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Abstract: This paper presents an approach for the modeling and the simulation of the spreading of
COVID-19 based on agent-based modeling and simulation (ABMS). Our goal is not only to support
large-scale simulations but also to increase the simulation resolution. Moreover, we do not assume an
underlying network of contacts, and the person-to-person contacts responsible for the spreading are
modeled as a function of the geographical distance among the individuals. In particular, we defined
a commuting mechanism combining radiation-based and gravity-based models and we exploited
the commuting properties at different resolution levels (municipalities and provinces). Finally, we
exploited the high-performance computing (HPC) facilities to simulate millions of concurrent agents,
each mapping the individual’s behavior. To do such simulations, we developed a spreading simulator
and validated it through the simulation of the spreading in two of the most populated Italian
regions: Lombardy and Emilia-Romagna. Our main achievement consists of the effective modeling of
10 million of concurrent agents, each one mapping an individual behavior with a high-resolution in
terms of social contacts, mobility and contribution to the virus spreading. Moreover, we analyzed the
forecasting ability of our framework to predict the number of infections being initialized with only a
few days of real data. We validated our model with the statistical data coming from the serological
analysis conducted in Lombardy, and our model makes a smaller error than other state of the art
models with a final root mean squared error equal to 56,009 simulating the entire first pandemic
wave in spring 2020. On the other hand, for the Emilia-Romagna region, we simulated the second
pandemic wave during autumn 2020, and we reached a final RMSE equal to 10,730.11.

Keywords: epidemic modeling; agent-based modeling and simulation; large-scale simulation; ac-
tor model

1. Introduction

In the earliest months of 2020, the unexpected COVID-19 spreading put all the world’s
countries in difficulties because of the lack of countermeasures and knowledge about this
novel virus to model its spreading. Moreover, since SARS-CoV-2 is an air-borne disease,
it spreads among people due to everyday social interactions that represent themselves as
a complex system to be modeled and simulated. Classical methods based on dynamic
models like the Susceptible-Exposed-Infectious-Removed (SEIR) model [1,2] can only help
with several limitations when high simulation resolution (fine-grained) is desired. Indeed,
the class of SEIR models has to be extended to model particular conditions like social
distancing, lockdown policies, and mask wearing. Although these extensions are easy
to implement with additional equations in the basic model, these models do not still
address the primary issue related to the basic reproduction number (R_0), which is not
policy-invariant. Indeed, it depends on the average number of contacts among people,
assuming that the population distribution is uniformly mixed. Moreover, the contact
distribution is mixed heterogeneously in a natural population and shows some complex
network characteristics.
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Therefore, to avoid the problems of dynamic models, a different modeling and sim-
ulation approach should be used. Agent-based modeling and simulation (ABMS) is a
better choice because it can model single individuals’ characteristics and behaviors with
a common trade-off between resolution and population size [3]. This paper proposes a
novel case study based on ABMS and on previous experiences to increase the simulation
resolution in the same large-scale context of COVID-19 spreading in Italy. Therefore, to
avoid the problems of dynamic models, a different modeling and simulation approach
should be used. Agent-based modeling and simulation (ABMS) is a better choice because
it can model single individuals’ characteristics and behaviors with a common trade-off
between resolution and population size [3]. This paper proposes a novel case study based
on ABMS and on previous experiences to increase the simulation resolution in the same
large-scale context of COVID-19 spreading in Italy. The main contributions of our work
are the following: (a) a software solution to model and execute millions of concurrent
agents using the high-performance computing that maps individuals’ behavior to a high
simulation resolution; (b) providing a simulator for COVID-19 based on our framework
that reaches interesting performances when used to forecast new infections cases using
only few days of real data for the initialization; and (c) we propose a commuting model
that is suitable for the epidemic context but that can be reused also in different domains.

On the contrary to previous works, we did not assume an underlying network of
contacts, modeling social meetings as a function of the geographical distance among the
individuals exploiting the commuting properties at different resolution levels (municipali-
ties and provinces). We defined a commuting mechanism combining two distance-based
models: the radiation model [4] and the gravity model [5]. To achieve this goal, we imple-
mented a spreading simulator using ActoDemic [6] and validated it on two of the most
populated Italian regions: Lombardy and Emilia-Romagna. The next section shows the
features of ABMS, and Section 3 introduces the main epidemic models. Section 4 discusses
the use of actors in ABMS application. Section 4 introduces the case study and discusses the
development. Sections 5 and 6 discuss the features of our simulation model and introduces
two simulation use cases. Section 7 discussed the results of the simulations of COVID-19
spreading in the Emilia Romagna and Lombardy regions. Finally, Section 8 concludes the
paper by discussing its main features and the directions for future work.

2. Agent Based Modelling and Simulation

Agent-based modeling and simulation (ABMS) is a computational model for simulat-
ing phenomena in order to understand their behavior and what governs their results [3]
and which exploits multi-agent systems and simulation models [7]. In particular, in an
ABMS application, a simulation model is built on a generative and bottom-up process that
integrates three types of components: the agents, who can perform one or more different
behaviors, the environment in which the agents act by perceiving its state and acting accord-
ingly, and, finally, the mechanisms that guide the interaction between the agents and exploit
the direct and indirect exchange of information between system agents [8,9]. In particular,
the generative and bottom-up nature of ABMS models offers great potential for addressing
phenomena in which conventional modeling and simulation paradigms have difficulty in
capturing their fundamental characteristics [10]. In fact, with an ABMS approach, instead
of analyzing a phenomenon only in its entirety (as happens in discrete simulation systems),
it is possible to analyze it, not only in its entirety but also in its components [11].

Furthermore, since a wide variety of research and application fields uses ABMS models,
it follows that ABMS models can have very different characteristics when supporting the
simulation of very different phenomena. According to [12], the most suggested ABMS
models for complex systems modeling are cellular automata [13], flocking systems [14],
and geographic information systems [15].

The success and diffusion of ABMS techniques is also due to the availability of soft-
ware platforms that facilitate the development of models, the execution of simulations
and the analysis of results [16–19]; in particular, among these software platforms, the best
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known and most used are: ASCAPE [20], MASON [21], Repast [22], AnyLogic [23] and Net-
Logo [24]. However, such platforms do not provide all the elements necessary to develop
real intelligent agents, and so the development of the necessary models for some kinds of
ABMS application may require the integration of an AI language (e.g., Prolog) or/and of
some machine learning libraries. For example, Chumachenko et al. [25] proposed an intelli-
gent information technology for integrating declarative languages and present an example
of application that shows (i) how this technology allows the interoperability between NetL-
ogo and Prolog, and (ii) how this kind of solution allows the resolution of decision-making
problems and increases the efficiency of inference in a simulation environment.

Moreover, as introduced above, an important factor that can consolidate ABMS appli-
cations’ importance is the availability of software platforms that allow the development of
highly complex and large-sized applications. A great deal of work has been done in this
direction using compute clusters and graphics processing units (GPU)s. Among the main
works, we can highlight [26–30]. However, the proposed solutions cannot solve all the prob-
lems that must be faced in developing complex ABMS applications with a large number of
agents. This is due to many factors [31]; one of the most critical points is that the actions of
agents drive the simulation, and each agent decided what to do by interacting with several
other agents who, during the simulation, can always be the same or change, bit by bit,
with a very high computational cost (n2) due to the need to identify the new agents at each
simulation step. This is a big problem for applications running on a cluster of computers
because, like this type of solution, execution is only effective if the processors spend most of
their time processing rather than communicating [32]. Furthermore, it is often necessary to
maintain the same order of execution of the agents to ensure the repeatability of the results,
but in a multi-node system, this involves the use of synchronization protocols that at least
increase execution times [33]. Finally, in such applications, the various agent’s creations
may not be completely simple. In fact, it is possible to have sets of heterogeneous agents
which probably require a different method of creation; it may be necessary to configure
agents of the same type with different or random data, etc.

3. Agent Based Modeling and Simulation for Epidemic Scenarios

Different ABMS solutions have been proposed to model and solve real and complex
epidemic scenarios and, in particular, COVID-19 spreading [34]. Dyke Parunak et al. [35]
assert that such scenarios can be modeled both with agents (ABMS) and with equations
(EBM), but also that: (i) ABMS is most appropriate for domains characterized by a high
degree of localization and distribution and dominated by discrete decisions, and (ii) EBM
is most naturally applied to systems that can be modeled centrally, and in which the
dynamics are dominated by physical laws rather than information processing. Moreover,
they foresee that ABMS will be offered better solutions than EBM if they will provide
comparable tools for constructing and analyzing system dynamics models. Rahmandad
and Sterman [36] demonstrated that stochastic ABMS can show better performance in
respect to differential equation models, when several parameters are unknown and there
is the need for capturing heterogeneity across individuals and their network of reciprocal
interactions. Ajelli et al. [37] compare ABMS and meta-population strategies for modeling
the epidemic in Italy, concluding that a trade-off between the two methods depends on
data availability and suggesting the use of hybrid models.

Silva et al. [38] proposed an individual-based simulation model for exploring scenarios
for COVID-19 where individuals are modeled as moving particles. In particular, COVID-19
infections take place when two particles come closer than a certain contact radius. Social
distancing for COVID-19 is modeled as changes in the contact radius or introducing a
momentum term. Hinch et al. [39] modeled COVID-19 spread by replacing the moving
particles with contact networks for households, work, and random contacts. Their model
should enable scientists and policymakers to quickly compare the effectiveness of non-
pharmaceutical interventions like lockdowns, testing, quarantine, and digital and manual
contact tracing. In particular, the model is experimented in an environment represented by
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a city with a default population of 1 million people whose ages and contact patterns are
parameterized according to UK demographics. Moreover, the use of contact networks has
been proposed by several researchers (see, for example, [40–42]). Truszkowska et al. [43]
proposed a high-resolution model using single individuals’ features with real data about
the COVID-19 outbreak in New Rochelle (NY), where thousands of citizens live. More-
over, they extend the typical simulation by modeling employees, hospitals, schools, and
retirement homes and simulating the use of different test strategies, different types of
treatment, and the presence of infections that cause similar COVID-19 symptoms. Finally,
Chumachenko et al. [44] proposed an ABMS model that divides the individuals on the
basis of their epidemic state (susceptible, exposed, infected and recovered); such conditions
can be used to model the epidemic spread before the introduction of vaccination of the
individuals. Individuals interact with each other and with the modeling environment,
and transmission of morbidity and the transitions of individuals between states occur on
the basis of probabilistic coefficients. These coefficients are determined experimentally on
the basis of official statistics data on the incidence of COVID-19 coming from the Ukraine
Health Center. The results of the simulations showed that the most effective measures to
reduce epidemic dynamics are self-isolation of patients and tracking of contact individuals
of the population, and that the isolation of the entire population is not necessary, but it is
enough to isolate 80% of patients in the active phase.

4. Actor Based Modeling and Simulation

Actors are autonomous computational entities that can interact with other actors by ex-
changing asynchronous messages. When they receive any response, they can concurrently:
send other messages, create new actors, and change their behavior to be ready to manage
the next messages that they think to receive [45]. Moreover, actors have the suitable charac-
teristics to define and implement the computational agents used in multi-agent systems and
ABMS models [46]. Indeed, actors and computational agents share some characteristics:
(i) both react to external stimuli (i.e., they are reactive), (ii) both act independently and
exhibit control over their internal state (i.e., they are autonomous), and (iii) both interact
through the exchange of asynchronous messages and through these messages they are
able to coordinate and cooperate with each other (i.e., they are social) [47]. Therefore, the
availability of some actor-based software frameworks can simplify the development of
computational agents in domains where agents act dynamically, change their behavior, and
need to coordinate or cooperate through direct interactions.

4.1. Using Actors for Large Scale ABMS Applications

Several researchers proposed interesting solutions for large scale ABMS applications.
For example, Jang and Agha [48] proposed an actor-based software infrastructure, called
the actor’s adaptive architecture. This infrastructure supports the construction of large-scale
agent-based simulations and exploits some distributed computing techniques to optimize
the distribution of the agents of the application on a network of computational nodes. More-
over, this software infrastructure uses some optimization techniques to reduce the amount
of data exchanged between nodes and support dynamic agents’ distribution and search.
Scheutz et al. [49] proposed a simulation environment, called SWAGES, that provides an
automatic and dynamic distribution of simulations that supports the minimization of the
simulation times. In particular, SWAGES allows the use of different programming lan-
guages for the definition of the agent models, and provides large data collections and data
analysis techniques that can help to simplify the analysis of the results. Moreover, it pro-
vides a flexible scheduler offering automatic fault detection and error recovery mechanisms,
and so improving the reliability of large-scale simulations. Cicirelli et al. [28] proposed
the use of actors for the distribution of simulations on the Repast software platform [22].
In particular, they defined a software infrastructure that: (i) decomposes an application
into subsystems (theaters), (ii) each subsystem hosts a set of actors and can be allocated
on one of the computational nodes of the application, and (iii) supports agent migration,
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transparent location naming and efficient communication. Wittek and Rubio-Campillo [50]
present an ABMS framework, called Pandora, that is designed for social scientists that uses
HPC resources and implemented in the C++ programming language; moreover, Pandora
provides a Python interface to the framework that should make possible the development
of ABMS to people with minimal programming background. Pandora divides a simulation
environment among different computer nodes, and each one of them will own a section of
the environment and the agents located in this section. Moreover, data and agents located
in the border between adjacent nodes will be copied and sent to neighbors at every time
step of simulation, in order to keep data consistent in all the execution. Pandora was
used for experimenting the tradeoff of replacing a traditional cluster with a cloud solution.
Since the simulation framework requires a high-speed interconnection, this solution should
provide low performance, but a cloud cluster should reduce losses and prove that even
a cheap cloud cluster can provide interesting computational power for the simulations.
However, the experimentation showed that the use of a cloud environment can provide a
cost-effective solution. Collier and North [51] proposed an ABMS system, called Repast
HPC, that extends the Repast framework (North and Collier, 2006), and is developed in
C++ and uses Message Passing Interface (MPI) [52] for supporting large-scale distributed
computing. In particular, Repast HPC is an environment where several processes are
running in parallel and where a massive number of agents can be distributed across such
processes. This is possible because each process has its own scheduler for processing the
local events and all the schedulers are synchronized. Finally, Repast HPC allows the defini-
tion of a shared context for each process that can host local agents and remote agents copied
from another process. This solution should improve simulation performance because
the interaction among local and remote agents of the same shared context does not need
remote communication. Fan et al. [53] presented an automated HPC system, named DRAS
(Deep Reinforcement Agent for Scheduling), that takes advantage of deep reinforcement
learning. In particular, DRAS implements a hierarchical neural network that provides some
important HPC scheduling features such as resource reservation and backfilling. Each
DRAS execution is driven by a specific scheduling objective, and during the execution the
system automatically learns to improve its policy through interaction with the scheduling
environment and dynamically adjusts its policy as workload changes. The results of its
experimentation seem to outperform the existing heuristic and optimization solutions by up
to 45%. Finally, Santana et al. [54] proposed a scalable simulator, called InterSCSimulator,
to support the simulation of complex and large-scale smart city scenarios. Additionally, in
this case, the simulation is based on actors, and each actor models a car or a bus moving in
the city from an origin to a destination vertex in the city graph. The experimentation results
show that the simulator is scalable and easy to use. Moreover, this simulator supports the
analysis of the results of the simulation by generating charts and animated simulations.

4.2. ActoDeS

ActoDeS (Actor Development System) is a framework for the development of dis-
tributed systems [55]. This framework is based on the use of concurrent objects (from here
named actors) whose main characteristics derive from the actor model [45]. In ActoDeS,
an actor is created by another actor; after its creation, the actor can interact with other
actors through the exchange of asynchronous messages and, as a consequence, can change
its behavior several times; once its work is finished, the actor kills itself. Moreover, an
actor keeps messages received and not yet processed in a queue. ActoDeS is implemented
using the Java language and allows the development of applications that, depending on
the complexity of the application and the availability of hardware, software, and commu-
nication resources, can be distributed on one or more computational nodes. Three other
main elements are involved in an ActoDeS application: actor spaces, management services,
and actor services. In particular, an actor space acts as a “container” for a set of actors and
supports their execution through the use of management and actor services. Moreover, in
an application involving several actor spaces, each actor space is deployed in a different
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Java virtual machine. Therefore, an application involving multiple actor spaces can be
distributed over multiple computational nodes. Moreover, the actors of an application can
interact through point-to-point, broadcast, multicast and publish-subscribe messaging.

4.3. Using ActoDeS for ABMS Large Scale Applications

As previously introduced, the need to use ABMS in different research and application
sectors, makes the availability of ABMS that offer the features necessary in the specific
research and application domain. To address this problem, ActoDeS provides several
implementations of the actors and components that define an application’s runtime. In
particular, an actor can have its thread of execution or share it with the other actors of the
actor space; moreover, different types of actors can perform simulation steps of different
lengths during the execution of an application. Furthermore, as far as the runtime com-
ponents are concerned, it is necessary to use different scheduling algorithms to guarantee
good efficiency to different types of ABMS [56]. In this regard, ActoDeS provides some
schedulers which implement the most interesting and well-known scheduling algorithms.
These characteristics make ActoDeS a suitable means to build ABMS applications that, de-
pending on the characteristics of the application domain, can be easily realized by choosing
the implementations of the actors and runtime components most suitable for that type
of application.

ActoDeS supports the development of large-scale ABMS applications by using special-
ized schedulers for distributed applications and using techniques to simplify and reduce
the cost of communication. Among the various types of schedulers provided, a scheduler
can remove an idle actor from the execution list, store it in persistent storage, and put it back
into the execution list when the actor is ready to restart its execution. This type of scheduler
is useful in application domains that involve many actors who, during the simulation, can
have long periods of inactivity. In fact, in these conditions, the cost of removing, storing
and adding actors can be easily balanced by reducing the number of actors running. In
many cases, that solution guarantees a lower use of the hardware and software resources
used by the application. Undoubtedly the most critical component to develop and ensure
the proper functioning of ABMS applications, and especially of large-scale applications, is
communication management. Regarding distributed applications, ActoDeS allows an actor
to communicate transparently with actors from other actor spaces (i.e., it needs only to
get their remote references). Regarding communication, ActoDeS supports, in addition to
point-to-point communication, one-to-many communication via broadcast, multicast, and
publish-subscribe protocols, and reduces the cost of one-to-one communication through
message aggregation techniques [57,58].

Commonly, in different ABMS applications, each actor must propagate information to
all or to a large part of the actors of the application. Naturally, if such messages were dis-
seminated through a point-to-point interaction, the cost of communication would become
intolerable even with a limited number of actors. However, ActoDeS provides an actor
implementation, called “shared actor”, which avoids this type of problem: all the actors of
the application share a single mailbox that keeps all the messages sent in the previous and
current simulation step and allows the reception of the messages of the previous simulation
step. Therefore, this type of actor can receive: (i) the point-to-point messages that are
addressed to itself, (ii) all the broadcast messages, and (iii) all the messages from a multicast
group to which it has subscribed. Furthermore, separating the messages of two simulation
steps avoids the burden of keeping a copy of the current environment when it is necessary
to ensure that agents decide their actions with the same information about the environment
in which they operate [56]. In some cases, when there is a strong interaction between
the application actors, especially when a relevant part of the interaction occurs between
the actors of different computation nodes, the cost of communication can cause incorrect
behavior or even the failure of the application.

ActoDeS seeks to reduce the cost of communication by adopting a message aggregation
technique. This technique is managed by the managers of the different actor spaces and is
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applied to the messages that are sent to remote actors. In particular, each manager performs
the following operations: (i) at the beginning of a simulation step it creates an aggregation
message for each remote actor space; (ii) during the execution of the simulation step, inserts
the messages addressed to other actor spaces in the appropriate aggregation message;
(iii) at the end of the simulation step: (a) sends the appropriate aggregation message to
each remote manager, (b) receives an aggregation message from each remote manager and
(c) extracts the messages from each aggregation message and sends them to the (local)
actors recipients.

A very important feature that an ABMS application development environment should
be is the availability of graphical tools to visualize the evolution of simulations, and tools
to analyze the data obtained from the simulations. ActoDeS does not provide tools for
the visualization of simulations and the analysis of their results, but provides a logging
service that allows the saving on a file of the streaming of Java objects that contain the
data that describe the relevant actions of an actor (e.g., its initialization, reception, sending
and processing messages, creating actors, changing behavior and its arrest). However, the
processing of these logging files is quite simple, and therefore, it was not very difficult to
create tools that supported these two types of functionality [59,60].

5. The Simulator

Our simulator is built using ActoDemic [6], which is a framework that aims to facilitate
the design and development of spreading phenomena in large-scale scenarios. The base
unit is represented by actors that, depending on the target application, represent the entities
of the system to model and simulate. The actors are implemented using the Java framework
ActoDeS as a backbone to support the agents’ concurrent execution and distribution over
several nodes. Each individual is modeled using a Base Spreader (BS) actor, which has a set
of default attributes that can be enabled, configured, and modified to best suit the model.
These attributes represent the demographic knowledge we used to model the population,
but also the hidden internal state of each individual:

1. Unique identifier
2. Province or municipality of residence
3. Age
4. Number of daily contacts
5. Current infection state
6. If the individual is an essential worker
7. If the individual wears a protective mask during the simulation period.

The last two parameters are necessary to model and simulate different conditions
verified in the early stage of the pandemic in Italy between February and May 2020.

In order to model the COVID-19 spread, we adopted the SEIR model, which provides
susceptible, exposed, infected, and recovered compartments, and modified it by adding two
extra compartments: positive and quarantine. These phases are typical in the COVID-19
infection cycle. At the beginning, all are in the susceptibility state. At this stage, every
individual can be infected by another one who is contagious. An individual who gets
infected moves from a susceptibility state to an incubation state and remains in this state for
a certain amount of time before moving into the next compartment, where it will become
infected. An infected subject can spread the virus and infect other individuals. When the
infection phase ends, the individual becomes positive. Being positive means that the virus
was identified with a COVID-19 test. Due to this result, the individual will be forced into a
quarantine state, limiting his/her contacts. After a certain time, a positive could heal or
die. There is no death probability, but deaths follow the real death curve of the simulated
use case taken into account. In particular, the incubation phase lasts from 7 to 14 days, the
infectious phase from 3 to 7 days, and the positive phase from 14 to 30 days [61]. Figure 1
shows a diagram that summarizes the described infection cycle. Moreover, the distinction
between positive and negative is necessary to model the use-case in 2020 since real-data
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refers only to infections found with a delay using the COVID-19 tests several days after the
first symptoms [62].

Figure 1. Detailed scheme of our infection cycle.

Contagion is based on a specific transmission probability for each individual. This
probability represents the likelihood of being in a condition that supports the virus spread.
We use a general COVID-19 transmission probability (CTV) estimated in [6], but this
probability is scaled by each individual depending on two other stochastic parameters that
are related to the use of protective masks and their efficacy. We used statistics and masks’
efficacy presented in [63]. We considered three categories of masks: cloth, surgical, and
N95 masks. Efficiency of a mask is evaluated in terms of inward and outward protection.
According to [63], a mask’s inward efficiency could vary from 20% to 80% for cloth, 70–90%
for surgical, and above 95% for N95 masks. On the other hand, outward efficiency could
range from 0 to 80% for cloth masks, while surgical and N95 masks are 50–90% and 70–
100% outwardly protective, respectively. The effectiveness of a generic mask is assumed
to be equal to the average effectiveness of the three previous types. Figure 2 describes the
contagion modeling.

Figure 2. Stochastic contagion modeling.

5.1. Software Architecture with HPC

Since each Base Spreader actor maps exactly one individual, we simulated 10 mil-
lion agents for the Lombardy region and 5 million agents for the Emilia-Romagna region.
Figure 3 shows the logical architecture of the simulator, that is described in the following
lines. The simulation process is divided into several “epochs” representing a different day.
Moreover, people can change their behavior depending on the current epoch (e.g., normal
or lockdown). At the end of each epoch, the simulator provides a synchronization step
to update the internal state (infectious state) of each BS depending on their meetings and
according to an infectious probability we defined. The simulator involves a set of computa-
tional nodes whose execution is driven by a set of ActoDeS schedulers and managers. In
particular, each manager has the duty of creating the subset of agents for its computational
node and synchronizing the simulation execution on that node with the execution of the
other computational nodes. Moreover, one of those managers assumes the role of “master”
to partition the agents involved in the simulation, exchanging the information with the
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other managers to notify the agents under their control. We extensively used the ActoDeS
passive actors for the BS implementation in order to allow large-scale development, while
managers are active actors. The simulation process is described in Figure 4. The simulated
population is divided into N actor spaces, where a manager assumes the duty of managing
that portion in terms of execution and communication.

Figure 3. The simulator’s architecture on the High Performance Computing (HPC) architecture
divides individuals in several actor spaces on different computational nodes.

Finally, in each actor-space, there is an ActoDeS CycleScheduler that effectively man-
ages the passive actors by coordinating their execution by exchanging messages with them
until the end.

Every actor-space needs to exchange several pieces of information at the synchroniza-
tion step. They exchange details about people’s meeting, people who must change their
infection phase to “Incubated” due an infection, the number of people expected to die in
their actor-space, other synchronization messages and finally an end signal. On the other
hand, each manager sends to the Master only the currently positive individuals, infected
individuals and a report related to the epoch processed. The high-performance comput-
ing system of the University of Parma offers various nodes with different characteristics.
The one we used, involves two INTEL XEON E5-2683v4 2.1GHz processors (for a total
of 32 cores) and 1024 Gb of RAM memory. The actors’ population is therefore divided
into 32 actor spaces of 137,500 actors each. For Emilia Romagna (5 million agents), the
average execution lasts 41 min and uses about 100 Gb of RAM memory. On the other
hand, for Lombardy, the average execution lasts 3 h and 30 min and uses about 500 Gb of
RAM memory.

We stochastically modeled COVID-19 spreading among two individuals by defining
a specific transmission probability (TP) for this virus using the number of infections in
the early autumn of 2020 when data were more accurate, rather than the beginning of
the pandemic. This TP represents the ability of each BaseSpreader to transmit its state
to another actor. Practically, the only actors that can transfer their state are the ones that
are in the infectious or positive phases. Since we also modeled protective mask-wearing,
the likelihood of infecting someone or being infected is a chain probability of TP, the
Poutward (actor’s outward mask protection probability) and the Pinward (actor’s inward
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protection probability). Finally, the contagion happens by randomly sampling from a
uniform distribution considering the contagion probability and actor’s susceptibility.

Figure 4. The simulation process algorithm.

5.2. Commuting Model

To evaluate the robustness of our model and our hyper-parameters, we decided to
add further detail to our model exploiting highly detailed data on socio-demographic
structure in Italy and the commuting effects between provinces and municipalities. For
high school students, university students and workers, there is the possibility that the
employment place is located in a different town than that of residence, or even in a different
province. Commuting is very common nowadays and plays an important role in the
infection spreading even in the most isolated municipalities. Therefore, it is essential
to model this phenomenon in a way that is as closely comparable to reality as possible.
Commuting models commonly rely on the effectiveness of two parameters:

� The grain: the finer the grain of the model, the more accurate the commuting model is.
� The economic quotient: the most effective models take into account the economic

quotient of every zone. Moreover, a municipality with a high number of businesses
attracts more workers than another with few job opportunities.

After some analyses, we decided to use the average results between a gravitational
model that is presented in [5] and the radial one that is explained in [4]. We chose this
approach because the first model has a better commuters’ distribution in the various
municipalities near the departure one. On the other hand, the second model computes
in a more reliable way the correct number of people moving from a given municipality,
but tends to distribute the contacts only to the closest town. The gravity model puts in a
relationship the inhabitant number of the departure municipality, the inhabitant number of
the arrival municipality, and the Euclidean distance between them:

ci,j = θ
Nτ f

i Nτt
j

dρi,j
(1)
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where:

1. ci,j is the probability that an individual living in i works or studies in municipality j
2. Ni, Nj number of individuals living in municipality i (or j)
3. θ proportional constant equal to 0.0005
4. τ f inhabitants damping constant of i equal to 0.28
5. τt inhabitants damping constant of j which changes according to the number of people

living in j:

1. 0.65 if the number of inhabitants is greater than 150,000
2. 0.66 if the number of inhabitants is between 5000 and 150,000
3. 0.78 if the number of inhabitants is less than 5000

6. di,j distance between the municipalities i and j
7. ρ constant amplifying the dependence from distance which changes according to the

number of people living in j:

a. 3.05 if the number of inhabitants is greater than 150,000
b. 2.95 if the number of inhabitants is between 5000 and 150,000
c. 2.5 0.78 if the number of inhabitants is less than 5000

Due to the lack of data of an economic quotient, we supposed that a municipality with
many inhabitants also has a higher economic attraction. For this reason, the constants are
set according to the number of people living in the municipality. The radial model, on the
other hand, puts in a relationship the inhabitant number of the departure municipality, the
inhabitant number of the arrival municipality, and the number of people living in the circle
with a radius equal to the distance between the two municipalities. Hence:

pi,j = pi
Ni Nj(

Ni + Si,j
)(

Ni + Nj + Si,j
) (2)

where:

1. pi,j is the probability that an individual living in i works or studies in municipality j
2. pi initial commuting probability of municipality i. This parameter can assume three

different values according to the number of people who live in i:

a. if the number of inhabitants is greater than 150,000
b. 0.3 if the number of inhabitants is between 5000 and 150,000
c. 0.4 if the number of inhabitants is less than 5000

3. Ni, Nj number of individuals living in municipality i (or j)
4. Si,j population that lives within the circle with radius equal to the distance between i

and j minus the population living in i and j

The values of the constants were identified by applying and comparing the model on
the Italian scenario. Moreover, we identified the constants’ value using the data available
from the Emilia Romagna region [61], and we combined this data with the features extracted
from [5,6]. Figure 5 shows the difference between the gravity model and the radial one.
In the first one, the Euclidean distance is enough to calculate the commuting probability
between Albinea and Reggio nell’Emilia; in the second one, instead, we must also take into
account the number of inhabitants contained in the area described by the circumference.
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Figure 5. Image representing the difference between the gravity model and the radial one. In
this example, we consider the municipality of Albinea (departure) and the municipality of Reggio
nell’Emilia (arrival).

6. Use-Cases: Modeling the Emilia-Romagna and Lombardy Regions

To realize a working model for the Reggio Emilia province, we gathered data about con-
tagion at the municipality level [61], and we also collected data about Emilia Romagna [62].
Unfortunately, we were not able to collect contagion data at the municipality level for the
whole Emilia-Romagna region; therefore, to determinate our initial condition, we studied
the Reggio Emilia province’s distribution, dividing the municipalities in different classes ac-
cording to inhabitants’ number, then we extended this class format to the whole region. The
geographical coordinates, mandatory for calculating the commuting model distance, was
retrieved from [63], and the population size and distribution was provided by ISTAT [64].

To correctly tune the gravitation models and the radial ones, it is necessary to take
into account the commuting values provided by the region [65]. The use case considered
the second outbreak which affected the entire Italian territory. Therefore, the simulation
period concerns the trend of infections between the 1 September 2020 and 15 December
2020. Finally, to validate our model, we compared with the official data provided by the
Italian Government (Protezione Civile) and the regional government of Emilia-Romagna.

6.1. Social-Demographic Model

We introduced family groups and occupations (work or student) for the individuals
involved in the simulation. In light of that, we can define a new socio-demographic model.
The municipalities, with their geographical coordinates and the agents representing the
population, are created following the data and probability distributions provided by the
census. In our model, there are nine different family types, characterized by a different
composition and number of members:

1. Single with children
2. Single without children
3. Single with children plus another adult
4. Couple without children
5. Couple without children plus another adult
6. Couple with children
7. Couple with children plus another adult
8. Adults that live together
9. Family groups (with at least one child)

With “other adult” we intended a person who is not strictly inside the family group
but lives in the same habitation. Each type of family has a frequency of appearance,
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and the number of members may vary depending on a distribution probability shown in
the Figure 6.

Figure 6. Family type distribution chart with relative number of members.

We introduced three fundamental constraints for building a consistent family group:

1. Any family group must contain at least one adult
2. The age of each child must be between 18 and 43 years less than the younger parent
3. The age difference of a couple is less than or equal to 15 years and they must be adult

We assigned an occupation to each individual based on its age. Moreover, we exploited
some probability distributions based on the attendance rate. Finally, we implemented six
different school categories, each with a specific attendance rate:

1. Kindergarten, attendance rate: 90%
2. Preschool, attendance rate: 90%
3. Elementary school, attendance rate: 100%
4. Middle school, attendance rate: 100%
5. High school, attendance rate: 92%
6. University, attendance rate: 31%

We have divided the students into classes, with different sizes depending on their category:

1. Kindergarten: 40 children
2. Preschool: 20 children
3. Elementary school: 19 children
4. Middle school: 21 lads
5. High school: 21 lads
6. University: 34 lads

On the other hand, as for workers, we considered different employment rates based
on their age:

1. 15–19 years: 8%
2. 20–26 years: 30%
3. 27–34 years: 62.5%
4. 35–54 years: 73.5%
5. 55–70 years: 54.3%

We grouped workers into job groups, which can be of seven different types that differ
according to the number of employees:
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1. Very small company: up to 5 employees
2. Small company: up to 9 employees
3. Small-medium company: up to 19 employees
4. Medium company: up to 49 employees
5. Medium-large company: up to 99 employees
6. Large company: up to 249 employees
7. Very large company: over 250 employees

Each type of company has a different frequency of appearance, shown in Figure 7.

Figure 7. Distribution of work classes.

6.2. Restrictions

In Emilia Romagna’s model, there were six different levels of restrictions to represent
as precisely as possible the division into bands implemented by the Italian government
during the simulation period taken into account:

1. White: no restrictions
2. White from 10/18 to 10/24: represents the restrictions introduced on 18 October 2020:

no limitations regarding work, but high schools and universities at 50% in attendance.
The number of daily interactions is reduced by 40% to shape the closure of businesses
such as bars after 9 pm and restaurants after midnight.

3. White from 10/25 to 11/05: represents the latest restrictions introduced before the
zoning: no limitations regarding work, but schools and universities still at 50%
in attendance. Closing of activities such as gyms, theaters and cinemas, closing
restaurants after 6 pm, also the recommendation not to move. The number of social
interactions is reduced by 50% compared to the initial value.

4. Yellow: high schools and universities closed (100% distance learning). Curfew from
22.00. Closure to the public of exhibitions, museums and other places of culture such
as archives and libraries. To model these additional restrictions, the number of social
interactions is reduced by 60%.

5. Orange: in addition to the limitations of the yellow area, the prohibitions on moving
between municipalities except for proven work needs and the closure of catering ac-
tivities (excluding take-away) are added. The use of smart working is encouraged and
recommended even for workers, excluding essentials. In the model, social interactions
are reduced by 70% compared to the initial values and cannot take place outside the
municipalities (except those related to work activities).

6. Red: in addition to the limitations of the orange zone, the prohibition of movement
within the municipality. For this, the daily interactions are reduced by 80% and
reduced to zero those regarded as usual ones.
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6.3. Spreading Parameters’ Selection

To correctly model the contagion evolution, we had to tune the simulator transmission
probability, which is a fundamental ActoDemic parameter [6]. We determined it with an
empirical procedure: we computed the average of ten simulations for every parameter’s
value and we searched for the optimal value with a random search across the probability
space, trying to chase up the real data curve in Reggio Emilia’s province (see Figure 8) and
even in Emilia Romagna region (see Figure 9).

Figure 8. Graph of daily infected persons with different TP values—Reggio Emilia province.

Figure 9. Graph of daily infected persons with different TP values—Emilia Romagna region.

For Reggio Emilia’s province, the TP optimal value was 0.285. Moreover, the TP value
identified for Reggio Emilia’s province was too high when applied to the whole Emilia
Romagna scenario. The reason was identified to be due to the commuting mechanism. In
fact, each province is also influenced by the contagions of the other provinces. Therefore,
we searched for a new TP value which could be suitable for the region scenarios, and then
we found 0.25 as the optimal value.

6.4. Results for Emilia-Romagna

After finding an optimal TP for the two considered use cases, we simulated the
scenarios again. We highlighted when the restrictions, implemented in the simulator, are
enabled. First, we simulated the Reggio Emilia province scenario with a TP equal to 0.285.
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We took into consideration the daily infections trend (see Figure 8), obtaining an R2 equal
to 0.854, a Pearson correlation equal to 0.941, and an RMSE equal to 48.32 (see Figure 10).

Figure 10. Positives’ daily representation—Reggio Emilia province, Emilia Romagna region.

The simulated curve has a very similar trend compared to the real one, which is
however very disturbed mainly due to the dissimilarity in the number of daily COVID-19
tests performed in the province. For this reason, we had to create a cumulative curve to
better limit data pollution. We got, in this case, an R2 equal to 0.986, a Pearson correlation
equal to 0.9988, and an RMSE equal to 608.88 (see Figure 11).

Figure 11. Positives’ incremental representation—Reggio Emilia province, Emilia Romagna region.

Secondly, we simulated the use case considering the entire territory of Emilia Romagna.
The TP taken into consideration in this case was 0.25. However, we also considered
both daily and incremental infections trends. In Figure 12, it is possible to see the curve
concerning the daily infections in the region. We obtained an R2 score of 0.881, a Pearson
correlation of 0.977, and an RMSE of 319.08. Moreover, for the incremental representation
of the infections in Figure 13, we obtained an R2 of 0.922, a Pearson correlation of 0.9993
and an RMSE 10,730.11.
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Figure 12. Positives’ daily representation—Emilia Romagna region.

Figure 13. Positives’ incremental representation—Emilia Romagna region.

We can infer that the simulator is performing and reliable, and thanks to the achieved
result, we can say that our commuting model simulates at best the movement of agents
within a bi-dimensional space, whether this space is a province with its municipalities or
an entire whole region. Therefore, the simulator can be used to verify the effectiveness
of the restriction and predict if they will be effective for lowering the epidemiological
curve’s trend.

6.5. Results for the Lombardy Region

For the Lombardy region case study, there were no high-resolution data for munici-
pality, rather it was only available at the province level. For this reason, we extended all
the features already validated for Emilia-Romagna using the 10 provinces of Lombardy.
Moreover, according to [6], we decided to simulate for this case study the first pandemic
wave between the 20 February 2020 and the 30 April 2020. We implemented the commuting
algorithm considering each province as a large and single urban center. As previously
reported, during the first pandemic period, real data about new infections were affected by
the small capacity of doing a large number of COVID-19 tests among people. Thus, real
data were underestimated and were about eight times higher, as proven by the serological
analysis led by Italian institutions in July 2020 [6]. In light of this, we considered the real
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data contagion incremental curve and a curve representing a serological data projection
representing a rough estimate of the neglected and never traced positives from the COVID-
19 tracking activity. In Figure 14, it is possible to see how the commuting curve (in black) is
very close to our estimation (in green), even though there is no social structure anymore
that supports the agents’ meeting activity. Moreover, for completeness, we also reported
our previous results (in red); this data was obtained using a power-law social network
structure. Qualitative data comparison is shown in Table 1. Finally, to validate our model,
we compared the simulation data with the official data provided by the Italian Govern-
ment (Protezione Civile), named “Real Data”. Considering that the official data have been
recognized as seriously underestimated in the first wave of the pandemic due to the lack
of molecular tests, we decided to compare with the results provided by the serological
investigation led by the Italian authorities over the Lombardy population in July 2020 to
understand the real impact of the spreading in the previous months (serological data).

Figure 14. Positives’ daily representation—Lombardy region.

Table 1. Pearson correlation and root mean squared error (RMSE) of our model with respect to the
serological data projection.

RMSE Pearson Correlation

Simulated Data—Real Data 398,042 0.9903

From the data qualitative analysis, it is clear that even the simulation that points the
foundations of its social network on commuting mechanisms are plausible and acceptable,
proving the robustness of the implemented ABMS model.

7. Discussion

We carried out further tests and simulations in order to validate our model. The
realized high-resolution model takes into consideration many factors and parameters to
tune up the infection spreading process (see [6] for better understanding how we used it).
In particular:

1. The contagion susceptibility by age
2. The protection achieved thanks to wearable protective devices
3. The quarantine mechanism
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Moreover, we analyzed how these parameters affect the spreading procedure. Hence,
we created a model that does not take these parameters into consideration, but makes
the infection process dependent only on transmission probability, without any additional
damper. Figure 15 shows different infection trends with different TP values. Considering
also the values reported in Table 2, we can assert that the parameters in our model create a
sufficient contagion dampening, validating our infection process modeling.

Table 2. Comparison of our model to the null models in terms of root mean squared error (RMSE)
and Pearson correlation n.

RMSE Pearson Correlation

Simulated Data—Serological 105,343 0.9903

Null model with TP = 0.2–Serological 1,301,649 0.8674

Null model with TP = 0.4–Serological 4,662,723 0.9456

Null model with TP = 0.6–Serological 5,840,197 0.9805

Null model with TP = 0.8–Serological 6,422,819 0.9763

Null model with TP = 1–Serological 6,759,554 0.9616

Figure 15. Simulation results without damping parameters with different transmission probability
(0.2, 0.4, 0.6, 0.8, 1) (incremental representation—y-axis scale is logarithmic).

We continued our analysis with further studies. For validating our model, we com-
pared our results with other SEIR models. The comparison is shown in Figure 16. We took
into account three different SEIR models. The first one (SEIR 1 in Figure 16) is a simple based
system dynamics SEIR [2]. The second one [66] (SEIR 2 in Figure 16) takes into account the
transmission rate of asymptomatic subjects and a piecewise exponentially-decreasing R0.
The third one [67] (SEIR 3 in Figure 16) optimizes the model’s parameters using compu-
tational swarm intelligence to model the early stage of the pandemic in Italy. Moreover,
we presented in Table 3 a numerical analysis of these models compared with ours. The
chart and the analysis showed that our model produces a more accurate prediction of the
infection spreading in terms of RMSE and the Pearson correlation.
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Figure 16. Comparison among our model, the serological data, the real data and the SEIR models
(incremental representation—y-axis scale is logarithmic).

Table 3. Comparison of our model to the SEIR models in terms of root mean squared error (RMSE)
and the Pearson correlation.

RMSE Pearson Correlation

Simulated Data—Serological 105,343 0.990

SEIR 1—Serological 269,197 0.769

SEIR 2—Serological 270,060 0.859

SEIR 3—Serological 318,034 0.713

8. Conclusions

In this paper, we introduced an approach for modeling and simulating large-scale
complex systems exploiting an ABMS approach and the high-performance computing
with a high-resolution. In particular, we modeled as a use-case the spread of COVID-19
across two Italian regions (Lombardy and Emilia-Romagna). To prove the efficacy of our
solutions, we implemented a fine-grained model that takes into account single individuals
with a socio-demographic model that also involves a novel commuting model to model
for this kind of simulation. The results prove that this kind of solution is be able to
solve complex tasks like predicting COVID-19 by exploiting the light-weight actor model
and HPC. The results we obtained for both cases Lombardy (RMSE 56,009 during spring
2020) and Emilia-Romagna (RMSE 10,730 simulating autumn 2020) with respect to the
real data suggest that the epidemiological domain can really benefit from such kinds of
simulations, especially at the beginning of a spreading phenomenon when few reliable
data are available. In particular, our ABMS model offers some interesting features which
distinguish it from other ABMS: (i) the scheduling of the agents is driven by the messages
exchanged from the agents of the application. In particular, at each step of execution an
agent can receive more messages, but it can only process the messages received in the
previous step; therefore, the behavior of the agents never depends on the order of execution
of the agents during a simulation step. (ii) The availability of “remote proxy” reference
provided by ActoDeS simplifies the development of agent-based applications because
developers do not have to worry if an agent needs to communicate with some local agents
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or even with some remote agents, (iii) The use of aggregation messages guarantees a strong
reduction in the cost of communication and, therefore, allows the development of real
large-scale applications. Finally, in our future works, we would like to also stress these
large-scale modeling capabilities in other domains and with complex tasks like financial
simulation [68], temporal graph-based tasks [69,70] and troll detection [71,72], and also to
refine our simulation models [73] and extend ActoDeS, taking advantage of some features
offered by the JADE framework [74].
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