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Abstract: Federated Learning (FL) provides a promising solution for preserving privacy in learning
shared models on distributed devices without sharing local data on a central server. However, most
existing work shows that FL incurs high communication costs. To address this challenge, we propose
a clustering-based federated solution, entitled Federated Learning via Clustering Optimization
(FedCO), which optimizes model aggregation and reduces communication costs. In order to reduce
the communication costs, we first divide the participating workers into groups based on the similarity
of their model parameters and then select only one representative, the best performing worker, from
each group to communicate with the central server. Then, in each successive round, we apply the
Silhouette validation technique to check whether each representative is still made tight with its current
cluster. If not, the representative is either moved into a more appropriate cluster or forms a cluster
singleton. Finally, we use split optimization to update and improve the whole clustering solution.
The updated clustering is used to select new cluster representatives. In that way, the proposed FedCO
approach updates clusters by repeatedly evaluating and splitting clusters if doing so is necessary to
improve the workers’ partitioning. The potential of the proposed method is demonstrated on publicly
available datasets and LEAF datasets under the IID and Non-IID data distribution settings. The
experimental results indicate that our proposed FedCO approach is superior to the state-of-the-art
FL approaches, i.e., FedAvg, FedProx, and CMFL, in reducing communication costs and achieving a
better accuracy in both the IID and Non-IID cases.

Keywords: federated learning; Internet of Things; clustering; communication efficiency; convolu-
tional neural network

1. Introduction

With recent advances in Internet of Things (IoT) devices and the fast growth of high-
speed networks, the need to collect and process vast amounts of distributed data generated
by these devices is significantly increasing. Furthermore, Artificial Intelligence (AI) has
concurrently transformed the discovery of knowledge methods with cutting-edge success
in several applications, including text prediction, facial recognition, natural language pro-
cessing, document identification, and other tasks [1,2]. However, those applications require
IoT devices to send sensitive information to a remote cloud server for centralized model
training, which raises data privacy concerns [3,4]. These privacy concerns of IoT devices
are supposed to be reduced by introducing an alternative setting, i.e., Federated Learning
(FL). The main idea of FL is to collaboratively train a shared machine learning model
across distributed devices, where the data are stored locally on devices [5,6]. However, a
naive implementation of the FL setting requires that each participant has to upload a full
model update to a central server during each iteration. For large updates with millions
of parameters for deep learning models and thousands of iterations [7], this step is likely
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to be a major hindrance in FL when the network bandwidth is limited. Thus, Federated
Learning can become completely impractical [8].

Over the past few years, there has been a growing consensus that the more data
that can be guaranteed, the better and higher accuracy that will be achieved. It should
not be assumed, however, that blindly introducing more data into a model will improve
its accuracy, but only that ensuring high-quality data will guarantee a higher degree
of accuracy.

Our Contributions: In this paper, we propose a novel FL framework, entitled Fed-
erated Learning via Clustering Optimization (FedCO), to lessen the challenges described
above during the training process. In particular, FedCO draws inspiration from our previ-
ous work, Cluster Analysis-Based Federated Learning (CA-FL), presented in [9]. In the
CA-FL framework, the server only communicates with the representative who achieved a
higher level of accuracy in each cluster.We implemented a regression model in machine
learning and evaluated and compared the CA-FL model using only the federated average
(FedAvg) [6] for human activity recognition (HAR) datasets. In the current work, we have
enhanced the original CA-FL framework with a dynamic clustering scheme that reduces
communication costs and more quickly ensures global model convergence. The result of
the improvements is a new version of a deep learning-based framework called FedCO. In
contrast to the original framework and compared to related work studies, discussed in
Section 2, FedCO incorporates the following amendments.

• We propose a deep learning-based FL framework, FedCO for short, that employs
a dynamic adaptation procedure to new data, which evaluates representatives tied
to their clusters at each learning round and redistributes them among the clusters if
necessary. In addition, the quality of the obtained adapted clustering is evaluated at
each round, and over-represented clusters of workers undergo a splitting procedure if
this improves the whole clustering (Section 4).

• We provide a convergence analysis for our proposed FedCO algorithm (Section 6.2).
• We initially evaluate the proposed FedCO by comparing its performance with that of

three baseline FL methods—FedAvg [6], FedProx [10], and CMFL [11]—on MNIST,
CIFAR-10, and Fashion-MNIST under two different data-distribution scenarios, Inde-
pendent and Identically Distributed (IID), and Non-IID.

• In addition, since our proposed FedCO algorithm is intended as a communication-
mitigated version of FedAvg, we further study and assess the robustness of the FedCO
with respect to FedAvg on two LEAF datasets under IID and Non-IID data.

• The conducted experiments have demonstrated the efficiency of FedCO over the
FedAvg, FedProx, and CMFL algorithms in terms of convergence rate and communi-
cation overhead (Section 6).

The rest of the paper is structured as follows. Section 2 reviews the previous studies
related to our work. The methodology used in our paper is presented in Section 3. Section 4
is devoted to the proposed FedCO and its strategy. The practical applications of those
experimental settings are discussed in Section 5. The conducted experiments and the
obtained results are analyzed and discussed in Section 6. The conclusions of our study and
potential future works are presented in Section 7.

2. Related Work

This section mainly reviews the published research works aimed at reducing commu-
nication overheads in FL. In general, Federated Learning requires massive communication
between the central server and the workers to train a global model [6]. Such an overhead
is imputed to the size of the model exchanged and to the number of rounds to converge.
Many works aim at reducing communication costs; e.g., HeteroFL [12] utilizes models
of different sizes to address heterogeneous clients equipped with different computation
and communication capabilities, while the work in [13] uses decentralized collaborative
learning in combination with the master–slave model.



Future Internet 2022, 14, 377 3 of 27

Among many of the published FL solutions, there are few existing FL works that use
clustering techniques [14–18]. For example, in [14] the study proposes clustering algorithms
based on clients’ similarities. The authors have tried to find a cluster structure of data to
collect clients with similar data distributions and to perform baseline FedAvg training per
cluster. In [15], the authors introduce clustering techniques to partition the clients with
similar data distribution using a measure of distance between the weight updates of the
clients. A dynamic clustering through generative adversarial network-based clustering
(GAN) is designed to obtain a partition of the data distributed on FL clients in [16]. The
authors in [17] introduced a new framework, namely the Iterative Federated Clustering
Algorithm (IFCA), in which clusters of users also aggregate their data with others in the
same cluster (the same learning task) and optimize model parameters for the user clusters
via gradient descent. Finally, Ouyang et al. [18] present clustering algorithms to cluster
the heterogeneous data across clients into various clusters to participate in global model
learning. The authors grouped the data after reducing its dimensions using PCA, and they
measured the similarity of local updates.

Although the studies discussed above [14–18] have applied clustering techniques to
FL scenarios, all of them have clustered the clients based on the distribution of their own
data, while our proposed technique partitions the clients based on their training model
parameters, i.e., in a way that ensures that each cluster will contribute to the model by
learning different aspects (different model parameters’ values) of the studied phenomenon.
Evidently, our solution for mitigating communication costs of FL is conceptually different
from the approaches discussed above, despite it also being based on clustering.

The majority of the studies in the field of resource-aware FL can be distributed into
two main categories: a reduction in the total number of bits transferred, and a reduction in
the number of local updates. Table 1 summarizes the techniques proposed by the research
community, classifying them according to the categorization mentioned above.

Table 1. Summary of recent studies to minimize communication overhead in FL.

Categories Existing Studies ML Model Used Datasets

First category

Chen et al. [19] CNN, LSTM MNIST, HAR

Fed-Dropout [20] DNN CIFAR-10, MNIST, EMNIST

Lin et al. [21] CNNs, RNNs Cifar10, ImageNet,
Penn Treebank

STC [22] VGG11, CNN CIFAR-10, MNIST

PowerSGD [23] ResNet-18, LSTM CIFAR10, WIKITEXT-2

FedOpt [24] NN, LM CIFAR10, MNIST

FEDZIP [25] CNN, VGG16 MNIST, EMNIST

FetchSGD [26] NN CIFAR-100, CIFAR-10,
FEMNIST

T-FedAvg [27] MLP, ResNet-18 MNIST, CIFAR-10

FedAT [28] CNN, Logistic CIFAR-10, Fashion-MNIST,
Sentiment140, FEMNIST,

Reddit
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Table 1. Cont.

Categories Existing Studies ML Model Used Datasets

Second category

CMFL [11] CNN, LSTM MNIST, NWP

FedMed [29] LSTM PTB, WikiText-2, Yelp

CEEP-FL [30] CNN MNIST, CIFAR-10

FedCS [31] NN CIFAR-10, FashionMNIST

FedPSO [32] CNN MNIST, CIFAR-10

AdaFL [33] MLP, CNN MNIST, CIFAR-10

MAB [34] NN, CNN MNIST, Video QoE

FedAtt [35] GRU WikiText-2, PTB, Reddit

FedPAQ [13] CNN, Logistic MNIST, CIFAR-10

Ribero et al. [36] CNN, Logistic, RNN Synthetic, EMNIST,
Shakespeare

CA-FL [9] SGD mHealth, Pamap2

Proposed (FedCO) CNN MNIST, Fashion-MNIST,
CIFAR-10, FEMNIST, CelebA

2.1. Reduction of the Total Number of Bits

The first category incorporates works that reduce the total number of bits transferred
for each local update through data compression. Chen et al. [19] propose an enhanced
Federated Learning technique by introducing an asynchronous learning strategy on the
clients and a temporally weighted aggregation of the local models on the server. Different
layers of the deep neural networks are categorized into shallow and deep layers, and
the parameters of the deep layers are updated less frequently than those of the shallow
layers. In addition, a temporally weighted aggregation strategy is applied on the server
to make use of the previously trained local models, thereby enhancing the accuracy and
convergence of the central model. Caldas et al. [20] design two novel strategies to reduce
communication costs. The first relies on lossy compression on the global model sent from
the server to the client. The second strategy uses Federated Dropout, which allows users to
efficiently train locally on smaller subsets of the global model and reduces client-to-server
communication and local computation. Lin et al. [21] propose Deep Gradient Compression
(DGC) to significantly reduce the communication bandwidth. Sattler et al. [22] introduce
a new compression framework, entitled Sparse Ternary Compression, that is specifically
designed to meet the requirements of the Federated Learning environment. Asad et al. [24]
implement a Federated Optimization (FedOpt) approach by designing a novel compression
algorithm, entitled Sparse Compression Algorithm (SCA), for efficient communication,
and then they integrate the additively homomorphic encryption with differential privacy
to prevent data from being leaked. Malekijoo et al. [25] develop a novel framework that
significantly decreases the size of updates while transferring weights from the deep learn-
ing model between the clients and their servers. A novel algorithm, namely FetchSGD,
that compresses model updates using a Count Sketch and takes advantage of the merge-
ability of sketches to combine model updates from many workers, is proposed in [26].
Xu et al. [27] present a federated trained ternary quantization (FTTQ) algorithm, which
optimizes the quantized networks on the clients through a self-learning quantization factor.
Vogel et al. [23] design a PowerSGD algorithm that computes a low-rank approximation
of the gradient using a generalized power iteration. A novel Federated Learning method,
entitled FedAT, with asynchronous tiers under Non-IID data, is presented in [28]. Fe-
dAT synergistically combines synchronous intra-tier training and asynchronous cross-tier
training. By bridging the synchronous and asynchronous training through tiering, FedAT
minimizes the straggler effect with improved convergence speed and test accuracy. Our
research does not consider methods that leverage data compression techniques because of
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reduced scalability in scenarios such as edge and fog computing, and 5G networks, where
hundreds of thousands of nodes cooperate in updating global models on the central server.
Moreover, these approaches strictly depend on the application field.

2.2. Reduction of the Number of Local Updates

The second category includes studies that aim at reducing the number of local updates
during the training process. For example, Wu et al. [29] have proposed a novel FedMed
method with adaptive aggregation using the topK strategy to select the top workers who
have lower losses to update the model parameters in each round. Likewise, Asad et al. [30]
have provided a novel filtering procedure on each local update that allows transferring
only the significant gradients to the server. The authors in [11] identify the relevant updates
of the participants and upload only them to the server. In particular, at each round, the
participants receive the global tendency and check the relevancy of their local updates with
the global model, and only upload them if they align. Nishio and Yonetani in [31] propose
an FL protocol of two-step client selection based on their resource constraints instead of the
random client selection. In addition, a global model update algorithm, namely FedPSO,
proposed transmitting the model weights only for the client that has provided the best
score (such as accuracy or loss) to the cloud server [32].

Notice that our proposed FL model falls into the second category. We have been
inspired by the studies discussed above, especially by CMFL [11] and FedProx [10], and we
explored an approach that applies clustering optimization to bring efficiency and robustness
in FL’s communication. The most representative updates are uploaded only to the central
server to reduce network communication costs.

The state-of-the-art solutions analyzed mainly conduct experiments considering a
CNN model, except for FedMed, which uses an LSTM model, and FedCS, which uses an NN
model (cf. Table 1, second category). Hence, we have chosen to assess the performance of
our approach (FedCO) by using a CNN model. While there are many datasets used for the
evaluation of FL solutions in the literature, the recurrent ones are MNIST, FashionMNIST,
and CIFAR-10. Hence, we have evaluated the performance of FedCO training the FL model
on the three datasets mentioned above. Additionally, we used datasets from the LEAF FL
repository (FEMNIST and CelebA) to benchmark the performance of our FL algorithm
against FedAvg [6] and FedProx [10].

3. Preliminaries and Definitions

In this section, we first briefly present the communication model and describe some
preliminaries of a naive method of FL [37]. We then describe three state-of-the-art FL
algorithms used for the comparison of our solution. Finally, we introduce the techniques
used to conduct clustering optimization, i.e., the k-medoids clustering algorithm, and
the Silhouette Index validation method. Table 2 summarizes the main notations used in
the paper.

Table 2. Main notations.

Notation Description

W Set of available workers

Wt Set of selected workers at tth communication round

wi A worker, i.e., wi ∈W

Di The local data in worker wi

ni The size of data in worker wi

n Total size of data

kt The number of clusters in round t
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Table 2. Cont.

Notation Description

C = {C1, . . . , Ckt} The clustering solution in round t

M The global model

M∗ The optimal global model

Mt The global model at tth round

Mi
t The local model of worker wi at round t

F(.) The objective function of the global model

Fi(.) The objective function of the local model of worker wi

T Maximal number of communication rounds

E The number of local epochs

η Learning rate

gi
t The gradients computed using back-propagation

s(.) Silhouette Index score

3.1. Communication Model

In the proposed FL environment, FL is split into two major parts: workers and the
central server. Our work aims to reduce communication overhead without sacrificing
accuracy value during the training process. In this setting, the server coordinates a network
of workers, controls the training progress of the model, broadcasts the original model to
all participating workers, and then executes all the aggregation processes of the model
updates. All workers are share model updates instead of sending their private data to a
central server for global model aggregation. Figure 1 outlines the overall operations of the
Federated Learning procedure.

Figure 1. The general operations of the Federated Learning process.
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Data are protected, with private access for each worker. Thus, model training occurs
locally on each worker’s side. In this context, we assume that each worker agrees on the
same learning task and the model parameters throughout the training process. In particular,
the proposed FL model updates the global model only with local model parameters from a
few workers that are considered representative. Such workers are selected at each training
round by identifying the highest quality of the local model produced of the worker. The
selection policy is assumed to be implemented in a server, i.e., a central node selects a
representative of the cluster with the highest accuracy. Furthermore, we assume that the
server is always reachable by the workers. Finally, our proposed technique works by
following this iterative collaboration between the central server and the workers.

3.2. Problem Description

In this work, we mainly concentrate on synchronous Federated Learning algorithms.
A Federated Learning system consists of a global modelM and a set of workers W. At
each communication round t, the server deploys the current model Mt to a subset of
workers Wt ⊂W that dynamically participate in the global aggregation at round t. Each
worker wi ∈ Wt locally keeps its personal data Di = {xij}

ni
j=1, (j = 1, 2, . . . , ni), where

xij is the jth training sample in Di. The size of the local dataset Di varies with different
real-world applications.

In standard centralized Stochastic Gradient Descent (SGD), the local updates of each
wi are calculated according to Equation (1) to optimizeMi

t, where η is the learning rate
and gi

t refers to the gradients computed:

Mi
t+1 =Mi

t − ηgi
t
. (1)

Then, each worker wi sends the local model changesMi
t+1 to the central server after

the number of E local step, where pi is the relative weight of worker wi, and the global
model is computed by applying Equation (2):

Mt+1 =Mt +

∑
wi∈Wt

piMi
t+1

∑
wi∈Wt

pi

. (2)

These are iterated until a certain stop criterion is met.
The corresponding local loss function ofMi of each worker wi is defined as

Fi(Mi) =
1
|Di| ∑

xij∈Di

f (Mi, xij), (3)

where f (Mi, xij) is the loss function for data point xij using (1). Each worker wi indepen-
dently updates the model over its own data Di to optimize its local loss function Fi(Mi).
The aim of improving the communication efficiency of Federated Learning is to minimize
the cost of sendingMi

t to a central server while learning from the data distributed over a
large number of decentralized edge devices. Similarly, the global loss function on all the
distributed datasets is defined as:

F(M) =
1
|W | ∑

wi∈Wt

Fi(Mi), (4)

whereM is the aggregated global model, and the overall goal is to decrease the global loss
function F(M), namely,

M∗ = arg min F(M). (5)
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Other issues related to Federated Learning problems, such as system heterogeneity or
privacy, are beyond the scope of this paper. Specifically, the proposed FedCO algorithm
does not account for heterogeneity, which for example could affect the selection of workers
that have enough power to transmit the model parameters. In the worst case, heterogeneity
could increase the convergence time or reduce the accuracy, if for example, workers that
achieve a higher accuracy cannot be selected because they have short battery lifetimes.

3.3. FL State-of-the-Art Algorithms

Most of the work on the convergence of compared FL algorithms such as FedAvg,
CMFL, and FedProx centers around minimizing (4). We compare the proposed FedCO with
the following state-of-the-art algorithms in the FL setting:

3.3.1. FedAvg

FedAvg, proposed by McMahan et al. in [6] can be viewed as a communication-light
implementation of the standard centralized SGD, wherein the local updates are aggregated
in the server after E local steps, where E ≥ 1.

3.3.2. FedProx

FedProx [10] is a distributed algorithm, wherein a round-varying proximal term is
introduced to control the deviation of the local updates from the most recent global model.
A participating worker uses a proximal update that involves solving a minimization
problem.

3.3.3. CMFL

Communication-Mitigated Federated Learning (CMFL) [11] improves the communica-
tion efficiency of Federated Learning while at the same time providing guaranteed learning
convergence.

3.4. K-Medoids Clustering Algorithm

K-medoids is a robust clustering algorithm. It is used to partition a given set of data
points into k disjoint clusters [38]. In contrast to the k-means, which use the mean value
of the data points in each cluster as a cluster centroid, k-medoids chooses an actual data
point, called a medoid. The medoid is the most centrally located point in a given cluster.
Therefore, k-medoids are more robust to outliers and noise than other points. The algorithm
works by arbitrarily choosing a set of k initial cluster medoids from a given set of data
points, where k is preliminarily specified. Then, each data point is assigned to the cluster
whose center is the nearest, and the cluster centers (medoids) are recomputed. This process
is repeated until the points inside every cluster become as close to the center as possible,
and no further item reassignments take place.

In our FedCO algorithm, we use k-medoids for partitioning the available workers into
groups of similar workers with respect to their local updates. Furthermore, 2-medoids are
used in the iteration phase of the algorithm for conducting cluster splitting.

3.5. Silhouette Index

The Silhouette Index (SI) is a widely used internal cluster validation technique, in-
troduced in [39]. SI can be used to judge the quality of any clustering solution C =
{C1, C2, . . . , Ck}. It assesses the separation and compactness between the clusters. Suppose
that ai represents the average distance of item i from all the other items in the cluster
to which item i is assigned, and bi represents the minimum of the average distances of
item i from the items of the other clusters. Then, the Silhouette score s(i) of item i can be
calculated as

s(i) = (bi − ai)/max{ai, bi}. (6)

s(i) measures how well item i matches the clustering at hand. s(i) ∈ [−1, 1], and if s(i) is
close to 1, this means that item i is assigned to a very appropriate cluster. The situation is
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different when s(i) is near zero. Specifically, item i lies between two clusters. The worst
case is when s(i) is close to −1. Evidently, this item has been misclassified.

In addition, the overall Silhouette score for the whole clustering solution C of n items
is determined as

s(C) =
1
n

n

∑
i=1

(bi − ai)

max{ai, bi}
. (7)

The SI can also be calculated for each cluster Cj (j = 1, 2, . . . , k) of nj objects as follows:

s(Cj) =
1
nj

nj

∑
i=1

s(i). (8)

The FedCO algorithm proposed in this study uses the Silhouette Index at each itera-
tion round for assessing the current workers’ partitioning and, based on this assessment,
selects what optimizing actions to conduct. For example, we used SI to check whether a
representative is still firmly tied to its current cluster of workers. It may happen that some
representatives will change their clusters. If we have a worker that produces a negative SI
value for all clusters, this means that this worker cannot be assigned to any of the existing
clusters, and it will form a new singleton cluster; i.e., a new concept appears. In addition,
SI is applied to assess whether an intended splitting of a cluster will improve the quality
of the whole clustering solution, i.e., whether it should be conducted. For more details,
see Section 4. Note also that in the implemented version of our FedCO algorithm, we use
Euclidean distance to measure the similarity between each pair of workers. In particular,
the Euclidean distance between the worker (the representative) and the cluster centers
(medoids) has been computed.

4. Proposed Approach

Our proposed FedCO algorithm foresees two distinctive phases: initialization and
iteration. These phases are described in what follows, along with cluster optimization
algorithms. In addition, the algorithm pseudo-code is reported in Algorithms 1 and 2.

Let W = {w1, w2, . . . , wn} be the set of all available workers, and Wt is a subset of W
that contains the workers selected at round t. The workers in Wt can be the representatives
of the clusters Ct = {Ct1, Ct2, . . . , Ctkt} obtained by applying a clustering algorithm to W,
or a set of randomly selected workers, and |Wt |< n.
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Algorithm 1 Federated Learning Using Clustering Optimization (FedCO)
Output: The FEDCO procedure updates the global modelMt for T iterations

1: procedure FEDCO(M0, Wt ⊆W, kt, T)
Initialization Phase

2: t← 0
3: ∀ wi ∈Wt, SEND(wi,Mt)
4: for each worker wi ∈Wt in parallel do
5: Mi

t+1 ← WORKERUPDATE(i,Mt)
6: end for
7: Mt+1 = ∑

wi∈Wt

ni
n
Mi

t+1 following (2)

8: Ct ← KMEDOIDS(kt, {Mi
t+1 | wi ∈Wt}, Wt)

Iteration Phase
9: while t ≤ T do

10: t← t + 1
11: Wt ← SELECTTOPRANKED(p, Ct)
12: ∀ wi ∈Wt, SEND(wi,Mt)
13: for each worker wi ∈Wt in parallel do
14: Mi

t+1 ← WORKERUPDATE(wi,Mt)
15: end for
16: Mt+1 = ∑

wi∈Wt

ni
n
Mi

t+1

17: Ct+1 ← SILHOUETTE(kt, Ct, Wt)
18: while | Ct+1 |<| Ct | do
19: Ct+1 ← CLUSTERINGOPTIMIZATION(kt+1, Ct+1)
20: end while
21: end while
22: end procedure

23: function SILHOUETTE((kt, Ct, Wt)) . Check whether each cluster representative still belongs
to its cluster

24: for wi ∈Wt do
25: for j = 1, 2, . . . , k do
26: compute s(wi) . According to Equation (6)
27: end for
28: if s(wi) < 0, ∀j ∈ {1, 2, . . . , k} then
29: kt ← kt + 1
30: Ctkt ← wi
31: else
32: Assign wi to the nearest cluster Ctj
33: end if
34: end for
35: ∀ Ctj (j = 1, 2, . . . , k) recompute the cluster center
36: return Ct+1 . The new set of clusters
37: end function

38: function WORKERUPDATE((wi,Mt)) . Local update
39: while True do
40: RECEIVE(wi,Mt)
41: LOCALTRAINING(wi,Mt)
42: Mi

t+1 ←Mi
t − ηgi

t . Local update, (1)
43: SEND(i,Mi

t+1)
44: end while
45: end function
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Algorithm 2 ClusteringOptimization
Output: updated kt and Ct

1: procedure CLUSTERINGOPTIMIZATION(kt, Ct)
2: s(Ct)← SILHOUETTESCORE(kt, Ct, Wt)
3: C′t ← ∅
4: for Ctj ∈ Ct s.t. | Ctj |> 1 do
5: s(Ctj)← SILHOUETTECLUSTER(Ctj, Wt)
6: while s(Ctj) < 0 do
7: (C1

tj, C2
tj)← KMEDOIDS({Mi

t+1 | wi ∈ Ctj}, k = 2) . run 2-medoids to
generate two new clusters

8: C̄t ← {Ct \ {Ctj}} ∪ {C1
tj, C2

tj}
9: s(C̄t)← SILHOUETTESCORE(kt, Ct, Wt)

10: if s(C̄t) > s(Ct) then
11: C′t ← C′t ∪ C̄t
12: kt ← kt + 1
13: end if
14: end while
15: end for
16: return (C′t, kt)
17: end procedure

18: function SILHOUETTESCORE(kt, Ct, Wt) . Silhouette score of whole cluster solution Ct
19: Compute s(wi) between each wi ∈ Wt and each medoid ctj ∈ Ctj (j = 1, 2, . . . , kt)

according to (6)
20: Compute the average Silhouette score over all representatives wi ∈ Wt according

to (7)
21: return s(Ct)
22: end function

23: function SILHOUETTECLUSTER(Ctj, Wt) . Silhouette Score of cluster Ctj ∈ Ct
(j = 1, 2, . . . , k)

24: Calculate Silhouette score s(wi) for each wi ∈ Ctj according to (6)
25: Compute the mean over Silhouette scores of all cluster members {s(wi) | wi ∈ Ctj}

according to (8)
26: return s(Ctj)
27: end function

4.1. Initialization Phase

1. At time t = 0, the Server initializes the inputs for the FedCO algorithm (Algorithm 1).
These are the modelM0, the set of representative workers Wt, the number of clusters
kt, and the number of iterations T. t = 0 (line 1 in Algorithm 1).

2. A central Server transmits the initial global modelMt to a set of workers Wt (Wt ⊂W).
These are selected to be used for initial training in round t = 0 of Federated Learning
(lines 3 in Algorithm 1).

3. Each worker wi ∈ Wt receives the global modelMt and optimizes its parameters
locally; i.e., theMi

t initial update is produced and sent back to the Server (Equation (1))
(lines 4–6 and lines 38–45 in Algorithm 1).

4. The Server aggregates the parameters {Mi
t | wi ∈Wt} uploaded by the selected work-

ers Wt to update the global modelMt through the FedAvg algorithm (Equation (2))
(line 7 in Algorithm 1).

5. The local updates {Mi
t | wi ∈ Wt} of the workers in Wt are analyzed by using the

k-medoids clustering algorithm (function KMEDOIDS, line 8 in Algorithm 1)). As a
result, kt clusters of workers with similar updates are obtained; i.e., an initial clustering
Ct = {Ct1, Ct2, . . . , Ctkt} of the workers in Wt is produced.
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4.2. Iteration Phase

1. At each iteration round t (t ≥ 0), the Server evaluates each local updateMi
t, wi ∈Wt

by using an evaluation measure that is suitable for the task under consideration. It
ranks the workers in each cluster Ctj, j = 1, 2, . . . , kt with respect to their evaluation
scores and selects the top-ranked worker, i.e., the representative (function SELECT-
TOPRANKED, line 11 in Algorithm 1). The selected representatives form a new set of
workers Wt+1, where |Wt+1 |= kt and kt <<|W0 |. Each selected worker wi ∈Wt+1
will check in with the Server.

2. The Server sends the global modelMt to each representative wi ∈ Wt+1 (line 12 in
Algorithm 1).

3. Each representative wi ∈ Wt+1 receives the global model Mt and optimizes its
parameters locally; i.e., theMi

t+1 update is produced (Equation 1) and sent back to
the Server (lines 13 and 15 in Algorithm 1).

4. The Server aggregates the received local models {Mi
t+1 | wi ∈ Wt+1} uploaded by

the representatives to update the global model through the FedAvg algorithm; i.e., an
updated global modelMt+1 is produced (Equation (2)) (line 16 in Algorithm 1).

5. The Server adapts Ct to the newly arrived local updates by conducting the following
operations:

(a) SI invokes the SILHOUTTE function (lines 17, 23–37 in Algorithm 1), which
assesses whether each representative wi ∈Wt+1 is still adequately tight with its
current cluster (Equation (6)). The updated clustering Ct+1 of Wt is produced,
and the clusters in Ct+1 may contains a set of workers different from Ct. Note
that k(t+1) ≥ kt, where k(t+1) =| Ct+1 |, since new singleton clusters may
appear due to the updating operation. This happens when the Silhouette
coefficient s(wi) of a representative for all clusters gives a negative value (lines
28–30 in Algorithm 1), which means that this representative cannot be assigned
to any existing cluster. Hence, this representative could be considered as a new
cluster with a single item (singleton).

(b) If there is a cluster C(t+1)j ∈ Ct+1, such that C(t+1)j = ∅, then Ct+1 =
Ct+1 \ {C(t+1)j}, and therefore, | Ct+1 |<| Ct |. This condition/event triggers
the optimization of the number of clusters by invoking the CLUSTEROPTIMIZA-
TION function (lines 18–20 in Algorithm 1). This operation is repeated for each
empty cluster of Ct+1.

A schematic illustration (flowchart) of the overall processes of the proposed FedCO
algorithm is given in Figure 2.

Figure 2. A schematic illustration of the entire process of the FedCO algorithm in two global
communication rounds: Initialization Phase and Iteration Phase.
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4.3. Cluster Optimization

The CLUSTEROPTIMIZATION algorithm works in what follows (cf. Algorithm 2):

1. Firstly, the SI score of the whole clustering solution Ct+1 is computed. This score
is used to check whether the splitting operation really improves the quality of the
clustering solution (line 2 in Algorithm 2).

2. Then, the SI score is calculated for each cluster C(t+1)j ∈ Ct+1, such that | C(t+1)j |> 1
using Equation (8). If s(C(t+1)j) < 0, then this cluster is a candidate to be split into
two clusters, and the following operations are performed (lines 4–6 in Algorithm 2):

(a) The two most distant points in the cluster C(t+1)j are found. They are used to
seed 2-medoids clustering, which is applied to split the cluster C(t+1)j into two
clusters (function KMEDOIDS at line 7 in Algorithm 2).

(b) The clustering solution Ct+1 is updated by replacing cluster C(t+1)j with the
two clusters obtained due to the splitting operation (line 8 in Algorithm 2),
and stored in the set C̄t+1.

(c) The SI score of the updated clustering solution C̄t+1 is computed (line 9 in
Algorithm 2 (7)).

(d) If the SI score of the new clustering solution C̄t+1 is higher than the one before
splitting, the new clustering solution is adopted and stored in the set C′t+1;
otherwise, the clustering solution Ct+1 is kept (lines 10–13 in Algorithm 2).

Steps 1–5 of the iteration phase are repeated until a certain number of training rounds
T is reached. Figure 3 shows a flowchart depicting the cluster optimization algorithm in a
single round of communication.

Figure 3. Flowchart depicting Cluster optimization algorithm.

The proposed FedCO implementation, at each training round, always selects the top
performing representative; i.e., the size of the clusters is not reflected in the aggregated
global model, and the size of the cluster does not impact the selection/importance of
the representative. The FedCO design, however, allows from each cluster the selection
of several top-ranked representatives, i.e., more than one, proportionally to the cluster
size. In that way, the bigger clusters will have more weight in the building of the global
model. It is also possible to assign explicit weights to the clusters representing their relative
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importance, and calculated based on their size. Our future plans include the investigation
of an optimized version of the FedCO algorithm where the importance of clusters will be
considered in the aggregated model.

5. Datasets and Experimental Setup

This section describes the datasets, the distribution of the data across the edge nodes,
the model selected and related parameters, and the performance metrics used for evaluat-
ing FedCO.

5.1. Datasets

We conducted experiments using a wide range of datasets. Firstly, we selected three
benchmark datasets widely used for image classification: MNIST [40], Fashion MNIST [41],
and CIFAR-10 [42].

• The MNIST dataset contains a 60,000-point training set and a 10,000 point test set with
10 classes. Each sample is based on a grayscale image of handwritten digits with a
size of 28 × 28 pixels.

• The Fashion MNIST dataset comprises a 60,000-point training set and a 10,000 point
testing set of images of fashion items with 10 different classes. Each image has
dimensions of 28 × 28 in grayscale.

• The CIFAR-10 dataset consists of a 50,000-point training set and a 10,000-point testing
set with images of objects from frogs to planes, where each image is 32 × 32 pixels in
10 classes.

Secondly, we considered two LEAF datasets [43], an open-source benchmark for
Federated Learning.

• FEMNIST for 62-class image classification, which serves as a more complex version of
the popular MNIST dataset [44].

• CelebA for determining whether the celebrity in the image is smiling, which is based
on the Large-scale CelebFaces Attributes Dataset.

5.2. Data Distribution

In an FL context, the performance is affected by the distribution of the training data
stored on the various workers. Interestingly, unlike other FL studies using clustering
techniques, different degrees of non-IID data do not affect the clustering results, as FedCO
clustering occurs based on the model parameters and not on the data themselves. In order
to assess the impact of different data distribution scenarios, we generated two experimental
datasets for each dataset introduced above:

• The IID dataset: Each worker holds the local data equal in size and label distribution.
• The Non-IID dataset: Each worker holds different data distributions in size and label

distribution compared to the global dataset.

5.3. Model Selection and Parameters

We have compared the proposed FedCO algorithm against the FedAvg, CMFL, and
FedProx algorithms using the Convolutional Neural Network (CNN) classifier as a training
model. The CNN model we used consists of two 5 × 5 convolution layers with a ReLU
activation and a final softmax output layer.

The baseline configuration parameters’ values listed in Table 3 are shared among the
four compared algorithms.
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Table 3. Hyper-parameter configuration.

Hyper-Parameter Value

Workers 100
Optimizer SGD

Classes 10
Batch Size 50

Learning rate 0.15
Local epochs 10

Global rounds 200
Clusters 8

Non-IID degree 0.5

5.4. Performance Metrics

FL typically relies on a large number of edge devices, sometimes in the magnitude
of millions, and due to the limited computing capabilities of those devices, decreasing the
communication rounds or communication overhead is crucial during the training process.
Hence, the performance metrics selected are the Number of Communication Rounds, the
Communication Overhead, and the model Accuracy. The Communication Overhead is defined
in [9] as

(N× |Ws |)× (2× T + 1),

where N is the size of the trained model in bytes, |Ws | is the number of selected workers,
and T is the total number of training rounds. We assume the size of the model updates to
be fixed. However, other communication costs are negligible.

It is worth mentioning that the total communication overhead of FedCO can be
calculated as the summation of the communication costs of the initialization stage and the
iteration stage together.

6. FedCO Performance Evaluation and Analysis

In this section, we first study the clustering optimization scheme used for the dy-
namic adaptation of partitioning of workers’ updates at each communication round. This
adaptive behavior contributes to achieving robust communication in FL. The performance
of the proposed FedCO is then evaluated and compared to three other existing FL ap-
proaches (FedAvg, FedProx, and CMFL) in terms of accuracy, communication rounds, and
communication overhead.

Our proposed FedCO algorithm is a communication-optimized version of FedAvg.
Therefore, we further evaluate these two algorithms by benchmarking them on two datasets
from the LEAF Federated Learning repository, namely FEMNIST and CelebA. In addition,
we further study our FedCO algorithm for two different scenarios for selecting cluster
representatives: a performance threshold-based worker selection versus the single (top-
performer) cluster representative selection, explained in Algorithm 1.

6.1. Clustering Optimization Behavior

Our clustering optimization algorithm assesses the local updates of clusters’ represen-
tatives at each communication round, and as a result, it assigns some workers to different
clusters. An output of this cluster-updating procedure is that clusters may appear or
disappear. Our solution is capable of catching and handling these scenarios. In addition, it
implements a splitting procedure that performs a further fine calibration of the clustering
for the newly uploaded updates.

In order to illustrate the properties of the clustering optimization scheme discussed
above, we show in Figure 4 the clustering updates in the first five global communication
rounds of the FedCO algorithm applied to the Non-IID FashionMNIST dataset. In the
example, in round 2, cluster 5 has disappeared and cluster 3 is a singleton, i.e., it cannot be a
candidate for splitting. Almost all of the remaining clusters (except cluster 6) have negative
SI scores. The remaining clusters (0, 1, 2, 4, and 7) have been split into two new clusters and
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their cluster labels are replaced. Interestingly, in round 3, the unique number of clusters
is 17. However, in round 4, five clusters have turned out empty and have disappeared (1,
4, 10, 13, and 16). Furthermore, eight clusters have positive SI scores (0, 2, 5, 6, 9, 12, 14,
and 15), while four have negative SI scores (3, 7, 8, and 11). The algorithm did not split the
clusters 7, 8, and 11 because this did not improve the quality of the clustering solution; i.e.,
it did not increase its SI score. Cluster 3 is still a singleton. The worker belonging to this
cluster may be considered as one that provides unique model parameters due to its training
data. Consequently, in round 5, we have only 12 clusters. Two clusters disappeared (2 and
14), and four new clusters appeared (1, 6, 12, and 17), while clusters 3 and 9 were singletons.

The cluster optimizations discussed above will continue in the same fashion for the
upcoming communication rounds. The workers’ partitioning is dynamically adapted at
each communication round to reflect the new local updates of the representatives.

Figure 4. The clustering updates in the first five global communication rounds of the proposed
FedCO algorithm applied on the Non-IID FashionMNIST dataset. Notice that the number in the
circle represents the cluster label.

6.2. Convergence Analysis

In this section, we provide a convergence analysis of the proposed FedCO algorithm and
theoretically show that it ensures a faster convergence than the baseline FedAvg algorithm.

Our analysis is based on two assumptions. The first one supposes that the data are
non-IID. Secondly, we assume that there is a partial involvement of workers; this strategy
is much more realistic as it does not require all of the worker output. Therefore, at each
iteration, we can calculate the global update by aggregating the local updates by using those
cluster representatives, which have reached a high accuracy level at this iteration phase.
Two scenarios are considered to this end: (i) a global model is trained by FedAvg based
on updates made by randomly selected workers, regardless of their accuracy value; (ii) a
global model is trained by applying FedCO, and in that way, at each training round, only
workers (cluster representatives) that have achieved the highest accuracy values are used.

Let us briefly summarize the working mechanism of the proposed FedCO algorithm.
In the tth global training iteration, each worker involved (wi ∈Wt) calculates the average gi

t
gradients using the optimization algorithms in the local dataset in the current global model
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Mt. Note that according to Equation (5), high-quality data and a high accuracy of the
workers’ models can lead to a faster convergence of the local loss functions (Equation (3))
and the global loss function (Equation (4)) [45]. Both the local model updateMi

t of the
worker in Equation (1) and the shared global model updateMt+1 in Equation (5) can be
more quick to converge to the target value with fewer iterations. Consequently, the training
time of a worker in a global iteration is decreasing. Therefore, highly accurate workers’
models can significantly improve the learning efficiency of Federated Learning; e.g., it
can ensure less training time [31,46]. This process is iterative until a global accuracy ε
(0 ≤ ε ≤ 1) is achieved. Specifically, each update of the local model has a local accuracy
wε

i that corresponds to the local quality of the worker wi data. A higher local accuracy
leads to fewer local and global iterations [46,47]. FedCO uses an iterative approach that
requires a series of communication rounds to achieve a level of global accuracy ε. Server
and representative communications occur during each global round of the iteration phase.
Specifically, each representative minimizes its objective Fi(Mi) in Equation (3) using the
local training data ni. Minimizing F(M) in Equation (4) also requires multiple local
iterations up to a target accuracy. Then, the global rounds will be bounded as follows:

O(log ( 1
ε ))

1− wε
i

Thus, the global rounds are affected by both the global accuracy ε and the local
accuracy wε

i . When ε and wε
i are high, FedCO needs to run a few global rounds. On the

other hand, each global round consists of both computation and transmission time. Our
primary motivation in this work is to consider the communication overhead, discussed and
analyzed in detail in Section 6.3. The computation time (wcmp

i ), however, depends on the
number of local iterations. When the global accuracy ε is fixed, the computation time is
bound by log( 1

wε
i
) for an iterative algorithm to solve Equation 1; here, (SGD) is used [46].

Therefore, the total time of one global communication round for a set of representatives is
denoted as

Tcom = ∑
wi∈Wt

log(
1

wε
i
)wcmp

i + wcom
i ,

where wcom
i represents the transmission time of a local model update. As a result, a high

local accuracy value of wε
i leads to fewer local iterations wcmp

i and eventually to lower
global communication rounds Tcom. Unlike FedCO’s convergence rate, FedAvg does not
necessarily guarantee a faster convergence speed. This is because FedAvg uses a much
larger number of workers compared to the FedCO model. Therefore, if there are more
workers with poor data quality, the convergence will be reached at a slower rate than when
much fewer workers with high data quality are used. However, at each global round,
FedCO may have selected a different set of workers. Those, however, are not selected
randomly, but each one is a representative of a cluster of workers having modeled similar
parameters, and in addition, it achieves the highest accuracy among the cluster members.
Let TFedAvg and TFedCO represent the number of global rounds for which convergence has
been reached by FedAvg and FedCO, respectively. Then, Tables 4 and 5 demonstrate
that the inequality TFedCO < TFedAvg is valid in the experiments aiming to reach the same
accuracy using the two algorithms.
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Table 4. The number of communication rounds to reach a target accuracy for the three compared
FL algorithms.

IID
MNIST FashionMNIST CIFAR-10

Rounds Saving Rounds Saving Rounds Saving

FedAvg 190 (ref) 200 (ref) 200 (ref)
FedProx 185 26% 190 5% 188 6%
CMFL 50 73% 60 70% 80 60%
FedCO 25 86% 50 75% 30 85%

Non-IID
MNIST FashionMNIST CIFAR-10

Rounds Saving Rounds Saving Rounds Saving

FedAvg 170 (ref) 200 (ref) 200 (ref)
FedProx 167 17% 186 7% >200 -
CMFL 60 64% 150 25% 160 20%
FedCO 30 82% 70 65% 60 70%

Table 5. The number of communication rounds to reach a certain accuracy level for the two compared
FL algorithms on each LEAF dataset.

IID
FEMNIST CelebA

Rounds Saving Rounds Saving

FedAvg 140 (ref) 110 (ref)
FedCO 12 91% 30 72%

Non-IID
FEMNIST CelebA

Rounds Saving Rounds Saving

FedAvg 100 (ref) 150 (ref)
FedCO 14 86% 10 93%

6.3. Communication Rounds versus Accuracy

In this subsection, we present the results related to the evaluation of the accuracy
of our distributed deep learning (DL) model. Figures 5–7 show how the compared FL
(FedAvg, FedProx, CMFL, and FedCO) algorithms perform in terms of Accuracy versus the
Number of Communication Rounds. For the MNIST dataset (see Figure 5), we can observe
that the FedCO algorithm converges faster than with the state-of-the-art approaches. As is
shown in Figure 5a (IID data distribution setting), FedAvg and FedProx use 100 rounds
to obtain an accuracy of 85%. The CMFL reaches the same accuracy in 30 rounds, while
our FedCO algorithm achieves this result with only 10 rounds. Furthermore, in Figure 5b,
FedCO dramatically decreases the communication rounds with respect to FedAvg, FedProx,
and CMFL. Indeed, in Non-IID data, a learning accuracy of 90% is achieved by FedCO in
40 rounds, FedAvg has conducted 160 rounds, FedProx requires 200 rounds, and CMFL
needs 60.

In Figure 6a, we compare the accuracy of the four FL approaches in the case of the IID
data distribution scenario of FashionMNIST. The FedCO outperforms FedAvg, FedProx,
and CMFL in this experimental setting. Within 25 communication rounds, CMFL, FedAvg,
and FedProx reach 81%, 69%, and 74% accuracy, respectively, while our FedCO algorithm
achieves an accuracy of 90% with the same number of communication rounds. Notice that
under the Non-IID data distribution setting, our FedCO algorithm outperforms the other,
reaching an accuracy of nearly 79% with only 11 rounds; this costs 100 communication
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rounds for FedAvg and 80 rounds for FedProx. CMFL considerably minimizes this cost to
60; see Figure 6b.

(a) (b)
Figure 5. Learning accuracy versus the number of communication rounds for MNIST data. The
top plot presents the results produced in the case of the IID data distribution scenario, while the
bottom plot depicts the results generated in the case of the Non-IID data distribution scenario. (a) IID;
(b) Non-IID.

(a) (b)
Figure 6. Learning accuracy versus communication rounds for FashionMNIST data. The top plot
presents the results produced in the case of the IID data distribution scenario, while the bottom
plot depicts the results generated in the case of the Non-IID data distribution scenario. (a) IID;
(b) Non-IID.

Finally, for the CIFAR-10 IID data, the required communication costs of the FedAvg
and FedProx to achieve 85% accuracy is 150 rounds, while CMFL obtains the same result
for 75 rounds. Our FedCO algorithm outperforms the others, needing only nine rounds
to reach this accuracy value (cf. Figure 7a). In the case of the CIFAR-10 Non-IID data (see
Figure 7b), in 25 communication rounds, FedCO obtains an accuracy of 85%, while FedAvg
and FedProx reach 79% and 80%, respectively. On the other hand, CMFL achieves a close
result 82% of accuracy in the same number of rounds.

(a) (b)
Figure 7. Learning accuracy versus communication rounds for the CIFAR-10 data. The top plot
presents the results produced in the case of the IID data distribution scenario, while the bottom plot
depicts the results generated in case of the Non-IID data distribution scenario. (a) IID; (b) Non-IID.
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FedCO differs from the Federated Learning baseline FedAvg as follows: our algorithm
uses a much smaller number of nodes while the aggregation procedure is the same. Thus,
if we have a smaller number of workers, convergence is reached faster than in FedAvg,
where all the available workers are used. At each round, FedCO selects and uses a different
set of workers, and each worker is a representative that achieves the highest accuracy in
each cluster. Hence, the accuracy is not sacrificed.

Table 4 shows the number of communication rounds to achieve the maximum model
accuracy (i.e., to converge) for the datasets considered. Specifically, the target accuracy
values are 90% for MNIST and FashionMNIST and 85% for CIFAR-10. FedAvg is the
baseline benchmark, and the iterations saved for algorithm X (X = FedProx, CMFL, or
FedCO) is computed as

1− num_o f _iteration_X
num_o f _iteration_FedAvg

.

FedCO saves from 75% to 86% of iterations to converge with respect to FedAvg for IID
data distribution setting, and it saves from 65% to 82% iterations for the Non-IID data
distribution scenario. Moreover, FedCO always converges with at least half of the iteration
rounds needed by CMFL. In more detail, one can observe that the model on the MNIST IID
data distribution setting converges to an accuracy of 90% in 190 rounds with the FedAvg
algorithm, and in 25 rounds for our FedCO algorithm, providing savings of 86%, and
in 185 rounds for FedProx, and in 50 rounds for CMFL, providing savings of 26% and
73%, respectively. The model trained on the FashionMNIST IID data distribution scenario
converges to a target accuracy of 90% in 200 rounds for FedAvg, and in 50 rounds for FedCO,
saving 75% of communication rounds, while it requires 190 and 60 rounds for FedProx (5%
saving) and CMFL (70% saving), respectively. Furthermore, in the FashionMNIST Non-IID
data distribution scenario, the model converges to an accuracy of 90% in 200 rounds for
the FedAvg algorithm, and in 186 rounds for FedProx, saving only 7%. In contrast, it
requires 70 and 150 communication rounds for FedCO and CMFL, with savings of 65%
and 25%, respectively. The experimental results on the CIFAR-10 data show that the model
trained in the IID and Non-IID data settings need 200 rounds for FedAvg to reach 85% of
the accuracy, while it requires 188 rounds for FedProx to reach 85% in IID, and more than
200 rounds in Non-IID to obtain target accuracy. On the other hand, FedCO and CMFL
require 30 and 80 rounds, respectively, to converge under the IID data distribution scenario.
Furthermore, within the Non-IID data distribution setting, the model converges to an
accuracy of 85% in 200 rounds for the FedAvg, while it requires 60 and 160 communication
rounds for FedCO and CMFL, respectively. Similarly, in the Non-IID data distribution
setting, the FedCO communication costs are reduced to 82% with the MNIST data, 65%
with the FashionMNIST data, and up to 70% with the CIFAR-10 dataset, compared to
the FedAvg.

Although FedProx is considered to be an optimized version of FedAvg, we can observe
from the results discussed above that FedProx behaves very similarly to FedAvg and shows
only a slightly better performance than FedAvg in the conducted experiments. In addition,
as we mentioned earlier, our FedCO algorithm can also be interpreted as an optimized
version of FedAvg. Therefore, we further study these two algorithms (FedCO and FedAvg)
by conducting experiments and benchmarking their performance on two datasets from the
LEAF repository, namely FEMNIST and CelebA. Figure 8 shows the final accuracy scores
after several rounds of communication for the FEMNIST dataset. Comparing the results
produced by the two methods, it is evident that FedCO performs significantly better than
FedAvg, on both the IID and Non-IID data scenarios. Specifically, FedCO ensures a higher
accuracy than that of FedAvg within a smaller number of communication rounds. For
example, in Figure 8a, FedCO can reach 90% in only 110 iterations, while the FedAvg never
reaches that level within 200 iterations.
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(a) (b)
Figure 8. Learning accuracy versus number of communication rounds for FEMNIST data. The
top plot presents the results produced in the case of the IID data distribution scenario, while the
bottom plot depicts the results generated in the case of the Non-IID data distribution scenario. (a) IID;
(b) Non-IID.

Analyzing the results in Figure 9, we can observe the following: (1) FedCO consistently
outperforms FedAvg in both data distribution scenarios; (2) FedCO generally achieves
better accuracies than FedAvg in most cases (see Figure 9b), considering that both of them
have been trained with only 200 rounds.

(a) (b)
Figure 9. Learning accuracy versus number of communication rounds for CelebA data. The top plot
presents the results produced in the case of the IID data distribution scenario, while the bottom plot
depicts the results generated in case of the Non-IID data distribution scenario. (a) IID; (b) Non-IID.

Table 5 reports the number of communication rounds that the FedAvg and FedCO
algorithms need in order to converge, for the considered datasets. Specifically, the target
accuracy values are 70% for FEMNIST and 65% for CelebA, respectively. In addition,
FedAvg is considered as the baseline.

Note that these results again verify the faster convergence of FedCO compared to that
of FedAvg. Notice that we have also studied and compared FedProx and FedAvg on the
same LEAF datasets, and they again have demonstrated very similar behaviors.

6.4. Communication Overhead Analysis

In this section, we compare the efficiencies of the two compared FL algorithms for
100 communication rounds with respect to different numbers of workers on the CIFAR-10
and the MNIST datasets, under the IID and Non-IID data distribution scenarios. The
obtained results are reported in Figures 10 and 11, respectively. As one can notice, the
FedCO algorithm has performed significantly better than the FedAvg, FedProx, and CMFL.
The reader can also observe that the communication overhead increases linearly with the
number of workers. Hence, to scale in a real scenario with thousands of workers, a FL
algorithm should be capable of reducing the communication cost as much as possible,
and reducing the number of rounds to converge, as with the proposed FedCO algorithm.
Finally, the communication overhead in the IID and Non-IID cases is very close or identical.
The results produced on the FashionMNIST dataset are similar to the other two datasets.
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(a) (b)
Figure 10. The communication overhead for 100 rounds for the CIFAR-10 data. The top plot presents
the results produced in the case of the IID data distribution scenario, while the bottom plot depicts
the results generated in the case of the Non-IID data distribution scenario. (a) IID. (b) Non-IID.

(a) (b)

Figure 11. The communication overhead for 100 rounds for the MNIST data. The top plot presents
the results produced in the case of the IID data distribution scenario, while the bottom plot depicts
the results generated in the case of the Non-IID data distribution scenario. (a) IID. (b) Non-IID.

The communication cost savings for algorithm X (X = FedProx, CMFL, or FedCO) is
computed as

1− Communication_overhead_X
Communication_overhead_FedAvg

.

As can be seen in Figure 10a,b, the FedCO costs on the CIFAR-10 IID data are 1 MB
for 20 workers, which is a reduction in communication costs by 83% in comparison with
FedAvg, while FedProx and CMFL are allowed to save only 12% and 36% in communication
costs, respectively. In an experiment involving 100 workers on the CIFAR-10 dataset,
FedAvg, FedProx, and CMFL exchange 32.5, 31.04, and 20 MB of data, while the proposed
FedCO consumes only 5.4 MB, which means that FedCO reduces the communication
overhead by 84% with respect to FedAvg, and CMFL reduces the communication overhead
by 38%, while FedProx saves only 3% in communication costs.

Figure 11a,b report the communication costs under the MINIST IID and Non-IID data
distribution scenarios, respectively. The trend is similar to the results of the CIFAR-10
data experiments. Both the IID and Non-IID data distribution settings confirm that our
FedCO algorithm ensures a significantly smaller communication overhead in comparison
with FedAvg, FedProx, and CMFL, by substantially reducing the required number of
bytes exchanged. As can be noticed, FedCO allows a saving of between 80% and 85%
with respect to FedAvg. In Figures 10 and 11, the communication costs increase linearly
with the increasing number of workers for all of the compared algorithms. It is obvious
that FedCO consistently outperforms FedAvg, FedProx, and CMFL in terms of reducing
communication costs.
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6.5. Threshold-Based Worker Selection

We also study scenarios in which we use an accuracy threshold to select the number
of workers. The threshold is the specified cut-off of accuracy value for the selection of
representatives of a cluster of workers. We select any worker where the local update ensures
an accuracy of greater than or equal to the predefined threshold as a representative of a
cluster. In this section, we report the results produced by testing four different threshold
values for FedCO, namely 70%, 75%, 80%, and 85%. The network threshold for the selection
of workers varies from bandwidth, transmission speed, or packet loss [48].

Table 6 reports the number of the top-ranked workers that the FedCO algorithm has
selected to communicate with the server when the predefined threshold is met within 100
communication rounds.

Table 6. The number of selected representatives with respect to four different threshold values on the
LEAF datasets CelebA (top) and FEMNIST (bottom) for 100 global rounds.

CelebA

Threshold Accuracy IID Non-IID

≥70% 853 826
≥75% 673 515
≥80% 600 245
≥85% 257 226

FEMNIST

Threshold Accuracy IID Non-IID

≥70% 912 844
≥75% 806 694
≥80% 730 604
≥85% 408 380

In the case of the CelebA data, the highest number of representatives has been selected
when the accuracy of the local models is equal to or above 70%, namely 853 and 826 workers
under IID and Non-IID, respectively. In the experiments conducted on the FEMNIST data,
when the threshold of the local models was greater than or equal to 70%, 912 workers
were selected as representatives for the IID scenario, and 844 workers for the Non-IID one.
Similarly, these two values represent the highest numbers of selected workers. It is obvious
from the number of representatives reported in Table 6 that the low threshold value implies
the greater number of representatives to be selected for global training in FL and vice versa.
Thus, we can observe that the proposed algorithm substantially reduces the accumulated
communication overhead when FedCO selects only k representatives (i.e., one per cluster),
rather than selecting a variable number of representatives based on a predefined threshold
to train a global model.

Table 7 presents how many workers per round have been selected as representatives
when various thresholds are applied for CelebA under the IID and Non-IID data scenarios,
respectively.

We can see that until 10 communication rounds, the FedCO selects only k represen-
tatives, since there are no local models where the accuracy has reached 70% at 10 rounds.
Thus, the number of representatives increases from 10 to 97 at round 12 due to the selec-
tion of all the clusters’ workers, ensuring an accuracy that is equal to or above the given
threshold. Notice that there are 97 workers of different clusters that reach the value of
accuracy of their local models of 70% or above. We can see that FedCO needs 30 rounds
to have a number of workers whose accuracy is greater than or equal to 80% and to meet
this condition under IID data. Furthermore, to meet the threshold of 85%, FedCO requires
100 rounds to have a number of workers (98) such that their accuracy of the local models
meets this condition under IID. On the other hand, for Non-IID, FedCO never meets this
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condition, since no local models have a accuracy value of higher than or equal to 85%; thus,
FedCO selects only 36 workers to represent the different clusters.

Table 7. Total number of selected representatives when the given accuracy threshold is reached in
CelebA dataset at different rounds.

IID Non-IID

Round ≥70% ≥75% ≥80% ≥85% ≥70% ≥75% ≥80% ≥85%

1 10 10 10 10 10 10 10 10
10 10 12 16 14 14 16 18 16
12 97 13 16 16 14 18 22 18
20 102 103 20 20 104 26 25 24
30 105 104 95 18 104 30 28 24
40 102 108 98 20 110 32 30 26
50 106 108 100 22 112 96 32 28
60 106 110 104 24 114 99 34 28
70 107 111 106 26 116 102 36 32
80 108 114 108 22 120 104 38 35
90 110 116 110 26 118 106 38 34
100 112 116 112 98 122 108 97 36

Figure 12 provides communication overheads for various thresholds. It is obvious
to the reader that a higher number of selected representatives implies a higher values of
communication costs to the server.

(a) (b)
Figure 12. The communication overhead for 100 rounds for the two LEAF datasets. The top plot
presents the results produced for CelebA dataset, while the bottom plot depicts the results generated
on FEMNIST dataset. (a) CelebA; (b) FEMNIST.

The above results suggest that our proposed FedCO algorithm can substantially reduce
the communication overhead by using a higher accuracy threshold. In general, FedCO can
be considered as being robust to different application scenarios by being able to tune its
parameters (e.g., the accuracy threshold or the number of top-ranked representatives per
cluster) to find a trade-off between the application-specific resource constraints and the
accuracy requirements.

7. Conclusions

This paper proposes a clustering-based FL approach, entitled Federated Learning
using Clustering Optimization (FedCO). The proposed FedCO approach partially builds
upon our previous work and extending further towards proposing a dynamic clustering
scheme that improves global accuracy and that reduces the communication overhead in
a Federated Learning context. The proposed approach dynamically identifies worker
participants in each communication round by initially clustering the workers’ local updates
and selecting a representative from each cluster to communicate with the central server,
thus minimizing the communication cost. The proposed FedCO method is evaluated
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and benchmarked to three other state-of-the-art FL algorithms (FedAvg, FedProx, and
CMFL) on five publicly available and widely exploited datasets for studying distributed
ML algorithms. The experimental results have shown that the proposed FedCO algorithm
significantly reduces communication rounds without sacrificing accuracy. In addition, the
experimental evaluation has demonstrated that our FedCO algorithm outperforms the
three other FL algorithms under the two studied data distribution scenarios. We have also
shown that the FedCO algorithm can dynamically adapt the workers’ partitioning at each
communication round by relocating the representative workers and conducting the cluster
splitting needed for the clustering improvement.

Our future plans include the enhancement of the FedCO approach through using
other data distillation techniques; e.g., an interesting future direction could be made
by applying computational topology methods for studying data topology and selecting
representatives based on this. Another direction is the translation of the FedCO concept to
unsupervised learning settings, i.e., developing a resource-efficient FL algorithm based on
the unsupervised ML model.
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