on the Cloud and within all other middlewares in its routing table. Therefore,
the sensor is available for all actors. Finally, at each time, a robot needs information from
a sensor, and it sends a request through TalkRoBots layer 1 to the ConnectToBots layer,
which handles this feature. Upon receiving the request, the ConnectToBots layer sends the
required information.

Within each embedded computer, a sensor publishes its data on D-Bus using the
same signal naming ‘trbots.sensorname’. When receiving a request message for sensor data,
ConnectToBots subscribes to the appropriate D-Bus signal to retrieve this information.
Once it is completed, it unsubscribes to avoid receiving a continuous stream of unnecessary
data. However, one exception for this behavior remains. When a modal window is opened
on the Web interface to obtain access to the sensor’s detailed information, in real-time,
the request sent to ConnectToBots is launched in a dedicated thread to handle a continuous
stream of data. Then, it is sent, every second, to the Web interface. Then, it unsubscribes
and kills the thread when the modal window is closed. More details about the formatted
TalkRoBots messages are provided in the following section.

3.2.3. Message Format

The format of the exchanged packet is depicted in the datagram of Figure 3. It contains
the following six fields:



Future Internet 2022, 14, 109 8 of 25

• Message Type:
We defined three main different message types: Command, Request and Information.
Command and Request types are handled differently according to the modes defined
in Appendix A. In “direct” and “ros” modes, messages are sent directly to the robot
without using the TalkRoBots package. Otherwise, in the same manner as for Infor-
mation messages, they are sent field-by-field to the TalkRoBots package to be able to
communicate with robots that cannot parse a received string message.

• Message Subtype:
The Subtype field allows user to specify exactly what kind of Information, Command
or Request it is sending. Although some Subtype fields are already predefined, such
as “position” or “temperature”, for example, it may take whatever value. However,
when using “direct” or “ros” mode, the Subtype needs to be defined accordingly in the
configuration file presented previously in Figure A3. Otherwise, it is received as any
other field by the TalkRoBots package.

• Source: It indicates the ID of the robot that sends the message.
• Target: It corresponds to the ID of the robot for which the message is addressed to.
• Size: It indicates the size of useful information.
• Data: It contains the data to be used.

Figure 3. Message structure.

3.2.4. Message Transmission Modes

As presented previously, TalkRoBots uses three different modes, which will be detailed
in this section.

1. Interpreter Mode: In the case where a robot is not able to receive a command directly,
messages will be received field-by-field in order to prevent compatibility problems if a
robotic language cannot manipulate strings. In this case, two functions have to be im-
plemented on the robot, in the robotic language, to define how to handle receiving and
sending messages, when communicating with the TalkRoBots middleware. Figure 4
presents an example of an exchange between two robots in the Interpreter Mode. In this
figure, Robot1 needs to share its position with Robot3. To do so, it sends a message
to its TalkRoBots middleware. The latter prepares an object Message with these data.
Then, the message is serialized in JavaScript Object Notation (JSON) format and
encrypted using Transport Layer Security (TLS). The security mechanisms will be
described in the next Section 3.3. When the message is received on the middleware of
Robot3, it is verified and deserialized. Finally, it is sent field-by-field to Robot3.



Future Internet 2022, 14, 109 9 of 25

Figure 4. Information transmission (field by field).

2. Direct Mode: If a message targeting a robot is a Command or a Request, the configu-
ration file defined in Figure A3 is used to translate the message into the appropriate
command using robotic language. This command is transmitted to the robot, and it is
executed immediately. However, if the command is not referenced in the configuration
file or if the file itself does not exist, the message is transmitted using the default mode
(i.e., the Interpreter mode). Figure 5 shows an example of a Command message sent
by a user to a robot. The first steps are the same as those described for the previous
Figure 4. Once the message reached the middleware of the Robot3, we differentiate
two cases. The first one corresponds to the case where the Subtype is properly defined
in the configuration file so it can be transmitted using the Direct mode. The second
one, used by default, relies on the Interpreter mode.

Figure 5. Command direct transmission.

3. ROS Mode: In the same manner as for the “direct mode”, a command/request
message is associated through the configuration file to a ROS topic. A Topic message
type is retrieved automatically and the TalkRoBots message is transformed into a
corresponding ROS message and published in the right topic.

3.3. Security

Security is one of the most important aspects that should be tackled when considering
industrial systems, particularly in the context of Industry 4.0. TalkRoBots has been designed
by considering some security mechanisms that are presented in this section.

The first security aspect is related to communication between the middleware and both
the robot and devices. This issue is handled by using exclusively a directly wired Ethernet
link between the robot and the computer on which TalkRoBots is installed. This choice is



Future Internet 2022, 14, 109 10 of 25

still coherent with security practices in the industry and prevents the remote control of
TalkRoBots by a non-authorized person, such as in the case of wireless communications.

The second level of the security concerns TCP communications between different
embedded computers, which uses an encrypted communication channel. The latter relies
on TLS encryption and peer authentication facilities for network sockets using the OpenSSL
library. As for the cipher suite, we use ADH-AES256-SHA. Note here that ADH stands for
Anonymous Diffie Hellman key exchange, while AES (Advanced Encryption Standard)
and SHA (Secure Hash Algorithm) are about stream cipher and message authentication.
Unfortunately, even if this allows securing the TCP socket, it is still insufficient for covering
the broadcast of UDP (User Datagram Protocol) messages, which are used to notify the
integration of a new robot/device in the fleet. Indeed, the TLS version of UDP, called
Datagram Transport Layer Security (DTLS) (TLS Python documentation, available at, https:
//tools.ietf.org/html/rfc6347, accessed on 15 February 2022), cannot be used in broadcast
communication since it only applies on end-to-end communication, and broadcast is
unidirectional. Thus, for this part, we use an AES cipher with a SHA512 key to encrypt
UDP messages. A summary of this secured exchange methodology is depicted on the
flowchart of Figure 6.

Figure 6. Exchange between two embedded computers.

Finally, all communications between the embedded computers and the Cloud server
are passed through OpenVPN, which uses a TLS protocol with the AES-256-CBC cipher suite
to secure information exchange. In this context, each authenticated user is affiliated to a
private Virtual Private Network (VPN). By performing this, he is only able to communicate
with the embedded computers that are preconfigured with the corect certificates. This
allows the association of a private VPN with each fleet and/or company using TalkRoBots.

4. Supervision and Monitoring Cloud Application

The integration of robotic systems in real world applications generally needs interac-
tion with operators that program and supervise the evolution of the tasks and the possible
faults. TalkRoBots proposes a Cloud application implementing several functionalities
including monitoring and controlling. In addition to this functionality available in other
Robotic Cloud applications [31], TalkRoBots can schedule and affect tasks and offers a
resilience mechanism to keep performing operations without interruption when a robot is
failing. The most significant implemented functionalities are described below:

https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347


Future Internet 2022, 14, 109 11 of 25

• Monitoring: This functionality permits the operator to monitor the status of each
robot and to obtain information about its embedded sensors and/or other data shared
with its environment.

• Controlling: Users can also control their robot, for example, moving them, through
the Cloud interface, by only using a keyboard or a mouse.

• Tasks scheduling: One of the most valuable functionality is the task scheduler. The lat-
ter is based on the association of capacities (e.g., mobile, fly and grab) and skills
(moving forward, take off and grab left) to each robot. By skills, we mean basics or
complex actions already individually implemented on the robot. Furthermore, once a
sensor is plugged into the embedded PC’s middleware, the robot connected to this
middleware will acquire a new capacity that is offered by this sensor. For example,
if we connect a temperature sensor, the robot will acquire the capacity of measuring
the temperature. By performing this, this robot or another, could request the former
and use this new available information to modify its behavior. In our experimental
scenario, we pick up a box with an UR3 robot on the right or on the left side depending
on the temperature’s value. Using the task scheduler, we can define a scenario and
organize these skills in whatever order we want. Once a scenario is defined, it will
be sent to the first robot(s), which will participate in the scenario; then, it will be
completely and autonomously shared between the different actors at each step.

• Resilience: Another valuable functionality is the capability of handling a failure that
occurs on one or several robots during a scenario. In fact, when a failure is detected,
a faulty message is automatically sent from the embedded computer to the Cloud in
order to alert the operator. Once this message is received, an algorithm is executed
in order to compute the best alternative solution, guaranteeing the execution of the
scenario. In the Industry 4.0 context, it is important that everything is under the
operator’s control; thus, the calculated solution can be set so that it either requires its
validation or is executed automatically. This algorithm is executed in different steps.
Firstly, it requests the database to identify potential candidates. For this, we select the
robots that have the same ability or abilities needed to perform the task that cannot be
performed by the broken robot. Once the potential candidates are obtained, a ranking
algorithm is executed according to several criteria that can be defined by the operator
in order to choose the optimal alternative, as depicted in Figure 7.
For this purpose, an Artificial Intelligence (AI) algorithm, denoted Analytic Hierarchy
Process (AHP) [6], was adapted and implemented in order to suit our needs. The AHP
algorithm can be summarized in the following steps:

– Model the problem as a hierarchy containing the decision goal, the alternatives
for reaching it and the criteria for evaluating the alternatives;

– Establish priorities among the elements of the hierarchy by making a series of
judgments based on pairwise comparisons of the elements;

– Synthesize these judgments to yield a set of overall priorities for the hierarchy;
– Check the consistency of the judgments;
– Come to a final decision based on the results of the previous steps.

To guarantee the resilience of the system, TalkRoBots should reconfigure the scenario
and the control tasks using only the available equipment when a fault occurs. To do so,
the goal is to find a robot with the capacities that allow it to take over the faulty one.
To define these alternatives, meaning the robots that are able to perform the tasks that were
assigned to the faulty one, a database query is used to identify the list of all the robots
with the needed capacities. Then, the possible alternatives are ranked by optimizing a cost
function related to some predefined criteria. The example shown in Figure 8 describes an
example in our scenario presented in Section 6; three criteria were selected in the case of
faults that occur on mobile robots (i.e., state of the battery, position of each alternative robot
and its availability) (an open source implementation code of AHP could be found here:
https://github.com/avataru/PHP-AHP, accessed on 15 February 2022). Thus, each time
we receive a message from a robot announcing a problem, we first request alternatives,

https://github.com/avataru/PHP-AHP


Future Internet 2022, 14, 109 12 of 25

then we define priorities between criteria according to the parameters defined in the
Graphical User Interface (GUI), as shown in Figure 7. The outcome is redefined every time
the user changes the parameters by automatically sending a request from the Cloud to
the concerned robots. In this scenario, we have two criteria that need to be obtained by
requesting robots: the battery level and the position. The third one, which is the availability,
is defined as a coefficient by being default setted to 100, which is lowered if the alternative
robot performs a task later in the scenario (or in another one). Finally, the GUI displays
different information for the user:

• The list of alternatives, ranked by score according to the AHP algorithm;
• A graphical representation of ranking scores;
• The parameter values currently set, which can be modified.

Taking all this into consideration, the operator can choose a robot among all alterna-
tives to replace the faulty one or he can simply abort the scenario.

Figure 7. Resilience Graphical User Interface (GUI).

Figure 8. Analytic Hierarchy Process.

5. Performance Analysis

This section aims to study the impact of the different variations that could occur
when performing different scenarios, i.e how the messages are transmitted to the robot,
the impact of the number of tasks and actors on the bandwith comsumption and the latency
induced by using encrypted channels.

5.1. Analytical Results

According to TalkRoBots’ architecture, it is obvious that the “interpreted mode” (cf.
Section 1) takes a longer period of time than the direct mode when transmitting messages.
This is due to the idle time added between each sent field to overcome the incapacity
of robots to manipulate human-readable data. Thus, since each sent message using the
“interpreter mode” is composed of five fields, this induces a delay about five times longer
than the other modes that have a size that is lower than the TCP’s payload length. We recall
here also that both the “direct mode” and “ros mode” (cf. Section 3) involve configuration



Future Internet 2022, 14, 109 13 of 25

file access, described in Figure A3, in order to obtain proper syntax. However, this step is
still less time consuming.

To facilitate the reading of equations, Table 2 lists various symbols used in the next
equations.

Table 2. List of symbols.

Symbols Significations

dboot the number of the exchanged messages for initializing the middleware
n the number of robots
didenti f ication the number of the exchanged messages during the fleet creation
ddevices the number of the messages related to the plugged devices
dstart the number of the messages needed for the initialization step
s the number of IIoT devices
xs the number of messages sent per second by each device
∆t the number of elapsed seconds in the experimentation
Ntask the total number of tasks in the scenario
Nd the number of tasks transmitted using direct or ROS mode
Ni the number of tasks transmitted using interpreted mode
dscenario the number of exchanged messages to execute a scenario
dtask the number of messages sent to handle the tasks
d f orward the number of messages needed to forward the tasks between the actors
dsensor the number of messages sent to handle a request from a sensor
Rl the number of locally sent requests to a sensor
Re the number of remotely sent requests to a sensor
d f ail the number of the exchanged messages to handle a faulty behavior
N f the number of faulty robots

In the remainder of this paper, we will provide an estimation of the number of ex-
changed messages during a predefined scenario by splitting it into different phases. At the
beginning, we have to take into account the number of messages sent to launch different
robots, which will also send messages in their turn to each others in order to form a fleet.
As we can see in Figure 2, there is a first message sent by the robotic Cloud to start the
middleware. Then, the middleware answers to notify that it has already started. The robot
should also send a message to let the middleware know that it is still waiting for a new
instruction. An extra message is counted to send the scenario to the first actor. Thus,
the number of messages needed for the initialization of TalkRoBbots is as follows:

dboot = 3n + 1 (1)

where dboot is the number of the exchanged messages for initializing middleware, and n is
the number of robots.

Then, when a robot joins the fleet, it broadcasts a message to all other connected
members. Then, each robot sends an acknowledgement with its identity. This results in the
following:

didenti f ication = n +
(n− 1)n

2
=

n(n + 1)
2

(2)

where didenti f ication is the number of the exchanged messages during the fleet creation.
We also consider the exchanged messages when a new external IIoT device is plugged.

Each time a new IIoT device is added, a message is sent to the robotic Cloud in order to
create a new monitoring line on the GUI that will be regularly updated. A message is also



Future Internet 2022, 14, 109 14 of 25

sent to inform all other connected robots. Thus, we can establish a first estimation of the
overhead related to the sensors:

ddevices = 2s + ∆t

s

∑
i=1

xi (3)

where ddevices is the number of the messages related to the plugged devices, s is the number
of IIoT devices, xs is the number of messages sent per second by each device (by default, it
is set to 1 for each device) and ∆t is the number of elapsed seconds.

To sum up the number of messages needed for the initialization process is described
as follows.

dstart = dboot + didenti f ication + ddevices

=
1
2

[
n(n + 7) + 4s + 2 + 2∆t

s

∑
i=1

xi

]
(4)

Now, let us deal with the number of messages related to the tasks that should be
executed during a scenario. These tasks could be executed using the direct/ROS mode or
the interpreted one, and it can be calculated as follows:

Ntask = Nd + Ni (5)

where Ntask is the total number of tasks in the scenario, Nd the number of tasks transmitted
using direct or ROS mode and Ni the ones using the interpreted mode.

Moreover, the number of exchanged messages to execute a scenario (dscenario) can be
separated into two parts. The first one, called dtask, is related to the execution of the tasks
themselves. The second one, named d f orward is related to the tasks’ forwarding from a robot
to its successor. Thus, one can obtain the following:

dscenario = dtask + d f orward (6)

where dtask is the number of messages sent to handle the tasks and d f orward is the number
of messages needed to forward the tasks between the actors.

For the accurate estimation of dscenario, the remainder of this section supposes that
the fleet mixes robots using the direct mode and others using ROS and interpreted ones.
In fact, at each time, a task is performed by a robot, and several messages are exchanged.
The first message is sent from the robot to the middleware to notify that it is ready to handle
a task. Then, the information related to the task that should be executed is sent from the
middleware to the robot. More particularly, middleware sends five messages when the
robot uses the interpreted mode. Otherwise, it sends only one message. Then, when the
task is achieved, an acknowledgement message is sent from the robot to the middleware.
Finally, the latter forwards an acknowledgment message to the GUI in order to update
HMI. This scenario applies also when several successive tasks should be performed by the
same robot. Hence, the number of exchanged messages to execute all tasks is as follows.

dtask = 4Nd + 8Ni (7)

Finally, one more message is necessary when the next task in the scenario is not
performed by the same actor than the current one. To illustrate this, let us consider a
scenario including twelve tasks.

As shown in Figure 9, counting the forward messages involves three variables: (1) the
total number of tasks in the scenario, already defined as Ntask; (2) the number of blocks k,
a block being defined as the set of tasks performed by the same actor; and (3) the number
of tasks included in each block j, mj. In our example, we have the following: Ntask = 12,



Future Internet 2022, 14, 109 15 of 25

k = 3 and
k

∑
j=1

mj = 7. From this scenario and without a loss of generality, one can obtain

the following:

d f orward = Ntask −
k

∑
j=1

mj + k− 1

= Nd + Ni −
k

∑
j=1

mj + k− 1

(8)

where k is the cardinality of task blocks that have to be executed by the same actor succes-
sively, and mj (j ∈ {1, 2, . . . , k}) is the number of tasks in the set of task blocks.

Figure 9. Illustration of the counting of the forward messages.

Applying this on our example, we have, as expected, a result of seven forward mes-
sages.

Finally, by using Equations (6)–(8), the number of exchanged messages to execute a
scenario is as follows.

dscenario = 4Nd + 8Ni + Nd + Ni −
k

∑
j=1

mj + k− 1

= 5Nd + 9Ni −
k

∑
j=1

mj + k− 1

(9)

Another type of messages that should be taken into account concerns data exchange
with the IIoT devices. In fact, two situations are possible. The first one is related to the case
where the robot requesting the data is associated with the device. In this case, only two
messages are needed (i.e., the request from the robot and the response from the device).
However, the second one occurs when IIoT devices are plugged with a remote robot. In this
case, two additional messages are needed (i.e., forwarded request and forwarded response
from the remote robot). This leads to the following.

dsensor = 2Rl + 4Re (10)

where Rl includes locally sent requests, and Re includes externally sent requests.
Then, we have to take into consideration the fault tolerance mechanism. When a robot

becomes faulty, a message is sent to the Cloud. Thus, the operator can accept an alternative
solution among those proposed. The fixed scenario is then sent back to the alternative
actors. This results in the following:

d f ail = 2N f (11)

where d f ail is the number of the exchanged messages to handle a faulty behavior, and N f is
the number of faulty robots (N f ≤ n − 1).



Future Internet 2022, 14, 109 16 of 25

Finally, we obtain the following equation.

d = dstart + dscenario + dsensor + d f ail

=
n(n + 7)

2
+ k + 2(s + Rl + 2Re + N f )

+ 5Nd + 9Ni + ∆t

s

∑
i=1

xi −
k

∑
j=1

mj

(12)

5.2. Simulations

This section presents the results of the simulations that were conducted in order to
validate the analytical study and to evaluate the scalability of our TalkRoBots middleware.

5.2.1. Simulation Settings

In order to validate the theoretical analysis previously stated in Section 5.1, a simulator,
for which the HMI is depicted in Figure 10, has been developed.

Figure 10. Simulator interface.

The user can select the number of tasks and the number of robots involved in a fleet.
Then, a virtual fleet and a virtual scenario are created. The latter assigns the tasks cyclically
to the robots, when their number is less than the number of tasks. Otherwise, it assigns the
tasks in sequential order. Finally, all tasks are sequentially executed in the virtual scenario,
the requests to external devices are not handled and each task is supposed to have an
arbitrarily chosen duration of three seconds.

Several tests have been carried out for different values of number of tasks and robots to
measure the impact of each variable on the number of messages and the bandwidth’s con-
sumption.

5.2.2. Simulation Results

As we can observe in Figure 11, the number of messages is more impacted by the
number of robots than by the number of tasks. It is coherent with our theoretical analysis
since the most costly part in terms of the number of messages is dstart given by Equation (4).

Figure 12 shows that the exchanged data size increases with the number of tasks. This
can be explained by the fact that every time a robot has to forward the remaining part of
the scenario to the next actor, it has to send all the remaining tasks. Thus, if the number of
tasks is important, the size of exchanged data is proportionally bigger. Logically, we can
also observe that if there is only one robot, the size of exchanged data stays low since there
will not be any tasks that have to be forwarded. Finally, we can observe that even for a
scenario with fifty robots and one hundred tasks, only 1.4 MB has been exchanged.



Future Internet 2022, 14, 109 17 of 25

Figure 11. Number of messages according to the number of robots and the number of tasks.

Figure 12. Exchanged data amount according to the number of robots and the number of tasks.

Moreover, Figure 13 shows the distribution of the exchanged messages with a different
number of robots. As expected, the largest part of the messages is exchanged during the
creation of the fleet. Then, there are some intermittent exchanges when the scenario is
forwarded. Therefore, only the number of messages during fleet creation will be impacted
by the number of robots.

Figure 13. Message distribution overtime.

6. Experimentation

This section discusses an implementation of a real manufacturing scenario involving
the following: a Ridgeback Automated Ground Vehicle (AGV) coupled to a Sawyear robot
(both of them are under ROS), a Universal Robot UR3, a fleet of mobile Pioneer robots,
a Parrot drone, a conveyor associated to a Programmable Logic Controller (PLC) and an



Future Internet 2022, 14, 109 18 of 25

external IIoT device (temperature sensor). A graphic illustration of the equipment is shown
in Figure 14.

Figure 14. Prototype.

6.1. Scenario Presentation

To demonstrate the efficiency of our middleware and to test its functionalities, we
designed a prototype integrating the previously presented equipment. The middleware
was installed in several embedded computers, namely Raspberrys Pi Model 3 B+, which
run Ubuntu Mate. Each robot is linked through Ethernet with its Raspberry and all robots
and embedded computers (middleware) are connected to the same network.

The operator uses the Cloud application to send the scenario depicted in Figure 15 to
the first involved actor.

Figure 15. Demonstration scenario on GUI.

The details of the different scenario’s tasks are as follows:

1. The first task involves the robot, which receives the scenario from the Cloud. This
task consists in moving the Ridgeback to the first Table (1) to catch up a box and to
bring it to the conveyor’s entry (2). Once the task is completed, the robot sends an
acknowledgment to the middleware, which will send the following tasks to the next
actor(s). In our case, it is the conveyor. It will also forward the acknowledgment to
the Cloud. Therefore, the operator can have feedback on the progress of the scenario.

2. The conveyor is launched and moves the box from Table (2) to Table (3); then, it sends
the next task to UR3.

3. UR3 grasps the box from Table (3) and places it on the ground near itself. Afterwards,
it sends the next task to Ridgeback.

4. Ridgeback proceeds towards UR3. However, a simulated fault occurs on Ridgeback,
which stops. An alert is sent to the operator through GUI, explaining that a problem
has been observed with the ability of mobility for Ridgeback. The developed resilience
mechanism suggests what other robots could replace it. Different choices are offered
to the operator on HMI. These choices are ordered by priority according to different
parameters: battery, position and availability (in this scenario, one of the Pioneer
robots will be selected as the best alternative).

5. Once this alternative is validated, the Pioneer moves to UR3. Then, it sends the next
tasks to UR3 and the Drone. The drone and the arm receive the remaining tasks of the



Future Internet 2022, 14, 109 19 of 25

scenario and execute the first ones they are concerned with. The drone takes off and
the arm, through the middleware, requests an external temperature sensor and picks
a box on the left or the right side according to the response (above or below 20 ◦C).
Once they are completed, they send an acknowledgement. Then, the remaining tasks
are sent once again to the next actor (Pioneer).

6. The Pioneer moves back to the Ridgeback and the latter can take the box and place
it over its platform before sending the last tasks (landing) to the Drone and the
Ridgeback (loading out).

For more details, the reader is referred to a video (SATTNord TalkRobots https://www.
youtube.com/watch?v=lneJ5o0sODY, accessed on 15 February 2022), which is available
online.

6.2. Experimentation Results

In our demonstration, the scenario includes five robots, one sensor and nine tasks. The
results in Figure 16 show that 284 messages have been exchanged during the experimenta-
tion. Moreover, considering the theoretical analysis in Equation (12) and the considered
scenario, one can estimate an upper and lower bound of the number messages according to
the possible faulty behavior and the involved actors (robots, sensors, etc.). In fact, in the
best case (251 messages from Equation (12)), there is no faulty behavior, the sensor request
is locale and all tasks are performed by the same actor and sent using the ROS or direct
modes. In the worst case (297 messages from Equation (12)), the sensor request is external:
One robot will have faulty behavior (since we only have one spare here) and all tasks are
sequentially performed by different actors and sent field by field. In every case, we consider
that the sensor sends an update every seconds and that the total duration of the scenario is
about three minutes. Therefore, the results are still coherent with the analytical study.

Figure 16. Number of messages exchanged during a scenario.

In our scenario, the data field is almost always empty except in the forward messages
and the acknowledgments sent to the Cloud. Therefore, we only have seven messages with
a significant size superior to 32 bytes (an acknowledgment is about 52 bytes). Actually,
the first forward message has an initial size of 769 bytes since it must transmit the eight
tasks left to the second actor. The experimental results show that 15.1 kbytes has been
exchanged in approximately 3 min, producing a bandwidth of 83 B.s−1, which is very
low in the industrial context. This shows that the overhead induced by TalkRoBots is
very limited.

https://www.youtube.com/watch?v=lneJ5o0sODY
https://www.youtube.com/watch?v=lneJ5o0sODY


Future Internet 2022, 14, 109 20 of 25

Another parameter that has been evaluated concerns the impact of the security mech-
anism on the transmission’s delay. Before presenting the results for this indicator, let us
show that the security involves two processes: a signature and a send/receive TLS en-
crypted tunnel. Contrary to the signature, TLS encryption is only performed once on the
communication channel when it is created. Thus, this operation is not performed again
every time a message has to be sent. Thus, to evaluate the impact of security, we measure
the transmission delay between sending and receiving a message when we have to sign it
on an encrypted canal and when it is not signed.

As shown in Figure 17, adding a signature and using encrypted communications only
slightly increases the delay between the time a message is sent and when it is received.
To produce these results, we start measuring time before signing a serialized message; then,
we send it. We stopped measuring only when the message has been received and validated
(signature matched). All exchanged messages had a size of 32 or 48 bytes (depending on
data type). The analysis of this figure shows that processing a non=signed message takes at
least 0.8 ms and a signed one takes no more than 1.4 ms. Thus, the maximum observed
delay is 0.6 ms. This could be largely accepted compared to all benefits of such security
mechanisms. Note here that this delay is obtained by using cheap embedded computers
and, thus, can be significantly reduced by using more powerful ones.

Future Internet 2022, 1, 0 20 of 24

Another parameter that has been evaluated concerns the impact of the security mech-
anism on the transmission’s delay. Before presenting the results for this indicator, let us
show that the security involves two processes: a signature and a send/receive TLS en-
crypted tunnel. Contrary to the signature, TLS encryption is only performed once on the
communication channel when it is created. Thus, this operation is not performed again
every time a message has to be sent. Thus, to evaluate the impact of security, we measure
the transmission delay between sending and receiving a message when we have to sign it
on an encrypted canal and when it is not signed.

As shown in Figure 17, adding a signature and using encrypted communications only
slightly increases the delay between the time a message is sent and when it is received.
To produce these results, we start measuring time before signing a serialized message; then,
we send it. We stopped measuring only when the message has been received and validated
(signature matched). All exchanged messages had a size of 32 or 48 bytes (depending on
data type). The analysis of this figure shows that processing a non=signed message takes at
least 0.8 ms and a signed one takes no more than 1.4 ms. Thus, the maximum observed
delay is 0.6 ms. This could be largely accepted compared to all benefits of such security
mechanisms. Note here that this delay is obtained by using cheap embedded computers
and, thus, can be significantly reduced by using more powerful ones.

Figure 17. Transmission delay with security enabled and disabled.

Finally, some experimentation has been confirmed in order to study the impact of the
transmission mode on transmission delay, while including the security mechanism. The
delay between receiving an external message by the middleware and forwarding it to the
robot may change according to the message transmission mode. As we can see in Figure 18,
this delay is more important when we transmit field by field in the interpreter mode, as
previously stated. Indeed, in order to send multiple fields using TCP and to prevent some
fields being concatenated into the same buffer, we add a slight delay between each sent
field. As expected, it takes around 10 ms to send a message using the interpreter mode,
which is five times more than in the direct mode, which takes only about 1.8 ms.

Figure 18. Transmission delays according to the transmission mode.

Figure 17. Transmission delay with security enabled and disabled.

Finally, some experimentation has been confirmed in order to study the impact of the
transmission mode on transmission delay, while including the security mechanism. The
delay between receiving an external message by the middleware and forwarding it to the
robot may change according to the message transmission mode. As we can see in Figure 18,
this delay is more important when we transmit field by field in the interpreter mode, as
previously stated. Indeed, in order to send multiple fields using TCP and to prevent some
fields being concatenated into the same buffer, we add a slight delay between each sent
field. As expected, it takes around 10 ms to send a message using the interpreter mode,
which is five times more than in the direct mode, which takes only about 1.8 ms.

Future Internet 2022, 1, 0 20 of 24

Another parameter that has been evaluated concerns the impact of the security mech-
anism on the transmission’s delay. Before presenting the results for this indicator, let us
show that the security involves two processes: a signature and a send/receive TLS en-
crypted tunnel. Contrary to the signature, TLS encryption is only performed once on the
communication channel when it is created. Thus, this operation is not performed again
every time a message has to be sent. Thus, to evaluate the impact of security, we measure
the transmission delay between sending and receiving a message when we have to sign it
on an encrypted canal and when it is not signed.

As shown in Figure 17, adding a signature and using encrypted communications only
slightly increases the delay between the time a message is sent and when it is received.
To produce these results, we start measuring time before signing a serialized message; then,
we send it. We stopped measuring only when the message has been received and validated
(signature matched). All exchanged messages had a size of 32 or 48 bytes (depending on
data type). The analysis of this figure shows that processing a non=signed message takes at
least 0.8 ms and a signed one takes no more than 1.4 ms. Thus, the maximum observed
delay is 0.6 ms. This could be largely accepted compared to all benefits of such security
mechanisms. Note here that this delay is obtained by using cheap embedded computers
and, thus, can be significantly reduced by using more powerful ones.

Figure 17. Transmission delay with security enabled and disabled.

Finally, some experimentation has been confirmed in order to study the impact of the
transmission mode on transmission delay, while including the security mechanism. The
delay between receiving an external message by the middleware and forwarding it to the
robot may change according to the message transmission mode. As we can see in Figure 18,
this delay is more important when we transmit field by field in the interpreter mode, as
previously stated. Indeed, in order to send multiple fields using TCP and to prevent some
fields being concatenated into the same buffer, we add a slight delay between each sent
field. As expected, it takes around 10 ms to send a message using the interpreter mode,
which is five times more than in the direct mode, which takes only about 1.8 ms.

Figure 18. Transmission delays according to the transmission mode.Figure 18. Transmission delays according to the transmission mode.



Future Internet 2022, 14, 109 21 of 25

6.3. Results Discussions

As presented by the previous results, one can observed that all results are coherent
with the analytical study. This shows that TalkRoBots does not overload the network
with many messages. In addition, these messages are not heavy, which resulted in low
bandwidth consumption (about 83 B.s−1). The second remark to mention is that the secured
communications using encrypted exchanges with certificates, which are very important in
an industrial context, do not have a big impact in the exchanging process. On average, it
adds 0.6 ms of delay when using certificates, which is largely acceptable. Finally, the used
mode has an important impact in communication delay. Since it takes five time more to
send a message field by field in the Interpreter mode than by sending the message directly
in ROS or Direct modes. Since the mode is directly linked to the robotic operating system
installed on the robot, we have very limited control on this parameter.

7. Conclusions

In this paper, we proposed a middleware, which aims to assist an operator to manage
heterogeneous fleets of robots. Associated with Cloud services, it allows the following:
(1) execute different scenarios with several robots without needing to reprogram them
and (2) monitor the achievement of tasks and the robots’ status. Moreover, the middleware,
implemented in Python, is not intrusive since the robots are still programmed in their
own robotic language. The nature of the proposed middleware architecture makes the
integration of new robotic resources and IIoT devices very simple since it only requires
their compatibility with the TCP/IP protocol. Some available configuration files could be
edited for more flexibility on the network parameters and for more functionalities, enabling
direct communication between the middleware and the robot’s controller. Communication
is performed both on the local network, between robots, using Ethernet or Wi-Fi and over
the Internet to communicate with the Cloud application and the remote sites. In both
cases, communication is secured using TLS encryption on SHA512 signed-messages. When
communicating over the Internet, all communications use a private and secured VPN.
Contrary to most robotic middleware, TalkRoBots do not offer libraries but do a different
method for different robots, with different languages, to communicate using their own
language. Our middleware is used for communication and fleet management. In this
context, we designed a specific message format to transmit the different information
between the different middleware and the robotic Cloud. Another important aspect of
fleet management is resilience. Using decision-making algorithms, TalkRoBots is able to
propose alternatives when a robot is faulty. By using a prototype, we have been able to
confront theoretical performances with experimental ones and show the low impact of the
encryption protocols on message transmission delay and network bandwidth consumption.
However, even if TalkRoBots aims to facilitate the integration of new robots, there is still a
need for human interaction. In fact, there is a configuration step that needs to be handled
manually. Moreover, the definition of a scenario can, until now, only be performed by an
operator, who must select the tasks and the robots that will execute them. This limits its
application to a statically defined scenarios and it is not possible to use it for dynamic ones
such as in crisis management. These limitations will be confronted with in future works.

Author Contributions: Conceptualization, M.A., N.M. and F.V.; Software, D.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by SATT Nord grant number TalkRoBots Project.

Data Availability Statement: Not Applicable, the study does not report any data.

Conflicts of Interest: The authors declare no conflicts of interest.



Future Internet 2022, 14, 109 22 of 25

Acronyms
The following acronyms are used in this manuscript:

ADH Anonymous Diffie Hellman
AES Advanced Encryption Standard
AGVs Autonomous Guided Vehicles
AHP Analytic Hierarchy Process
AI Artificial Intelligence
ARIA Adaptive Robot-Mediated Intervention Architecture
DSSs Decision Support Systems
DTLS Datagram Transport Layer Security
FMS Flexible Manufacturing Systems
GUI Graphical User Interface
ICT Information and Communication Technologies
IIoT Industrial Internet of Things
IP Internet Protocol
IPC InterProcess Communication
JSON JavaScript Object Notation
MIA Middleware for Intelligent Automation
PLC Programmable Logic Controller
RPC Remote Procedure Call
ROS Robot Operating System
SHA Secure Hash Algorithm
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
VPN Virtual Private Network

Appendix A. Configuration Files

These configurations files are intended to be minimalist and relies only on three
JavaScript Object Notation (JSON) files. The first one depicted in Figure A1 defines the
profile related to the used robot before its integration in the fleet. More particularly,
TalkRoBots specifies three modes allowing the integration of most commercialized robots
without any additional effort. The first mode (“ros”) corresponds to the robots using ROS,
and it is based on the integration of some functions that exploit the publish/subscribe
concept usually used in ROS (refer to Section 3.2.4). The second mode (“direct”) is used
for robots, such as Universal Robots, which are able to parse the commands sent by the
middleware using their native robotic language to a specific port directly on the robot’s
controller and then execute them. Finally, the last mode (“interpreter”) is used for all other
robots that cannot satisfy the previous conditions.

{
"ros": "ros",
"ur": "direct"
"abb": "interpreter",

}

Figure A1. Profile configuration file.

The second configuration file defines all network parameters. In performing this,
TalkRoBots can automatically obtain the IP address to configure its communication sockets
without needing to modify it manually, when it dynamically changes, as long as the network
interface used is the same. An example of this configuration file is presented in Figure A2.
In this example, we first define on which port the external messages are received when sent
by the web application. In our case, it is set on port 50,000, but it can be changed by the
user as long as it matches with the one set on the web application’s server. The middleware
handles the messages from two other sources in addition to the web application: (1) the



Future Internet 2022, 14, 109 23 of 25

other robots’ middleware and (2) the robot, which it is connected to. Thus, we define two
other ports. The “TCP_PORT_EXT” value is the one on which the middleware expects
to receive messages from the other robots, while the “TCP_PORT” value defines the port
number on which the middleware expects to receive messages from its connected robot.
The last two values, “HOST_INT” and “VPN_INT”, inform the middleware which network
interfaces must be used to communicate, respectively, on the local network (essentially
used to communicate inside the fleet) and on the VPN (used to communicate with the web
application or fleets that are not on the same network).

{
"_comment" : "Listening port for external messages (web or GUI)",
"UDP_PORT" : 50000,
"_comment" : "Listening port for external messages (robots)",
"TCP_PORT_EXT" : 45000,
"_comment" : "Listening port for internal messages (from handled robot)",
"TCP_PORT" : 40000,
"_comment" : {
"Interface used for local network communication": "",
"(when VPN is shutdown)": "",
"On Windows : usually ’Ethernet ’ or ’Wi-Fi ’": "",
"On Linux : usually ’eth0’, ’enp3s0’ (ethernet) or ’wlan0’ (Wifi)": ""
},
"HOST_INT" : "Wi-Fi",
"_comment" : {
"Interface used to communicate through VPN" :"",
"(with web server for example)":"",
"On Windows (OpenVPN) usually ’Ethernet 2’":"",
"On Linux : usually ’tun0 ’":""
},
"VPN_INT" : "tun0"
}

Figure A2. Network configuration file.

The third configuration file is needed only for the translation of a message between
robots using either the “ros” mode or the “direct” mode. Figure A3 shows an example of
such a file. In this example, we define a specific port to use with a Universal Robot, which
allows sending the commands written in robotic language. In addition, the specified value
(i.e., 30002 here) allows the middleware to know on which port it has to send the messages
to. Then, under “commands” and “requests” keys, we specify which topic or command to
use according to the robot vendor and the message subtype (for more details about message
subtype, see Section 3.2.3). In this case, if the middleware receives a command message
with subtype “move”, which should be transmitted to the connected robot, it should either
publish the command on the “/cmd_vel” topic in cases where the robot is using ROS or
send a “movej” command on port 30002 if it concerns a robot manufactured by the vendor
Universal Robot.



Future Internet 2022, 14, 109 24 of 25

{
"ports":
{

"ur": 30002
},
"commands":
{

"move" :
{

"ros" :
{

"/ cmd_vel" : 0
},
"ur" :
{

"movej(params)\n" : "[array, float, float]"
}

},
"takeoff" :
{

"ros" :
{

"/bebop/takeoff" : 0
}

},
},
"requests":
{

"modal" :
{

"ros" :
{

"/pose" : 0
}

},
"position" :
{

"ros" :
{

"/pose" : 0
}

},
}

}

Figure A3. Commands configuration file.

References
1. Jaloudi, S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet 2019,

11, 66. [CrossRef]
2. Nakagawa, E.Y.; Antonino, P.O.; Schnicke, F.; Capilla, R.; Kuhn, T.; Liggesmeyer, P. Industry 4.0 reference architectures: State of

the art and future trends. Comput. Ind. Eng. 2021, 156, 107241. [CrossRef]
3. Farkhana, M.; Abdul Hanan, A. Mobility in mobile ad-hoc network testbed using robot: Technical and critical review. Robot.

Auton. Syst. 2018, 108, 153–178. [CrossRef]
4. Wang, J.; Lim, M.K.; Wang, C.; Tseng, M.L. The evolution of the Internet of Things (IoT) over the past 20 years. Comput. Ind. Eng.

2021, 155, 107174. [CrossRef]
5. Ayaida, M.; Messai, N.; Valentin, F.; Marcheras, D.; Afilal, L. Robot Interconnection Method. WO/2019/162595. 29 August 2019.

Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2019162595 (accessed on 15 February 2022).
6. Forman, E.H.; Gass, S.I. The Analytic Hierarchy Process—An Exposition. Oper. Res. 2001, 49, 469–486. [CrossRef]
7. Marcheras, D.; Ayaida, M.; Messai, N.; Valentin, F. A new middleware for managing heterogeneous robot in ubiquitous

environments. In Proceedings of the 2020 8th International Conference on Wireless Networks and Mobile Communications
(WINCOM), Reims, France, 27–29 October 2020; pp. 1–5. [CrossRef]

8. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A. ROS: An Open-Source Robot Operating
System. 2009, Volume 3. Available online: http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/
LIB/ROS/icraoss09-ROS.pdf (accessed on 15 February 2022).

9. Joyeux, S.; Albiez, J. Robot development: From components to systems. In Proceedings of the Control Architecture of Robots,
Grenoble, France, 24–25 May 2011; p. 115.

10. Osentoski, S.; Jay, G.; Crick, C.; Pitzer, B.; DuHadway, C.; Jenkins, O. Robots as web services: Reproducible experimentation
and application development using rosjs. In Proceedings of the 2011 IEEE International Conference on Robotics & Automation,
Shanghai, China, 9–13 May 2011.

11. Roalter, L.; Kranz, M.; Moller, A. A middleware for intelligent environments and the internet of things. Ubiquitous Intell. Comput.
2010, 6406, 267–281.

http://doi.org/10.3390/fi11030066
http://dx.doi.org/10.1016/j.cie.2021.107241
http://dx.doi.org/10.1016/j.robot.2018.07.007
http://dx.doi.org/10.1016/j.cie.2021.107174
https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2019162595
http://dx.doi.org/10.1287/opre.49.4.469.11231
http://dx.doi.org/10.1109/WINCOM50532.2020.9272477
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf


Future Internet 2022, 14, 109 25 of 25

12. Beetz, M.; Mosenlechner, L.; Tenorth, M. CRAM—A Cognitive Robot Abstract Machine for Everyday Manipulation in Human
Environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22
October 2010; pp. 1012–1017.

13. Collett, T.; Macdonald, B.; Gerkey, B. Player 2.0: Toward a Practical Robot Programming Framework. In Proceedings of the
2005 Australasian Conference on Robotics and Automation, ACRA 2005, 2008.Available online: http://users.isr.ist.utl.pt/~jseq/
ResearchAtelier/papers/collet.pdf (accessed on 15 February 2022).

14. Vaughan, R.T. Massively multi-robot simulations in Stage. Swarm Intell. 2008, 2, 189–208. [CrossRef]
15. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings

of the IEEE/RSj International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004;
pp. 2149–2154.

16. Agüero, C.E.; Koenig, N.; Chen, I.; Boyer, H.; Peters, S.; Hsu, J.; Gerkey, B.; Paepcke, S.; Rivero, J.L.; Manzo, J.; et al. Inside the
Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster Response. IEEE Trans. Autom. Sci. Eng. 2015, 12, 494–506.
[CrossRef]

17. Whitbrook, A. Programming Mobile Robots with Aria and Player: A Guide to C++ Object-Oriented Control; Springer: London, UK, 2010.
18. Magnenat, S.; Rétornaz, P.; Bonani, M.; Longchamp, V.; Mondada, F. ASEBA: A Modular Architecture for Event-Based Control of

Complex Robots. IEEE/ASME Trans. Mechatron. 2011, 16, 321–329. [CrossRef]
19. Magnenat, S.; Mondada, F. ASEBA Meets D-Bus: From the Depths of a Low-Level Event-Based Architecture into the Middleware

Realm. In Proceedings of the IEEE TC-Soft Workshop on Event-Based Systems in Robotics (EBS-RO), St. Louis, MO, USA, 15
October 2009.

20. Montemerlo, M.; Roy, N.; Thrun, S. Perspectives on standardization in mobile robot programming: The Carnegie Mellon
Navigation (CARMEN) Toolkit. In Proceedings of the Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2436–2441.

21. Calisi, D.; Censi, A.; Iocchi, L.; Nardi, D. OpenRDK: A framework for rapid and concurrent software prototyping. In Proceedings
of the International Workshop on System and Concurrent Engineering for Space Applications (SECESA), Nice, France, 22–26
September 2008.

22. Calisi, D.; Censi, A.; Iocchi, L.; Nardi, D. OpenRDK: A modular framework for robotic software development. In Proceed-
ings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008;
pp. 1872–1877.

23. Makarenko, A.; Brooks, A. Orca: Components for robotics. In Proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’06), 2006. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4
56.7562&rep=rep1&type=pdf (accessed on 15 February 2022).

24. Brooks, A.; Kaupp, T.; Makarenko, A.; Williams, S.; Orebäck, A. Orca: A Component Model and Repository. In Software
Engineering for Experimental Robotics; Brugali, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 231–251.

25. Makarenko, A.; Brooks, A.; Kaupp, T. On the Benefits of Making Robotic Software Frameworks Thin. In Proceedings of the
International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007.

26. Bruyninckx, H. Open robot control software: The OROCOS project. In Proceedings of the 2001 ICRA IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, Korea, 21–26 May 2001; Volume 3, pp. 2523–2528.

27. Li, W.; Christensen, H.I.; Oreback, A.; Chen, D. An architecture for indoor navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA ’04, New Orleans, LA, USA, 26 April–1 May 2004; Volume 2, pp. 1783–1788.

28. Baillie, J.C.; Demaille, A.; Duceux, G.; Filliat, D.; Hocquet, Q.; Nottale, M. Software architecture for an exploration robot based on
Urbi. In Proceedings of the 6th National Conference on Control Architectures of Robots, INRIA Grenoble Rhône-Alpes, Grenoble,
France, 24–25 May 2011; p. 12.

29. Nejkovic, V.; Petrovic, N.; Tosic, M.; Milosevic, N. Semantic approach to RIoT autonomous robots mission coordination. Robot.
Auton. Syst. 2020, 126, 103438. [CrossRef]

30. Coito, T.; Martins, M.S.; Viegas, J.L.; Firme, B.; Figueiredo, J.; Vieira, S.M.; Sousa, J.M. A Middleware Platform for Intelligent
Automation: An Industrial Prototype Implementation. Comput. Ind. 2020, 123, 103329. [CrossRef]

31. Mouradian, C.; Errounda, F.Z.; Belqasmi, F.; Glitho, R. An infrastructure for robotic applications as cloud computing services. In
Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 377–382.

http://users.isr.ist.utl.pt/~jseq/ResearchAtelier/papers/collet.pdf
http://users.isr.ist.utl.pt/~jseq/ResearchAtelier/papers/collet.pdf
http://dx.doi.org/10.1007/s11721-008-0014-4
http://dx.doi.org/10.1109/TASE.2014.2368997
http://dx.doi.org/10.1109/TMECH.2010.2042722
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.7562&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.7562&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.robot.2020.103438
http://dx.doi.org/10.1016/j.compind.2020.103329

	Introduction
	Related Works
	TalkRoBots Middleware Presentation
	Architecture
	Communication
	Routing
	Sensors Integration
	Message Format
	Message Transmission Modes

	Security

	Supervision and Monitoring Cloud Application
	Performance Analysis
	Analytical Results
	Simulations
	Simulation Settings
	Simulation Results


	Experimentation
	Scenario Presentation
	Experimentation Results
	Results Discussions

	Conclusions
	Appendix A
	References

