a .
E@ future internet

Article

A Dynamic Federated Identity Management Using
OpenlD Connect

Ahmad Alsadeh V*©, Nasri Yatim 2

check for
updates

Citation: Alsadeh, A.; Yatim, N.;
Hassouneh, Y. A Dynamic Federated
Identity Management Using OpenID
Connect. Future Internet 2022, 14, 339.
https:/ /doi.org/10.3390/£i14110339

Academic Editor: Rafael Valencia-

Garcia

Received: 6 October 2022
Accepted: 17 November 2022
Published: 21 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Yousef Hassouneh 2

Electrical and Computer Engineering Department, Birzeit University, Birzeit P.O. Box 14, Palestine
Computer Science Department, Birzeit University, Birzeit P.O. Box 14, Palestine
* Correspondence: asadeh@birzeit.edu

2

Abstract: Identity federation allows one to link a user’s digital identities across several identity
management systems. Federated identity management (FIM) ensures that users have easy access
to the available resources. However, scaling FIM to numerous partners is a challenging process
due to the interoperability issue between different federation architectures. This study proposes a
dynamic identity federation model to eliminate the manual configuration steps needed to establish an
organizational identity federation by utilizing the OpenID Connect (OIDC) framework. The proposed
model consists of three major steps to establish dynamic FIM: first, the discovery of the OpenID
service provider, which indicates the location of the partner organization; second, the registration of
the OpenlD relying party, which allows the organization and its partner to negotiate information for
establishing the federation; finally, establishing the dynamic trust federation. The proposed dynamic
FIM model allows applications to provide services to end-users coming from various domains while
maintaining a trust between clients and service providers. Through our proposed dynamic identity
federation model, organizations can save hundreds of hours by achieving dynamic federation in
runtime and serving a large number of end-users.

Keywords: identity management; identity federation; OpenlD connect; dynamic client registration

1. Introduction

The growth in the use of business outsourcing and collaborative platforms causes
demand for organizations to share the identity information they maintain about their users
with other partners. Collaboration and sensitive data sharing are protected by the legislation
of the organizations’ countries. However, the sensitive data should not be transmitted on
the Internet insecurely since it creates security and privacy risks. Organizations adhere to
federated environments using a federated identity management (FIM) standard to cope
with this growth and to add value to the business by allowing third parties services. The
literature in the past decade has been proposing different approaches for establishing trust
federation. Many problems and concerns might arise when it comes to managing and
securing users’ accounts, identifiers and passwords in a highly dynamic and insecure
environments. Therefore, establishing an identity trust federation between an organization
and another entity removes the complexity and concerns regarding identity management
for organizations, allowing them to focus on providing the services they want and delegate
the identity management tasks to specialized entities.

The state of identity management today relies on federation protocols, such as the
Security Assertion Markup Language (SAML), Open Authentication 2.0 (OAuth 2.0) and
OpenlD Connect (OIDC) for external communication of identity credentials. SAML al-
lows the exchange of user authentication and information using XML between different
domains [1], OAuth 2.0 allows users to give applications permissions to access resources on
their behalf [2], and OIDC allows identity to be communicated in a RESTful-like manner [3].

Identity federation allows one to link a user’s digital identities across several identity
management systems. When an organization needs to collaborate with a partner’s platform,

Future Internet 2022, 14, 339. https:/ /doi.org/10.3390/£i14110339

https:/ /www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14110339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-5893-4805
https://orcid.org/0000-0001-5531-2392
https://doi.org/10.3390/fi14110339
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14110339?type=check_update&version=1

Future Internet 2022, 14, 339

20f19

the organization does not release a copy of the user’s store (user’s credentials) in order to al-
low the user to authenticate with the partner’s platform. Instead, the organization provides
an identity management system to the partner’s platform to utilize the stored identities,
given that the organization trusts the business partner’s platform. Therefore, an identity
federation protocol allows the decoupling of the authentication and the authorization
functions, removes the security risk for managing multiple credentials by the organization
users and creates a safe channel for identities to be shared across different domains.

The adoption of IoT solutions, such as smart-home and e-health, raises a new security
concern that requires providing an identity federation framework [4,5]. The information
between multiple IoT devices should be seamlessly exchanged across all domains to achieve
authentication and authorization. For example, in an e-health IoT service, users are able to
use their single account for all the e-health provider’s services for all the IoT devices via
identity federation [4].

Although organizations gain significant business value using identity federation
management techniques, they continue to face major obstacles especially when it comes to
scaling up to hundreds of business partners [1]. Each business partner might use different
identity federation architectures, which raises an issue in interoperability between those
different federation architectures [6].

OIDC [3] is a common authentication protocol and its popularity has been increasing
enormously since its launch in 2014. A large number of online applications are adopting
OIDC protocol to allow them to request and receive information about the authenticated
end-user without the hassle of managing end-users’ identities. Users can see OIDC when
a web applications allows them to sign in using Facebook, Google, Microsoft’s Office 365
or other OPs. OIDC is considered one of the first options by software developers when it
comes to application programmable interface’s (API) security [7], since it provides:

¢ Easy consumption of identity tokens: an end-user’s identity is received by client
applications in a secure JSON Web Token (JWT) called the ID token. JWTs are portable
and support a range of signature and encryption algorithms [7].

¢ OAuth 2.0 protocol: OIDC is built on top of OAuth 2.0, meaning that clients use
OAuth 2.0’s various authorization grant types to obtain ID tokens and access tokens,
which work with both web applications and native mobile applications [7].

* Simplicity: OIDC is relatively simple to integrate with applications, while also offering
features and security options that can meet demanding enterprise requirements [7].

Through OIDC, organizations can establish a federated environment with third-party
providers in order to extend their services. However, the process of establishing a feder-
ated identity is a relatively complex task. The complexity comes from the rapid need of
businesses collaborations and outsourcing.

This study addresses the following research question: How can a dynamic OIDC
federated identity model be applied to assist organizations to scale-up to a large number of
business partners? To answer this question, we propose a model that is able to achieve a
dynamic identity federation between two entities leveraging OIDC. The model is based
on three major OIDC specifications [8-10]. The model utilizes those specifications to allow
OIDC relying parties to locate an end-user’s identity providers, register with them as
an OIDC relying party (RP) and establish a trust through public key infrastructure (PKI)
in order to obtain the needed information for authenticating an end-user and achieving
identity federation.

Contribution

This study provides a model that enables organizations to dynamically establish a
federated identity management (FIM) framework between each other to cope with the
increase needs of business collaboration. The proposed model allows organizations to
serve end-users coming from any domain, even if the organization does not recognise
this domain, since it establishes the identity federation and trust dynamically and at
runtime. The proposed model consists of three major processes necessary for establishing

Future Internet 2022, 14, 339

30f19

the identity federation: dynamic discovery, dynamic client registration and dynamic trust
federation establishment.

2. Related Work

Wang et al. [11] proposed an approach to achieve unified identity authentication using
Microsoft Active Directory (AD). The authors argued that with the growth of enterprise
systems and with minimal planning for unified solutions, each new system integrated with
the enterprise is deployed separately and manages a different set of identities. Therefore,
users of these multiple systems have to manage multiple credentials to access each system,
which leads to some users experiencing issues along with security and maintainability
issues. In such cases, usually a single sign-on (SSO) solution is needed, which acts as
a centralized authentication system that allows users of the enterprise to sign in only
once as their identities is being managed by a single entity. The main goal of the paper
is to integrate AD authentication and validation to the application system in order to
achieve a unified management authorization service that can realize cross-platform and
cross-language system applications.

Jian et al. [12] based their research on establishing a trust relationship between two
communicating parties that need to trust each other in a nontrusted environment. Estab-
lishing this trust relationship allows users of one organization to access servers of the other
organization securely and seamlessly. They proposed a new component called trust server
provider (TSP) that acted as a middleware third party to manage the trust relationship
between the two communicating parties. This was done by requiring every communicating
party to register their information with the TSP and obtain a public key. The TSP then
could help the communication between parties by establishing a new trust relationship at
runtime. The TSP also supported updating parties’ information and revoking their public
keys, if any of the parties needed to not be trusted any more. The main contribution of their
study was the establishment of a trust framework that allowed communicating parties to
trust each other and achieve a unified single sign-on using SAML.

Harding et al. [1] proposed a dynamic SAML approach that aimed to automate the
exchange of configuration information and to minimize manual steps necessary to estab-
lish a trust federation between business partners to allow identity federation and single
sign-on (SSO). The main goal of the paper was to cope with the continuous growth of
business collaboration platforms that require businesses to share the identity information
of their users with their partners. SAML by its nature is designed to deliver SSO and
other security attributes that provide organizations techniques for identity federation man-
agement. Although SAML provides great security, its deployment time is a hurdle for
organizations, and deploying SAML-based projects may take weeks or months because
of the lack of standardized mechanisms for metadata exchange and trust establishment.
Through dynamic SAML, the authors were able to establish three main goals. The first
goal was to create and maintain a trust framework between hundreds of business partners
with the least minimal resources through cryptography and X509 certificates. The second
goal was to create a dynamic SAML document metadata exchange that allowed SAML
entities to establish an SSO connection instantly, allowing the least minimal resources to be
used for SAML deployment. The third and final goal was to secure the SAML metadata
exchange by guaranteeing metadata authenticity through a digital signature. As a result, dy-
namic SAML both simplified the process of deploying federation technologies and ensured
secure deployments.

Bendiab et al. [13] proposed a trust model that aimed to integrate identity federation
systems into the cloud environment. The model leveraged the fuzzy cognitive maps (FCM)
tool to establish, model and evaluate a trust relationship between two entities. Upon end-
user authentication, the RP received a signed access token and used it to access a protected
resource from the resource server. When the RP provided the token and sent an API call to
request the resource, the resource server (or the API) computed the trustworthiness level,
leveraging the FCM tool of the identity provider (IdP) from which the token was issued.

Future Internet 2022, 14, 339

40f19

If the value of trustworthiness was above a certain threshold, the IdP could be trusted
and resource access could be granted. The motivation behind this model was that existing
identity federation models, such as SAML and OIDC, were limited by the complexity of
their trust model. This complexity comes from the fact that these models are based on a
preconfigured circle of trust (CoT), which is hard to scale and is not extendable. In addition,
this model provided a confidence level in a user’s identity trust, unlike OIDC which lacks
that confidence.

Ferdous et al. [14] proposed a model based on a drafted SAML profile that allowed
users to establish a trust federation dynamically between two organizations, resolving the
limiting dynamic federation support in the current SAML implementation. The author
claimed that the proposed dynamic SAML model allowed users to create the identity
federation dynamically and in real-time with a specific lifetime threshold, meaning that the
federation is removed once the threshold has passed.

Korse et al. [15] presented a multifactor authentication mechanism named Truste-
dID system that was based on Mobile Connect and OpenlID Connect standards to access
sensitive mobile services on a smartphone.

Bendiab et al. [16] introduced a trust and identity management model based on the
blockchain for cloud identity management. In another study, Yang and Li [17] leveraged
the smart contracts and zero-knowledge proof (ZKP) algorithms to avoid the threats that
might arise by using a centralized third party for improving the existing claim identity
model in a blockchain. Moreover, Mell et al. [18] used a smart contract on a blockchain to
eliminate the need for a third party management while enabling users to maintain a level
of self-sovereignty.

Our literature review indicated that no research until this time provided a dynamic
identity federation model using OIDC. In fact, Bendiab et al. [13] in 2018, and others [14],
stated that the OIDC registration process is hard to scale and not technically extendable,
OIDC does not provide a protocol that specifies a trust model to establish a trust relationship
between two entities, and OIDC has limitations and cannot be deployed in a dynamic and
open environment, such as the cloud.

In mid 2019 until September 2021, the OpenID Foundation issued a new identity
federation trust protocol named OIDC Federation 1.0 [10]. The OIDC protocol specified
how an organization could dynamically discover and register with an identity provider by
establishing a federated identity model along with establishing a trust model between those
two entities. We believe that the recent release of the OIDC federation protocol introduced
a new opportunity to utilize OIDC for dynamic identity federation.

3. The Proposed Approach

To answer the research question and to address the challenge of scaling up organiza-
tions, a dynamic federated identity model is proposed by leveraging the OIDC framework
to provide organizations the capability to dynamically scale up their businesses and estab-
lish an identity federation management framework. The approach defines several models
that can be combined and used to achieve a dynamic federation between organizations.
As a result, end-users accessing any web-enabled services should be able to use a sin-
gle identity while accessing all those services. The proposed model is implemented as a
proof-of-concept in a controlled environment to help us answer the research question.

Our identity provider (IdP) was Microsoft Active Directory Federation Services
(ADFS), since it supports OIDC authentication. An authorization server proxy was de-
veloped to make ADFS support dynamic client registration. Other identity providers
that support dynamic client registration could be used instead of ADFS (https://docs.
microsoft.com/en-us/windows-server/identity /active-directory-federation-services, (ac-
cessed on 16 November 2022), such as IBM Cloud Identity (https://cloud.ibm.com/
docs/account?topic=account-iamoverview, (accessed on 16 November 2022), Authelete
2.2 (https:/ /www.authlete.com, (accessed on 16 November 2022), Cloudentity (https:

https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
https://cloud.ibm.com/docs/account?topic=account-iamoverview
https://cloud.ibm.com/docs/account?topic=account-iamoverview
https://www.authlete.com
https://cloudentity.com/why-cloudentity
https://cloudentity.com/why-cloudentity

Future Internet 2022, 14, 339

50f19

/ /cloudentity.com/why-cloudentity, (accessed on 16 November 2022) and Gluu Server 4.2
(https:/ /gluu.org, (accessed on 16 November 2022).

The proposed model consisted of three major processes necessary for establishing
identity federation: dynamic discovery, dynamic client registration and dynamic trust
federation establishment.

1. Dynamic discovery: The dynamic discovery process answers this question to a service
provider “Where are end-users coming from?”. This is necessary in order for an RP to
know where and how to authorize end-users for granting them access to its services.

2. Dynamic client registration: In order for an RP to be able to use OIDC services,
the RP needs to register with an OpenlD provider (OP). The process allows RPs to
dynamically register themselves by providing information about themselves and to
obtain the necessary information.

3. Dynamic trust federation: The previous two steps do not define a mechanism to
establishing a trust between OIDC RPs and OPs. The dynamic trust federation process
allows RPs and OPs to dynamically obtain and establish a trust from a common
trusted third party. Establishing this trust allows entities to trust the information
communicated between each other. An entity can establish a cryptographically based
trust relationship with other entities via a certificates exchange that anchors these trust
relationships into a trust anchor list. The main purpose of a trust anchor entity is to
issue certificates to other entities participating in the trust federation. This way, relying
parties can only register with OPs by exchanging certificates in a signed statement
whose certificate validates the signature against its trust anchor list.

4. Experimental Environment and Implementation

Our proposed model is presented along with its implementation details, which allows
an organization to establish a dynamic federated identity environment with third-party
providers using OIDC. Assume Bob works in a marketing and advertisement company
called AdvertiseMe. Bob’s supervisor asked Bob to create a marketing flyer for an event
that will take place next month. Bob finds an online tool to help him create a marketing
flyer named FlyerIt. However, FlyerIt requires users to log in to use all the features
provided by this tool. Bob would like to sign in to FlyerIt using his company email address
bob@advertiseme.com without registering as a new user and creating a new password.
Using our proposed dynamic federation model, FlyerIt should allow Bob to use his
AdvertiseMe company identity to sign in to the system even though it does not know
anything about AdvertiseMe’s identity servers and how to authorize its users, and if
it is even a trusted entity. FlyerIt should also be able to retrieve Bob’s necessary user
information from his AdvertiseMe company, such as his profile picture, name and company
address. At the end, Bob uses his company email address and password, is granted
permissions and is able to access all the features provided by the FlyerIt tool to create
a flyer.

4.1. Dynamic OIDC Provider Discovery

We assume that AdvertiseMe is a company that has its users stored in ADFS and is
capable of providing claims to clients or relying parties. F1yerIT is a web application that
provides web services and its resources requires users to login using any of the supported
identity providers. We assume that Bob has never used the FlyerIt tool before. If Bob
wants to use his AdvertiseMe identity to log in to the tool, how would the tool know who
is the identity provider of Bob to authenticate him? Dynamic discovery helps FlyerIt
as an RP to dynamically allocate an end-user’s identity provider. The discovery process
is important so that the RP can obtain the OP information needed for interaction (e.g.,
registration and authorization) with the identity provider. The discovery process is the
first process towards achieving a dynamic identity federation environment. This step is
initiated only once. Once an RP has discovered the IdP of a specific host, the RP is able to

https://cloudentity.com/why-cloudentity
https://cloudentity.com/why-cloudentity
https://gluu.org

Future Internet 2022, 14, 339

6 of 19

serve end-users coming from the same host indefinitely. Dynamic discovery is possible
through the use of WebFinger [19] to locate the OP for a specified end-user.

Figure 1 depicts the sequence diagram that defines the steps for FlyerIt to achieve

the dynamic discovery of AdvertiseMe.

& Em Ei

End-User

Relying Party (RP) End-User Host 's WebFinger
1. Request Sign-in

\4

\4

4. Normalize
Identifier

5. Request Issuer

1
1
6. Issuer !

Figure 1. OIDC Dynamic Discovery Model.

1.

Dynamic discovery is triggered whenever a user requests a sign-in from an RP in
order to access their resources and services. Bob is the initiator of this process when
he triggers the FlyerIt RP for a custom sign-in using his company’s credentials.
The RP (FlyerIt) requests the end-user to provide an identifier, which is necessary so
that the RP can extract the resource and the host. In our scenario, the RP requests Bob
to provide an identifier.

The end-user provides an identifier to the RP. The RP accepts an email address as
an identifier. Now, Bob provides his email address bob@advertiseme. com to the RP
(FlyerIt).

The RP extracts the identifier provided by the end-user and applies a normalization
in order to determine the resource and host values. FlyerIt extracts Bob’s email and
determines that the resource is equal to Bob, and the host is equal to advertiseme. com.
The RP prepares a WebFinger request to the resource’s host in order to discover and re-
ceive the issuer (IdP) location. In our scenario, FlyerIt prepares the following request.
The HTTP GET request is sent to http://advertiseme.com/.well-known/webfinger (ac-
cessed on 16 November 2022). The /.well-known/webfinger path is a well-known
path that is defined in the protocol and all OPs supporting dynamic client registra-
tion should implement this path to allow discovery. In addition, the path query re-
source=acct:bob@advertiseme.com is presented to indicate the resource that is being
discovered. The acct scheme should be attached at the beginning of the identifier [8].
In addition, the path query rel=http://openid.net/specs/connect/1.0/issuer in-
dicates that we are requesting the issuer’s location.

GET /.well-known/webfinger
?resource=acct:bob@advertiseme.com
&rel=http://openid.net/specs/connect/1.0/issuer
HTTP/1.1

Host: advertiseme.com

http://advertiseme.com/.well-known/webfinger

Future Internet 2022, 14, 339

7 of 19

6. Once the OP receives the request, it figures out the issuer of the provided resource

and returns it to the RP as a WebFinger response as depicted below. The WebFinger
response contains a links array that consists of a rel and href values for the specified
subject. The rel indicates the type of location returned, which is an issuer location in
our case. The href is the URL of the specified issuer.

HTTP/1.1 200 OK

Content-Type: application/jrd+json
{

"subject": "acct:bobQadvertiseme.com",

"links":

{

"rel": "http://openid.net/specs/connect/1.0/issuer",
"href": "https://identity.advertiseme.com"

H

}
As a result of the steps defined previously, the RP has successfully discovered the

location of the IdP of the end-user. FlyerIt, in our case, has discovered the locations of
Bob’s OP. As a result, FlyerIt is able to register itself with AdvertiseMe and authenticate
Bob to access its resources.

4.2. Dynamic OIDC RP Registration

In order for Bob to be able to sign in to FlyerIt using his company’s credentials,
FlyerIt should dynamically register with Bob company’s AdvertiseMe IdP in order to
complete the login. Before initiating the OAuth 2.0 protocol, and in order to utilize all
services for an end-user, the RP should register with the OP. The process of dynamic RP
registration (known as dynamic client registration) is a protocol defined by both OAuth
2.0 [20] and OIDC [9]. The main concern is to allow RPs to register with the OPs dynamically
at runtime to allow OAuth 2.0 authorization and OIDC authentication.

Figure 2 illustrates the abstract flow of the dynamic client registration process between
an RP (or client) and an OP (or authorization server).

(2) Registration

(Response

] =

Relying Party OpenlD Connect
(RP) Provider (OP)

(1) Registration.
Request

Figure 2. OIDC Dynamic Client Registration.

1. To register a new client, the client sends a registration request, which is an HTTP
message to the authorization server with the important client metadata parameters.

2. The authorization server validates the client metadata and assigns a new client with
the provided metadata in the request parameters. Then, the authorization server sends
a registration response, which is also an HTTP message. The registration response
contains information about the newly created client. It also sometimes includes a
client secret that allows the client to authenticate itself while initiating an OAuth
2.0 authorization flow. The registration response depends solely on the information
provided by the client.

Future Internet 2022, 14, 339

8of 19

Figure 2 shows back and forth communication between the RP and the identity

provider. The nature of this communication might vary from one identity provider to
another. Some identity providers require more security on their registration endpoints. Our
proposed model for dynamic client registration requires all registration endpoints to be
over TLS. In addition, we add an extra layer of security that allows the identity provider to
establish a trust with the RP. This trust is important to establish a federation between the
two entities. We discuss our trust establishment model in Section 4.3. For now, we illustrate
the basic communication between an RP and an identity provider to enable dynamic client
registration.

Figure 3 illustrates the complete flow of dynamic client registration;

]

Relying Party (RP) OpenlID Colnnec‘t Provider

1. Request Metadata

2. Metadata Response

3. Register Request

4. Register Response

Figure 3. OIDC Dynamic Client Registration Model.

1.

The dynamic discovery process allows FlyerIt as an RP to identify the location of
the IdP for AdvertiseMe. After knowing the location, FlyerIt attempts to request
metadata information of AdvertiseMe via a configuration endpoint defined by Adver-
tiseMe. OIDC defines a configuration endpoint /.well-known/openid-configuration
that must be implemented in all OPs, to allow clients to retrieve information about OPs
including the registration endpoints. Thus, FlyerIt as an RP prepares the following
HTTP request.

GET /.well-known/openid-configuration

HTTP/1.1

Host: advertiseme.com

After FlyerIt sends the configuration metadata request, OP AdvertiseMe returns
all metadata configuration information in a metadata response in terms of a JSON
response. The configuration metadata contain a registration endpoint, which is
the registration URL that allows clients to register with the server. Other metadata, such
as the authorization endpoint and token endpoint, are URLs needed for end-user
authorization and access_token retrieval. In addition, the OP server also provides a
JWKS URL, which contains all the signing keys used to sign access tokens and identity
tokens. Providing the signing keys allows relying parties to validate the integrity and
authenticity of tokens created by the OP server.

{

"issuer": "https://identity.advertiseme.com",

"authorization_endpoint": "https://identity.advertiseme.com/oauth2/v2/auth",
"device_authorization_endpoint": "https://identity.advertiseme.com/code",
"token_endpoint": "https://identity.advertiseme.com/token",
"registration_endpoint": "https://identity.advertiseme.com/register",
"userinfo_endpoint": "https://identity.advertiseme.com/v1/userinfo",
"revocation_endpoint": "https://oauth2.advertiseme.com/revoke",

"jwks_uri": "https://identity.advertiseme.com/oauth2/v3/certs",
"response_types_supported": [

Future Internet 2022, 14, 339

90f19

"code",

"token",

"id_token",

"code token",

"code id_token",

"token id_token",

"code token id_token",

"none"

1,

"subject_types_supported": [

"public"

1,
"id_token_signing_alg_values_supported": [
"RS256"

1,

"scopes_supported": [

"openid",

"email",

"profile"

1,
"token_endpoint_auth_methods_supported": [
"client_secret_post",
"client_secret_basic"

1,

"claims_supported": [

"aud",

"email",

"email _verified",

"exp",

"family_name",

"given_name",

"iat",

"iss",

"locale",

"name",

"picture",

"sub"

1,
"code_challenge_methods_supported": [
"plain",

"5256"

1,

"grant_types_supported": [
"authorization_code",
"refresh_token",
"urn:ietf:params:oauth:grant-type:device_code",
"urn:ietf:params:oauth:grant-type: jwt-bearer"
]

}

}

Now that the FlyerIt RP has identified the registration URL, it prepares the regis-
tration request to add itself as a client for the OP AdvertiseMe. The registration
request is an HTTP request to the registration endpoint URL containing client metadata
parameters that the client uses in order to identify itself to the authorization server.
An example HTTP POST request sent from the FlyerIt RP to the AdvertiseMe OP is
as follows. The registration request contains the following parameters:

* redirect_uris: The redirect_uris are the locations where an authorization
server sends the end-user after the end-user authorizes the client applications.

Future Internet 2022, 14, 339

10 of 19

In our scenario, FlyerIt provides those URIs so that AdvertiseMe can send Bob
back to those URIs after Bob authorizes and grants FlyerIt permissions to access
his basic profile information.

* client_name: A friendly name to be represented to the end-user so the user can
identify the client.

e grant_types: OAuth 2.0 grant types are identified by the client to be used.
Specifying these types will restrict the client to only using those types.

POST /register HTTP/1.1
Content-Type: application/json
Accept: application/json

Host: identity.advertiseme.com

{

"redirect_uris":
["https://flyerit.com/callbackl",
"https://flyerit.com/callback2"],
"client_name": "FlyerIt Forever",
"grant_types":
["authorization_code",
"client_credentials"],
"response_types": ["code"]

}

4. After the client sends the registration request, the authorization server validates the

request and returns the newly created client identifier along with a client secret if
applicable and other registration metadata. As a result of dynamic client registration,
the RP can utilize OIDC services to serve end-users. FlyerIt can now allow Bob
to sign in and use all the services it provides using Bob’s company ID. In addition,
FlyerIt can retrieve basic user information about Bob. The following sample is a
registration response returned by AdvertiseMe.

HTTP/1.1 201 Created

Content-Type: application/json

{

"client_id":
"f1e76c1d-88e2-413c-a287-99c320deef12",
"client_secret":
"RT8V4bHvZqkA4n6DRsPJEGFd6arTAAWF jHnkZgdM" ,
"redirect_uris":
["https://flyerit.com/callbackl",
"https://flyerit.com/callback2"],
"client_name": "FlyerIt Forever",
"grant_types":

["authorization_code",
"client_credentials"],

}

4.3. Dynamic OIDC Trust Framework

Although identity federation offers better services to organizations at a lower cost, it
also proposes new security threats. These security threats allow malicious entities to use a
user’s information or web resources. OAuth 2.0, based on a comprehensive threat model
developed in 2013 [21], documents additional security considerations that include attacks
on OAuth 2.0 tokens and protected resources. However, when it comes to crossing security
domains in a federated identity, as well as a dynamic approach to allow discovery and
client registration, many more security concerns arise. Thus, the proposed model so far
raises some security concerns and is vulnerable to security attacks, such as phishing, broken
authentications, replay attacks, on-path attacks, session hijacking, SSRF and code injection.

To tackle the security concerns in our proposed model, we propose a new trust
model based on the new OIDC federation protocol [10]. This model aims to establish

Future Internet 2022, 14, 339

11 0f 19

a trust relationship between RPs and OPs. The proposed trust model is built based on
PKI. The main goal of this concept is to verify that an RP is the entity it is claiming to
be. The proposed trust model first aims to enhance the dynamic discovery model by
leveraging digital certificates and PKI. This allows RPs to retrieve OPs’ digital certificates
upon discovery and validate their integrity and trustworthiness by performing certificate
path validation. Accordingly, the RPs are able to identify malicious authorization servers.
Second, it aims to enhance the dynamic client registration process by also leveraging digital
certificates, which allows a real-time trust assessment and establishment between RPs and
OPs. The model forces RPs to create a digitally signed software statement as a registration
request and provide it to the authorization server. This in turn allows authorization servers
(or OPs) to validate the signature of the statement, prove the possession of a private key
and validates the integrity of the client to be registered by evaluating its trust chain for
the provided certificate. As a result, malicious RPs are not able to register themselves thus
preventing security concerns, such as phishing attacks.

Figure 4 illustrates a high level overview of the enhanced model that leverages PKI
and digital identities in both dynamic IdP discovery and dynamic client registration.

L, K

Flyerlt (RP) AdvertilseMe 1dP

1. Request Metadata
.

2. Metadata Response

1
— .
3. Validate, :
Response; !
' '
, 4. Register Request '
. >
1
. v 5. Validate
! ! Request
1 1
1
' 6. Register Response '
1 1
l< ------------------- 1
'
1

Figure 4. FlyerIt Dynamic Client Registration.

1. Upon discovery, FlyerIt requests that authorization server’s metadata information
from a well-known configuration endpoint defined by AdvertiseMe.

2. AdvertiseMe returns all metadata information as a JSON object.

3. FlyerIt should not allow users to be able to authenticate themselves via a malicious
organization’s authorization server. The least it can do is to verify the identity and the
integrity of this organization. Using PKI and certificate path validation, FlyerIt can
verify the integrity, trustworthiness and appropriateness of the certificate provided by
AdvertiseMe. FlyerIt now can extract the set of certificates provided in the JWKS
claim. The claim contains a set of public keys that are used to verify tokens that are
issued, signed and sometimes encrypted by the authorization server. The "x5c" claim
contains the X.509 public key certificate or certificate chain corresponding to the key
that is used by the authorization server (i.e., AdvertiseMe) to digitally sign tokens.
The value of the "x5c" claim is a PEM encoded certificate, which is a block of encoded
text that contains all of the certificate information and public key. Once the FlyerIt
is in possession of the server’s certificate, it can start building a PKI certificate chain
from AdvertiseMe’s end-entity certificate up to the first root CA that FlyerIt trusts.
If the verification is successful, FlyerIt can verify the certificate revocation list, or

Future Internet 2022, 14, 339

12 0of 19

CRL, published by the root CA. If the CRL does not indicate any revocation status,
AdvertiseMe digital certificate is considered valid and can be relied upon.

{

"keys":

[

{

"kty": "RSA",
"use": "sig",
"alg": "RS256",

"kid": "ZhaR-H6Nug-3jEUOjdUvmXPiNIM",
"x5t": "ZhaR-H6Nug-3jEUOjdUvmXP1NIM",
"n": "xCikm91WJOqHsXhnVYbwek_8Yxf22icabrh10v1Ez_WoyOFOi..",

"e": "AQAB",

"X5c: [
"MIIC*jCCAdqAwIBAgIQDupdR+gtaZCyz1j7+XF1DANBgkqhkiGOw. . "
]

}

1

}

FlyerIt prepares the registration request. The registration request is a statement used
for registration submission.

{

"registation_statment":

"eyJhbGci0iJIUzINiIsInR5cCI6IkpXVCI9. . ""

by

The registration request is simply a signed JSON Web Token (JWT) that contains
the necessary metadata used for client registration. Figure 5 is a sample registration
statement. A JWT consists of three parts: a header, a payload and a signature. The
header consists of three major claims, the "typ" claim, which represents the type of
token (JWT); the "alg" claim, which represents the algorithm that is used for the
signature (RSA SHA256); and a "x5c¢" claim, which contains the X.509 public key
certificate or certificate chain corresponding to the key that is used to sign the JWT.
The signature part represents the signature of the encoded header and the encoded
payload. The payload contains the claims needed by the authorization server to
identify and register the OpenlD Client (FlyerIt). Other claims are included in
the payload; the "iss" and "sub" claims, which indicate FlyerIt is the base URI;
the "aud" claim, which references AdvertiseMe’s endpoint URL; and "exp", which
indicates the expiration time for the JWT.

The registration statement serves three major purposes:

* It provides the digital certificate needed to validate the signature and trust
establishment. The digital certificate is included in the header of a JWT.

* It establishes the client control of a private key. Since the JWT is signed and
contains the signature, verifying the signature using the public key certificate
provided in the header allows the authorization server to verify that the issuer of
the JWT is who it is claiming to be and truly possesses the private key.

* It contains the necessary metadata for client registration. These metadata are
included in the JWT payload.

Future Internet 2022, 14, 339 13 of 19

(LNF. } Header

— Payload

— Signature

Figure 5. Sample Registration JWT.

5. AdvertiseMe validates the registration request through the following steps:

* First, AdvertiseMe validates the digital signature of the JWT using the certificate
extracted from the JWT header. If the signature cannot be validated, the request
is denied. Validating the signature establishes the client control of the certificate’s
private key.

¢ Second, a certificate path building and validation is performed. This process is
required by the RP to verify the integrity and trustworthiness of all the certificates
in a certificate chain that was used to sign a JWT.

* The third step is validating the claims inside the JWT payload. If any of the
claims is invalid or missing, the registration request is denied.

6. If the request is valid, the authorization server (AdvertiseMe) returns a response
indicating a successful client registration. The registration response should con-
tain a client_id claim containing the new client identifier issued by the authoriza-
tion server.

So far, the main concern was to establish a federated identity between a client (FlyerIt)
and an authorization server (AdvertiseMe). Establishing this trust allows end-users to
use their identity as a unified identity that serves them in the open world. Now, Bob can
utilize his organization identity to access the full services of FlyerIt since a trust federation
environment was established between FlyerIt and AdvertiseMe. All users coming from
the organization will be able to log in to F1lyerIt and even achieve this with a single sign-on
(SSO) solution. Figure 6 illustrates how FlyerIt can sign in Bob, retrieve his basic profile
information and allow him to use the services provided.

1. Bob requests to sign in to FlyerIt using his AdvertiseMe credentials.

2. Since FlyerIt had previously dynamically discovered and registered with the Ad-
vertiseMe identity provider, it redirects Bob to AdvertiseMe’s authorization endpoint
initiating the authorization code flow. Other grant types might be used; we used the
authorization code flow.

GET /authorize?
response_type=code&
scope=openid&
state=state_value&

Future Internet 2022, 14, 339

14 of 19

[[Ei

Bob

Flyerld (RP) AdvertiseMe IdP
1. Request Sign-in

A 4

2. Redirect for
< Authentication

3. Authenticate
& Authorize

»
r
4. redirect (Code)
(__________________ -
5. Request token with Code &
and ANT "
| 6. Validate
1+ ANT& code

Figure 6. Authentication Flow.

client_id=registered_client_Id&
redirect_uri=https://flyerit.com/callbackl HTTP/1.1
Host: identity.advertiseme.com

Bob is redirected to his company’s login page to authenticate himself and to authorize
FlyerIt to access his basic information.

When Bob authorizes FlyerIt to the requested resources, AdvertiseMe returns an
authorization code to FlyerIt by redirecting Bob to the redirect_uri that was
presented in the authorization request, which is https://flyerit.com/callbackl
in our example, and returns the authorization code response.

HTTP/1.1 302 Found

Location: https://flyerit.com/callbackl?
code=authorization_code&
state=state_value

In the authorization code flow, the client usually submits an authorization code along
with his clientId and clientSecret to the authorization server’s token endpoint to
receive an access_token and an id_token. In our case, there was no clientSecret
assigned to FlyerIt; instead, FlyerIt prepares an authentication statement similar
to the registration statement it prepared for the dynamic registration process. The
authentication statement is a signed JWT that contains the following claims:

* An "iss" claim that holds a URI identifying the issuer, which is FlyerIt in our case.
e A "sub" claim containing the clientId.

* An "exp" claim containing a value for token expiray, and

* An "aud" claim indicating the authorization server (AdvertiseMe).

The authentication statement token should be signed using the same key that
was used for the dynamic client registration process. The signed statement serves
two purposes: first, it establishes FlyerIt’s control of the certificate’s private key
and second, it provides the digital certificate that is used to validate and verify
the signature and establish trust. The following is a token request containing the
authentication statement.

Future Internet 2022, 14, 339

15 0f 19

POST /token HTTP/1.1
Host: identity.advertisme.com
Content-type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=authorization_code&
client_assertion_type=urn:
ietf:params:oauth:client-assertion-type: jwt-bearer&
client_assertion=authentication_statment
The client_assertion_type in the request body indicates that the client autho-
rization request will provide a signed JWT bearer instead of a clientSecret; the
client_assertion holds the value of the constructed client’s authentication statement.
6. AdvertiseMe validates the authentication request. Then, another certificate path
validation is performed to make sure the digital certificate provided is valid and can
be trusted. In addition, the server validates that the same certificate that were used in
the registration process. Lastly, the server validates the provided authorization code,
and the claims included in the authentication token. If any of the validation steps
fails, AdvertiseMe rejects the request.
7. Upon successful validation, AdvertiseMe returns a token response. In addition to the
id_token and the access_token returned by the authorization server, the server can
return a refresh_token used to refresh the access_token for later use.

HTTP/1.1 200 OK
Content-type: application/json

{

"access_token": "access_token",
"id_token": "id_token",
"token_type": "Bearer",
"expires_in": 3600

}

5. Evaluation and Discussion

The primary aim of this evaluation was to capture the effect of establishing a dynamic
federated identity model versus the manual steps usually taken by developers to establish
anormal federated identity model that aims to scale up their organization to reach multiple
business partners. The proposed model was evaluated by conducting a case study where
we created an empty web application and implemented the support for five different
identity providers establishing identity federation. We chose five of the most implemented
OPs. The providers were ADFS and four social providers: Google, Facebook, Twitter and
LinkedIn. After the case study, we observed the results by filling out three questions (one
of them was an open-ended question) that captured our experience, time and effort to
establish a complete end-to-end federation with each IdP individually.

5.1. Case Study Setup

Throughout the case study, we started with a sample empty web application, and
added IdP’s support one by one following these steps: First, we made sure we had
user credentials for the specified IdP. Then, we implemented the login support using
the specified IdP with the help of any online materials reflecting a real-world scenario
for any developer. Lastly, we observed the results and filled out a form that reflected
our experience.

We created a web application that asked the user to login with any supported signing-
in techniques. If the authentication was successful, the web application said "Hello,
User!" indicating the name of the authenticated end-user. If the authentication was not
successful, the web application showed a message indicating a failed authentication. The
application was built using Microsoft’s ASP.NET Core SDK with the help of Visual Studio
2022 IDE Community Edition.

Future Internet 2022, 14, 339

16 of 19

5.2. Results

To find the effect of establishing a dynamic federated identity model versus the
traditional identity federation establishment, we collected some performance parameters,
such as time and understandability. We implemented the five IdPs suggested for this case
study as a showcase of manually establishing identity federation.

Figure 7 illustrates the time in hours it took to integrate each IdP services to our web
application. Similarly, some implementation approaches were easier to understand than
others and had relatively simple and easy-to-access documentation online. ADFS was the
most complex approach to implement in our opinion, due to the advanced features and
the lack of friendly user interface support, where we had to do some PowerShell scripting
to achieve federation results. On the other hand, Twitter was the simplest to implement
knowing that we were more familiar with Google and Facebook.

Taken time to integrate IdP services
to the Web Application

3.5

3.25
2.47
1.13 1.05
I I :
0 I

ADFS Linkedin Facebook Google Twitter
OpenlD Providers

Time in hours
=]
[l w [z w

o
(%

Figure 7. Time taken to integrate IdP services to the Web application.

Figure 8 illustrates the simplicity of the integration approaches’ metrics, where it shows
that Twitter was the simplest approach and Microsoft ADFS was the most complex one.

How simple was it to understand the approach of
integrating IdP Service to the Web Application?

Very Simple
Simple
Neutral

Complex

Very Complex

o

0.5

=

1.5 2 2.5

B Google mFacebook m Twitter Linkedin m ADFS

Figure 8. How simple was it to understand the approach of integrating IdP Service to the Web application?

Future Internet 2022, 14, 339

17 of 19

The growth of business collaboration platforms has increased the need to collaborate
with hundreds of business providers or even more. Through our proposed dynamic
identity federation model, organizations can save hundreds of hours by achieving dynamic
federation in runtime and serving an enormous number of end-users.

6. Conclusions and Future Work

In this study, a dynamic FIM model was proposed based on OIDC, which allowed
organizations to establish identity federation dynamically at runtime. By that, manual
FIM establishment was alleviated, and the dynamic approach enabled organizational
collaborations, removing the barriers on the IT sector. The proposed model consisted of
three major steps: The first step was dynamic discovery that was concerned with revealing
the location of the OpenlID provider (OP) for OpenlD relying parties (RPs). The model was
based on OIDC’s discovery specification [8], which allowed relying parties to detect the
location of the OP through WebFinger requests in order to be able to utilize OIDC services
for end-users. In order for an RP and an OP to initiate OIDC services, the RP needed
to be registered as a client at the OP, hence the need for the second step, dynamic client
registration. During client registration, a trust model had to be established between both
RPs and OPs that allowed them to trust information communicated between each other.
The third step was the dynamic trust establishment between OPs and RPs. The proposed
model specified how trust could be dynamically established by resolving it from a common
trusted third party. The model was designed and implemented in a controlled environment
to prove its feasibility. Implementing dynamic FIM can save hundreds of hours and effort
for organizations to establish identity federation and to effectively scale up to hundreds of
collaborations.

The proposed dynamic identity federation model does not only benefit business
organization, but can be extended to health organizations, IoT operations and many other
deployment cases. In the case of a health organization, patients can make a great use of
identity federations. If Bob was a patient at hospital A and decides to go to hospital B,
the proposed model will allow hospital B to establish a trust federation with hospital A
to access all of Bob’s medical records, history and medications records that are stored at
hospital A. Bob will have a single identity and will be able to use it across all hospitals
that support the proposed dynamic identity federation model because it allows them to
dynamically establish a trust relationship and start exchanging identity information.

To that end, this study is an initial prototype and proof of concept toward a fully
functional browser plugin or application that offers FIM in an easy and transparent way. In
addition, we need to do more in terms of usability, scalability and performance testing to
see if the proposed model is feasible in the real world. Furthermore, we need to conduct a
comprehensive study and threat model analysis for the security and privacy concerns.

Author Contributions: A.A.: Conceptualization, Investigation, Validation, Visualization, Methodol-
ogy, Supervision. N.Y.: Data curation, Formal analysis, Methodology, Software, Writing—original
draft. Y.H.: Project administration, Writin—review & editing, Supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: The study was carried out at Birzeit University with no funding or financial support.

Data Availability Statement: All data and implementation steps are included in the manuscript.
However, any further details can provided upon request to asadeh@birzeit.edu.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2022, 14, 339 18 of 19

Abbreviations

The following abbreviations are used in this manuscript:

AD Active Directory

ADFS Active Directory Federation Services
API Application programmable interface
CA Certificate authorities

FIM Federated identity management

1dP Identity provider

JWT JSON Web Token

OAuth 2.0 Open Authentication 2.0

OIDC OpenlID Connect

(0] OpenlD provider

PKI Public key infrastructure

RP OIDC relying party

SAML Security Assertion Markup Language
SP Service provider

5SSO Single sign-On

TSP Trust server provider

XRI Extensible Resource Identifier

References

1.

10.

11.

12.

13.

14.

15.

Harding, P; Johansson, L.; Klingenstein, N. Dynamic Security Assertion Markup Language: Simplifying Single Sign-On. IEEE
Secur. Priv. 2008, 6, 83-85. [CrossRef]

Hardt, D. The OAuth 2.0 Authorization Framework. 2012. Available online: https://www.rfc-editor.org/rfc/rfc6749 html
(accessed on 16 November 2022).

Sakimura, N.; Bradley, J.; Jones, M.; De Medeiros, B.; Mortimore, C. Openid Connect Core 1.0. 2014. Available online:
https:/ /openid.net/specs/openid-connect-core-1_0-final.html (accessed on 16 November 2022).

Kim, E.; Cho, Y.S.; Kim, B.; Ji, W.; Kim, S.H.; Woo, S.S.; Kim, H. Can We Create a Cross-Domain Federated Identity for the
Industrial Internet of Things without Google? IEEE Internet Things Mag. 2020, 3, 82-87. [CrossRef]

Santos, B.; Dzogovic, B.; Feng, B.; Jacot, N.; Do, V.T.; Do, T.V. Improving Cellular IoT Security with Identity Federation and
Anomaly Detection. In Proceedings of the 2020 5th International Conference on Computer and Communication Systems (ICCCS),
Shanghai, China, 22-24 February 2020; pp. 776-780. [CrossRef]

Ates, M.; Gravier, C.; Lardon, J.; Fayolle, J.; Sauviac, B. Interoperability between Heterogeneous Federation Architectures:
Mlustration with SAML and WS-Federation. In Proceedings of the 2007 Third International IEEE Conference on Signal-Image
Technologies and Internet-Based System, Shanghai, China, 16-18 December 2007; pp. 1063-1070. [CrossRef]

OneLogin. Developer Overview of OpenID Connect. Available online: https://developers.onelogin.com/openid-connect
(accessed on 16 November 2022).

Sakimura, N.; Bradley, J.; Jones, M.; Jay, E. Openid Connect Discovery 1.0; The OpenID Foundation: 2014; p. S3. Available online:
https:/ /openid.net/specs/openid-connect-discovery-1_0.html (accessed on 16 November 2022).

Sakimura, N.; Bradley, J.; Jones, M.; Jay, E. OpenID Connect Dynamic Client Registration 1.0. 2013. Available online:
https:/ /openid.net/specs/openid-connect-registration-1_0.html (accessed on 16 November 2022).

Hedberg, R.; Jones, M.; Solberg, A.; Gulliksson, S.; Bradley, J. OpenID Connect Federation 1.0; The OpenID Foundation: 2021.
Available online: https:/ /openid.net/specs/openid-connect-federation-1_0-17.html (accessed on 16 November 2022).

Wang, H.; Gong, C. Design and Implementation of Unified Identity Authentication Service Based on AD. In Proceedings of the
2016 8th International Conference on Computational Intelligence and Communication Networks (CICN), Tehri, India, 23-25
December 2016; pp. 394-398. [CrossRef]

Jiang, J.; Duan, H.; Lin, T,; Qin, F; Zhang, H. A federated identity management system with centralized trust and unified
Single Sign-On. In Proceedings of the 2011 6th International ICST Conference on Communications and Networking in China
(CHINACOM), Harbin, China, 17-19 August 2011; pp. 785-789. [CrossRef]

Bendiab, K.; Shiaeles, S.; Boucherkha, S. A New Dynamic Trust Model for “On Cloud” Federated Identity Management. In
Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France,
26-28 February 2018; pp. 1-5. [CrossRef]

Ferdous, M.; Poet, R. Managing dynamic identity federations using security assertion markup language. J. Theor. Appl. Electron.
Commer. Res. 2015, 10, 53-76. [CrossRef]

Kose, B.O.; Onur, B.; Mantar, H.A.; Coskun, V. TrustedID: An Identity Management System based on OpenID Connect Protocol.
In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
Istanbul, Turkey, 22-24 October 2020; pp. 1-6.

http://doi.org/10.1109/MSP.2008.31
https://www.rfc-editor.org/rfc/rfc6749.html
https://openid.net/specs/openid-connect-core-1_0-final.html
http://dx.doi.org/10.1109/IOTM.0001.2000050
http://dx.doi.org/10.1109/ICCCS49078.2020.9118438
http://dx.doi.org/10.1109/SITIS.2007.148
https://developers.onelogin.com/openid-connect
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-federation-1_0-17.html
http://dx.doi.org/10.1109/CICN.2016.84
http://dx.doi.org/10.1109/ChinaCom.2011.6158260
http://dx.doi.org/10.1109/NTMS.2018.8328673
http://dx.doi.org/10.4067/S0718-18762015000200005

Future Internet 2022, 14, 339 19 of 19

16.

17.

18.

19.

20.

21.

Bendiab, K.; Kolokotronis, N.; Shiaeles, S.; Boucherkha, S. WiP: A novel blockchain-based trust model for cloud identity
management. In Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing,
16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence
and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12-15
August 2018; pp. 724-729.

Yang, X.; Li, W. A zero-knowledge-proof-based digital identity management scheme in blockchain. Comput. Secur. 2020,
99, 102050. [CrossRef]

Mell, P; Dray, J.; Shook, J. Smart contract federated identity management without third party authentication services. arXiv 2019,
arXiv:1906.11057.

Jones, P,; Salgueiro, G.; Jones, M.; Smarr,]. WebFinger Protocol. 2013. Available online: https://datatracker.ietf.org/doc/html/
rfc7033 (accessed on 16 November 2022).

Jones, M.; Bradley, J.; Identity, P.; Machulak, M.; Hunt, P. OAuth 2.0 Dynamic Client Registration Protocol. 2015. Available online:
https:/ /www.rfc-editor.org /rfc/rfc7591 (accessed on 16 November 2022).

Lodderstedt, T.; McGloin, M.; Hunt, P. OAuth 2.0 Threat Model and Security Considerations. 2013. Available online:
https:/ /www.rfc-editor.org/rfc/rfc6819 (accessed on 16 November 2022).

http://dx.doi.org/10.1016/j.cose.2020.102050
https://datatracker.ietf.org/doc/html/rfc7033
https://datatracker.ietf.org/doc/html/rfc7033
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc6819

	Introduction
	Related Work
	The Proposed Approach
	Experimental Environment and Implementation
	Dynamic OIDC Provider Discovery
	Dynamic OIDC RP Registration
	Dynamic OIDC Trust Framework

	Evaluation and Discussion
	Case Study Setup
	Results

	Conclusions and Future Work
	References

