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Abstract: Dynamic and smart Internet of Things (IoT) infrastructures allow the development of smart
healthcare systems, which are equipped with mobile health and embedded healthcare sensors to
enable a broad range of healthcare applications. These IoT applications provide access to the clients’
health information. However, the rapid increase in the number of mobile devices and social networks
has generated concerns regarding the secure sharing of a client’s location. In this regard, federated
learning (FL) is an emerging paradigm of decentralized machine learning that guarantees the training
of a shared global model without compromising the data privacy of the client. To this end, we
propose a K-anonymity-based secure hierarchical federated learning (SHFL) framework for smart
healthcare systems. In the proposed hierarchical FL approach, a centralized server communicates
hierarchically with multiple directly and indirectly connected devices. In particular, the proposed
SHFL formulates the hierarchical clusters of location-based services to achieve distributed FL. In
addition, the proposed SHFL utilizes the K-anonymity method to hide the location of the cluster
devices. Finally, we evaluated the performance of the proposed SHFL by configuring different
hierarchical networks with multiple model architectures and datasets. The experiments validated
that the proposed SHFL provides adequate generalization to enable network scalability of accurate
healthcare systems without compromising the data and location privacy.

Keywords: federated learning; K-Anonymity; privacy-preserving; hierarchical clustering

1. Introduction

Modern communication infrastructure has recently undergone a paradigm shift owing
to the development of the Internet of Things (IoT) [1]. Facilitating the interoperability of the
digital nervous system has revolutionized several elements of urban living in smart cities [2].
IoT applications have considerable computational power and data processing capabilities,
and are integrated with sophisticated computing devices such as sensors, wristbands, smart-
phones, and actuators. [3]. The service-driven computational abilities of intelligent devices
can be effectively harnessed to design future smart healthcare systems [4,5]. Smartphones
and pervasive technology-based healthcare systems provide a huge range of fitness applica-
tions and have the scalability to introduce clinical and medical systems [6]. According to the
patient’s health status, these clinical and medical healthcare systems offer remote healthcare
services such as telemedicine and telecare. Integrating IoT-enabled healthcare systems en-
ables the realization of many robust telehealth patient care applications and raises concerns
over the secure and efficient communication of critical personal data [7–9]. The large scale
of highly valued personal data increases privacy and security risks, and requires innovative
networking techniques to maintain industrial-level communication efficiency [10,11].
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The effective utilization of personal healthcare data are a critical requirement. Con-
ventional machine-learning distributed algorithms are trained on existing datasets to track
health information [12–14]. Three significant research challenges in modern healthcare
systems need to be considered. First, real-time data are more critical and difficult to ac-
cess because of the different privacy policies of isolated organizations. Secure and open
access to these isolated data hubs is challenging when managing a central global learning
model [15]. A distributed federated learning (FL) framework was designed to optimize
the learning model, and has shown promising results [16]. Second, personalization is the
most crucial issue. Different clients of smart healthcare systems use multiple devices with
varying processing capacities [17]. Therefore, standard server-based learning models are
unsuitable for maintaining personalization, as FL distributes the learning model among
all the connected clients and provides flexibility to adjust the learning model according to
the client’s resources. However, personalization requires further investigation to enhance
the performance of the distributed learning techniques. Third, all network nodes can
never directly connect to the global learning model because of the network range and
other communication constraints, which is not the case in FL because the global model is
transmitted only to the clients participating in the network [18].

However, it is practically difficult for a global model to maintain direct connectivity
with the client models [19]. A major problem in FL is scalability, as it distributes the learning
model over all the devices and aggregates all the updates from the client models [20].
Currently, the advancement in positioning technology has led to the introduction of location-
based service (LBS) technologies such as GPS, Baidu Map, and other wireless positioning
technologies in intelligent devices, which facilitate the network administrator to create
distance-based clusters of the participating devices [21]. These LBS technologies also
compromise the location and pose a severe risk to clients with healthcare ratings. Location
privacy, along with data privacy, is a critical challenge, particularly in the case of distributed
FL [22]. Therefore, it is essential to design a solution that can hide the location to secure the
personal information of clients.

To this end, we designed and investigated K-anonymity-based secure hierarchical
federated learning (SHFL). Unlike existing solutions, we consider a realistic deployment
of various healthcare application-aware IoT devices in which the local client (LC) devices
directly communicate with the healthcare cloud/server. Every LC is an intermediate bridge
for a few end devices called intra-local clients (ILCs). This unique learning technique
provides network scalability by sharing the learning models of directly and indirectly
connected devices with a global model trained from rich data. SHFL provides a loose
federation of directly connected clients and allows the client devices to communicate and
accommodate local models of the connected sub-clients. Each local model of the client
and subclient devices has a local dataset to train the learning models on the local devices
without interacting with the cloud server. The significant contributions of this study are
summarized as follows.

1. We propose the SHFL framework for smart healthcare systems. In particular, we
added K-anonymity-based location privacy along with data privacy of FL to anonymize
the identity of the participating clients.

2. The proposed SHFL framework leverages the centralized server that communicates
with multiple directly and indirectly connected devices hierarchically. Moreover,
the proposed SHFL formulates the hierarchical clusters of LBSs to execute hierarchi-
cal FL.

3. The performance of the proposed SHFL was evaluated through extensive simulation
experiments conducted with multiple model architectures and datasets.

The remainder of this paper is organized as follows. In Section 2, we briefly discuss
the studies that motivated us to conduct this research. In Section 3, we explain the system
models of the proposed SHFL framework. In Section 4, we propose a K-anonymity-based
secure hierarchical framework and demonstrate the application of the proposed SHFL.
In Section 5, we conduct simulation experiments to demonstrate the performance of the
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proposed SHFL in comparison with state-of-the-art approaches. Finally, we present the
conclusions of this study in Section 6.

2. Related Work

FL is widely preferred over conventional centralized machine learning schemes, as it
can guarantee privacy [16]. In FL, training is performed on local devices using their lo-
cal datasets and aggregating them to the cloud server to produce a new global model.
The method is iteratively repeated until the accuracy reaches the desired level [23]. De-
spite this safe training, FL suffers from considerable propagation delays, particularly in
large-scale networks. The devices are distributed over large distances, resulting in com-
munication bottlenecks [24]. A plethora of studies has been conducted to reduce the
communication costs. A lossy compression technique to minimize the cloud-to-device
communication overhead has been proposed [25]. The authors proposed communication-
mitigated FL, where they selected only relevant updates to be forwarded for aggregation
and achieved high performance [26]. Extensive communication often results in higher com-
putational costs. To mitigate this challenge, the authors proposed a hybrid approach that
simultaneously manages the communication cost through compression and reduces the
computation cost through differential privacy [27]. Several studies have been conducted to
enable distributed FL frameworks, which focus on the fixed architecture of the distributed
FL [28,29]. In large-scale networks, many mobile devices participate in the training; these
devices differ from each other in terms of datasets, computation capacity, and battery level,
and can easily be managed through proper hierarchical task division [30]. In Table 1, we
summarize the existing studies and their limitations.

Table 1. Summary of existing schemes and their limitations.

Reference Limitations Summary

[5] Limited discussion on healthcare A study on security vulnerabilities in the field of healthcare.

[7] Single case study A case study on patient health monitoring.

[9] Non-personalized FL model A study on client-edge-based FL framework for in-home health monitoring.

[20] Limited to general architecture A study on incentive mechanism for interaction between the crowdsourcing platform and
the model training approach adopted by the client to optimize the communication efficiency.

[22] Limited accuracy due to PSI
protocol

A study to control COVID using cryptographic protocols to reduce the information revealed
regarding the traces of positive users.

[23] Non-personalized FL model A study on FedAvg algorithm for non-identical and non-independent data.

[27] Non-personalized FL model A study on communication efficiency using sparse compression and privacy preservation
using differential privacy in FL.

[28] No-application specific The study uses cosine similarity between the gradient updates for clustering in FL.

[30] General hierarchical architecture A study on hierarchical FL framework that uses edge nodes for additional model
aggregation for faster communication.

[31] Non-personalized FL model A study on privacy preservation of FL using Pallier homomorphic cryptosystem.

Considering these limitations, we propose the SHFL framework for smart healthcare
systems. The proposed SHFL framework is leveraged with a hierarchical architecture that
distributes the network load evenly among all connected devices, which results in the
efficient management of computational resources. To secure sensitive client information,
we introduce K-anonymity in FL, which helps minimize security threats from adversaries
in the network. Finally, the hierarchical architecture facilitates efficient communication
between the clients and the cloud server. The experimental results prove that the proposed
SHFL achieves higher accuracy than the existing solutions.

3. System Models

In this section, we define the essential system models for the proposed SHFL frame-
work. We first describe the FL model that rigorously trains the local models on local devices
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and obtains a global model. Second, we define the threat model, which is the primary
motivation for this study. Finally, we describe the network model of the proposed SHFL.

3.1. FL Model

FL is a novel paradigm for building collaborative machine learning models through
on-device distributed training on local datasets. This distributed training ensures the
security and privacy of client data [32]. The proposed SHFL leverages the synchronous
model update in each round of communication between the cloud server and clients,
which minimizes the overall loss function by executing it in a distributed manner [33].
The synchronous model update involves the following three steps.

1. The LCs in the network independently train their models using their data.
2. After training the local models, the trained models are uploaded to the cloud server,

which aggregates them to obtain a new global model.
3. The newly obtained global model is sent to the clients, who train their local models

independently using new global parameters.

This process is repeated until the convergence condition is met.

3.2. Threat Model

In the proposed SHFL architecture, we assume that every client in the network is
an honest but inquisitive adversary [31,34]. In other words, while attempting to access
client-specific information in the training data during local model updates, all clients abide
by the legal directives issued by the network administrator via the FL task. A malicious
cloud server may deduce the client’s sensitive data, or the infected client may leak the
auxiliary information of other clients. Based on this assumption, the main goal of the
proposed framework is to secure the client’s private information, including location and
personal information, while ensuring convergence accuracy.

3.3. Network Model

In the network model, we assume the realistic deployment of different healthcare
application-aware IoT devices, in which LC devices directly communicate with the health-
care cloud/server. Every LC acts as an intermediate bridge for a few end-devices called
ILCs. Figure 1 shows the general network settings, in which the network configurations
are flexible according to the network requirements. The deployed devices are based on
modern IoT infrastructure that can run local learning models over the rich data generated
by the healthcare applications of individual devices.

We assume the deployment of L = i : i = 1, 2, .....L IoT smart healthcare devices of
intra-local clients (ILCs), which communicate with the global healthcare server with the
help of M = j : j = 1, 2, .....M intermediate local clients (LCs). Mj aggregates the updates
from a particular associated set of Li devices and uploads them to the cloud server, denoted
as G. In a particular network communication round R, only Li ⊆ L online ILC devices
actively participate in the hierarchical FL process. Each ILC and LC device contains its own

dataset to train the local data models, represented as Si = (xk, yk)
|Si |
k=1 and Sj = (xk, yk)

|Sj|
k=1,

respectively. Here, xk represents the k − th input sample, and yk is the corresponding
labeled output of xk of the hierarchical FL. In the proposed hierarchical FL (HeirFL) model,
all clients are static and remain active throughout the learning and aggregation processes.
The network nodes share the learning parameters to support two-level aggregation, first at
the intermediate CL devices and then at the cloud server. To measure the computational
cost of the proposed model, the formulation of the energy and delay overhead is vital for
cloud server aggregation.
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Figure 1. The proposed secure hierarchical federated learning (SHFL) architecture. A realistic
deployment of different healthcare application-aware IoT devices is assumed, in which the LC
devices directly communicate with the healthcare cloud/server. All the assumed devices are based
on modern IoT infrastructure that can run local learning models over the rich data generated by the
healthcare applications.

Based on the aforementioned FL model for the stepwise learning process, the model
computation of the ILC devices is the first step to be considered. An active Li ILC device
computes the machine-learning model parameters ω, which classify each output value yk

for the input xk of the dataset Si = (xk, yk)
|Si |
k=1. The loss function on Si = (xk, yk)

|Si |
k=1 of the

Li device is computed as

Fi(ω)Si =
1
|Si|

Si

∑
K=1

fi(xk, yk, ω). (1)

To compute the ILC model accuracy Θε(0, 1), the ILC device Li runs for a wide range of
iterative algorithms according to the following local iterations:

Q(Θ) = µ log(
1
Θ
). (2)

Furthermore, the data size Si and machine-learning tasks affect the value of µ. Li computes
the local update at the c− th iteration as

ωc
i = ωc

i − η5 Fi(ω
c−1
i ). (3)

This learning process continues until the following computational results are obtained:

‖5Fi(ω
c
i )‖ ≤ Θ

∥∥∥5Fi(ω
c−1
i )

∥∥∥, (4)

where η denotes a predefined learning rate. The number of required CPU cycles to process
a single data sample of the device Li is defined as Di. Similarly, the total number of CPU
cycles is calculated as Di|Si|. Thus, the total delay can be computed as

tcmpt−time
i = Q(Θ)

Di|Si|
fn

. (5)
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Therefore, the computation can be implemented as

tcmpt−time
i = µ log(

1
Θ
)

Di

∣∣∣Si = (xk, yk)
|Si |
k=1

∣∣∣
fn

. (6)

Similarly, the computational energy cost is calculated as follows:

ecmpt−cost
i = Q(Θ)

αi
2

fn2Di|Si|, (7)

ecmpt−cost
i = µ log(

1
Θ
)

αi
2

fn2Di

∣∣∣|Si = (xk, yk)
|Si |
k=1

∣∣∣. (8)

When all the L ILC devices complete their local iterations, each device Li uploads the model
parameters ω of the ILC to the associated intermediate local client Mj. The intermediate
Mj LC receives the updates from a connected set of active Ai devices and performs the
aggregation process as follows:

ωi =
∑ iεAAi|Si|ωc

i∣∣SAi

∣∣ , (9)

where the aggregated dataset of Ai connected to the Mj intermediate LC is

SAi = ∪iεAi Si. (10)

The intermediate LC Mj multicasts ωi to Ai for the computation process in the next
communication round R. In particular, Mj repeats the process and guides the ILC devices
iteratively to compute the model for better accuracy. The aggregation process of Mj
continues until it reaches the accuracy level of all the other LC devices connected to their
M. The required model accuracy of the general convex machine learning tasks and the
overall number of iterations on Mj are

I(ε, Θ) = δ
(log( 1

ε ))

1−Θ
, (11)

where δ is a predefined constant of the learning tasks. HeirFL shows that the intermediate
LCs access only the parameters instead of the actual data of the end devices, which signifi-
cantly improves the security and privacy of personal data. After I(ε, Θ) iterations over Mj
devices, the total energy cost of dealing with Ai ILC can be computed as

Ecmpt−cost
j:i = ∑

j:i
εAi I(ε, Θ)(ecmpt−cost

j:i + ecmpt−cost
i ). (12)

Likewise, the computation and communication delay for Mj can be calculated as

Tcmpt−cost
j:i = I(ε, Θ)maxiεAi t

cmpt−cost
j:i + tcmpt−cost

i . (13)

In the last step, the cloud server gathers all the updated models received from the edge
servers as follows:

ω =
∑ jεM

∣∣Sj
∣∣ωj∣∣Sj

∣∣ , (14)

where the aggregated dataset of Mj connected to the global cloud server G is

S = ∪jεMj Sj. (15)
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Therefore, we may derive the system-wide energy and latency under a single global
iteration, disregarding the cloud’s substantially shorter aggregation time than that of
mobile devices, as shown below.

E = ∑
j

εMj I(ε, Θ)(Eserver + Ecmpt−cost
j ), (16)

T = MAX
{

Tserver + Tcmpt−cost
j

}
. (17)

To meet the convergence conditions, the local and global-level aggregation can be repeated
consistently to maximize the accuracy and reduce the loss.

4. K-Anonymity-Based SHFL

Different LBSs are integrated with modern IoT-enabled mobile devices; hence, the nat-
ural hierarchical distribution of learning tasks is based on LBSs. However, healthcare data
demand a higher level of privacy protection. Hence, in this section, we present the SHFL
framework for innovative healthcare systems. The proposed SHFL framework develops
a secure hierarchical connection between the server model G and the local models of the
directly connected devices Mj. In addition, the framework allows these devices to extend
the network connectivity by configuring the clusters of intra-local models of the nearby de-
vices Li. The proposed SHFL framework has two technical tasks: first, develop LBS-based
suitable hierarchical clusters of the participating Mj and Li devices; second, maintain the
location and data privacy of all active devices.

4.1. Secure Hierarchical Distributed Architecture

Mj devices act as the primary entities in the distributed architecture, and the global
model is directly connected to a set Mj = Mj ID, LOC, APP, PPV, CS, where Mj ID repre-
sents the personal identification number, LOC is the location of Mj, APP is the application
of the client being trained, PPV indicates the privacy-preserving value, where the nodes
can define the degree of anonymity in a distributed manner. In contrast, CS represents the
cluster size managed by a specific Mj. Similarly, Li = Li ID, LOC, APP, PPV represents the
set of intra-local model clients. The magnitude of distributed clustering is based on LBSs,
and it is dynamic in a realistic network environment. Furthermore, the global model fixes
the cluster size to optimize the efficiency of the hierarchical architecture. The other two
major factors of cluster formulation are similarity index and privacy index of the intra-local
model devices. The similarity index of the nodes can be computed using the factors of
communication cost, energy cost, application similarity, and previous participation score in
FL. The security index can be calculated using the degree of K-anonymity as PPV.

4.1.1. Clustering Index of SHFL

The proposed SHFL framework formulates centralized clustering using a global model
trained on the server. GPS-equipped smart devices voluntarily participate in hierarchical
FL and exchange key parameters to initialize the clustering process. The primary task of
the global model is to select the anchor device that can directly transmit the information
of the nodes to the cluster members for training after cluster aggregation. As mentioned
in the network model of SHFL, the global model receives the computation and energy
calculations from the network nodes. The global model computes the similarity index by
using the following equation:

Similarity− Index =
Re × APc

d
, (18)

where Re is the residual energy resource, which indicates the primary availability index
of the device, APc represents the available processing capacity, and d is the distance of
the node from the global network model. The global model utilizes the threshold of the
similarity index to determine the rule of the network device as an anchor node or member
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node. APP and PPV also play critical roles in selecting the anchor nodes. All anchor nodes
act as local model nodes Mj, and member nodes act as intra-local model nodes Li. This
initial cluster formulation provides the basic setting for K-anonymity-based regrouping to
establish anonymous clusters.

4.1.2. K-Anonymity-Based Regrouping of Anonymous Clusters of SHFL

In the SHFL architecture, we integrate the K-anonymous central server, which ensures
the anonymity of LBS-enabled smart devices. This K-anonymous architecture also contains
a GPS server and database server, where the global network model operates throughout
the network operation. Figure 2 shows the detailed process of the integrated K-anonymous
central server. The communication between the LCs and K-anonymous central server is
protected through encryption technology. The following five-step process performs this
anonymity query, which is formalized in Algorithm 1:

1. The directly connected LCs Mj transmit the initial dialogue with a trusted anony-
mous server and deliver their demand of anonymity with the degree of PPV and its
corresponding CS cluster size.

2. For anonymous re-clustering of the devices, the anonymous server computes the
anonymous results for the set Mj using the K-Anonymity algorithm and sends the
results to the LBS server.

3. According to the position information provided by Mj and the recommendation of the
K-anonymous algorithm, the LBS and database server continue the anonymous query
procedure. The LBS server regroups the nodes and formulates the set Uj. Similarly,
the LBS processes the re-clustering demand of the intra-local devices connected to Mj
in the form of Vi.

4. The outcome of the LBS server and database server is delivered to the K-anonymous server.
5. Finally, the K-anonymous server re-checks the sets Uj and Vi according to the actual

locations. It transmits the K-anonymous replies to the network devices.

Algorithm 1: Generation of anonymous result sets.

Input : Adapted sets of results, V
′
= {V ′1, V

′
2, ..., V

′
m}, |V

′
i | ≥ kmin, i = 1,..., m

Output : Anonymous result sets, V
′′
= {V ′′1 , V

′′
2 , ..., V

′′
m}, |V

′′
i | ≥ kmin, i = 1,..., m

1 Initialization
2 Steps
3 for V

′′
i do

4 V
′′
i obtains a set of client identifications mi and a set of queries in the
anonymous group C

′
i by determining the highest value Amin to compare and

obtain r as Amin = π × r2;
5 e = Get_Head_Item (V

′′
i );

6 if(r > e.radius) e.radius = r; // Adjust the radius;
7 The object e identifier is included in mi; the query information is included in Si,

and Si is fixed to the area of a circle having a radius equivalent to e.radius.
Now, e can be anchored to the construct V

′′
;
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Figure 2. Privacy preserving K-Anonymity architecture integrated with SHFL.

After ensuring privacy preservation using the K-anonymity method, the following
anonymous set Uj = uj ID, LOC, AS of the local models appears as the available network
statistics. uj ID is the anonymous ID, LOC is the updated location, and AS is the area of
K-anonymity. Similarly, Vi = ui ID, LOC, AS is a set of intra-local models that updates the
anonymous profile to save the privacy of the client device. The K-anonymity algorithm
performs significantly better once the clustered and corresponding anonymous groups
contain minimum outliers. The outliers are devices with different query statistics that make
the anchor device selection process of the cluster complex. The elimination of outliers
simplifies the anonymous grouping process. To detect outliers, we represent the client
space as ZT. d is the radial distance of x from the corresponding y, which can be denoted
as K− dist (d). Similarly, K− dist (r) neighborhood of the object d is denoted by ViK(r).
Any other device within the radius d of k is denoted as dist (x, y).

1. Reachability distance (ReachDist) is calculated by the following equation:

ReachDistKd(x, y) = Max(K− dist(x), d(x, y). (19)

2. K-nearest neighbor (K-NN) distance in the space ZT can be defined as follows:

DistKN(x, ZT) = ∑K
I=K DistK(i)

k
. (20)

3. The density of object x in the client space ZT is defined as follows, where k denotes
the density and x denotes the object:

DenK(x, ZT) =
1

DistKN(x, ZT)
. (21)

4. The Local Reachability Density (LRD) of the device is the opposite of the average
RD of K-NN based on the device x. The following equation calculates the LRD:

LRDk(x, ZT) =
|Nk(x)|

∑yεNk(x)Reachdistk(x,y)
. (22)

5. Local Outlier Factor (LOF) characterizes x as an outlier, which is calculated by the
following equation:

LOFk(x) =
∑yεNk(x)

LRDk(y,ZT)
LRDk(x,ZT)

|Nk(x)| . (23)
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6. Centrifugal degree of the anonymous group is the average distance between the
anchor and other points in the anonymous group. If the anonymous group C uses m
as its anchor, the centrifugal degree (Cd) of m can be calculated as follows:

Cd(c) = ∑xεC distance(x, z)
|Nk(x)| . (24)

In the proposed SHFL, a cluster loop is constructed, and the dataset is divided equally
among all Uj nodes and Vi member nodes of the anchors. The anchor nodes represent the
LCs with local models, and the member nodes are Vi with intra-local models. The datasets
were initialized over all nodes for training and testing. The anchor nodes react according
to the queries of the member nodes, aggregate the updates, and forward them to the
cloud server after achieving the required degree of anonymity. The clustering process
continues for newly arrived nodes over the network, along with their anonymity handling.
In addition, the anchor nodes utilize the above-mentioned parameters to check the node’s
location, neighbor distance, and k-neighbor density to determine the LOF and centrifugal
degree. The initial anonymous group dataset Vi and completion of the initial partition of
the anonymous group follow the traversal of all these parameters. Anonymous groups
can be modified at runtime to remove the outliers to enhance the query service quality.
Additionally, the anonymous groups beneath the Uj anchors are ranked in the reverse
order according to the centrifugal degree. The cluster radius and dynamic locations of the
nodes also play crucial roles in adjusting the group anonymity. This anonymous group
adjustment is executed periodically after the anonymity process of the anonymous server
and LBS servers.

5. Experiments

Model Definition: In the experiment, we performed the image classification tasks
over distributed federated settings. We selected the full-size MNIST [35] and CIFAR-10 [36]
benchmark datasets to investigate the proposed SHFL and validate the usability of the
smart devices in the IoT. In addition, we utilized the COVID-19 [37] dataset to develop
a healthcare application of SHFL. We performed extensive simulation experiments by
varying the computation rate of LCs and ILCs. To evaluate the performance of SHFL in real-
time healthcare applications, we altered different parameters to analyze the performance
comprehensively. We constructed a CNN client model for all three datasets by creating
5× 5 convolutional layers. The model divides the dataset into equal-sized shards according
to the number of LCs and ILCs. Table 2 lists the benchmark hyperparameters.
System Configuration: Our simulation experiments were conducted on a CPU i9-9980HK
@ 2.40 GHz with 32 GB RAM. The SHFL framework was designed using Python in
TensorFlow.
Data Distribution: In all our experiments, we used the pathological non− iid distribution
of data, where each LC can only receive images corresponding to eight labels; thus, each
LC receives minimum 300 samples. The data were divided into distinct clusters using the
non− iid distribution, and each cluster was evenly split across numerous LCs and ILCs.
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Table 2. Hyperparameters used in the proposed experiments.

MNIST CIFAR-10 COVID-19

Parameter Values

Model CNN CNN AlexNet

Momentum 0.5 0.3 0.1

Optimizer SGD SGD SGD

Batch size 10 20 30

Learning rate 0.25 0.5 0.5

Clients 500 200 200

Client transmission power 200 mW 200 mW 200 mW

Communication rounds 300 500 200

Local epochs 200 200 100

Local update size 20,000 nats 20,000 nats 20,000 nats

5.1. Convergence

To explore the convergence behaviors of the proposed SHFL framework, we considered
two scenarios of the number of LCs as {10, 15} and four scenarios of the number of ILCs
as {2, 5, 8, 10}, and tested the accuracy and loss on the MNIST and CIFAR-10 datasets.
Each LC and ILC were assigned an equal-sized random subset of the training data. We
continuously re-divided the dataset into equal parts to train the local model of all devices.
We simulated these experiments for 300 and 500 communication rounds on MNIST and
CIFAR-10, respectively, to investigate the trends of accuracy and loss of the distributed
FL. Each client’s LBS was altered by randomly swapping out eight labels depending on
the cluster to which the client belonged, to maintain the anonymity of the LC and ILC
structures. If all clients are part of the first cluster, the data points labeled “1” and “7” might
be switched. Similarly, for the clients in the second cluster, the data points labeled “3” and
“5” will be switched, and so on. In Figure 3, we present a realistic picture of the proposed
SHFL, which shows the hierarchical architecture for multiple levels of LCs and ILCs.

Figure 3. Network topologies for distributed federated learning of SHFL; the hierarchical architecture
for multiple levels of LC and ILC is shown.

Figure 4 shows the simulation results of the four configuration settings of the LC and
ILC in terms of accuracy and loss for the communication rounds on the MNIST dataset.
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The proposed model performs well in terms of high accuracy rate and low loss in the case of
a less complicated network architecture with a limited clustering formulation size. This is
because the network nodes grow with the number of clusters and the cluster size increases
proportionally. In this regard, the proposed SHFL provides higher network scalability and
higher accuracy rate with increasing network communication rounds. In Figure 4a, the net-
work topology of 10 LCs and 2 ILCs results in 55% accuracy in only 300 communication
rounds; furthermore, 15 LCs and 10 ILCs produce 85% accuracy. Similarly, in Figure 4b,
the network topology of 10 LC, 2 ILC shows a higher loss, as a greater number of ILCs
requires more computational resources. In the case of 10 LC, 2 ILC, the graph shows the
minimum loss, which increases with increasing numbers of LCs and ILCs.

(a) (b)

Figure 4. Comparison of SHFL training accuracy and training loss for different numbers of LCs and
ILCs in the MNIST dataset, (a) training accuracy over MNIST; (b) training loss over MNIST.

The experimental results for the CIFAR-10 dataset are shown in Figure 5. In Figure 5a,
we present the training accuracy, and in Figure 5b, we present the training loss of SHFL
in 500 communication rounds. To provide a better comparison, we considered the same
scenarios as for the MNIST dataset. The remaining parameters were the same as those
described in Table 2. Figure 5a shows higher accuracy for higher numbers of LCs and
ILCs; the accuracy decreases with decreasing numbers of LCs and ILCs. We attribute this
performance gain to the hierarchical architecture of SHFL, which divides the computational
resources equally among the clients. Furthermore, the degree of K-anonymity helps secure
the maximum accuracy. Similarly, Figure 5b shows the minimum expected loss for the
scenario of 10 LCs and 2 ILCs. As described above, a higher number of LCs and ILCs
requires greater computational resources. Therefore, we can say that the optimal number
of LCs and ILCs is between ≈ 12 and ≈ 7.

(a) (b)

Figure 5. Comparison of SHFL training accuracy and training loss for different numbers of LCs and
ILCs on the CIFAR-10 dataset, (a) training accuracy over CIFAR-10; (b) training loss over CIFAR-10.
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To further prove the accuracy of the proposed SHFL, we used the healthcare dataset
related to X-rays for COVID-19. The dataset was divided into three classes: COVID-19,
Pneumonia, and No findings. We utilized the 5× 5 convolution layer cross-validation
procedure for both binary and triple classification problems. Twenty percent of the X-
ray images were used for testing, and the remaining was used for training the model.
As shown in Figure 6, we trained the LCs and ILCs for 100 local epochs and tested the
accuracy of 200 communication rounds for three network topologies: {5 LCs and 5 ILCs},
{15 LCs and 5 ILCs}, and {15 LCs and 15 ILCs}. Different topologies provide different
levels of fluctuations in terms of accuracy. The end clients of distributed learning can
provide their X-ray data in real time and obtain an initial probabilistic diagnosis. These
results are for initial examinations and are mainly applicable to medical professionals.
In Figure 6, the overlapped confusion matrix (CM) is shown for the following network
topologies: (a) {5 LCs and 5 ILCs}, (b) {15 LCs and 5 ILCs}, and (c) {15 LCs and 15 ILCs}.
The overlapped confusion matrix was created using the sum of the client models of all
the folds. The SHFL model utilized the AlexNet client model to classify the training and
testing of the COVID-19 dataset. In the case of the network topology of {5 LCs and 5 ILCs},
the proposed SHFL achieved 93% accuracy for COVID-19 detection and 88% accuracy
for normal or no findings. Similarly, we achieved 81% accuracy in pneumonia detection.
In the case of the network topology of {15 LCs and 5 ILCs}, we achieved 96% accuracy for
COVID-19 detection and recognition. The network topology of {15 LCs and 15 ILCs} is
very dense but still maintains an accuracy of 93% for COVID-19 detection. We are currently
training and testing our proposed SHFL framework for a healthcare application for COVID-
19 detection and have achieved high accuracy. However, we note that our research is
currently independent. COVID-19 detection is a sensitive research field, and thus far, we
have utilized only simulation-based experiments on publicly available COVID-19 datasets.

(a) (b) (c)

Figure 6. Overlapped and 5-fold confusion matrix results for (a) 5 LCs, 5 ILCs, (b) 15 LCs, 2 ILCs,
and (c) 15 LCs, 5 ILCs.

5.2. Comparison

We selected three schemes related to privacy preservation in FL for comparison
with the proposed SHFL. The schemes selected for comparison are Efficient and Privacy-
Preserving Federated Learning (EPPFL) [38], Federated Optimization (FedOpt) [27], and Ex-
treme Boost Federated Learning (FedXGB) [39]. We compared the existing schemes with the
proposed SHFL in terms of the training accuracy and expected loss. For comparison, we se-
lected the MNIST dataset, as it is utilized in existing schemes. In addition, we used the same
CNN architecture for all compared schemes. A random distribution divided the MNIST
dataset into 25% for testing and 75% for training. The remaining parameters were set to the
values given in Table 2. Figure 7 shows the training accuracy and expected loss with an
increasing number of communication rounds. Figure 7a shows that the proposed SHFL
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achieves 3%, 7%, and 9% greater accuracy than EPPFL, FedOpt, and FedXGB, respectively.
Similarly, in Figure 7b, SHFL has less expected loss than EPPFL, FedOpt, and FedXGB
by approximately 6%, 9%, and 12%, respectively. We attributed this performance to the
hierarchical architecture of the proposed SHFL. In addition, the anonymity of LCs and ILCs
enables the SHFL in securing higher performance.

(a) (b)

Figure 7. Convergence comparison of the proposed SHFL with state-of-the-art techniques, (a)
comparison accuracy over MNIST; (b) comparison loss over MNIST.

6. Conclusions

This paper presented an SHFL framework for smart healthcare systems. The proposed
SHFL adopts a hierarchical FL approach, in which a centralized server communicates
with participating clients who are further connected with the sub-clients. All clients are
distributed in clusters using a similarity-based index and privacy-based index to execute
distributed FL. In addition, the proposed SHFL introduces a K-anonymity method that
hides the location and identity of the clients in the cluster. The communication between
the K-anonymous central server and clients is protected using encryption technology. We
conducted detailed experiments on the commonly used FL datasets to demonstrate the
performance of the proposed SHFL in terms of convergence accuracy. The results prove that
the proposed SHFL performs significantly better than the state-of-the-art FL approaches.
Communication efficiency is a significant concern in FL, where SHFL needs to minimize the
communication cost by using either compressed updates or sparse data, which could be the
focus of our future work. Moreover, privacy attacks will be considered in our future work.
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