
Citation: Bai, T.; Fu, S.; Yang, Q.

Privacy-Preserving Object Detection

with Secure Convolutional Neural

Networks for Vehicular Edge

Computing. Future Internet 2022, 14,

316. https://doi.org/10.3390/

fi14110316

Academic Editors: Wei Yu,

Weixian Liao and Fan Liang

Received: 13 October 2022

Accepted: 30 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Privacy-Preserving Object Detection with Secure Convolutional
Neural Networks for Vehicular Edge Computing
Tianyu Bai, Song Fu * and Qing Yang *

Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, USA
* Correspondence: song.fu@unt.edu (S.F.); qing.yang@unt.edu (Q.Y.)

Abstract: With the wider adoption of edge computing services, intelligent edge devices, and high-
speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection
using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers.
However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor
data from vehicles can be observed and used by edge servers. We aim to address the privacy
problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present
vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks,
named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure
functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s
sensor data is split and encrypted into multiple secret shares, each of which is processed on an
edge server by going through the secure layers of a detection network. The detection results can
only be obtained by combining the partial results from the participating edge servers. We have
developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage
detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show
that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data
privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders
of magnitude faster than the existing approaches for data privacy. To the best of our knowledge,
this is the first work that targets privacy protection in object-detection tasks with vehicle–edge
cooperative computing.

Keywords: data privacy; autonomous vehicles; deep learning; edge computing

1. Introduction

Autonomous vehicles (AVs) have been attracting more and more attention and interest
in both industry and academia. AVs rely on various sensors, e.g., camera, LiDAR, radar,
GPS, IMU, etc., to perceive the surrounding environment and plan movement and routes [1].
To achieve autonomous driving, objects on the road should be detected accurately and
quickly. The latest object-detection methods or systems mostly use deep learning for
detection. Although they are more accurate, deep-learning networks are compute-intensive
and require powerful computing capacity on a vehicle. Furthermore, object-detection
networks are only one of the many deep-learning networks that are run on a vehicle for
various autonomous driving tasks.

To provide reliable computing power for delay-sensitive applications, edge comput-
ing [2] offers a cost-effective and scalable way to execute part of those deep-learning
workloads for nearby vehicles. This vehicle–edge cooperative computing is attractive and
practical for both existing ego AVs and future connected AVs.

Privacy, however, is a big concern in vehicle–edge collaboration, as the sensor data
containing sensitive information leave the vehicle and are processed on an edge server. Both
the sensitive information in the input data and the object results from the detection network
can be accessed and used by the edge server. Existing approaches, such as homomorphic

Future Internet 2022, 14, 316. https://doi.org/10.3390/fi14110316 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14110316
https://doi.org/10.3390/fi14110316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi14110316
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14110316?type=check_update&version=2

Future Internet 2022, 14, 316 2 of 17

encryption [3,4], secure multi-party computation [5], and secret sharing approximation [6],
protect data privacy at the price of a prohibitive computational overhead and/or comprised
detection accuracy.

To address these issues, in this paper, we present vehicle–edge cooperative deep
learning with privacy preservation for object-detection tasks, named vePOD for short.
vePOD aims to protect the privacy of both the sensor data from vehicles and the object
results generated by CNN from being exposed to and used by edge servers which execute
the CNN inference jobs. In vePOD, we leverage the additive secret sharing theory to design
secure functions for every layer in an object-detection CNN. A vehicle’s sensor data (e.g.,
a 2D image from an onboard camera) are partitioned and encrypted into two or more
secret shares. Each share is transferred to and then processed on an edge server, which
runs the object-detection CNN with secure functions on the secret share. The generated
result from each edge server is then sent to the original vehicle (for workload offloading) or
another vehicle (for workload offloading and data sharing), where the data are combined
to obtain the detected objects. The entire process is configurable. When the vehicle–
edge communication latency is high, a vehicle can help by executing the first several
layers in the detection network and then send the secret shares of feature maps to edge
servers for the remaining compute-intensive processing. This vehicle–edge cooperative
computing paradigm can protect data privacy, reduce communication cost, and improve
application performance.

We present two use cases where the layers in object-detection CNNs—Faster R-CNN
(two-stage detection) and YOLO (single-stage detection)—are enhanced by secure functions
in vePOD. The vePOD version of the networks, denoted by vePOD Faster R-CNN and
vePOD YOLO, are tested on the COCO dataset. Experimental results show that vePOD
Faster R-CNN and vePOD YOLO achieve the same detection accuracy as Faster R-CNN and
YOLO, respectively. Secure functions on secret shares protect data privacy, but prolong the
detection time. The execution time of vePOD Faster R-CNN is extended from 14 s (Faster
R-CNN) to 44.1 s (vePOD Faster R-CNN) without any optimization and vePOD YOLO is
extended from 3.2 s to 80.7 s. Compared with a slowdown of four orders of magnitude
with homomorphic encryption on CNN [7], vePOD achieves a significant speed-up, which
makes vePOD practical for real-world applications.

The rest of the paper is organized as follows. Section 2 describes object-detection
CNNs and the detailed design of vePOD. Section 3 evaluates the performance of vePOD
CNNs. The related research is presented and discussed in Section 4. Section 5 concludes
the paper with remarks on future research.

2. Materials and Methods
2.1. Convolutional Neural Networks for Object Detection

AVs continuously collect real-time sensor data from the surrounding environment.
These sensor data are processed to achieve various autonomous driving tasks. Among
them, object detection is fundamental. Objects on the road, such as vehicles, pedestrians,
cyclists, and other obstacles, must be detected accurately and quickly so that planning and
control can drive a vehicle safely. While some AVs have expensive LiDAR sensors, cameras
are the de facto sensors equipped on almost all AVs. Without loss of generality, we focus
on object detection on 2D images in this paper. VePOD can be easily extended to work on
3D point clouds.

Object detection is a popular research topic. Many computer vision-based and deep
learning-based algorithms have been proposed in the literature, such as [8–12]. Th recent
advance of convolutional neural networks (CNN) promotes object detection. Two-stage
and single-stage object-detection networks have emerged. Two-stage object detectors per-
form the detection task in two sequential steps: (1) locating the potential objects using
bounding boxes, which are called region proposals; and (2) processing the region proposals
with a prediction network to calculate classification scores, as well as locations. Exam-
ples of two-stage object-detection algorithms include R-CNN [13], Fast R-CNN [14], and

Future Internet 2022, 14, 316 3 of 17

Faster R-CNN [15]). In contrast, single-stage object detectors scan an image only once to
produce both the classification and bounding boxes of objects. YOLO [16] and SSD [11] are
such algorithms.

In this paper, we aim to protect sensitive data from vehicles, sensor data and detected
objects in particular, from being exposed to edge servers where object-detection CNNs are
executed on the vehicle data. We design vePOD to be generic and applicable to both two-
stage and single-stage object-detection networks. The case studies in Sections 2.5 and 2.6
explain how vePOD is used to enhance object-detection CNNs for privacy preservation.

2.2. Additive Secret Sharing Theory

The additive secret sharing theory provides a theoretical foundation for us to design
the secure functions to process encrypted data shares from a vehicle in a vePOD object-
detection network.

The concept of secret sharing was originally proposed to protect key security [17].
Informally, secret sharing works as follows. A trusted party divides a secret into N shares,
which are kept by N participants. No less than k (k ≤ N) participants can reconstruct
the secret. The major operations on secret shares are divide and assemble, as expressed in
Equation (1).

D(−→s) = (−→s 1,−→s 2 . . .−→s n),
−→s ∈ V

A(−→s 1,−→s 2 . . .−→s n) =
−→s

(1)

The additive secret sharing theory [18] employs additional constrains, that is, (1) secret
shares maintain an additive relation; i.e., s = ∑k

n=1 sn; and (2) k = N; i.e., a secret s can
be rebuilt only when all the secret shares are collected. Additive secure sharing enables
secure operations on cipher text. For example, secrets t and s are divided into (t1, t2, . . . , tn)
and (s1, s2, . . . , sn) among participants; then, the sum of secrets can be calculated without
revealing their values; i.e., addition can be performed on secret shares separately, which
can then be added up.

Based on the additive secret sharing theory, we develop three secure protocols for
linear operations that are used in vePOD, i.e., secure addition (SecAdd), secure subtraction
(SecSub), and secure scalar multiplication (SecSMul). An input array (u, v) to SecAdd is split
into (u1, v1) and (u2, v2), and sent to edge servers S1 and S2, respectively. Independently, S1
calculates f1 = u1 + v1 and S2 calculates f2 = u2 + v2. The addition of f1 and f2 produces
the same result as the original addition; i.e., f1 + f2 = u + v. Similarly, an input array (p, q)
to SecSMul is divided into (p1, q) and (p2, q); edge servers S1 and S2 compute f1 = q ∗ p1
and f2 = q ∗ p2, respectively. We have f1 + f2 = p ∗ q.

2.3. Overview of vePOD

vePOD aims to (1) protect a vehicle’s sensor data from being exposed to or used by
edge servers, and (2) protect the object-detection results from being obtained by edge
servers. To achieve the first goal, a vehicle creates N randomized secret shares {Ri} from
an image (or a feature map) M following an additive relation, that is, M = ∑ Ri. Each
edge server processes one secret share, which contains random data. To protect against
possible attacks in the public network between a vehicle and edge servers, a secret share Ri
is encrypted using an encryption key K retrieved from a trusted server T, before being sent
to an edge server. For the second goal, an edge server runs the vePOD CNN on a secret
share Ri and produces only partial results. We assume there is no conspiracy attack, that is,
the N edge servers do not exchange secret shares or partial results.

Each edge server executes an object-detection CNN on the received secret share.
Figure 1 plots the workflow. The key challenge is how to design an object-detection CNN
that can process secret shares containing random data and still generate correct (partial) detection
results. To tackle this challenge, we examine every layer in an object-detection CNN (e.g.,
convolutional, activation, pooling, fully-connected layers, and others), and design secure

Future Internet 2022, 14, 316 4 of 17

functions for each layer to handle secret shares. The design details of vePOD will be
described in the next section.

Figure 1. Workflow of vePOD: vehicle–edge collaborative deep learning with privacy preservation
for object detection.

To illustrate where and how vePOD can be applied, we present an application scenario.
Please note that this is one of many scenarios where vePOD can be used to protect a vehicle’s
data privacy. In this scenario, two or more vehicles exchange sensor data to expand their
perception range and enhance perception accuracy. In cooperative perception, a vehicle
needs to process not only its only sensor data, but data from other vehicles as well. To avoid
overloading a vehicle, the sensor data from another vehicle can be offloaded to nearby
edge servers, in which vePOD can be applied to protect data privacy while processing the
vehicle’s data on the edge. To apply vePOD, a vehicle partitions its sensor data to create
secret shares, which are offloaded to edge servers. Each edge server runs a secret share
through the secure layers in a vePOD CNN. The outputs from participating edge servers
are combined on the destination vehicle to obtain the object-detection results. In this way,
the privacy of the vehicle’s sensor data is protected in both network transportation and
edge computation.

2.4. Design of vePOD Deep-Learning Networks

In a vehicle–edge cooperative computing environment, both vehicles and edge servers
participate in executing the object-detection CNNs, aiming to accurately detect objects
around a vehicle and, at the same time, protect the vehicle’s data privacy.

Recent studies [19–23] show that cooperative inference can protect input data by
dividing a deep-learning network into two parts: one that resides on an end device and
another that is on an edge server. The end device and edge server each execute part of the
network and exchanges feature maps. Such a cooperative computing paradigm can better
utilize the resources on both sides and improve the inference performance.

vePOD leverages this vehicle–edge cooperative computing paradigm to protect data
privacy for vehicles. Our goal is to achieve privacy preservation with a high efficiency and
uncompromised accuracy.

To facilitate our discussion, we use Faster R-CNN and YOLO, two widely used
networks, as illustrative examples to describe the design of the vePOD CNN.

Faster R-CNN [15] is a two-stage object-detection network. It scans an input image
twice. The first scan determines region proposals and the second classifies objects in those
regions. The major components in the first stage include a backbone CNN to extract
features, a region proposal network (RPN) to generate bounding boxes, and non-maximum
suppression (NMS) to select bounding boxes from many overlapping ones. The second
stage consists of region of interest (ROI) pooling to produce fixed-size feature maps for each
bounding box and a prediction network to output detection results based on the feature
maps and region proposals.

Future Internet 2022, 14, 316 5 of 17

YOLO [16] is a single-stage detection network that treats object-detection as a regres-
sion problem and scans input images only once. The YOLO darknet network consists of
24 convolutional layers, 4 max-pooling layers, and 2 fully connected layers.

Image-Level and Feature-Level Secret Sharing

An important design decision that we need to make is on what data to generate secret
shares. This can be done either on images or feature maps.

For image-level secret sharing, a vehicle generates multiple secret shares from an
image. Edge servers execute object-detection CNNs on those secret shares, including
feature map generation using a secure backbone CNN, region proposal prediction on
encrypted data, secure ROI pooling, and a secure detection network. The advantage of this
design is that the entire object-detection task is offloaded to edge servers, which reduces
the vehicle’s load. However, processing secret shares on multiple edge servers may cause
RPN to produce erroneous region proposals, as RPN needs the original image to identify
bounding boxes and refine the coordinates. Image-level secret sharing is effective for
single-stage detection networks, as all the layers in a network are capable of processing
individual secret shares without region proposals and global synchronization.

In contrast, feature-level secret sharing leverages region proposal generation on the
vehicle. A vehicle runs RPN and creates secret shares based on the feature maps generated
by the backbone CNN. The secret shares are then sent to and processed by edge servers;
i.e., they go through a secure ROI pooling and a secure detection network. In feature-level
secret sharing, the vehicle performs part of the object-detection network, including the
backbone CNN and RPN, which leads to extra workload to the vehicle. However, the
detection time can be reduced since the secure backbone CNN is slower than the original
backbone network. Additionally, since only the secret shares of feature maps are exchanged
between vehicle and edge servers, data privacy of the vehicle’s images is protected, even
under conspiracy attacks [24].

Which one, image-level or feature-level secret sharing, should be chosen for a given
object-detection CNN? To answer this question, we need to consider the following factors:
(1) the available resources on a vehicle and an edge server—when the vehicle has extra
computing resources available, feature-level secret sharing is a better choice, as local
execution avoids the additional overhead of running expensive secure functions; (2) the
communication latency between vehicle and edge server—when the communication cost of
transferring secret shares is lower than on-vehicle computation, image-level secret sharing
can reduce the vehicle’s load and better utilize edge resources; (3) The functional correctness
of the object-detection network under different secret sharing schemes.

Next, we use two widely used object-detection CNNs, i.e., Faster R-CNN (a two-
stage detection network) and YOLO (a single-stage detection network), to explain the
construction of vePOD networks and the design of secure functions.

2.5. vePOD Faster R-CNN: Vehicle–Edge Cooperative Object Detection for Privacy Preservation

A region proposal network (RPN) iterates through a feature map and generates nine
anchor boxes in three different aspect ratios and scales for each anchor point. Then, the
bounding box regressor layer and classifier layer determine the shifted location of each
anchor box and whether it is in the foreground or background with a probability score.
The non-maximum suppression (NMS) groups anchor boxes based on an intersection over
union (IOU) threshold. NMS selects the one with the highest probability score from each
group. The 2000 filtered anchor boxes, together with their probability scores, are saved as
region proposals. Those selected region proposals are projected to the feature map based
on their coordinates. The projected regions on the feature maps are defined as the regions
of interest (ROIs). ROIs are detected by the RPN based on the values in the feature map.
The generated ROIs go through ROI pooling and a prediction network to detect objects.

The RPN and NMS need the whole image to find bounding boxes and refine their
coordinates. As a result, image-level secret sharing causes the RPN to generate incorrect

Future Internet 2022, 14, 316 6 of 17

bounding boxes, as each edge server only possesses a secret share of the original image.
Therefore, we adopt feature-level secret sharing in the design of vePOD Faster R-CNN.

Figure 2 depicts the overall structure of vePOD Faster R-CNN and its key components.
Both the vehicle and edge servers are involved in executing the object-detection network.
On a vehicle, an input image goes through a backbone CNN and RPN; then, the generated
feature maps are partitioned and encrypted. After receiving a feature-level secret share
from the vehicle, an edge server runs an ROI pooling and a detection network on the
secret share along with the region proposals. In order to produce correct detection results
while processing encrypted secret shares, vePOD enhances the ROI pooling and detection
network by introducing secure functions.

Figure 2. Structure and major components of vePOD Faster R-CNN. Blue blocks represent the
operations performed on a vehicle and green blocks are those executed on an edge server; the yellow
block can be done on the same or a different vehicle.

The detection network consists of two fully-connected (FC) layers. FC performs linear
transformations on the input feature maps. Since a linear transformation does not change
the additive relationship (Section 2.2) between secret shares, it does not affect the functional
correctness when combining results from all secret shares. As a result, the secure function
for the detection network is the same as the original detection network in Faster R-CNN.

In contrast, the ROI pooling performs non-linear transformations on input feature
maps, which can change the additive relationship among the secret shares. The design of
its secure function needs to address this problem.

2.5.1. Secure ROI Pooling

A region of interest (ROI) pooling generates fixed-size feature maps for each bounding
box so that the detection network can classify the object in each bounding box.

The following operations are performed by the ROI pooling: (1) extracting region
proposal specific feature maps; (2) dividing the extracted feature maps into a fixed number
of patches based on the shape of the expected output feature map; and (3) selecting the
maximum-valued element from each patch.

The secure ROI pooling takes feature-level secret shares and region proposals as its
input from a vehicle. The operation (3) in the ROI pooling, i.e., selecting the maximum-
valued element from each patch, involves non-linear computation (i.e., maximum). We
develop a secure function to make it work correctly on a secret share.

Our approach is to compare the relative difference between secrets. For example,
for two secrets V and D. which are partitioned into secret shares (V1, V2) and (D1, D2),

Future Internet 2022, 14, 316 7 of 17

where V = V1 + V2 and D = D1 + D2, the secure function aims to determine whether V
is greater than D without a reconstruction of the secrets. To achieve this, it calculates the
difference η = V − D = (V1 + V2)− (D1 + D2) = (V1 − D1) + (V2 − D2), and checks if η
is greater than zero. For each extracted feature-map patch, the secure function calculates
η for each pair of elements. By collecting those η’s from edge servers, we can know the
relative difference of each secret, from which the maximum-valued element in secret shares
can be identified.

Algorithm 1 sketches the secure function for ROI pooling. In the secure ROI pooling,
each patch is flattened to a one-dimensional array with size Lij = width(Pij) ∗ height(Pij).
Then, it creates a table Tij with size (Lij)

2 and computes Tijmn = Pij[m] − Pij[n]. Table
{Tij} stores the relative difference η of Pij[m] and Pij[n] on an edge server that has the ith
secret share and the jth patch. Edge servers Ei and Eq exchange Tij, Tqj through a trusted
server and calculate Tj = Tij + Tqj. Tj[m][n] is the relative difference of the feature map
F on patch j, i.e., Tj[m][n] = Pj[m]− Pj[n]. If all the values in row k are positive, then the
corresponding value in Pj is greater than the others.

As the number of secret shares n increases, the secure ROI pooling scales well as
Tj = ∑N

n=1 Tnj.

Algorithm 1 Secure Function for ROI Pooling

1: for each region proposal do
2: Scale the proposal by a scaling factor: SPi = Pi ∗ γ
3: end for
4: Extract region-based features F with the scaled proposal’s coordinates µ, υ
5: Calculate a width stride = width(κ)/w and a height stride = height(κ)/h
6: Divide κ into patches Pij based on the width stride and height stride
7: for each patch Pij do
8: Flatten Pij, the size of path Lij = width(Pij) ∗ height(Pij)
9: Create relative difference table T with a size Lij ∗ Lij

10: Tijmn = Pij[m]− Pij[n]
11: Ei shares relative difference table Tij with Eq, collect relative difference table Tqj,

calculate Tj = Tij + Tqj
12: for each row in T do
13: if all values in the row are greater than 0 then
14: return the index of the row, k
15: end if
16: end for
17: return Pij[k]
18: end for

2.5.2. Selective Secure ROI Pooling

The secure ROI pooling (Section 2.5.1) leverages the additive secret sharing theory
and a relative difference approach on feature maps to perform ROI pooling on encrypted
secret shares by multiple edge servers. We note that although secret shares generated
from a feature map contain random values, a comparison of the index of a maximum-
valued element instead of calculating the difference can improve the efficiency of the
secure function.

Specifically, after a single path is flattened into a single dimension, modern program-
ming languages provide an application programming interface to retrieve the maximum-
valued element’s index. By comparing this index with those from other edge servers, the
secure function can tell whether other secret shares have the maximum-valued element or
not. This avoids the computation and construction of the relative difference table.

For example, the probability of two shares on patch Pj having their maximum-valued
element in the exact location is 1

(Sij)2 . With two secret shares, this probability is relatively

Future Internet 2022, 14, 316 8 of 17

high, justifying the feasibility of this optimization. As the number of secret shares increases,
this probability drops and the effectiveness of the optimization is reduced.

2.6. vePOD YOLO: Privacy Preserving Object Detection on the Edge

YOLO is a single-stage object-detection network composed of multiple convolutional,
max-pooling, and fully connected layers. The original image is not needed to generate
region proposals. As a results, the image-level secret sharing can be used to build ve-
POD YOLO.

Figure 3 depicts the structure of vePOD YOLO and its major secure functions. In
vePOD YOLO, a vehicle partitions an image into several shares and encrypts them to
generate secret shares using an encryption key obtained from the trusted server. Those
secret shares are distributed to edge servers, each of which executes vePOD YOLO con-
sisting of secure functions of the convolutional, max pooling, and fully connected layers
(detailed in the following sections) on a secret share. The outputs from vePOD YOLO
on the edge servers are combined on a vehicle to obtain the detected objects. Compared
with the feature-level secret sharing, the image-level secret sharing approach simplifies the
processing on a vehicle and makes an edge server execute the entire secure detection CNN.
This may lead to a longer execution time from running the secure functions that contain
addition operations on secure shares.

Figure 3. Structure and major components of vePOD YOLO. Image-level secret sharing is applied.
Edge servers execute secure functions in vePOD YOLO to process secret shares.

A secret share Mi received by an edge server goes through a number of secure convolu-
tional layers, secure max-pooling layers, and secure fully-connected layers. Convolutional
layers and fully-connected layers perform linear transformations that do not affect the
additive relationship among secret shares. Thus, the secure convolutional layer and secure
fully-connected layer are the same as the original convolutional and fully-connected layers,
respectively. We focus on the design of the secure max-pooling layer.

Secure Function for Max-Pooling Layer

Max pooling keeps important features by selecting the largest, i.e., max(), in a stride.
The max() function performs a non-linear operation on features, which may affect the
additive relationship among secret shares. To assure the max-pooling layer generates
correct results on secret shares, we design a secure max-pooling function.

Algorithm 2 sketches the secure function for map pooling. In a vehicle–edge comput-
ing environment with two edge servers, secure map pooling works as follows.

An edge server E1 processes a feature map F1 j in a channel j and processes a region R
(e.g., 2 × 2) at a time. To find the maximum-valued element in the region R, it calculates the
relative difference by subtracting the elements in R from the two edge servers, exchanges

Future Internet 2022, 14, 316 9 of 17

secret shares’ relative difference, and adding them; i.e., if I is smaller than zero, the value
of the raw data element in the region R with index [α, β] is smaller than the raw data
element with the index [w, h]. The index of the greater element is recorded and this process
is repeated until all the elements in R are processed. Thus, the index of the maximum-
valued element in R can be determined. With this design, only the relative difference is
exchanged between edge servers, which protects the feature maps and secret shares from
being revealed to each other.

Algorithm 2 Secure Max Pooling Function

1: Input: feature map Fi from the previous convolution layer on edge server Ei
2: for each channel j in feature map Fi do
3: Fij is the feature map Fi in the jth channel
4: w, h are the max-pooling strides
5: for each stride region R in Fij, w in a range [0, 1], h in a range [0, 1] do
6: pooling index α = 0, β = 0
7: Ii = R[α][β]− R[w][h]
8: Ei, Eq exchange Ii, Iq and compute I = Ii + Iq
9: if I < 0 then

10: α = w, β = h
11: end if
12: return R[α][β]
13: end for
14: end for

The secure max pooling in vePOD YOLO bears similarity to the secure ROI pooling
in vePOD Faster R-CNN, but they are different. The former adopts region-based index
tracking to find the most significant element, while the latter uses relative difference tables
to select patch-based maximum-valued elements. Both methods exploit the additive secret
sharing theory to enhance non-linear operations to handle secret shares.

3. Results

We implemented proof-of-concept vePOD CNNs, i.e., vePOD Faster R-CNN and
vePOD YOLO, and evaluated their performance on a vehicular edge-computing testbed.
Each edge server in the testbed is equipped with an AMD Ryzen 7 processor with 6 cores
at 3.2 GHz and 16 GB DRAM, and runs Ubuntu Linux v20.04 and Python v3.8.

We conducted our experiments on the COCO dataset [25], which is a widely used
object-detection dataset. Among the 80+ categories of objects in the COCO dataset, we
are interested in the transportation-related objects, such as vehicles, traffic signs, and
pedestrians. In our experiments, we build vePOD CNNs using pre-trained models, which
are trained by using 5000 images from COCO with 135 epochs, 40 batches, and 0.01 learning
rate. To evaluate the performance of vePOD networks, we selected 350 images from the
COCO dataset that contain the 15 most frequent street view object classes in 10 batches
for inference.

3.1. Accuracy of Object Detection

vePOD aims to enhance object-detection CNNs to process secret shares to protect
vehicles’ data privacy. The implementation of the secure functions should not affect the
functional correctness of the object-detection network. In this set of experiments, we
compared the detection accuracy of the vePOD CNNs with that of the original CNNs.

Figure 4 presents the detection results in single-object and multi-object scenarios. We
find that the vePOD CNN detects all the objects in each image that the original CNN does,
achieving the same accuracy. This implies that the structure and secure functions of vePOD
do not alter the detection accuracy.

To quantitatively evaluate the detection accuracy, we calculated the error rate as the
difference between the outputs from the vePOD CNN and those from the original CNN;

Future Internet 2022, 14, 316 10 of 17

i.e., |(dvePOD − dCNN)/dCNN |, where dCNN and dvePOD are the object-detection output
(includes classification score and bounding box’s offset) from the CNN and vePOD CNN,
respectively. In our experiments, the average error rate was within e−7. That is, vePOD
CNN has the same detection capability as the original CNN.

Figure 4. vePOD Faster R-CNN achieves the same detection accuracy as Faster R-CNN.

3.2. Security Analysis of vePOD

In vePOD, secret shares are sent to edge servers instead of raw images. These en-
crypted secret shares contain random data, which significantly enhances vePOD’s resistance
to cryptography attacks, such as eavesdropping attacks and chosen ciphertext attacks. Dif-
ferent ciphertext is generated even for the same plaintext each time. Furthermore, vePOD
does not suffer from key management risks, since it divides and hides information in secret
shares instead of through encryption.

In a vehicular edge-computing environment, edge servers may not be honest and
they can collaborate to detect private information. To protect the privacy of a vehicle’s
sensor data, the vehicle can run one or more convolutional layers on a raw image locally
to generate feature maps. Then, the secret shares of those feature maps are sent to edge
servers where the remainder of the object-detection network will be executed. Even if
edge servers collaborate with each other, they can only rebuild the feature maps. Thus, the
original image data is protected.

3.3. Efficiency of Object Detection
3.3.1. Performance of vePOD Faster R-CNN

We also evaluated the execution time of vePOD CNNs for detecting objects. Figure 5
shows the performance of vePOD Faster R-CNN and Faster R-CNN in processing 800 × 800
images.

For Faster R-CNN, the feature map generation using a backbone CNN takes 6.8 s,
which accounts for 53.3% of the execution time. This is because the number of neural
networks in the CNN backbone is more than five times the number in other parts of the
detection network. VePOD Faster R-CNN takes a similar amount of time to generate
feature maps and region proposals, as it uses the same CNN backbone and RPN network
as Faster R-CNN.

Secret sharing uses storage and network bandwidth resources. We evaluated the
transmission efficiency of vePOD. To transfer secret shares, vePOD Faster R-CNN takes
2.6 s under 300 Mbps bandwidth, which accounts for 5.9% of the overall execution time.
In terms of the storage cost, we compare the size of secret shares with that of the original
sensor data in Figure 10. Please see Section 3.3.4 for more details.

Future Internet 2022, 14, 316 11 of 17

The major performance difference between vePOD Faster R-CNN and Faster R-CNN
lies in the ROI pooling. Secure ROI pooling in vePOD Faster R-CNN takes 34 s, while
Faster R-CNN uses 3.9 s.

This prolongation of the execution time is caused by the secure function, which
calculates and merges a relative difference table for every region proposal specific patch.

Figure 5. Comparison of the execution time of the key components in vePOD Faster R-CNN and
Faster R-CNN.

To gain a deeper understanding of the preceding result, we study the impact of the
number of region proposals on the performance of secure ROI pooling. Figure 6 presents
the results. Faster R-CNN uses fixed-size input feature maps (50× 50× 512, i.e., width,
height, and channel). The number of region proposals directly influences the execution
time of the secure function. The time is comparable when there are 100 or 500 region
proposals. Specifically, for 100 region proposals, the original ROI pooling takes 1.7 s and
the secure ROI pooling uses 1.9 s. However, when there are over 1000 region proposals,
the execution time differs more; i.e., the original ROI pooling takes 3.9 s to process 2000
region proposals. In contrast, the secure ROI pooling uses 34.0 s. In addition to the number
of region proposals, the shape of the ROI affects the performance of the secure ROI pooling
as well. More specifically, larger ROIs lead to an increased execution time caused by secure
operations to construct the relative difference tables; for example, an ROI with size 12 × 12
(width, height) takes an additional 0.007 s computation time compared to an ROI with size
3 × 3.

Intuitively, when more secret shares are created from a vehicle’s sensor data, vePOD
Faster R-CNN achieves better privacy protection. However, this also increase the compu-
tation cost. Figure 6 plots the relationship between the execution time of the secure ROI
pooling and the number of secret shares. Each secret share is processed by an edge node.
The extra time caused by adding one more secret share is not significant, e.g., from 34.1 s
for two secret shares to 37.1 s for three secret shares, an 8.1% increase. This is because most
of the operations in the secure ROI pooling remain the same, except for adding an extra
relative difference table from the additional secret share in every ROI patch.

Future Internet 2022, 14, 316 12 of 17

Figure 6. Execution time of the secure ROI pooling in vePOD Faster R-CNN for processing different
numbers of region proposals.

3.3.2. Performance of Selective Secure ROI Pooling

The selective secure ROI pooling compares the indices of maximum-valued elements,
which avoids calculating difference tables, to speed up the secure function of ROI pooling.
Figure 7 presents the execution time of the selective secure ROI pooling. In the figure, we
can see when there are two secret shares, the selective secure ROI pooling takes 29.7 s,
achieving a speed-up of 14.6% over the secure ROI pooling. When the number of secret
shares increases, the performance improvement becomes less significant. When the number
of secret shares is three, the selective secure ROI pooling uses 40.3 s, that is, a performance
degradation by 5.3% compared with the secure ROI pooling. The probability of successfully
selecting the maximum-valued element at the same location among all the patches on
different edge servers is 1

(Sij)k , where Sij is the patch size and k is the number of secure

shares. This probability drops when the number of edge servers increases.

Figure 7. Performance comparison of secure ROI pooling and selective secure ROI pooling with two
and three secure shares running vePOD Faster R-CNN.

Future Internet 2022, 14, 316 13 of 17

3.3.3. Performance of vePOD YOLO

As a single-stage privacy-preserving object-detection network, vePOD YOLO pro-
cesses secret shares through a series of secure convolutional, secure max pooling, and
secure fully-connected layers without generating region proposals. We also evaluate our
implementation of vePOD YOLO on the COCO dataset.

Figure 8 compares the performance of vePOD YOLO and the original YOLO using
two and three edge servers. The dimension of input images to YOLO is the same as the
dimension of image-level secret shares to vePOD YOLO. In the figure, we can see that the
major performance difference between YOLO and vePOD YOLO is from the secure max
pooling. Secure max pooling for two shares introduces 72.6 s computation latency and 4.1 s
data-transmission latency, which takes 99.8% of total performance overhead.

Figure 8. Performance comparison of YOLO and vePOD YOLO run on two and three edge servers.

The execution time of secure max pooling, as shown in Figure 9, increases linearly
with the size of the input feature map. The size of a feature map equals the product of
the width, height, and the number of channels of the feature map. For example, vePOD
YOLO’s execution time with two edge nodes is 15.17 s with input size 56× 56× 512 (width,
height, channel), and execution time for a feature map of input size 224 × 224 × 64 is
32.4 s. The execution time ratio equals the ratio of the total number of features in the input
feature map because the secure function is executed on every pooling region iteratively
with identical time complexity. VePOD Darknet CNN consists of four secure max-pooling
layers, and their execution time varies. The ratio of the execution time between the four
layers matches the ratio of the corresponding size of their input feature maps. The ratio
of the four layers’ execution time and feature map size is 4:3:2:1. The execution time of
vePOD YOLO with three nodes is longer than two nodes with the same input size. For
example, with an input feature map size of 56 × 56 × 512, the execution time for two and
three nodes is 15.6 s and 19.2 s. Compared to two nodes, the secure function for three nodes
needs to combine an extra piece of data to retrieve the difference of feature value in every
location, which causes an additional delay in performance.

Future Internet 2022, 14, 316 14 of 17

Figure 9. Execution time of the secure max pooling in vePOD YOLO with two and three edge servers.

3.3.4. Performance Comparison of vePOD Faster R-CNN and vePOD YOLO

Both vePOD Faster R-CNN and vePOD YOLO protect data privacy for vehicles and
achieve the same detection accuracy as their original networks. Compared with vePOD
YOLO, vePOD Faster R-CNN achieves a higher detection accuracy of around 8.4 percentage
of MAP, especially for small clustered objects due to its two-stage detection approach.

Moreover, we find from the experiments that the execution time of vePOD YOLO
increases more when k becomes greater, e.g., from 2 to 3, compared with vePOD Faster
R-CNN. This is because (1) in vePOD Faster R-CNN, when the number of secret shares k
increases, the secure ROI pooling becomes less complex compared with the secure max
pooling in vePOD YOLO; and (2) the execution time increase of vePOD YOLO comes from
the computation cost of the four secure max-pooling layers, while in vePOD Faster R-CNN,
the execution time increase is from one secure ROI pooling layer.

Figure 10 shows that vePOD YOLO transfers less data between the vehicle and edge
servers. This is because vePOD YOLO employs image-level secret sharing. In contrast,
feature-level secret sharing needs to transfer both feature-map secret shares and region
proposals from the vehicle to edge servers.

Secret shares need extra storage space. In Figure 10, we can see that vePOD Faster
R-CNN on two edge servers for each vehicle’s image needs 280 bytes of additional space
to store secret shares compared to using the feature maps. VePOD YOLO under the same
setting takes an extra 160 bytes compared to using the raw image.

Figure 10. Comparison of storage and communication costs using vePOD Faster R-CNN and vePOD
YOLO.

Both Figures 5 and 8 indicate that the secure functions prolong the execution of
those layers containing nonlinear operations. To make vePOD more suitable for real-time
object detection, there are several possible ways to improve its performance. For example,
we can leverage process-level parallelism, e.g., using multi-threading, to speed up the

Future Internet 2022, 14, 316 15 of 17

repeated/iterative invocations of a secure function; inside a secure function, we can identify
and maximize data reuse to remove redundant computations and exploit instruction-level
parallelism to shorten each invocation. Another main cause of the performance degradation
is the use of Python code in the implementation. Currently, all the secure functions are
written in Python. This eases the implementation, but at the cost of performance. We plan
to rewrite the secure functions using lower-level programming languages, such as C or
assembly, to speed up their execution, especially in nested loops.

4. Related Work

Privacy protection for deep learning is an important research topic and has attracted
significant attention. A number of techniques have been proposed in the literature, such as
homomorphic encryption and secure multi-party computation. In this section, we discuss
the related research.

Leboe-McGowan et al. [6] proposed a heuristic privacy-preserving CNN for image
classification. Instead of pursuing perfect ciphertext-based non-linear operations, they
applied a rough approximation to evaluate the CNN’s non-linear transformation layers. It
achieved promising performance, since the complex ciphertext-based computation was
avoided. However, the accuracy of object classification was compromised, with a 4% degra-
dation of classification accuracy. Our vePOD targets the more complex object-detection
tasks and it keeps the same detection accuracy as the original deep-learning networks.

Xie et al. [3] and Erkin et al. [4] applied homomorphic encryption to deep learning on
network-connected servers. The former devised a secure CNN model to process encrypted
data and generate results in cipher text that only the owner of the data can decrypt. The
latter focused on secure image-classification CNNs using fully homomorphic encryption.
These approaches aim to protect the input data and inference results. However, homo-
morphic encryption causes prohibitive computation overhead and drastic performance
degradation. For example, an implementation of fully homomorphic encryption for deep
learning suffered from a slowdown by four orders of magnitude [7]. The preceding works
are for image classification. The performance degradation of homomorphic encryption for
object detection is even worse, making it impractical for real-world deployment.

Secure machine learning [26] provides secure protocols for training ciphertext-based
CNN models using linear regression and logistic regression. A privacy-preserving deep-
learning framework [27] included secure protocols for connected servers to share model
parameters. In the framework, no encryption or decryption was conducted on data, and
there was no guarantee that adversaries could not use those crucial parameters to attack
the system.

Object detection is vital for autonomous driving and is more complex than image
classification. Privacy protection for object detection in a vehicle–edge environment has
not been studied. In this paper, we tackle this new problem and present privacy-preserving
object-detection networks that are run on edge servers to process secret shares from vehicles
to achieve enhanced data privacy and uncompromised detection accuracy.

5. Conclusions

We present a privacy-preserving object-detection (vePOD) framework that can protect
both a vehicle’s sensor data and object-detection results from being exposed to and used by
edge servers. We leverage the additive secret-sharing theory to develop secure functions
in detection CNNs. The secure layers in a vePOD CNN process secret shares received
from a vehicle and produce detections with the same functional correctness as the original
network. We implement proof-of-concept networks for vePOD Faster R-CNN and vePOD
YOLO. Experimental results on a public dataset show that vePOD CNNs guarantee the
same detection accuracy as the original CNNs. Most importantly, vePOD CNNs protect
data privacy for a vehicle by assuring that each edge server only accesses an encrypted
secret share and produces partial detection, which has no semantic importance for the
edge server.

Future Internet 2022, 14, 316 16 of 17

In our experiments, we note the performance degradation in running vePOD CNNs,
especially from the secure ROI pooling. The main goal of this paper is to develop proof-of-
concept networks for privacy-preserving object detection in a vehicle–edge collaborative
environment. We did not conduct any optimization on it. In our future research, we will
speed up the execution of vePOD CNNs by exploring acceleration and parallel-processing
techniques. Furthermore, we plan to develop novel approaches to enable the execution of
the entire object-detection workflow on edge servers for all types of CNNs. This will free
the limited resources on a vehicle to perform more mission-critical tasks.

Author Contributions: Supervision, S.F. and Q.Y.; Writing—original draft, T.B.; Writing—review &
editing, S.F. and Q.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported in part by the U.S. National Science Foundation grants CNS-
2037982, ECCS-2010332, OAC-2017564, CNS-2113805, CNS-1852134, DUE-2225229, and CNS-1828105.
We thank the reviewers for their constructive comments and suggestions, which helped us improve
this paper.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Campbell, S.; O’Mahony, N.; Krpalcova, L.; Riordan, D.; Walsh, J.; Murphy, A.; Ryan, C. Sensor technology in autonomous

vehicles: A review. In Proceedings of the International System Safety Conference (ISSC), Belfast, UK, 21–22 June 2018.
2. Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge computing for autonomous driving: Opportunities and challenges. Proc.

Inst. Electr. Electron. Eng. IEEE 2019, 107, 1697–1716. [CrossRef]
3. Xie, P.; Bilenko, M.; Finley, T.; Gilad-Bachrach, R.; Lauter, K.; Naehrig, M. Crypto-nets: Neural networks over encrypted data.

arXiv 2014, arXiv:1412.6181.
4. Erkin, Z.; Veugen, T.; Toft, T.; Lagendijk, R.L. Generating private recommendations efficiently using homomorphic encryption

and data packing. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1053–1066. [CrossRef]
5. Goldreich, O. Secure multi-party computation. Manuscr. Prelim. Version 1998, 78, 110.
6. Leboe-McGowan, D.; Al Aziz, M.M.; Mohammed, N. Simple Approximations for Fast and Secure Deep Learning on Genomic

Data. In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 4–7 November 2020.

7. Marcano, N.J.H.; Moller, M.; Hansen, S.; Jacobsen, R.H. On fully homomorphic encryption for privacy-preserving deep learning.
In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) Globecom, Waikoloa, HI, USA, 9–13 December 2019.

8. Yanagisawa, H.; Yamashita, T.; Watanabe, H. A study on object detection method from manga images using CNN. In Proceedings
of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018.

9. Zhao, W.; Ma, W.; Jiao, L.; Chen, P.; Yang, S.; Hou, B. Multi-scale image block-level F-CNN for remote sensing images object
detection. IEEE Access 2019, 7, 43607–43621. [CrossRef]

10. Du, J. Understanding of object detection based on CNN family and YOLO. In Proceedings of the Journal of Physics: Conference
Series, 2nd International Conference on Machine Vision and Information Technology (CMVIT 2018), Hong Kong, China, 23–25
February 2018.

11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.

12. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models.
IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [CrossRef] [PubMed]

13. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) CVPR, Columbus, OH, USA, 23–28 June 2014.

14. Girshick, R. Fast R-CNN. In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) ICCV, Santiago, Chile,
7–13 December 2015.

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. arXiv 2015,
arXiv:1506.01497v3.

16. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
Institute of Electrical and Electronics Engineers (IEEE) CVPR, Las Vegas, NV, USA, 27–30 June 2016.

17. Shamir, A. How to share a secret. Commun. Assoc. Comput. Mach. ACM 1979, 22, 612–613. [CrossRef]

http://doi.org/10.1109/JPROC.2019.2915983
http://dx.doi.org/10.1109/TIFS.2012.2190726
http://dx.doi.org/10.1109/ACCESS.2019.2908016
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://dx.doi.org/10.1145/359168.359176

Future Internet 2022, 14, 316 17 of 17

18. Damgård, I.; Fitzi, M.; Kiltz, E.; Nielsen, J.B.; Toft, T. Unconditionally secure constant-rounds multi-party computation for
equality, comparison, bits and exponentiation. In Proceedings of the Theory of Cryptography Conference, New York, NY, USA,
4–7 March 2006.

19. Hauswald, J.; Manville, T.; Zheng, Q.; Dreslinski, R.; Chakrabarti, C.; Mudge, T. A hybrid approach to offloading mobile image
classification. In Proceedings of the 2014 the Institute of Electrical and Electronics Engineers (IEEE) International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 8375–8379.

20. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [CrossRef]

21. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Distributed deep neural networks over the cloud, the edge and end devices. In
Proceedings of the 2017 the Institute of Electrical and Electronics Engineers (IEEE) 37th international conference on distributed
computing systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 328–339.

22. Ko, J.H.; Na, T.; Amir, M.F.; Mukhopadhyay, S. Edge-host partitioning of deep neural networks with feature space encoding
for resource-constrained internet-of-things platforms. In Proceedings of the 2018 15th the Institute of Electrical and Electronics
Engineers (IEEE) International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand,
27–30 November 2018; pp. 1–6.

23. Eshratifar, A.E.; Abrishami, M.S.; Pedram, M. JointDNN: An efficient training and inference engine for intelligent mobile cloud
computing services. IEEE Trans. Mob. Comput. 2019, 20, 565–576. [CrossRef]

24. He, Z.; Zhang, T.; Lee, R.B. Attacking and protecting data privacy in edge–cloud collaborative inference systems. IEEE Internet
Things J. 2020, 8, 9706–9716. [CrossRef]

25. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014.

26. Mohassel, P.; Zhang, Y. Secureml: A system for scalable privacy-preserving machine learning. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017.

27. Shokri, R.; Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the Association for Computing Machinery (ACM)
Computer and Communications Security (CCS), Denver, CO, USA, 12–16 October 2015.

http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.1109/TMC.2019.2947893
http://dx.doi.org/10.1109/JIOT.2020.3022358

	Introduction
	Materials and Methods
	Convolutional Neural Networks for Object Detection
	Additive Secret Sharing Theory
	Overview of vePOD
	Design of vePOD Deep-Learning Networks
	vePOD Faster R-CNN: Vehicle–Edge Cooperative Object Detection for Privacy Preservation
	Secure ROI Pooling
	Selective Secure ROI Pooling

	vePOD YOLO: Privacy Preserving Object Detection on the Edge

	Results
	Accuracy of Object Detection
	Security Analysis of vePOD
	Efficiency of Object Detection
	Performance of vePOD Faster R-CNN
	Performance of Selective Secure ROI Pooling
	Performance of vePOD YOLO
	Performance Comparison of vePOD Faster R-CNN and vePOD YOLO

	Related Work
	Conclusions
	References

