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Abstract: The significance of research on public opinion monitoring of social network emergencies is
becoming increasingly important. As a platform for users to communicate and share information
online, social networks are often the source of public opinion about emergencies. Considering the
relevance and transmissibility of the same event in different social networks, this paper takes the
COVID-19 outbreak as the background and selects the platforms Weibo and TikTok as the research
objects. In this paper, first, we use the transfer learning model to apply the knowledge obtained in the
source domain of Weibo to the target domain of TikTok. From the perspective of text information, we
propose an improved TC-LDA model to measure the similarity between the two domains, including
temporal similarity and conceptual similarity, which effectively improves the learning effect of
instance transfer and makes up for the problem of insufficient sample data in the target domain. Then,
based on the results of transfer learning, we use the improved single-pass incremental clustering
algorithm to discover and filter popular topics in streaming data of social networks. Finally, we build
a topic knowledge graph using the Neo4j graph database and conduct experiments to predict the
evolution of popular topics in new emergencies. Our research results can provide a reference for
public opinion monitoring and early warning of emergencies in government departments.

Keywords: transfer learning; cross-domain prediction; COVID-19; popular topics; knowledge graph

1. Introduction

Social networks have changed the form of information dissemination about public
emergencies from “limited reporting” to “nationwide communication”. User-generated
content (UGC) has emerged in large numbers, making every citizen both the receiver and
disseminator of information. In 2020, the outbreak of COVID-19 triggered the biggest public
panic in human history. As the first platform to form and disseminate information related to
emergencies, social networks have become the incubator and catalyst for mass panic, which
has played a driving role in promoting information dissemination. However, this pattern
makes a lot of information interweave, which leads to the problem of information overload.
As human attention to information is limited, attention becomes a scarce resource [1]. In the
process of information transmission, the distribution of popularity is uneven; most of the
information has low popularity, and only a small portion of the information can maintain
high popularity. In this case, what information will attract people’s attention and how it
changes over time become the focus of research [2]. To solve this problem, it is necessary to
make full use of network text data and construct a scientific and effective prediction model
to analyze the potential evolution of popular topics.

While most previous studies only focused on information in a single network, social
networks are interconnected, and the same event spread in different social networks has
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relevance and transitivity. For example, when an emergency breaks out on Weibo, it will
drive the clicks of its related content on video websites, so cross-domain information
association is needed. Based on this, this paper has two research questions:

(1) How can one measure the text information similarity of different social network
platforms for knowledge transfer learning?

(2) From the perspective of text information, how can one detect potential popular topics
on social networks and predict popular topics?

This paper adopts the transfer learning algorithm to predict the popular topics of
emergencies in combination with information from other social network platforms to
improve the accuracy of prediction. Based on the transfer learning results, this paper
combines the knowledge graph with the emergency data to construct the public opinion
topic graph, which will present the network structure of social network topics with semantic
characteristics and then reach the goal of tracking the evolution of popular topics. The
basic research framework of this paper is shown in Figure 1. The research results help
government departments to guide practice, grasp the public opinion trends of emergencies,
and realize monitoring analysis and early warning of public opinion so as to take scientific
and effective measures to guide and control public opinion.
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Figure 1. The basic research framework of the study. Based on the preprocessed text data: (1) For
data of the same time slice, the LDA model was used to extract similar subject text data for transfer
learning; (2) for data of different time slices, the single-pass algorithm was used to extract potential
topics and evolutionary relationships; (3) the above results are used to construct the topic knowledge
graph and predict popular topics.

2. Related Work

At present, for research on topic detection, scholars mostly work on methods such
as topic modeling, multidimensional attribute extraction and algorithm-based improve-
ment perspectives to identify the Internet users’ topics [3–5]. The majority of them adopt
multiple perspectives and techniques to detect topics in online public opinion events, but
little work on the field of public opinion has been done with the help of knowledge graph
methods [6–9]. The topic graph constructed by combining knowledge graph with data of
online public opinion emergencies will present a complete network structure reflecting com-
ment forwarding relationships and with semantic characteristics. Through the extraction of
multi-dimensional feature attributes in the graph, the objective of tracking the evolution of
topics in a comprehensive and systematic manner is achieved. We discuss related work in
the fields of transfer learning, popular topic detection, and knowledge graphs.
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Transfer learning. This concept first originated in psychology, arguing that people can
use previously learned knowledge and skills to guide the learning of new knowledge [10].
Common machine learning techniques traditionally address isolated tasks. In contrast,
transfer learning aims to transfer knowledge learned in one source domain and use it to
improve learning in a related target domain [11]. Transfer learning has been previously
used in various cases including classification, image clustering, collaborative filtering, and
sensor-based location prediction [12–14]. The feature learning problem of little or no sample
data in the target domain can be solved by transferring the source domain data [15].

Popular Topic Detection. Researchers have investigated a wide variety of methods
and resources to detect popular topics of online information [16], e.g., the LDA model
replaces the traditional VSM model to extract hidden topic information [17], a method of
clustering words based on the similarity of related time series [18], overview-based topic
models and real-time detection techniques [19], incremental clustering to detect new topics
and use content and temporal features to discover popular topics in time [20], and layered
topic detection methods [21].

Knowledge Graph. The essence of a knowledge graph is a semantic network graph
that reveals entity knowledge [22]. Scholars use the vocabulary provided by the semantic
network to achieve short text understanding, word segmentation, type annotation, and
concept labeling [3]. Knowledge graph technology has made remarkable achievements in
medicine, film and television, transportation, and other fields, but there is still a lot of work
to be done in the field of social networking [23,24].

3. Data Pre-Processing

This paper takes the novel coronavirus pneumonia in 2020 as its research scenario. We
collected datasets from the Harvard Dataverse platform [25]. The two main social network
platforms of Weibo and TikTok were taken as the research object. Based on transfer learning,
the cross-domain prediction problem of the prevalence of new text messages on the social
network platform was studied.

Weibo COVID dataset. Weibo, commonly referred to as “Chinese Twitter”, is a micro-
blogging site. The data was crawled on the Weibo platform from 7 December 2019 to
4 April 2020. The data was crawled in two phases covering a total of 4,047,389 Weibo
posts. The first crawler ran on 26 February 2020 and collected 3.3 million Weibo posts from
18 January 2020 to 26 February 2020. The second crawler ran on 4 April crawling from
7 December 2020 to 4 April 2020 to complement the original dataset.

TikTok COVID dataset. We mainly used the GooSeeker big data crawler software
to crawl the data of the TikTok website. Data were collected from 25 December 2019
to 30 May 2020, crawling a total of 15,756 pieces of data from 2685 government media
users. Since the short videos were released by government media accounts, they have high
authority, a wide spread, and great influence.

We adopted Chinese word segmentation (jieba) to segment Chinese text, and added a
user-defined dictionary (dict. Txt) based on the new crown open concept knowledge graph
publicly released on the OpenKG platform (COVID-19-Concept) to optimize the word
segmentation results. Additionally, this study makes comprehensive use of the advantages
of “Baidu deactivation Thesaurus”, “Harbin Institute of technology deactivation Thesaurus”
and “Sichuan University Machine Intelligence Laboratory deactivation Thesaurus” to filter
stop words [26,27]. We combined the contents of the three deactivation thesauruses to
build a new deactivation thesaurus and deleted meaningless information so as to reduce
the interference to the word segmentation results.

After the above processing, the Chinese text data was still in text format and could
not be directly recognized and calculated by the computer. Therefore, text representation
processing is required. This paper represents text based on the vector space model (VSM).
Then characteristic words with strong discrimination and representativeness were extracted
from the text so as to reduce the dimension of vector space, simplify the calculation process,
and improve the efficiency of text processing without damaging the core information. At
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the same time, the word frequency was normalized to avoid the interference of the length
of the text. In this paper, term frequency inverse document frequency (TF-IDF) was used to
extract text features. If a word had a higher word frequency in one document and a lower
word frequency in other documents, it was considered that the word could distinguish
documents well and it was given a greater weight; On the contrary, if the word appears in
multiple documents, it indicates that its distinguishing ability is not strong, and the value
of IDF is small. The whole process of data preprocessing is shown in Figure 2. Finally, we
used the obtained data for model construction and analysis.
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4. Transfer Learning Model

In this paper, we adopted the transfer learning model which was established based on
the DSN Network [28]. This method considers that the source domain Ds and the target
domain Dt are composed of two parts: the public part and the private part. The former
can learn the public features and the latter is used to keep the independent characteristics
of each domain. Traditional machine learning algorithms require the training and testing
sample data to have the same distribution. However, the transfer learning algorithm broke
the limitations, as long as there is a correlation between the Ds and Dt domains, knowledge
can be obtained from the Ds domain which can be applied to the different but similar Dt
domain to solve the problem of insufficient Dt training samples. Therefore, this paper
establishes a transfer learning model based on the DSN network method.

According to the principle of similarity matching, instance data with high similar-
ity between the source domain Ds dataset (Weibo platform) and the target domain Dt
dataset (TikTok platform) were transferred to the target domain to help with target domain
model learning. In the transfer learning model, the source domain was set as Ds and the
learning task in the source domain was denoted as Ts and the target domain was set as
Dt and the learning task in the target domain was denoted as Tt. The data distribution
of these two domains is P(Xs) and P

(
Xt), and P(Xs) 6= P

(
Xt). In order to improve the

performance of transfer learning, the Dt domain data was divided into training sample set
X = {X1, X2, · · · , Xu} and test sample set Y = {Y1, Y2, · · · , Yv}, (i.e., Dt = X ∪Y), where u
and v represent the time sequence length, respectively. Then, Ds and X were combined into
the training set. The structure of the DSN network transfer learning algorithm is shown in
Figure 3.

In the Figure 3, ht
c and hs

c are the hidden vectors of common features extracted from
the Ds and Dt domain. ht

p and hs
p are the hidden vectors of private features extracted

from the Ds and Dt domain. Fcommon is the similar feature extracted from the Ds and Dt
domain by calculating the similarity between hs

c and ht
c, and Fdi f f erence is the dissimilar

feature extracted from Ds and Dt domain, which ensures that the private part still plays a
role in learning task Ts and Tt. Flatent is the latent feature which is further mined based on
dissimilar features. ϕsimilarity is an indicator to measure the similarity between platforms,
which is calculated by two dimensions: temporal similarity and conceptual similarity.
Based on the ϕsimilarity value, the paper transfers the source domain samples to the target
domain for training research.
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4.1. The Improved TC-LDA Model

The LDA (Latent Dirichlet Allocation) model is a classic subject model. This paper
uses the distribution of words in the text to find the potential subject by clustering words
with similar distribution (Figure 4). After LDA model subject extraction, the text set of
the source domain is represented as Ds =

{
v1, v2, · · · vk, pj

}
, which is composed of feature

word {v1, v2, · · · vn} and subject word pj. Similarly, the text set extracted from the training
set of the target domain is represented as X = { f1, f2, · · · fm, di}, consisting of feature word
{ f1, f2, · · · fu} and subject word di.
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As the source domain and target domain of this study are both social network media,
the text content belongs to the short text type, which has the characteristics of time dynamic
and feature sparsity of short text. In view of the characteristics of short texts, this paper
improves the LDA model to calculate text similarity and proposes TC-LDA similarity model.
First, considering the influence of the time factor, time feature similarity is introduced.
Since this paper studies hot topics on social media, the popularity will drop significantly
after 3 days. Therefore, the time interval is set as 3 days (72 h) in this paper. The longer the
time interval, the lower the similarity value of the time feature between texts with more
than 3 days. We take text w1 in the source domain and text w2 in the target domain for
example. For texts with the same time, a greater weight is assigned, and the calculation is
shown in Formula (1):

Timesim(w1, w2) =

{
100 w2.Time = w1.Time

72
|w2.Time−w1.Time| w2.Time 6= w1.Time

(1)

Second, for the feature sparsity of short texts, concept similarity is introduced to
expand the feature space of short texts.
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The calculation formula of the number of concept words shared by two texts ci is
as follows:

N(ci|w1 ∩ w2) = Conof(w1) ∩Conof(w2) (2)

The formula for calculating the total number of concept words contained in the two
texts cj is as follows:

N
(
cj
∣∣w1 ∪ w2

)
= Conof(w1) ∪Conof(w2) (3)

The calculation formula of concept similarity is:

Consim(w1, w2) =
N(ci|w1 ∩ w2)

N
(
cj
∣∣w1 ∪ w2

) (4)

The definition of the similarity calculation formula in this paper is given. For text w1
in the source domain and text w2 in the target domain, under the condition that they are
divided into the same subject class through the analysis of LDA subject model, through
the feature weight coefficient λ, combined with the two factors of time feature similar-
ity Timesim(w1, w2) and concept similarity Consim(w1, w2), βw1 and βw2 are the subject
weights of text division obtained by LDA model. After testing, the similarity threshold
of 0.3 is found to be the most appropriate. The calculation of determining the similarity
between w1 and w2 is shown in Formula (5):

Similarity(w1, w2) = (λ ∗ Timesim(w1, w2) + (1− λ)Consim(w1, w2)) ∗ βw1 ∗ βw2 (5)

4.2. Experiment

Based on previous research results and combined with the characteristics of COVID-19
emergencies [29], this paper divides the development of epidemic public opinion into six
stages: incubation period, growth period, outbreak period, fluctuation period, decline
period, and long tail period, as is depicted in Figure 5. Additionally, in order to more
accurately reflect the topic content in each period, according to the statistical analysis
results of the life cycle stages, this paper divided data into time slices in the granularity of
one week (7 days). The first 70% of the data in the two domains was selected as the training
set, including 14 time slices (T0, T1, . . . , T14) from 25 December 2019 to 7 April 2020). The
last 30% of the data was selected as the testing set, including 7 time slices (T15, T16, . . . ,
T21) from 8 April 2020 to 31 May 2020. The data were then allocated to the corresponding
time slice, and the text in each time slice was processed in turn and the subject extracted.
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The data used in this experiment are the data from the Weibo and TikTok platforms
after data pretreatment. This paper takes the LDA model processing of source domain and
target domain data on T1 time slice as an example to illustrate. Data on other time slices
were processed according to the similar LDA model mentioned above.

Through Gensim’s LDA Model method, the subject number range was set as [2,20],
and the subject consistency scores of LDA models in the source domain and target domain
under different subject numbers were obtained, as shown in Figure 6. The best number
of subjects for the source domain T1 time slice data was obtained as 16, and the model’s
perplexity is −6.9. For subjects in the target domain, the optimal number was 12, with the
model’s perplexity equal to −5.27.
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Figure 6. This is the subject consistency of T1 time slice data in the two domains: (a) is the subject
consistency score of source domain T1 time slice data; (b) is the subject consistency score of target
domain T1 time slice data.

Then we set the number of subjects in the source domain to 16, the number of subjects
in the target domain to 12, and reserved 10 keywords for each subject. Check the subject
results extracted from the source domain and target domain in Figure 7.
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Figure 7. This is the subject classification of the source domain and target domain T1 time slice data:
The T1 time slice of the source domain has 16 subjects; The T1 time slice of the target domain has
12 subjects. There are 10 subjects in the union of the two domains.
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Each subject is composed of multiple words, and the same word may be contained in
multiple subjects. For example, the 10 key words of the EP subject include “prevention and
control, COVID-19, epidemic, combat, Novel Coronavirus, pneumonia, gather, disinfection,
and Wuhan” (note: original data keywords are Chinese; this is translated data). Based on
the above analysis, this paper is mainly divided into 10 subjects: epidemic condition (EC),
data reporting (DR), epidemic prevention (EP), epidemic impact (EI), charity donations
(CD), scientific research and popularization (SRP), people’s stories (PS), rumor clarification
(RC), emotional subjects (ES), and other subjects (OS).

4.3. Results

According to the results of subject extraction from LDA models of the source domain
and target domain, we proposed an improved TC-LDA model to calculate the similarity
of texts with the same subject. Some text data are extracted for explanation, as shown in
Table 1.

Table 1. Examples of the texts of the same topic in Ds and Dt (T1 time slice).

Num Domain Release Time Subject Weight Content

1
Ds 2 January 2020 22:29 Subject 16 0.7808 SRP
Dt 5 January 2020 23:18 Subject 12 0.6944 SRP

2
Ds 3 January 2020 19:13 Subject 13 0.8815 EP
Dt 6 January 2020 9:03 Subject 2 0.9167 EP

3
Ds 6 January 2020 14:27 Subject 4 0.4109 ES
Dt 1 January 2020 8:00 Subject 5 0.5085 ES

According to Formula (1) given by TC-LDA, the temporal similarity results of the
above three groups of text examples are calculated (see Table 2). For conceptual similarity,
we used the open API interface of the CN-Probase concept knowledge graph platform to
query the concept words of related entity words in the text. This approach can expand
feature words and reduce feature sparsity in short texts. Then, we used Formula (4) to
calculate the conceptual similarity of text feature words, and the results are shown in
Table 3. Finally, the similarity between the two text message fields was obtained according
to Formula (5). For information with high similarity, instance transfer is performed, and
information with low similarity is retained to keep the private features of source and
target domains.

Table 2. Temporal similarity of T1 time slice data in the Ds and Dt.

Num Domain Release Time Time Interval (Hours) Temporal Similarity

1
Ds 2 January 2020 22:29

72.82 0.99Dt 5 January 2020 23:18

2
Ds 3 January 2020 19:13

61.83 1.16Dt 6 January 2020 9:03

3
Ds 6 January 2020 14:27

126.45 0.57Dt 8 January 2020 8:00

In order to measure the effect of text similarity calculation, we adopted Accuracy and
F−Measure values to measure the effect of text similarity. Parameters related to Accuracy
and F−Measure are shown in Table 4.



Future Internet 2022, 14, 103 9 of 17

Table 3. Conceptual similarity of T1 time slice data in the Ds and Dt.

Num Domain Shared Words The Total Number of Words Conceptual Similarity

1
Ds

8 16 0.5Dt

2
Ds

6 16 0.375Dt

3
Ds

2 28 0.071Dt

Table 4. Accuracy and F-measure Parameters.

Num Classification Similar Dissimilar

1 True TP TN
2 False FP FN

Accuracy refers to the ratio of correctly classified text data to all texts, which is used
to evaluate the performance of correct migration of similar texts in source domain and
target domain. F − Measure is used to evaluate the overall performance of similar text
transferring in the source domain and target domain. It is calculated by Procision and
Recall. The formula is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Procision =
TP

TP + FP
(7)

Recall =
TN

TN + FN
(8)

F−Measure = 2×
(

Procision× Recall
Procision + Recall

)
(9)

In order to obtain better experimental results, this paper sets the characteristic weight
coefficient to change from 0.1 to 1 and carries out experiments according to the value
of different parameters. According to the principle of TC-LDA model in Section 4.1, if
the similarity threshold is set to 0.3, that is, for texts with a Similarity(w1, w2) ≥ 0.3, it
is considered that the texts of the source domain and the target domain are similar, and
transfer learning can be carried out. Otherwise, the texts are considered to be dissimilar
samples, and the results are shown in Figure 8. When the feature weight coefficient λ = 0.5,
the Accuracy and F−Measure value of TC-LDA model are the highest, so we set λ = 0.5 in
this study.

In order to measure the performance of the improved TC-LDA model, this paper
compares the LDA model with the TC-LDA model through four evaluation criteria, and
the results are shown in Table 5. We can see that the TC-LDA model proposed in this study
has significant advantages over the LDA model in similar text detection. The new model
improves the Accuracy, Procision, Recall and F−Measure value, which contributes to the
subsequent transfer learning and data mining.
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Table 5. Performance comparison between LDA model and TC-LDA model.

Model Accuracy Precision Recall F-Measure

LDA 57.14% 76.92% 45.45% 57.14%
TC-LDA 77.14% 81.82% 69.23% 75.00%

5. Prediction of Popular Topics Based on Knowledge Graph

According to the results of transfer learning in Section 4, for text data with low
similarity in time slices, transfer learning cannot compensate for training samples in
the target domain. Therefore, the source domain and target domain retain their private
features respectively, but text topics in different time slices may also have an evolutionary
relationship with relevance. Therefore, the potential topic information can be extracted
from the source domain which can be transferred to the target domain in the adjacent time
slice for the prediction of potential popular topics in the target domain.

5.1. Topic Discovery and Filtering

Subject extraction of text data of each time slice belongs to subject discovery of static
text information. However, social network texts are particularly affected by time, so this
study adopts single-pass algorithm to find topics [30]. Due to the large amount of data,
this study takes the data of the T2 time slice in the source domain and the T3 time slice
in the target domain as an example to illustrate the topic discovery process of single-pass
algorithm. The calculation steps for data in the other time slices are the same.

Aiming at the shortcomings of the single-pass algorithm [31], we made the following
improvements to this algorithm: On the one hand, we sorted text data according to the
release time before input, which was suitable for the evolution of the topic. In this way, we
reduced the influence of different input sequences on clustering results. On the other hand,
we use the way of the inverted index to accelerate the clustering and improve the search
efficiency when the data volume is large.

After several experiments, it was found that it is appropriate to define the threshold as
0.2 and realize the model through Python software to obtain the respective topic categories
of the source domain and target domain. As machine learning cannot fully understand
human natural language text, limitations exist in the topic filtering. Therefore, we manually
set “problem-answer” to train the binary classifier, which is used to filter topics after
training to some texts. If relevant, they will be left, while irrelevant topics will be deleted.
In this way, we filter out the topics unrelated to COVID-19 events. The final number of
topic categories is shown in Table 6.
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Table 6. The number of topics extracted by single-pass in T2 and T3.

Domain Time Number of Topics
Extracted by Single-Pass

Number of
Filtered Topics

Ds

8 January 2020 91 5
9 January 2020 61 6

10 January 2020 23 5
11 January 2020 17 5
12 January 2020 37 4
13 January 2020 99 5
14 January 2020 39 7

Dt 15 January 2020–21 January 2020 25 17

In this section, there were a total of nine subjects involved in the source domain and
target domain data, which are encoded by letters [a–i], respectively. As for the extraction
results, the topics were manually labeled according to topic category keywords and topic
sentences and were encoded by 1 to 10, respectively. The specific results are shown in
Table 7.

Table 7. Topic extraction results extracted by single-pass in T2 and T3.

Domain Num EP(a) DR(b) SRP(c) CD(d) EI(e) EC(f) OS(g)

Ds-T2
Topics

1 Mask purchase
Publicity

Eight patients with
viral pneumonia of

unknown cause
have been

discharged from
hospital in Wuhan

SARS has been
ruled out as the

cause of
pneumonia of

unknown cause
in Wuhan

Face mask
shortage

Entertainment
industry field

influence

Us flu
outbreak

Australian
bushfire

2 Wildlife quarantine
People are
demanding

transparency

The pathogen of
the pneumonia of
unknown cause in

Wuhan is
coronavirus

Mask supply
in Southeast

Asia

Riots in
Hong Kong

The situation
in Wuhan

is grim

Japanese
swine fever

infection

3

Comprehensive
prevention and

control of
infectious diseases

One person has
died of pneumonia
of unknown cause

in Wuhan

Experts interpret
pneumonia of

unknown cause
in Wuhan

Japan has a
shortage of

masks

Yellow alert
for flu

in Tianjin
other

4
The government
increased access
to information

Update on the
novel Coronavirus

pneumonia in Wuhan

The novel
Coronavirus gene
sequence is highly

similar to SARS

Wuhan virus
laboratory

investigated

5
Prevent

coronavirus
infection

Notification of
confirmed cases

The coronavirus is
not same as SARS

Online
teaching by

students

Num EP(a) DR(b) SRP(c) CD(d) EC(f) ES(h) PS(i)

Dt-T3
Topics

6 Dou action to
defeat the epidemic

Update on
COVID-19 cases

Zhong nanshan is
certain of

human-to-human
transmission of

COVID-19

The
government
has paid for

the treatment
of all patients

in Wuhan

There is a
possibility
of a wider

outbreak of
novel

Coronavirus

Hats off to the
medical staff!

Wuhan
refueling

Anhua Wu
went to the

front lines of
COVID-19

7

Wearing masks is
the key to

preventing novel
Coronavirus

Sichuan confirmed
the first case of
wuhan novel
pneumonia

China will attend
the meeting to

share information
on the epidemic

Wuhan road

8

ECMO technology
successfully treated

a patient with
pneumonia

Teach you how to
wear a mask

correctly

9

Folk ancestral
special prescription
for fighting novel

pneumonia

Traditional Chinese
medicine for
COVID-19
prevention

10
Henan has banned

the sale of live
poultry in markets
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5.2. Topic Evolution Relationship Mining

After the topic is discovered, this paper mines the evolutionary relationship between
topics. KL divergence refers to the information gained or relative entropy used to quan-
tify the asymmetric difference between two probability distributions, P and Q, which
can be used to measure the evolution of topic content [32]. As the evolutionary relation-
ship is asymmetric, KL divergence is adopted in this paper to measure the evolutionary
relationship. The calculation of KL divergence is shown in Formula (10).

KL(PTm ||PTn) = ∑i=1 PTm(xi)× log
PTm(xi)

PTn(xi)
(10)

where, PTm represents the distribution of feature words of topic Tm, PTn represents the
distribution of feature words of topic Tn, PTm(xi) represents the probability of feature
words xi in PTm , and KL(PTm ||PTn) represents the loss of information to approximate with
Tn and Tm. The smaller the value, the closer Tn is to Tm, the more likely Tn is to evolve
from Tm, and vice versa. At the same time, considering that some of the directly extracted
keywords have the same conceptual semantics, but the words are different and therefore
cannot be recognized, this study extends the conceptual semantics of the topic feature
words based on the CN-Probase conceptual knowledge atlas platform.

The evolution of topics in the source domain and target domain can be divided into
four types: one-to-one relationship (OTO), one-to-many relationship (OTM), many-to-one
relationship (MTO), and many-to-many relationship (MTM). This paper set the calculation
results of KL divergence as the basis to determine whether the evolution between topics
takes place. After many tests, we set different KL divergence thresholds to observe the
results of the experiment. When KL = 0.25, the classification accuracy of topics with
evolutionary relationships was the highest. Therefore, the threshold value of KL divergence
is set to 0.25. If the threshold value is lower than 0.25, it indicates that there may be an
evolutionary relationship between topics. Taking the scientific research and popularization
(SRP) subject as an example, the results of the evolutionary relationship between topics are
shown in Table 8.

Table 8. The evolutionary relationship of SRP topics.

Num Topic Num Direction Topic Num Kullback-Leible (KL) Evolutionary
Relationship

1 c1 –> c6 0.16 MTM
2 c1 –> c7 0.23 MTM
3 c1 –> c8 0.21 OTM
4 c1 –> c9 0.12 MTM
5 c2 –> c7 0.22 MTM
6 c3 –> c6 0.25 MTM
7 c3 –> c7 0.17 MTM
8 c4 –> c6 0.19 MTO
9 c5 –> c6 0.18 MTM

10 c5 –> c9 0.22 MTM

In order to facilitate the construction of the topic knowledge graph, this paper defines
four categories of topics, including starting topic, ending topic, single topic, and hot topic.
The above method is used to mine the evolutionary relationship of T2 time slice in the
source domain and T3 time slice in the target domain, and the evolutionary results are
shown in Figure 9.
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5.3. Topic Evolution Prediction Based on Knowledge Graph

A knowledge graph is a network with a semantic nature, and its basic constituent unit
is the triple of “entity, relation, entity”, through which knowledge is expressed in a graph
structure [33,34]. Entities are essentially the semantic objects in the real world. Network
public opinion entities can be individuals or organizations for opinions through social
networks such as media, government, Internet users, social institutions, etc., or incidents
causing wide public concern. The entity of this article is extracted from the social network
dataset and contains four entity classes: Subject, topic, event, person. Through the research
on the defined entities, four relations of <subject, include, topic>, <event, belong to, topic>,
<people, belong to, topic> and <people, involve, event> are obtained, as shown in Figure 10,
where the ellipse represents the entity category, and the line represents the relation.
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Figure 10. Entity, relation model diagram.

The topic knowledge graph was constructed from text data of source and target
domains from 25 December 2019 to 7 April 2020, including subjects extracted by LDA
model and topics, events, and people extracted by single-pass model. Considering the
display effect of the graph, the knowledge graph ignoring the human entities as shown in
Figure 11a,b intercepted part of the public opinion topic subgraph with the source domain
T2 time slice and the target domain T3 time slice data as the core data, with the human
entity added.
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target domain T3.

This paper takes the topic knowledge graph established by the source domain T2
time slice and the target domain T3 time slice as the research samples and selects five
representative online public opinion events in the source domain on 22 January 2020 as
test samples. They are, respectively, “Henan has banned the sale of live poultry in the
market” (N1), “The Ministry of Transportation launched the level II emergency response”
(N2), “Wuhan set up the epidemic prevention and control headquarters” (N3), “CDC will
announce the first novel Coronavirus case in the US” (N4), and “Strict prevention of Novel
Coronavirus in Spring Festival Transportation” (N5).

By traversing the nodes in the topic knowledge graph, cosine similarity was used to
calculate the similarity between the key words of test events N1–N5 and the key words
of nodes in the knowledge graph, and the node with the highest similarity was found.
However, the accuracy of node prediction results in the knowledge graph of the target
domain is low, so nodes with an evolutionary relationship between the source domain and
the target domain are transferred to improve the accuracy of topic prediction in the target
domain so as to realize topic prediction in the target domain.

According to the similarity calculation of topic nodes in knowledge graph, we get the
source domain N1–N5 test events subject prediction results, as shown in Table 9. At the
same time, we traverse the nodes to find the target domain generalization topics, as shown
in Table 10. This paper extracts the weight of the biggest prediction of top 10 subjects
and topics, and the accuracy of the prediction results was judged manually. The correct
prediction was recorded as Y, and the wrong prediction was recorded as N.

Additionally, this paper adopts the MRR (Mean Reciprocal Rank) indicator to measure
the topic prediction effect. The prediction accuracy of N1–N5 test events calculated by MRR
method is shown in Table 11, and the mean value is taken as the final result, according to
which the subject prediction accuracy is 82.6% and the topic prediction accuracy is 70.46%,
indicating that the model has good prediction effect and strong applicability.
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Table 9. N1–N5 Test event target domain subject division prediction results.

Num N1 Sim Y/N N2 Sim Y/N N3 Sim Y/N N4 Sim Y/N N5 Sim Y/N

1 RC 0.396 N EP 0.305 Y EC 0.498 Y EC 0.331 Y SRP 0.408 Y
2 EI 0.377 Y EI 0.225 Y SRP 0.461 N EP 0.241 N EP 0.379 Y
3 EP 0.370 Y EC 0.215 Y DR 0.457 N SRP 0.240 N PS 0.361 N
4 EC 0.363 Y ES 0.210 N RC 0.411 Y CD 0.203 N CD 0.358 N
5 DR 0.358 N SRP 0.196 N EP 0.397 Y DR 0.201 Y ES 0.352 N
6 CD 0.346 N CD 0.191 N ES 0.391 N RC 0.195 N EI 0.340 N
7 SRP 0.344 N DR 0.181 N CD 0.368 N ES 0.193 N EC 0.338 N
8 PS 0.342 N PS 0.179 N EI 0.340 N EI 0.192 N RC 0.330 N
9 ES 0.327 N RC 0.172 N PS 0.310 N PS 0.165 N DR 0.314 N

Table 10. N1–N5 test the target domain generalization topic prediction results of events.

Num N1 Sim Y/N N2 Sim Y/N N3 Sim Y/N N4 Sim Y/N N5 Sim Y/N

1 Virus
associated 0.312 Y Government

measures 0.489 Y Domestic
outbreak 0.616 Y Government

measures 0.374 Y Prevention
publicity 0.506 Y

2 Public
opinion 0.332 Y Life

influence 0.356 Y Virus
associated 0.535 Y Foreign

outbreak 0.341 Y Virus
associated 0.430 Y

3 Public
events 0.359 N Education

influence 0.261 Y Infection
Source 0.531 N Virus

associated 0.330 Y Personal
protective 0.422 Y

4 Prevention
publicity 0.338 Y Virus

associated 0.246 Y Local
rumors 0.521 Y Domestic

outbreak 0.320 Y Infection
Source 0.398 N

5 Infection
Source 0.339 Y Domestic

outbreak 0.244 Y confirmed
case 0.516 Y Infection

Source 0.306 Y Government
measures 0.390 Y

6 Domestic
outbreak 0.304 Y Medical

measures 0.226 N Prevention
publicity 0.484 Y confirmed

case 0.283 Y Life
influence 0.387 Y

7 Medical
measures 0.346 N Public

opinion 0.225 Y Medical
measures 0.427 Y Prevention

publicity 0.256 Y Material
donations 0.387 N

8 Environmental
impact 0.452 N Public

events 0.223 N dead csae 0.447 N Life
influence 0.250 N Treatment

technology 0.377 N

9 Material
donations 0.313 N Environmental

impact 0.215 N Environmental
impact 0.421 N Education

influence 0.243 N Public
opinion 0.318 Y

10 Education
influence 0.303 N Material

donations 0.185 N Material
donations 0.321 N Foreign

donors 0.229 N Environmental
impact 0.303 N

Table 11. Results Prediction Accuracy Test.

Test Events Subject Prediction Accuracy Topic Prediction Accuracy

N1 77.80% 74.00%
N2 88.90% 73.30%
N3 74.10% 68.30%
N4 77.80% 70.00%
N5 94.40% 67.00%

Average 82.60% 70.46%

6. Conclusions and Future Work

We implemented cross-domain transfer learning between two social network platforms
and propose an improved TC-LDA model to measure the similarity between the two
domains. Compared with the LDA model, the TC-LDA model has improved Accuracy,
Procision, Recall and F−Measure values. Based on the results of transfer learning, we built
a topic knowledge graph by using the Neo4j graphics database and conducted experiments
to predict the evolution of popular topics in new emergencies. Experimental results show
that knowledge graph technology is effective in popular topic prediction.

In this paper, entities, relationships, and attributes were extracted from COVID-19
emergency information to construct knowledge maps and predict topics. On the one
hand, the effect of online public opinion analysis could be improved, so that government
departments could make predictions in advance and take corresponding guidance measures
in a timely manner to prevent public opinion from blindly expanding. On the other hand,
the construction of the topic knowledge map based on the characteristics of the COVID-19
event also expands the application of the knowledge map in the field of public opinion
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analysis of emergencies on social networks, which can provide theoretical reference for
studies in similar fields.

In future research, the graph convolutional network will be considered to model richer
sentence semantics. In future research, multiple source domain data will be considered to be
used for transfer learning to improve the prediction accuracy of information popular topics.
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