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Abstract: Botnets, groups of malware-infected hosts controlled by malicious actors, have gained
prominence in an era of pervasive computing and the Internet of Things. Botnets have shown a
capacity to perform substantial damage through distributed denial-of-service attacks, information
theft, spam and malware propagation. In this paper, a systematic literature review on botnets is
presented to the reader in order to obtain an understanding of the incentives, evolution, detection,
mitigation and current trends within the field of botnet research in pervasive computing. The
literature review focuses particularly on the topic of botnet detection and the proposed solutions to
mitigate the threat of botnets in system security. Botnet detection and mitigation mechanisms are
categorised and briefly described to allow for an easy overview of the many proposed solutions. The
paper also summarises the findings to identify current challenges and trends within research to help
identify improvements for further botnet mitigation research.

Keywords: botnet; malware; security; IoT

1. Introduction

Botnets are one of the most prominent threats to system and IoT security in the recent
age of cloud-enabled pervasive computing. New pervasive computing architectures, such
as always-on mobile devices and Internet-of-Things, provide additional infection vectors
for botnet attacks. Due to the large increase in interconnected devices and system platforms,
the types and attack patterns of botnets are constantly changing [1–3]. As an example, the
IoT botnet Mirai has seen growth from approx. 143,000 occurrences to 225,000 occurrences
from 2018 to 2019 alone [4]. For these reasons, it is important to first get an understanding
of the anatomy of botnets, their evolution up until now and what mitigation mechanisms
and tools are available to combat botnet-based attacks.

A botnet is a network of malware-infected hosts, which are typically controlled by a
Command and Control (C&C) server. The C&C server architecture allows for distributed
malicious attacks on either the infected hosts or other interconnected hosts over LAN or
the internet [5,6]. C&C servers are commonly known as the botmasters, while infected hosts
are simply referred to as bots [1].

Botnets are commonly divided into two general architectural structures, centralised
and Peer-to-Peer (P2P). These structures are defined by how commands are transmitted
throughout the C&C channel. In centralised botnets, as seen in Figure 1, a central C&C
server is responsible for sending commands to bots. Meanwhile, in a P2P network, the
botnet commands are propagated throughout the P2P overlay network, as seen in Figure 2.

Centralised botnets are usually more efficient but are less resilient to countermeasures,
as the centralised C&C server acts as a single point of failure for the entire botnet [6,7].
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Figure 1. Example of a centralised C&C botnet structure.

Figure 2. Example of a decentralised (P2P) C&C botnet structure.

Botnets can be used for numerous kinds of distributed attacks such as Distributed
Denial of Service (DDoS) attacks, malicious software distribution, piracy, extortion and
many others. Initially, botnets spread by the use of Internet Relay Chat (IRC), but presently,
the attack vectors of botnets are much more varied. These attack vectors include file-sharing
networks, infected email attachments, infected websites and vulnerability attacks [1,8]. The
rise of internet-connected pervasive devices provides botnets with a larger attack surface
and more vulnerable hosts to infect. Prominent botnet attacks such as Mirai and Zeus show
how the pervasive era of computing and the interconnected internet has caused the rise
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and evolution of increasingly complex botnets, making continued research within the field
pertinent [2,9,10].

1.1. Contribution and Research Questions

This systematic literature review presents a survey on the incentives and evolution of
botnets as well as detection and mitigation mechanisms developed to combat botnets. The
main contribution of this paper is a diverse overview of these topics according to mostly
peer-reviewed literature during the period 2005–2021, with a particular focus on botnet
detection and mitigation. The second contribution is an analysis of the evolution of botnets
and mitigation strategies in order to develop an idea of the current trends and challenges
within the field of botnets.

The specific research questions asked by this paper are:

1. What incentives are behind the development of botnet attacks?
2. How have botnet attacks evolved over time?
3. What has the research industry proposed to mitigate the threat of botnets?
4. What current trends and challenges related to botnets have been identified by con-

temporary research?

1.2. Outline

The paper is laid out as a systematic literature review with particular focus on botnet
detection and corresponding mitigation mechanisms to identify current trends in botnet
attacks. Section 1 gives a general introduction to botnets, as well as the research questions
of this paper. Section 2 describes the previous surveys and literature reviews made by
other researchers to describe the potential contribution of this paper. Section 3 describes
the methodology used for the paper. Sections 4 and 5 cover the incentives and evolution of
botnet attacks respectively, giving an overview of the development and reasoning behind
this kind of attack (research questions 1 and 2). Section 6 details the different mitigation
and detection mechanisms proposed in research to combat botnets (research question 3).
Section 7 provides an analysis on the development and trends in botnets and how to
potentially mitigate current attacks (research question 4). Lastly, Section 8 concludes
the paper.

2. Related Work

Many surveys and systematic literature reviews on botnets can be found in the lit-
erature, although their scope and focus vary significantly. Table 1 gives an overview of
such related works, with emphasis on their main contribution and on how this paper can
enhance the state of the art on botnets research.

Table 1. Novelty of this paper with respect to related surveys. Number of references within each research question and year
range is compared with the contribution of this paper to quantitatively show the novelty of this paper (years: 2006–2021,
incentives: 13 references, evolution: 33, detection/mitigation: 134, trends/challenges: 41). For rows with multiple references,
a shorthand format (ref—numOfPapers, yearSpanOfReferences) is used.

Paper Main Contribution and Reference Metrics This Paper

[11]
Offers only generalised information about botnets and
botnet detection/mitigation strategies. Thirty-nine
references from 2007 to 2012.

Describes specific botnet detection mechanisms,
advantages, disadvantages, for instance, the Shieldnet
framework to detect botnets in vehicular
networks [12].

[13,14]

Focuses on describing different kinds of botnet attacks
([13]) and on the threats represented by botnets ([14]),
without going into specific mitigation strategies. ([13]—27
references from 2006 to 2016) ([14]—60 references from
2003 to 2018)

Describes both botnet evolution and threats, and offers
insight into different detection and mitigation
mechanisms.
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Table 1. Cont.

Paper Main Contribution and Reference Metrics This Paper

[1,15–17]

Offer great insight on botnet research, types of botnets as
well as detection and mitigation mechanisms. However,
both papers do not include more recent studies and
publications (all are pre-2014). ([1]—205 references),
([7]—36), ([15]—49), ([16]—217), ([17]—28).

Covers the same points as aforementioned papers, but
also includes more recent research from 2014–2021
such as [18,19] and more.

[20]
Presents potential challenges of mobile botnets, but does
not include any more recent research (paper from 2012).
40 references from 2002–2012.

Presents more recent papers on mobile botnets such
as [18,19] and more.

[7,21].

Covers only generalised botnet types and few specific
recent types, such as cloud botnets and social botnets ([7])
or covers P2P botnets only ([21]). ([7]—25 references from
2015–2015) ([7]—36, 2005–2013)

Covers more kinds of botnet types such as IoT botnets,
mobile botnets, VANET-based botnets and their
related challenges and trends.

[10]
Describes botnet evolution, attack threats and actors, but
not go into detection and mitigation techniques against
botnets. Thirty-one references from 1998–2009.

Covers the same points and also describes different
detection categories and specific mitigation
mechanisms.

[22–27]

Limited scope of botnet detection techniques ([22]—34
detection/mitigation references from 1997–2008),
([23]—38, 2004–2011), ([24]—9, 2008–2019), ([25]—7,
2019–2017), ([26]—11, 2008–2015), ([27]—20, 2004–2013).

Includes a larger breadth of more recent detection
papers, such as [28,29] and more than 100 more papers
compared to [22].

[30]
Focuses specifically on DDoS botnet attacks without
covering detection strategies. 145 references from
1993–2015.

Describes potential attack threats of botnets while also
covering detection mechanisms.

[31,32] Mentions only IoT-based botnets. ([31]—36 references
from 2010 to 2019), ([32]—122, 2004–2021).

Covers IoT-based botnets and also includes other
types of botnets, such as mobile botnets, social botnets
and VANET-based botnets.

[33,34]
Discusses various botnet detection categories in general,
but does not highlight the specifics of each technique.
([33]—34 references from 2005 to 2010).

Highlights and describes each detection technique
individually including the strengths and novelty of
each botnet detection approach.

[35,36]
Only compares machine-learning based botnet detection
techniques. ([35]—38 references from 1995–2020),
([36]—25, 2001–2017)

Compares machine-learning based detection
techniques as well as many more types (IoT, social
botnets and more).

Reference [11] from 2012 gives a short overview of botnets characteristics, their activi-
ties, detection mechanisms and challenges. The survey is, with 39 references, quite limited
in scope. Likewise, papers such as [13,14] provide pertinent introductions to the topics
covered by the research questions of this paper. Like [11], however, the papers do not quite
cover the breadth and depth of available botnet research however.

Reference [1] is an excellent literature review on botnets and goes into more depth on
the general topic of botnets with a detailed timeline of botnets from 1993 and beyond. The
literature review also goes into defence mechanisms, the then-current scope of detection
techniques and future challenges. The paper is a bit older (2013) and therefore lacks some
of the newer developments in botnet detection and mitigation. Likewise, Reference [16]
also touches upon the topics of detection, mitigation, future challenges and evolution, but
is also a bit on the older side (2014). Reference [7] also discusses the current challenges,
defence mechanisms and suggested mitigation techniques. The paper, however, limits the
scope of these discussions to purely P2P-based botnets. Reference [20] investigates botnets
on mobile devices and their potential damage, but is limited by its age and the relative
newness of smartphone technology at the time (2012).

Other surveys and detection comparisons, such as [17,21,24–27,33–36], also focus
on detection and mitigation mechanisms. Common among them is that they primarily
focus on detection techniques and comparing the effectiveness of the techniques in limited
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scenarios. This is a factor which this paper attempts to remedy, by also including mitigation
mechanisms as well as adding a more broad perspective on botnets in general.

Some earlier papers such as [10] discuss the threats botnets pose to the general infor-
mation security landscape. The paper looks into how law enforcement can act upon the
criminals behind botnets and focuses mostly on botnets from the perspective of informa-
tion security. Reference [10] does not, however, go into specific detection or mitigitation
mechanisms. Reference [22] touches upon and analyses the use of honeynets, honeypots,
signature-based detection with IDS, anomaly-based detection with network analysers such
as Botsniffer, mining-based detection and DNS-based detection. Furthermore, the survey
explores the use of abnormally recurring NXDOMAIN reply rates as a method of detection.
The survey is quite limited in scope; for instance, the paper only presents 13 different pa-
pers within botnet detection approaches while this paper has more than 100. Reference [23]
proposes detection, prevention, investigation and mitigation techniques by classifying the
evolved strategies into five categories: anomaly, signature, DNS, data mining and hybrid
technique. Again, the paper is limited in scope with only 39 different detection papers
mentioned. Reference [25] addresses four different major botnet detection approaches:
signature-based, anomaly-based, DNS-based and mining based detection but does so with
four pages and only seen papers mentioned. Reference [30] focuses primarily on botnets
used in DDoS attacks. The paper goes into depth about the life cycle, communication
mechanisms and attack types within DDoS-enabled botnets. The paper does not discuss
any mitigation mechanisms, however. Reference [31] is another survey with a specific
focus, namely IoT botnets, which gives a very good introduction to the specific topic of IoT
botnets, but otherwise does not cover any other kinds of botnets. Reference [24] endorses
convolutional neural network (CNN) as being one of the best-performing techniques for
detecting botnets in IoT devices. While a newer systematic review [32] answers the ques-
tions of how IoT botnets are formed, what kind of communication and scenarios involve
IoT botnets, and which methods currently exist to detect IoT botnets.

A detailed survey [15] touches on problems with other botnet detection papers such
as the lack of public dataset, lack of comparison with other papers, very few botnets in
datasets, inaccurate outcomes of experiments and more. According to [15], the general best
practice of botnet detection is using the most general behavioural features to generate a
hybrid detection method where multiple detection algorithms work together as botnets
evolve faster than ever. Furthermore, the paper appeals for dataset improvements and
studies to compare methods used in detection. Like [1], the paper is a bit on the older
side (2013).

While many surveys have gone into great depth on specific areas of botnets, such as
detection, it is the opinion of the authors of this paper that a comprehensive systematic
literature review with updated literature is needed. Like [1,15], the paper should focus
on the current state of botnet evolution, detection, mitigation and current trends and
challenges, as well as provide new insights and ideas through more recent (2013+) research.
This will allow the research community a more holistic source of reference for the current
state of botnets in 2021.

3. Methodology

This section describes the search and paper selection methodology used to select
literature for this paper. The methodology contains elements from both [37,38], which
provide guidelines on how to write a systematic literature review and how to use snowball
sampling for paper inclusion respectively. An overview of each step of the paper selection
process can be found in Figure 3, with more detailed description of each step being
described later.
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Figure 3. Methodology steps for paper selection and how many papers were left at each exclu-
sion/inclusion step.

3.1. Search Strategy

The PICO (Population, Intervention, Comparison and Outcomes) criteria to identify
relevant search queries from the paper’s research questions [39]. The criteria for this specific
paper are defined as follows:

• Population: The paper is interested in all research focused on botnet incentives, evo-
lution, detection and mitigation, including other surveys. Malware in general is
considered too broad, and only papers focused specifically on botnets are included.

• Intervention: Does not apply as all papers within the research space of botnets are
interesting for the purpose of the survey.

• Comparison: Different approaches to the detection of botnets in particular are compared
to identify advantages/disadvantages. The frequency distribution of detection and
mitigation mechanisms described in papers are also compared.

• Outcomes: Expected results are an overview of botnet progression and mitigation
mechanisms as well as an identification of current trends based on the aforemen-
tioned overview.

Two important keywords were identified from these criteria, Botnet and Security. As
the main goal of the paper is to provide a mitigation-oriented analysis of botnet papers and
current trends in botnet security, these two keywords were deemed as the most important.

Initially, five sources—Google Scholar, DTU FindIt, ACM Digital Library, Scopus and
IEEE Explore—were used for database query of botnet papers. The first query of ‘Botnet’
in title produced more than 18,200 papers, too much to realistically process. Additionally,
IEEE Explore, DTU FindIt, ACM Digital Library and Scopus found 1455, 5912, 1379 and
3411 papers respectively. Instead, a second query: ‘botnet’ in the title and ‘security’ in
abstract was used to both exclude some potentially unrelated papers and to include both
the identified keywords.

For the second query, Google Scholar was removed as it did not provide the option
of searching within abstracts. In total, 306, 224, 85 and 399 papers were found on DTU
FindIt, IEEE Explore, ACM Digital Library and Scopus, respectively, with the new query.
This query did find multiple duplicates between the sources that were removed in the
first exclusion step. In total, some ~630 papers in total (unique, not including duplicates)
were found.

3.2. Exclusion/Inclusion Process

Several exclusion steps and one inclusion step were executed to identify which papers
to include in this paper.
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3.2.1. Initial Exclusion

The initial exclusion step excluded papers based on the following exclusion criteria,
any papers not meeting the all criteria were excluded

• Papers from 2005 or newer
• English language papers only
• Botnet-related papers only
• Open Access or free for DTU students to read through DTU FindIt
• Has a Digital Object Identifier (DOI) [40]
• Peer Reviewed.

Excluding papers older than 2005 might mean some of the initial papers on botnets
might be missed. However, because backwards snowball sampling of references is used
later, those papers should be included during that step. Only two papers were excluded
because they were not available through DTU FindIt due to a paywall. The remaining
number of papers was 462 at this phase. Some non-peer-reviewed internet sources were
included in the paper for definitions or additional perspectives.

3.2.2. Title and Abstract Review

After the initial exclusion each paper was assigned to one reviewer for a quick title
and abstract review. The purpose of this exclusion step was twofold: first to exclude any
irrelevant papers and second to identify which research questions could be answered by
the paper (e.g., other survey, detection paper, mitigation). If the abstract of a paper did not
give any indication of being useful for the research questions, the paper was excluded. A
total of 304 papers were included in the next step.

3.2.3. Introduction/Conclusions Review

The penultimate exclusion step involved a review of title, abstract, introduction and
conclusion of each paper, with two reviewers being assigned to each paper. Reviewers
were assigned to papers that they did not review in the previous exclusion step, allowing
for a total of three different reviewer opinions on all papers. Each paper was excluded if
one reviewer found the paper either lacking or otherwise irrelevant for this paper. This step
was also used to classify the contents of each paper in subcategories, e.g., detection papers
focusing on machine learning approaches or detection papers focusing on API call logs.
The writing of each paper was also considered. A paper was excluded if both reviewers
had issues understanding the main purpose of the paper. A total of 221 papers were left
after this review.

3.2.4. Full Text Review

A final full text review was performed for the remaining papers. Reviewers were
reassigned the papers they reviewed for the previous step to exclude any redundant papers.
A short summary for each included paper was written in order to allow all reviewers to
understand the contribution of each paper, without reading it themselves. At this point
204 papers remained with a certain guarantee of being useful for the purpose of this
literature review.

3.2.5. Backwards Snowball Sampling

Finally, a backwards snowball sampling method was used to include any papers that
were missed during the initial query. The process involved going through the references
of each included paper and see if any reference might be relevant for the purpose of this
paper. After snowballing, the final number of peer-reviewed references included in this
paper was 224.
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4. Incentives

For the purpose of clarification, Table 2 below details a number of papers discussed in
this section.

As to the purpose and incentive of botnets, a great many differing desires may be
present. This is in no small part due to the multitude of different targets and aspirations for
the various botnets. To further complicate matters, not all botnets are necessarily entirely
malicious. There exist both malevolent and benevolent botnets, seeking out potential
targets to further their respective inherent agendas. The latter of these will be touched on
in Section 4.2. For now, the malevolent type of botnets will be the focus of attention.

Table 2. Table of motivations behind botnet-based attacks. The columns describe the motivation, type of attack, known
affected targets, attack vector(s) and the case study/paper describing the attack.

Motivation Type of Attack Target Vector of Attack Papers

Disruption
Denial of service. DDoS. Hosting Service

Provider. IoT devices. [41]

Political affiliation
Censorship. DDoS. Military complex

computers. C&C-based botnet. [42]

Disruption and
Destabilisation of national
power grids.

DDoS. Metering
infrastructure.

Internet-connected
computers and IoT devices. [43]

Sensitive data
Password cracking. Cracking/Brute-forcing. Common people. Various. [44–46]

Cyber espionage. (Spear-)phishing and
malware Multiple victims listed. Various. [31,47]

Security patching
Vulnerability scanning
(benevolent).

Security patching Unsecure IoT devices. Other IoT devices. [48]

Botnet spoofing (fighting
other botnets). Mitigation. Malicious botnets. Existing botnets. [49]

Miscellaneous pieces of work
detailing motivations. Various types discussed. Various targets

discussed. Multiple types discussed. [10,50]

4.1. Malevolent Botnets

In the world of malevolent botnets, there exist two main types of incentives for the
development of a botnet. These two incentives are:

• A desire to harm a designated target or group of targets.
• A desire to better one’s (often the C&C master) monetary situation.

Concerning the first driving force, harming a designated target, a great many tools
can be utilised to cause harm. One such method, as described in Kolias et al.’s paper [41],
is through a Distributed Denial of Service attack (DDoS). This is showcased in the Mirai
botnet back in 2016. Mirai, Japanese for “uture”, was not the first botnet to emerge. As
touched on in Osagie et al.’s paper [50], several botnets had already emerged, dating all
the way from the late 1980s and early 1990s. It was, however, capable of performing an
excessively powerful attack against the French webservice provider, OVH, with a peak
throughput of 1.1 Tbps [51]. The reasoning for this attack, as it turned out, was based on
the fact that OVH hosted a popular tool for Minecraft Server hosts [52]. Ironically, this tool
helps to mitigate DDoS attacks against servers.

References [44–46] present some of the possibilities within the scope of monetary gain
from botnets, either via actively cracking user credentials through various means or by
cracking entire pieces of encrypted data. Another example would be barring the user from
accessing a service or device they own or rely on, as documented by [53].
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4.1.1. Designated Targets

To understand the incentives behind the development of botnets, one must first
understand the ubiquitous nature of botnets as a whole. Botnets may target a great many
different objectives, sectors or groups in modern society, a natural conclusion given botnets’
capacity to mobilise great numbers. The following unordered list of targets are but a
handful of the potential victims and sought out results of botnets:

• Groups of political disparity or political critics, as discussed in Nazario’s paper [42];
• National power grids and critical service providers, necessary infrastructure of mod-

ern day’s increasingly technologically dependent societies, as described by Dabrowski
et al. [54] and Sgouras et al. [43];

• Civilian peoples’ information and passwords [44,45];
• Espionage and intelligence gathering of foreign nations [47];
• Cracking encrypted or hashed data [46].

The difference in targets of botnets is a great incentive in the development of botnets.
They can target a broad range of victims, allowing the botnet master to either target whole
groups of victims, or a single institute or individual. The versatile nature of botnets caters
to a extensive list of use cases, leading to an ever growing demand for powerful, subtle
and specialised breed of malware for botnet-based attacks.

4.1.2. Reasons for Attack

As touched on briefly in the prior sections, botnets are developed and utilised for a
number of use cases. Having gone over how diverse the targets of botnets may be, it is
evident that the reasons must be just as diverse [10]. The same range of importance of
targets is seen in the reasons for botnets, varying from the single user credentials for petty
thieving to nation-spanning acts of terrorism.

Another major reason for the usage of IoT devices as the specific source of infection
and attack of botnets is found in the very foundation of modern-day state of IoT. The
devices are often mass produced using cheap, potentially outdated, components. While
the capabilities of the devices are limited, they all have the ability to connect to the internet
and perform some level of basic processing [31].

4.2. Benevolent Botnets

While exceedingly rare, not all botnets are malicious. A scant few, such as the Hajime
botnet, is an example of a neutral if not beneficial botnet [48]. Built on a similar method of
infection as Mirai, Hajime distinguishes itself from its cousin in a number of ways, such as:

• A decentralised P2P distributed hash table, rather than Mirai’s C&C approach.
• A far greater number of ways to infect new hosts.
• The usage of a custom made protocol for disseminating files.

Another interesting differene, is that is has never been used in a documented hostile
attack on a service or platform. The only instances of potentially questionable actions
performed by Hajime have been acts of broadening its sphere of influence to new IoT
devices. In a remarkable act of selflessness, the botnet actively patches discovered security
holes on infected devices, rendering many attack vectors used by other botnets mute. Other
botnets are created by researchers to intentionally overtake and disable malicious botnets,
propagating the harmless version instead [49].

5. Evolution of Botnets

For the purpose of clarification, Table 3 below details a number of papers discussed in
this section.

Botnets, as a defined type of software, first saw the light of day in the late 1980s, with
botnet toolkits going back to December 1993, with the release of the IRC-based Eggdrop [50].
Its original intention was for the C-based Eggdrop to be able to share data in between
instances and act in a coordinated manner. While the original botnet was benevolent and
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served a honourable purpose, the derivatives have since been used for mostly malicious
purposes, however. This section will go over papers and sources detailing the various
differences and iterations a number of different botnets have gone through.

Table 3. Evolution of botnets and their associated papers. The first column describes the novelty and executive summary
of the botnet evolution in question. The second and third columns explain the botnet attack vectors and the year of
first mention. Lastly, the table lists the associated papers. Note: The papers listed is ordered by the year of the earliest
documented occurrence of the described topic related to botnets.

Associated Area of Interest Vector of Attack Year Papers

First recorded appearance. IRC forums. Late 1980s [50]

Honeypots is an often employed tool to detect botnets. New
botnets have shown a capacity to identify and avoid detection
from such measure.

N/A. 2004 [55,56]

An analysis and discussion of botnets based off of the
Darknet. Darknet. 2006 [57]

ZeuS botnet and its role as one of the most influential botnets
in the world. Various systems. 2007 [9]

Botnets have begun showcasing active methods and tools to
circumvent detection. Various means discussed. 2007 [7,58–60]

HTTP-based botnets are explored and discussed along with a
multitude of different other botnets. Browsers and extensions. 2007 [61]

Description of various botnet characteristics, the latest
research and insight into botnets. N/A. 2009 [62,63]

New type of botnet capable of impersonating human reaction
patterns, a factor otherwise used to identify botnets typically. Various systems. 2009 [64]

Smartphones have grown powerful enough to be a potential
vector of attack, for a botnet. This is explored in detail. Smartphones. 2010 [65–70]

Botnets as a service is a newly founded concept, and is
explored in details. Typical SaaS centers. 2011 [71]

New type of botnet structure, based around a P2P-oriented
basis is investigated, discussed and analysed for potential
vectors of attack.

None formally disclosed,
architecture discussed instead. 2011 [72–77]

Other botnets use obfuscation tactics to hide the true
identity/position of the C&C’s location, showcasing a trend
of botnets growing more versatile and elusive to researchers.

N/A. 2013 [78]

More kinds of botnet susceptible hosts become more common,
leading to new potential vectors of attack.

Browsers, extensions,
smartphones and online
clipboards.

2013 [79,80]

Vehicles can also be a potential vector for botnets, such as
GHOST. GHOST seeks out VANETs in cars to utilise the
VANET control channel for communication.

Automobiles and other
vehicles. 2016 [81]

IoT devices have become equipped with enough processing
power to pose a sizeable threat. The generally poor safety
implementations and the scale of IoT networks, makes them a
good candidate for attack vectors.

IoT devices. 2016 [82–84]

Proposals for self-evolving botnets. Unknown vulnerabilities in
hosts. 2016 [85]

Cryptocurrencies have lead to explorations into new areas of
potential botnets. Discussion and debate on the architecture. Blockchain structures. 2019 [86]
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Botnets spanning hundreds of thousands of individual systems was a common sight
in the early 2000’s, with a few outliers in the millions of devices. The typical infection
vector of insecure networking or lack of security updates have long passed, for new, more
modern, more intricate and more obfuscated angles of attack [62].

In order to get a solid foundation on the state of modern day botnets and the threats
they pose, Ogu et al.’s paper [63] from 2019 showcases some of the latest research and
insight into the world of botnets. This consolidation of information is a great starting
point for researchers looking into furthering their research on botnets and the issues the
world faces in that regard. An interesting case of a recent wide spanning botnet is the ZeuS
botnet. Etaher el al’s paper [9] on ZeuS offers up an important explanation on one of the
most influential botnets of today, with victims’ losses in the region of hundreds of millions
of dollars. ZeuS is an example of a botnet, which, with a staggering 3.6 million infected
devices, proved extremely damaging to the American banking sector. As botnets become
more commonplace, the availability of botnet-based attacks also increases for non-malicious
actors. Botnets-as-a-service is a phenomenon that has also become common, allowing
individuals to perform attacks such as DDoS without first developing and propagating
their own botnet [71].

Finally, Sood et al. presents a recount of HTTP-based botnets in their paper [61], going
over various botnets from ZeuS, SpyEye, ICE 1X, Citadel, Carberp, etc. The paper looks
into the design and operation of these, summarising their findings in a list of various
mitigation strategies.

5.1. Disguises and Subterfuge

In the early days, botnets would often attempt to avoid attention from authorities and
government(s) by purposely avoiding targeting or utilising their systems. However, botnets
have grown more and more clever and even capable of detecting a variety of detection
mechanisms. Honeypots, devices purposely designed to be easy targets of botnets, can
now be identified and avoided to help prevent detection [55,56].

Honeypot avoidance is not the only measure to avoid detection. Obfuscation of the
C&C’s location, as described by Wang et al.’s paper [78], highlights just one method of
evasive action botnets may utilise. Botnets may also use dynamic IP ranges to quickly and
easily circumvent IP blockages [58], or even fortify and defend its C&C center against Sybil
and other routing table pollution attacks [7,59,60].

5.2. P2P-Based Botnets and Their Intricacies

As briefly mentioned previously in Section 4, some botnets utilise a P2P-based chain of
command, over the usual C&C-based approach typical of botnets [72]. This decentralisation
of the command structure helps to obfuscate the position of the commanding bot, as well
as help defend against typical counter attacks against the botnet, such as key pollution
from seized bots. Overall, this increases the resilience of P2P botnets manyfold, as no
single-point-of-failure exists within the C&C structure [73]. This is explained in detail in
Yan et al.’s paper [74], which also proposes a novel botnet called AntBot. AntBot is one
of many new examples of more resilient botnets, showcasing the developments of this
worrying trend. This type of hardened P2P-based botnet is also explored and explained in
detail in Andriesse et al. [75]. In order to counteract this phenomenon in botnet evolution,
entirely new approaches much be made, such as [76], which proposes a different take on
detection of P2P botnets, based on its behaviour. Some papers, such as [77], have attempted
to model the resilience of P2P botnets to help researchers identify weaknesses and potential
mitigation against P2P botnets. These papers all try and tackle the developing threat.

5.3. Extension and Browser Based Botnets

Simple browser extensions for Google’s Chrome or Mozilla’s Firefox have in recent
years seen a growing surge of interest from users. The ability to add additional functionality
and capability to a browser, such sa blocking ads, easily downloading high-resolution
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images, etc. have made these small pieces of software an attractive tool. While the user’s
browser may be open about what permissions each individual extensions requires to
function, the actual implementation and usage of these requirements are often uncharted
territory to most users. This makes malicious browser extensions an excellent point of
attack, as browsers often have permission to add, edit and delete files on the host system.
This is showcased and documented in Perrotta and Hao’s paper [79] from 2018. The paper’s
proposed extension-based botnet is but one take on a new variety of botnets, offering a
number of different capabilities.

In a similar tone, massive online social media that connect people with one another
have also grown vulnerable to modern botnets. This new breed of botnets, typically
nicknamed Social Network Botnets (SNB), are capable of infiltrating deep into social
networks such as Facebook without being caught or stopped by defence measures. Boshmaf
et al.’s paper [80] details how such an SNB can be conceived and details how it performs
on Facebook over a period of eight weeks.

Likewise, not only have social medias fallen prey to this new type of botnets. Online
clipboards and publicly available cloud storage services have turned out to be effective
measures to act as C&C centres for botnets, as described in Yin et al. [87]. Other examples
include the proposed social botnet DR-SNBot by Yin et al., which argue that bots hiding
within social networks are more resistant to to destruction compared to other types of
botnets [60].

5.4. Smartphone-Based Botnets

As smartphones have grown more and more powerful and full of personal information,
botnet creators increasingly look towards these pocket sized computers for new possibilities.
Mobile botnets show disturbing results as a botnet vector of attack [65–67]. Interestingly,
something as simple as an SMS sent from one smartphone to another can also prove to be
highly potent, as some botnets have taken to this method to relay messages from the C&C
to the bots [88,89].

Of further note within the field of mobile botnets, Malatras et al.’s taxonomy [68],
and [69] by Rodriguez-Gomez et al. are both of great use to model and formalise botnets.
There is also Pieterse and Olivier’s paper [70] on this type of botnets, in which they
present a valuable take on the evolution of this niche of botnets. All three papers provide
excellent introduction and supplementary understanding of the various characteristics and
interesting highlights of mobile botnets.

Smartphone services such as Googles Push Notification Service (PNS) is also con-
sidered to be exploited by botnet devs as C&C channels [90]. Android is not the only
targeted OS, as seen in [91], where Apple’s iPhone was the target of the iKee.B botnet,
which collected system information such as SMS, network configuration, os name and
os version.

5.5. Vehicular Botnets and Its Effect on Modern Traffic

Having touched on smartphone-based botnets, it is no surprise that vehicles are
becoming increasingly vulnerable to botnet takeovers. Vehicular ad hoc networks (VANETs)
are expected to play an increasing role in traffic safety as well as the driving experience.
The ability for cars to communicate with one another may very well revolutionise the way
people drive. VANETs are, however, under threat of new types of botnets, as touched on
in [81].

5.6. Blockchain-Based Botnets

While blockchain has, for a large part, often been associated with cryptocurrencies,
new methods and developments showcase a new type of botnets emerging based around
blockchain. Bock et al. touches on this, in their assessment [86], providing a broad overview
of the associated risks and relates the problems with this new type of botnets to existing
C&C-based botnets.
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5.7. IoT-Based Botnets

Back in Section 4, a brief recount was made as to the reasons why IoT devices were
especially popular botnet slaves. This is further explained, discussed and evaluated in a
number of papers, including [82,83]. Situations such as poorly configured devices, the role
of IoT in botnets as well as real life scenarios involving IoT devices capabilities for usage in
attacks. Likewise, Mendes, Aloi and Pimenta’s paper [84] on IoT based botnets offers great
insight into various architectures employed by botnets.

5.8. Atypical New Botnet Variants

Every once in a while, entirely new botnets pop up, bringing either new features,
capabilities or counteractions to known botnet mitigation tools.

Chen et al. [64] discusses a new type of botnet, a so called ’Delay-Tolerant Botnet’,
pieces of botnet-enabling malware capable of impersonating human reaction times. This
helps it avoid detection for longer, as reaction times are often a measure when identifying
botnets and their attacks.

Abu Rajab et al. presents an analysis of a botnet within the Darknet [57], showcasing
how botnets make up a substantial amount of internet traffic.

As a general model, Kudo et al. proposes the concept of self-evolving botnets [85]
which models their behaviour through a stochastic epidemic model of botnet features. The
behaviour of infection shows quick propagation and the model indicates that self-evolving
botnets should be prevented from spreading early.

6. Detection and Mitigation

This section describes the botnet mitigation and detection strategies proposed within
research. On the topic of detection and mitigation of botnets, the two components are
often conjoined in research, as the mechanisms for detecting a botnet often correlates to
its behaviour and infection vector. Through this, a mitigation strategy can be built to
counteract the identified vector or behaviour, which either partially or completely nullifies
the botnet. For that purpose, it was decided to follow the example from prior peers,
and conjoin the two elements in this section as well. The distribution of papers and
subcategories of detection papers can be seen in Figure 4.

Figure 4. Distribution of botnet detection and mitigation mechanisms for this paper.



Future Internet 2021, 13, 198 14 of 43

6.1. Detection Mechanisms—Techniques

This section covers all papers, which are related to detection approaches and compares
several techniques for each categories.

6.1.1. Neural Network Detection Mechanisms

For the purpose of clarification, Table 4 above gives an overview of a number of neural
network based detection techniques and their related papers:

Table 4. Papers describing detection of botnets using neural network based techniques. Each row describes the overall
technique, known advantages, disadvantages, detection rate and related papers.

Technique Advantage(s) Disadvantage(s) Detection Rate Papers

Back Propagation (BP).

Can detect botnets with no
false positives as well as low
expected error rate in higher
error environments.

Only tested on a certain
types of botnet traffic and
characteristics of other
botnets.

99% detection rate, 95.7%
accuracy and FP rates of
0.00952 or lower.

[92]

PSI-Graph
Much faster than FCGs,
better FNR, FPR and
accuracy.

N/A. Accuracy of 98.7%, FNR
1.83% and FPR 0.78%. [93]

Convolutional Neural
Network (CNN)

Can automatically extract
features of botnets and has
higher accuracy than
traditional NN.

Reference [94]: Training
process requires GPU
power. Reference [95] does
not yet support transfer
learning.

Best accuracy of ResNet is
99.32%. Reference [95]
99.98% accuracy for
DenseNet and 83.15% for
SVM. Reference [96]
achieves up to 98.6% botnet
detection accuracy on the
self-tests and about 90% on
the cross-evaluation test.

[94–97]

Artificial Neural
Network (ANN) &
MLP-ANN.

Reference [98] has low
computational overhead.
Reference [99] uses
supervised learning
approach to obtain high TPR
and can further be used in
Transfer Learning projects.

Reference [99] does not
have hybrid models.

Reference [98] managed to
get minimum of 87.56%
TPR during testing.
Reference [99] got 100%
accuracy and TPR.

[98,99]

ML & DL.
A combination of multiple
ML and DL models
including comparisons.

N/A. N/A. [97]

NN & AIS.

Reference [29] can provide
endpoint protection.
Reference [100] does not
need prior knowledge of
botnets.

Reference [29] requires
command and control
server.

N/A. [29,100]

Machine Learning,
Deep Learning,
t-distributed stochastic
neighbor embedding &
Deep Neural Network.

Considers a broad amount of
ML and DL techniques. N/A.

DNN takes a long time to
train and also around 1.3 s
to execute detection logic
where other methods
found in this paper is faster
or requires less training
time.

[101–103]

Nonnegative Tucker
decomposition. Memory-efficient.

Normally requires too high
a computational cost to run
in real time.

N/A. [104]

NN with blockchains.
Lightweight: small memory
and low-power processors
needed for devices.

N/A. N/A. [29]
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Neural network-based detection of botnets is just one of many proposed methods of
botnet detection. X.G. Li and J.F. Wang [92] proposes using back propagation (BP) neural
network to detect botnets based on traffic characteristics. Other detection methods, such as
the one proposed by [93], also use similar neural network methods for detecting IoT-based
botnets using PSI-Graph generation with potentially fewer resources. Reference [99] uses
a model based neural network approach to classify IoT botnets; the paper compares the
MLP-ANN mode with the N-BaIoT model. MLP-ANN requires a supervised learning
approach, meaning it can become even more effective by training with more data and can
run on very limited computing resources. N-BaIoT on the other hand works unsupervised
(USML) but requires a larger resource overhead. Reference [100] uses a biology-inspired
artificial immune system approach to model botnets as infections within a network body.
The microorganisms within the artificial immune system are trained to act upon spam and
scanning related botnet activity.

Other papers focus more on applying neural networks to detect irregularities within
network traffic. Dhalka et al. compares several contemporary botnet detection techniques,
k-means clustering, neural network and recurrent neural network. Their paper [105]
compares the algorithms in terms of several factors, including positive/negative rates,
sensitivity, specificity and more. The paper identifies the neural network method as the
best solution based on the chosen measures, with a caveat that the neural network method
may not be practical. There has been a growth in papers related to mitigating botnets
found in IoT devices, as this industry is growing exponentially without regards to security.
Alexander and Allison Nixon propose an Industry Security Association committee to be
created and publish security standards which manufactures are required to follow [106].

For non-IoT botnets, other papers such as [25] address four different major botnet
detection approaches: signature-based, anomaly-based, DNS-based and mining based
detection. The paper evaluates previous surveys and illustrates botnets architectures,
topologies, communication protocols, attacking method and, their destinations, impedi-
ment approaches, and detection techniques. Similar neural network identification systems
such as [107] work by analysing botnet traffic, using a more adaptive and flexible stream
mining algorithm to classify botnets. Reference [94] also proposes a similar network
analysis approach with a neural network-based P2P model to monitor botnet traffic and
recognise patterns using the ResNet architecture. In another similar approach, the neural
network-based detection and mitigation system called BoNeSSy also analyses network
traffic to detect and mitigate botnet behaviour [98]. If an application identifies a threat,
BoNeSSy will notify the administrator and take appropriate security actions to isolate the
potential threat. Chu et al. proposes a combination of machine learning and classification
mining [108] for botnet detection.

Jithu et al. [102] propose a deep learning method that detects botnets in IoT devices
using anomaly detection. The technique employed in the paper reaches an accuracy of 94%
and recognises the need for IoT security with a predicted number of 24.1 billion IoT devices
by 2030. Abdullah et al. [103] propose using a Local Global Best Bat Algorithm with neural
networks (LGBA-NN), which achieves a 99.89% accuracy in their study using the N-BaIoT
dataset. Their study includes comparing LGBA-NN with less effective implementations of
PSO-NN and BA-NN.

Deep learning, which employs neural networks, has been used by Taheri et al. [95],
who proposes a deep learning-based botnet detection engine that takes raw network traffic
data as input and transforms them into images. These images are then input into a deep
convolutional neural network (CNN), DenseNet, for classification of normal and botnet
traffic data. CNN approaches are endorsed by [24] as being one of the best performing
techniques for detecting botnets in IoT devices along with Recurrent Neural Network
(RNN) and Artificial Neural Network (ANN). A similar approach to [24] is using deep
learning to construct algorithms to detect IoT-based botnets and botnet attacks. Sriram
et al. [101] propose an algorithm that analyses the network flow and can be used to
secure “smart city applications”. This includes health care, power grid infrastructure, water
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treatment facilities, traffic controlling, etc. Additionally, the flow of networks can be utilised
for further analysis and learning, to enhance the performance of the algorithm. The authors
of "Real-time botnet detection using non-negative tucker decomposition" [104], propose a
method for detecting group activities from extracted features in darknet traffic using tensor
factorisation. While this method requires too high computational costs to run in real time,
they propose implementing a two-step algorithm in order to achieve fast, memory-efficient
factorisation. More nontraditional methods like [96] seek to identify botnets through the
usage of power consumption as the parameter for their CNN model. In [29] a similar
lightweight solution is also mentioned for use in small memory capacity devices with
low-power processors, since these are not able to have reliable anti-malware systems. It
is based on the use of NeuroMesh, which is a combination of neural and mesh detection
networks used to secure the devices. It can detect and delete malware and implements
IP-based blacklist and whitelist access control to provide secure channel for IoT devices via
the Bitcoin communication protocol.

6.1.2. Machine Learning and Network-Based Detection Mechanisms

For the purpose of clarification, Table 5 below details a number of papers that goes
over machine learning-based detection:

Table 5. Papers describing detection of botnets using machine learning based techniques. Each column describes the overall
technique, known advantages, disadvantages, detection rate and related papers respectively.

Technique Advantage(s) Disadvantage(s) Detection Rate Papers

Network flow
analysis

Real-time detection. High
detection rate (up to 98%) of
known signatures. Can be
implemented in current SDN
solutions. Supports a wide
variety of detection
approaches.

Requires training data for
unknown attacks. Too
many features in selection
results in unnecessary
overhead.

Varies between 85.34%.
Reference [109] to
>99% [26].

[26,28,97,
109–129]

Honeypots Ability to train model on
unknown variants.

Training needs to be
supplemented by
simulated network traffic.

99%. [130,131]

DNS-based profiling
of Mirai botnets

Uses live datasets based on
honeypot infected botnets, low
computational time (<0.2 s).

Limited to mirai(-like)
botnet variants. >99%. [132]

Cloud-based
detection offload

Linear scaling with number of
computational hosts.

Real-time detection not
possible. N/A. [133]

Minimization of ML
feature selection

Lower computational cost
while keeping high accuracy
rate.

Limited to IoT-based
botnets ([134]), does not
improve weaknesses to
unknown signatures.

98.97% ([134]) and
75–99% ([135]). [134,135]

VM Hypervisor
detection agent

Allows OS-level passive
detection and monitoring.

Only applicable for
VM-based hosts. N/A. [5]

Self-adaptive system
with fuzzy c-means
clustering

Can choose security scenarios
and adapt mitigation
procedures depending on the
attack. High resilience.

Dependent on the specific
system network used
during testing.

High percentage of
known and unknown.
Multi-vector
cyberattacks: 70%.

[136]

Network botnet
fingerprinting and
signature

Large data throughput. High
accuracy. Reference [137]:
better real-time performance
compared to CPU-based
approaches (800–1300%
speedup)

Specific parameters in the
used dataset, which need
more features.
Reference [137]: requires
dedicated GPU hardware.

Very few false positives.
Accuracy close to 100%. [137,138]
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Table 5. Cont.

Technique Advantage(s) Disadvantage(s) Detection Rate Papers

Network traffic data
mining

Allows for detection of
botnets inside complex
traffic before the attack.
Does not require network
changes.

Method needs to be
deployed by ISPs.
Difficulties when using the
NAT technology.

Detection: 98%
NaiveBayes: 89%
BayesNet: 87%.

[139]

Multi-phase traffic
ranking mechanism

Reduces the false
classification rate of normal
IP traffic.

Needs further work to
detect different kind of
HTTP botnets. The
experiment data is limited.

N/A. [140]

Multi clusters for
classification

Achieve high accuracy and
reliability. Outperforms
individual clustering
algorithms in training time.

Increased algorithm
runtime complexity. N/A. [141,142]

ML on DNS query data
Better than IDS based
detection on newer botnets
variants.

Takes time to train.

Most ML algorithms score
over 85% accuracy on DGA
botnets, among which the
random forest algorithm
gives the best results with
an overall classification
accuracy of 90.80%.

[143]

Neural network is not the only method to use the N-BaIoT dataset, as seen in [97],
where Bashlite and Mirai found their way into various IoT devices. These included door-
bells, baby monitors, security cameras and a webcam. Detection models were developed
for each device using numerous machine learning modes, including deep learning models.
Similar machine learning methods have been used by Long Mai and Dong Kun Noh [141]
using cluster ensembles to increase detection reliability compared to other clustering
mechanisms. Instead of classifying flow clusters in either a botnet flow or normal flow,
the algorithm uses multiple clusters for the same traffic and a link algorithm to do the
final classification. Self-adapting systems for detecting, clustering and classification of
botnets is proposed by Lysenko et al. [136], who use a semi-supervised fuzzy c-means
clustering technique. The system is also able to double as mitigation as it can reconfigure
corporate networks and execute more specific actions such as reducing request timeouts,
decreasing allowed HTTP request size and blocking source hostname and IP addresses.
Reference [142] also applies a clustering machine learning algorithm to detect Internet
Relay Chat (IRC) traffic containing botnet behaviour. The approach however is based off
a fuzzy cross association clustering algorithm to study the relationship between known
traffic and unknown traffic. Unknown traffic can then be checked to verify or disprove the
appearance of a botnet within the IRC traffic. Machine learning can be very helpful when
it comes to detecting different kinds of botnets, but recently, bot herders [144] have begun
to use well-crafted concept drifts based on known machine learning techniques to defend
against ML assisted detection.

Through a new ML algorithm consisting of a combination of ANN and DT, Rezaei [145],
has obtained a detection accuracy of 100%. The technique has a noticeable 11.36 s duration
detection time using 20 features to detect botnets in IoT. Seungjin et al. [146] refers to what
they call smart factory (SF), which is a combination of AI and ML. They tested two differ-
ent ML techniques, Weka and R-studio, achieving 95.3% and 96% accuracy, respectively.
Pandey et al. [126] use RF to classify the data into multiple units and then SVM to reclassify
every sub-entity to improve accuracy. Their RF-SVM hybrid ML model achieved 85.3%
accuracy while RF-Naive Bayers reached 83.36% and lastly RF-KNN-LR 79.56% accuracy.

Hidayah et al. [147] obtained up to 92% accuracy using ML algorithms that filter
and classify data to detect the botnets C&C server. Siqlang et al. [148] studied the use of
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unsupervised detection of botnet activities and used the Frequent pattern tree algorithm
provided by Weka. They achieved up to 100% accuracy varying with the thresholds chosen
and up to 100% precision. Mehdi [149] found that using both ML and DL techniques based
on a somewhat hybrid combination of cooperative game theory, accuracy and learning
times could greatly be improved. For SVM, he obtained 11.62% improved accuracy and
154.41 s better learning time and for LSTM, 0.24% better accuracy and 222.72 s better
learning time. Mehdi also found that these methods achieved an accuracy of 99.98% and
higher using 10 or more features for detection.

Using KNN, Bjatt et al. [150] achieved in scenarios up to 98% accuracy and provided
comparisons to other methods such as Spark-ELM, CCD and Bclus. The proposed method
detects botnets based on a forecastive anomaly detection approach, where the first progres-
sion is the instance creation and the second is Cataloging. After the progressions, they use
Graph Structure Based Detection of Anomaly (GSBDA) to detect hazardous anomalies and
lastly use a KNN to identify the botnet accurately. Ali and Fatemeh [151] uses DNS queries
to extract features from network traffic and then apply ML to generate a botnet detection
report. Their studies included testing DT, SVM, RF and Logical regression as their ML algo-
rithms and obtained accuracies of 98%, 96%, 99% and 93% respectively. Panda et al. [152]
claim 100% accuracy using two different approaches, the first approach is scatter search
(ScS) combined with CNN and the other method is ScS combined with Deep Multilayer
perceptron (DMLP). They tested their implementation on the UNSW-NB15 dataset. where
66% of the data were used for training and the remaining 34% for testing.

Another general category within machine learning algorithms is the use of network
anomaly [26] focused algorithms. This kind of mechanism of clustering with machine
learning can be found in [138], where a new method called BotFingerPrint (BotFP) is
presented. BotFP is supposed to be a more lightweight method that can handle a large
number of data easily. BotFP is also designed to detect malicious network activities such
as port scans and DDoS attacks. Kozik and Choraś introduce techniques [124] used in big
data and machine learning to identify botnet traffic in networks. The multi-scale analysis
model is used to extract botnet features from network traffic, which are then classified
using a random forest machine learning algorithm. Poisson sampling is further used to
train the random forest model by under-sampling benign traffic. Chen et al. [125] propose a
method similar to Kozik and Choraś [124] with a conversation-based detection mechanism
by using a random forest algorithm to classify botnet conversations in network flows.
Conversations are classified depending on their duration, size and distribution of topics.
The random forest algorithm is used for selection of probable botnet flows for detection
using a separate machine learning algorithm trained with random forest. Besides using
random forest, Reference [126] found Support Vector Machine (SVM), Naive Bayes (NB), K-
Nearest Neighbour and Linear Regression algorithms to be possible detection mechanisms.
Furthermore, Reference [109] conducted an analysis of various machine learning algorithms
for botnet DDoS attack detection, including SVM, ANN, NB, Decision Tree (DT) and
USML. According to [109], when considering only DDoS attacks, Unsupervised Learning
(USML) stands out as the better option to differentiate between botnet traffic and legitimate
network traffic.

Kirubavathi and Anitha also present an approach for detecting botnets through net-
work traffic flow behaviour analysis and machine learning. The proposed method [127]
extracts network features such as small packets, packet ratio, initial packet length and
bot-response packets. The data are then classified using three machine learning algo-
rithms, Boosted Decision Tree (DT), Naive Bayesian (NB) Classifier and Support Vector
Machine (SVM) to classify benign and botnet traffic. In common with Kirubavathi and
Anitha, Lin et al. [139] propose a method to identify P2P botnet traffic using data mining
on network traffic with NB algorithm. Furthermore, Reference [23] proposes detection,
prevention, investigation and mitigation using anomaly, signature, DNS, data mining and
hybrid techniques. Lin et al. also proposes the use of J48 and Bayesian networks to be
applied to the monitored traffic data, while Lee et al. addresses the use of a ranking algo-
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rithm to clustering-based botnet detection algorithms [140]. The ranking algorithm gives a
higher ranking for source/destination IP pairs with identified suspicious behaviour. The
paper argues that only using k-means clustering results in a large degree of false positives,
and that the problem can be solved by ranking the resulting clusters by suspicious TCP
and ICMP traffic per source/destination IP pair. Further endorsing the use of k-means,
Li et al., propose a botnet detection mechanism using the particle swarm optimisation
and K-means algorithms to identify botnet network behaviour [128]. Su et al. proposes a
machine learning approach to detect P2P botnets in software-defined networks (SDN) [129].
Detection results are provided to an OpenFlow controller in the SDN, which creates rules
to control how botnet source packets are handled at the network switching level.

Along with network analysis, filters can be applied to help extract relevant features
from network traffic such as connection duration, service type, connection state and
more. In [110] by Indre and Lemnaru, the features are provided to a static filter, binary
classification filter and a malware detection filter. These filters can reject the connection
based on static header rules, general behaviour logic and specific cyber-attack detection,
respectively. Also acting on network behaviour and feature set extraction are multiple
papers [111–114], which propose detecting HTTP-based Command & Control servers using
behavioural analysis. The feature set found by the papers can be used to further train
machine learning algorithms to become even better. Other papers make use of similar
methods. Reference [28] uses a supervised machine learning algorithm using a random
forest classifier to identify anomalies in IoT networks. Reference [115] proposes the use
of SoftFlow to capture packages and generate NetFlow for machine learning. The paper
applied this method to two botnet datasets to test if the method was able to differentiate
between legitimate Alexa traffic, Citadel and Zeus botnet traffic. More methods based
on existing industry frameworks have also been tested. References [116,117] use Cisco’s
Netflow for analysis along with a custom-made detection framework to detect botnets.
The botnet propagation model uses a modified Susceptible, Infectious or Recovered SIRS
epidemiological model to estimate if there will be an epidemic of the given botnet and then
uses the developed framework to mitigate the infection.

Moving into machine learning combined with the use of honeypots to detect botnet-
enabling malware. Ruchi and Kumar [130] proposes using ThingPot which is a virtual IoT
honeypot capable of catching various botnet binaries by emulating different IoT commu-
nication protocols along with entire IoT platform behaviours. However, with honeypots
becoming more normal in the line of defence against botnets, bot herders also become better
at bypassing them. Therefore, Reference [131] seeks to make honeypots more efficient and
more effective. Owen et al. seeks to use DNS traffic analysis models with a profiling scheme
of Mirai-like botnet activity captured globally in distributed honeypots [132]. It discusses
features useful in profiling botnets in the past and suggests a number of improvements. The
suggested solution can bring down botnet detection time significantly while maintaining
high levels of accuracy under random forest formulation.

A great amount of botnet detection mechanisms, most of which are based on network
analysis, will not use real time detection, as the high number of data overwhelm most CPU
detection-based systems. Because of this, Che-Lun and Hsiao-Hsi propose the use of GPU
based detection over CPU-based detection to gain a speedup in real time detection [137].
By using GPU based detection, packet loss would occur less frequently as the throughput
capacity of the detection system increases. This allows for a very noticeable speedup. Using
an approach designed to reach near real-time detection, but without the speedup benefit
proposed by Che-Lun and Hsiao-Hsi, Reference [118] seeks to detect Command & Control
servers using autonomous methods. This method eliminates the need to manually detect
C&C signatures from an intrusion detection system (IDS). GNU Anubis, which is an SMTP
message submission daemon, feeds all the IDS data and extracts all frequent strings. Then,
a ranking function will assign high scores to traffic-class-distinguished strings, as these
are more likely to be good C&C signatures. The authors conclude that the method is a
meaningful way to extract C&C signatures in real-world applications.
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In other near real-time detection mechanisms, Reference [119] proposes an open-source
network-based botnet detection and mitigation tool called BotFlex. The tool functions as
an intrusion detection system (IDS), passively listening to network traffic and determining
botnet traffic from various parameters such as blacklists, C&C detection, outbound spam
and more. Toby J. Richer [120] introduces an entropy-based detection mechanism to better
detect botnet traffic with variance in beacons to C&C servers. The introduction of an
entropy-based measure of delay variance allows for the detection of both fixed-delay and
variable-delay beacons. As Sadhan and Moura experimented with tinyP2P and SLINGbot
to detect periodic botnet behaviour in botnet traffic by analysing control plane traffic [121].
A somewhat similar approach is BotGM [122], which identifies network traffic behaviour
using graph-based mining techniques to detect botnet behaviour. The approach also models
the dependencies among network flows to trace back to the root botnet propagators. A
study done by Rui et al. [123] shows the behaviour of the Grum, Cutwail and Bobax botnet.
The study shows that once a host is infected, a number of Unknown TCP packets are sent
on port 80 (in fact HTTP traffic). After multiple SIP invite packets and NBNS queries, the
bots usually change a bit in behaviour. The bots behaved like expected with unknown
UDP traffic as well as a high amount of HTTP traffic, DNS traffic and SMTP packets for
DoS attacks. Their study also shows that these bots mostly infect countries in Europe
and America. Supporting this is [5], which further proves the effectiveness of behaviour-
based detection systems. On a virtual machine (VM), a detection agent is installed, which
monitors the processes and their spawned processes to build a behaviour profile and bot
process activity log(s). Calculating the Jaccard similarity coefficient between the behaviour
profile and process activity logs is used to indicate if the host is infected or not. In their
experiment, they show that their bot behaviour profiles and passive detection agent can
distinguish bot hosts with no false positives and no false positives.

Other research, Reference [133], has also focused on increasing the throughput of real-
time DNS-based botnet detection mechanisms. The paper in question proposes offloading
fuzzy pattern recognition of suspected botnet traffic to the cloud, executing the detection in
parallel and allowing for near real-time detection. Hoang and Ngyuen have tested several
machine learning approaches for domain name systems (DNS) botnet detection, finding
random forest to be the best choice [143] when it comes to use DNS query data. Refer-
ences [134,135] further propose the reduction in the network features used for detecting
botnet traffic in order to speed up the detection process. A feature minimisation exercise
shows the possibility to reduce the selected feature set while still providing a high degree
of precision.

6.1.3. Domain Name System (DNS) Based Detection

For the purpose of clarification, Table 6 below details a number of papers that cover
DNS-based detection.

Table 6. Papers describing detection of botnets using DNS-based techniques. Each column describes the overall technique,
known advantages, disadvantages, detection rate and related papers, respectively.

Technique Advantage(s) Disadvantage(s) Detection Rate Papers

DNS traffic
monitoring

Can detect known and
unknown botnets by
monitoring DNS traffic
anomalies. Can detect
C&C server migration.

The huge size of traffic
occurring in network
environments is
computationally
intensive, and due to this,
most DNS traffic
monitoring methods are
also not real-time.

Positive rate 90% and
negative positive rate 5%.
Reference [153] managed
accuracy of 95% with 0.1%
false positives.
Reference [154] archived
98.52% True positive as
minimum and 0.39% False
positive as highest.

[22,23,25,153–
158]
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Table 6. Cont.

Technique Advantage(s) Disadvantage(s) Detection Rate Papers

DNS traffic
monitoring assisted
by mining

Can detect known and
unknown bots. Can
successfully locate C&C
traffic. Most methods have
low false positive rates and
can detect encrypted
communication.

Not real-time. Random forest can archive
up to 99% accuracy. [22,23,25,132]

Network anomalies Can detect known and
unknown bots.

Not useful for detecting
C&C traffic. Not
real-time viable.

Positive rate of close to 95%
and False positive rate
lower than 3.5%.

[22,23,25,133,
159]

Signature-based
detection

Can detect most known
simple botnets.

Cannot detect unknown
or more advanced known
botnets.

N/A. [22,23,25,159]

Feature-based
detection
(CAFE/CSTA)

Can reduce the number of
non-active C&C suspected
Domain Names by 79.96%
with false positive rate of
0.69%.

Can be affected by
malformed DNS answers
or DNS cache poisoning
attacks.

N/A. [160]

Support vector
machine SVM

Can detect existence of
botnets in small to medium
sized networks.

Anti-malware software
can increase the false
positive rate.

Detection rate of 0.935 and
false positive rate of 0.02. [161]

Domain Name System (DNS)-based detection algorithms are another frequently used
approach to combat botnet threats. Most DNS approaches use an allow– deny-list concept
to distinguish Domain generation algorithm (DGA) botnets from legitimate traffic. This
method is used in [158], where it is seen that most of the domains and their traffic will
be allowed by the list. Meanwhile, the rest of the traffic will be clustered using the
density-based spatial clustering of applications with the DBSCAN algorithm. The clusters
are further analysed to identify botnet domains. This method is similar to [153], which
tries to detect botnet-based DNS traffic by the use of Power Spectral Density analysis, a
signal processing technique. The method used in [158] shares many similarities with [162],
which further adds the use of botnet-generated domain names identification using entropy
measurements and n-gram scores. The domain names are then measured using a k-means
clustering algorithm to identify domains which are likely to be generated by the same
botnet DGA. References [163,164] instead use the lexical properties and semantic patterns of
real domain names to train their proposed detection schemes. Wang et al. [154] exploit the
behaviour of DGA botnets to identify potential botnet traffic. Botnets have a high number of
failed DNS lookups stemming from the use of DGA algorithms to generate domain names.
The algorithm filters botnet-generated domain names and clusters them using the Chinese
Whispers algorithm. The clusters are then classified using a supervised machine learning
algorithm, based on DNS query times and query amount. Truong and Cheng take several of
these algorithms and compares their ability to detect DGA based botnets. Their paper [165]
includes a comparison of Naive Bayes, K-nearest neighbour, random forest, support vector
machine and decision tree. A more specific usage of Naive Bayes along with AdaBoost,
C4.5 and SVM for Flickr profiling as proposed by Natarajan et al. [166]. The multilevel
social network profile analysis method is used to detect the Stegobot on social networking
websites along with identifying a range of image malware, botcargo and stego images
used to identify Stegobot. Reference [167] proposes a new method of combined detection,
mitigation and clean-up for next-generation botnet combating. The system consists of five
modules with a task each. This system should be able to communicate, report, detect and
heal itself when botnet-enabling malware enters the system. Detection is based on DNS
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host files and network inbound ports, which are analysed by the administrator along with
a MD5 checksum of the tcp.sys file.

Monitoring activity from DNS-queries during C&C communication or updates and
applying semi-supervised fuzzy c-means clustering to produce security scenarios is the
basis of the self-adaptive system called BotGRABBER [161]. Not much different is the
method proposed by Sharalfaldin et al. in [168], where a novel botnet detection framework,
BotViz, is presented. BotViz uses a combination of DNS-based analysis of host PC DNS
records and API hook forensics on memory dumps to detect potentially vulnerable systems.
Forensics are done through an analysis module that uses a k-cluster machine learning
algorithm to decide whether or not a host might be compromised by a botnet. Other
papers seek to develop methods for botnet detection based on botnet behaviour called
C&C Tracer. The C&C Tracer [160] works by using C&C active behaviour feature extracting
(CAFE), domain name status querying (DNSQ) and C&C status tracing analyser (CSTA)
along with allow lists from multiple external sources such as the Honeypot project and
Shadowserver Foundation. An analysis done by Ichise et al. [156] to test the feasibility of
botnet detection through domain name system (DNS) records. The analysis shows that
in the 5.5 million DNS TXT record queries obtained from their campus network, around
2293 queries where classified as “unconfirmed”. In their further investigation, ~22% of
these queries were targeting suspicious URLs identified by virustotal [169]. A similar
approach is used by Jin et al. in [157], which proposes a novel DNS-based detection
approach for detecting botnet activity. The paper focuses on direct outbound DNS queries
on non-standard authoritative name servers to identify botnets, which use TXT records
to send commands. The paper finds that a similar 19% of identified potentially malicious
DNS queries have been flagged by online websites, such as [169], for being used for botnet
activity. Reference [159] also proposes a similar idea, but with a focus on UDP network
traffic, focusing on DNS MX queries, the DNS packet request and various behaviour that
might be botnet attacks based on UDP traffic. Reference [170] talks about a profiling
dataset. “UMUDGA: a dataset for profiling DGA-based botnet” aims to enable researchers
to move the data collection, organisation and pre-processing phases forward. Ensuring the
availability of good datasets also help the general research community in providing novel
detection mechanisms.

6.1.4. Detection Mechanisms—Pervasive Computing Paradigms

The segment highlights different detection techniques employed in various types of
pervasive computing paradigms. These paradigms show different ways in which hosts
can establish communication channels and networks, which also affect how botnets can be
detected within those networks.

6.1.5. IoT and P2P Botnets

With the Mirai attack in 2016, some focus have shifted towards IoT networks as
potential vulnerable hosts for botnet infection. Therefore, multiple mechanisms for IoT
botnet detection have been proposed (see Table 7), both specifically against Mirai and
also some more general mechanisms [171]. Reference [172] specifically targets Mirai and
other known types of attacks with a quantum-inspired detection algorithm. The algorithm
matches network traffic headers with a predefined table of IoT botnet attack signatures
to detect malicious packets. The authors acknowledge that while not all kinds of botnet
attacks have been considered in their approach, the method shows very high true positive
rate for detecting known types of IoT botnet behaviour. Reference [173] proposes a sparse-
representation framework for botnet detection on the IoT edge. The sparse-representation
factor is determined from the network traffic of each individual IoT device, which is then
compared against a threshold to determine potential malicious traffic. This allows the
network controller to cut off any potentially infected IoT devices. Reference [174] argues
for the use of logistic regression of IoT traffic to calculate the probability of an infected
device. The regression is based on multiple network parameters including ports, number
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of requests, mean packet size and more. Finally, Reference [175] proposes using a local
agent on IoT devices in an installation to collaboratively compute security events to detect
botnet attacks. Botnet attacks are determined on the basis of the difference in DDoS traffic
and benign network traffic, which is collectively decided upon by the agents.

Table 7. Papers describing detection of botnets in IoT and P2P-based environments. Each column describes the overall
technique, known advantages, disadvantages, detection rate and related papers, respectively.

Technique Advantage(s) Disadvantage(s) Detection Rate Papers

Quantum computing to
combat Mirai Fast results. High accuracy. Only targets botnet with

known signatures. N/A. [172]

Sparse-representation
framework on IoT

Faster than compared
approaches.

Tested on limited IoT
botnet dataset. 90%. [173]

Logistic regression of
traffic High accuracy. High precision. Can only detect during

propagation phase. >99%. [174]

Collaborative
multi-agent

Can detect large scale DDoS
attacks. Lightweight: can be
installed on hardware with
limited resources.

Needs a minimum level of
collaboration across
organisations. Training
environment does not
reflect real-world
environments: A
percentage of agents may
not acting as excepted.

Depends on framework
implementation. [175–177]

Bitcoin Miners
detection

Experiments are showing
excellent accuracy.

Only applicable on
specific botnet types.

Depending on the
variety of techniques
that are utilised.

[178]

Classification from
traffic frequency and
behaviour.

No statistical traffic patterns
need to be known in advance.
Does not rely on payload data.
Does not require monitoring of
individual host. Effective (very
high detection rate). Scalable
low false positive rate.

Requires installation at all
network boundaries.
Unable to detect botnets
with low amount of
requests.

Up to 100%. [76,179–187]

Graph-based approach Computationally efficient.

Needs a certain amount of
training data. Accuracy
depends on datasets
inspired of the evolving
Internet state.

N/A. [188]

PageRank algorithm
using clustered cloud
computing

Efficient performance
(clustering). Scalable and
Effective. Easily usable at low
costs.

High computational
needs. 99%. [189]

SMTP analysis
Can catch both text and
image-based botnet spam
mails.

Limited to mail-based
botnets.

Detects 96.23% of
botnets spam mails
with no false positive.

[190,191]

Botnet application
sandboxing

Computationally cheaper
compared to contemporary
intrusion detection systems.

Legitimate emails can be
flagged wrongly as spam. Not tested [192]

Evidential reasoning Can improve botnet detection
rates.

Lacks an uncertainty
evaluation model. Up to 90%. [193]

Blockchains are another useful paradigm, which can be included in botnet detection
techniques. In the paper [176], the use of lightweight agents included in many IoT installa-
tions is discussed. The main goal is to provide a secure communication channel, such as
a private network, between each node (agent). Since all agents are able to communicate
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with each other, they can exchange relevant information such as collection of traffic metrics
to identify ongoing DDoS attacks and victims. This exchange procedure is implemented
via a blockchain smart contract, which is co-maintained by all nodes in the system. The
involved blockchain technology ensures integrity among all the nodes and allows for the
collaboration of the distributed nodes without a need of a third party. Another purpose
of this technology is in [177], where blockchain is implemented as a framework using
HyperLedger to give traceability of the hardware. By the use of a physically unclonable
function (PUF), all the IoT-connected devices are sure to be unique. In this way, blockchains
is used for verification in order to compare and identify these devices with their unique
fingerprint ID. Among all these papers, the blockchain-based structure is often used for
integrity, decentralisation and transparency among the participants of the chain. It allows
these agents to communicate in a much more secure way and therefore make the detection
mechanism more reliable and efficient. However, according to a different perspective, A.
Zareh and H. R. Shahriari detail another type of target in [178], namely called “botcoins”,
which are Bitcoin miner botnets. They propose the use of dynamic analysis of instruction
traces in suspicious executable binary files. A constant parameter value in the assembly
exist in all botcoin implementations, which can be detected at the assembly language
level. Compared to the other blockchain approaches, the detection strategy in [178] does
not iuse blockchain as a communication channel, but analyses how a specific type of
botnet functions.

The approach described in [180] uses two factors to determine if a P2P host is part
of a botnet: host living-time and command search frequency. The paper argues that P2P
botnets exhibit longer-term peer connections and high search request frequency compared
to benign P2P traffic. Because legitimate P2P peer connection time is usually short and
pull-style communication is uncommon, botnet-behaviour can be detected by those two
factors. Likewise, Reference [181] also approaches the detection of P2P botnets by the
P2P search frequency. The detection mechanism specified in the paper also considers the
number of P2P peers, the argument being that P2P botnets have a larger number of peer
connections compared to normal P2P traffic. The paper also looks at the periodicity of
messages sent, with the argument being that bots periodically request commands from the
botmaster. In [189], detecting peer-to-peer botnets using a high-level abstraction of parallel
computing called MapReduce is discussed. MapReduce is aiming to divide input data
into multiple inputs to make applying functions easier to them. MapReduce also helps
running the tasks in parallel over multiple servers. Reference [182] uses both periodicity
and active peer connections to determine if a host is part of a P2P botnet. The mechanism
described also looks at the ratio of small packets vs. large packets to indicate C&C queries
by bot hosts. Other papers such as [183] propose the use of of traditional network traffic
analysis based on packet feature selection to detect P2P-based botnets. PeerHunter looks at
the number of mutual peers between hosts to detect P2P botnet participants. The number
of mutually connected nodes indicates the number of potential botnet communities and
is used to identify candidates for botnet detection [179]. Reference [76] further builds
on top of PeerHunter to identify whether the previously identified communities are part
of a botnet or not. The detection mechanism for the communities use a network flow
analysis method to detect botnets, with the primary factors being the ratio of egress/ingress
packets, mutual contacts ratio and destination diversity ratio. Reference [188] uses a graph-
based approach to detect P2P traffic, instead opting to exploit the structural properties
of the botnet P2P overlay network. The approach checks the number and size of weakly-
connected components, average node degree and InO ratio of the P2P overlay network
graph to determine if the P2P network is a botnet.

Reference [185] uses firewall logs and the number of outbound connections to detect
botnet behaviour. If the number of outbound connections suddenly increases above a
threshold, the user is informed. Reference [184] detects HTTP botnet traffic in streaming
logs by the use of Lanczos method. The log entries and time slots are put into a ma-
trix to check for correlation with botnet behavioural traffic. The paper primarily focuses
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on comparison to principal component analysis (PCA) and shows that Lanczos method
achieves similar results with a 25% reduction in runtime compared to similar approaches.
Reference [186] proposes a multi-faceted detection mechanism based on both host and
network analysis. The network analysis is based on known botnet behaviour while host
analysis is based on the expected host processes and behaviour. If behaviour exceeds or
goes beyond expected thresholds, the approach assumes that botnet activity is happening.
Reference [187] proposes a method for detecting HTTP based botnets and C&C commu-
nication in the cloud using traffic analysis. The paper looks at five instances of packet
capture and analyses the HTTP (TCP packets) traffic, calculating entropy of the captures
with TCP payload, length of payload and frequency of each character in the payload. Their
test shows that C&C communication is relative similar and can be used for detecting C&C
communication of botnets in the cloud.

For spam-based botnets, Reference [190] proposes a method for the detection from
spam mails received by those botnets. By looking at the mail header, the detection mecha-
nism determines if the mail came from a botnet by looking at the sender’s IP, the country of
the domain name and the MX host of the sender. If the countries do not match, the sender
is assumed to be part of a spam botnet. Reference [191] tackles botnet detection from a
cyber-security standpoint, using a multiple detection mechanisms and aggregating the
detection results in a central detection log for consideration. The used methods include
honeypots, spam collection and recognition as well as high-level analysis based on known
botnets. The techniques are based on a case study of the techniques applied at ACDC
(Advanced Cyber Defense Centre) in Europe.

Reference [192] attempts to detect botnets by blocking botnet-infected hosts from
sending mails. The proposed framework uses a whitelisting approach for running soft-
ware within hosts, only allowing mails to be sent by authorised applications with a per-
application encryption key. A process that sends mail without the authorisation key is
flagged as a potential malware. Reference [193] uses a unique approach based on evidential
reasoning detection botnets. In this approach, the actions of hosts are mined and reasoned
to determine if the actions performed are within the expectations of the host. If not, the
host may be detected as being part of a botnet.

6.1.6. Mobile Botnets

For the purpose of clarification, Table 8 below details a number of papers that goes
over mobile botnet based detection:

Table 8. Papers describing detection of botnets in mobile devices. Each column describes the overall technique, known
advantages, disadvantages, detection rate and related papers, respectively.

Technique Advantage(s) Disadvantage(s) Detection Rate Papers

Risk factor based on
multi-category features

High accuracy in botnet
apps.
Generates a pattern for
Android botnet detection.

Only for static analysis.
No response mechanism. Reference [194]: 93.1%. [18,194]

Dynamic
real-time analysis N/A. Limited analysis for risk

factor. N/A. [19]

Machine learning General high detection
performance.

Bad detection performance
when the bot coexists with
other applications that
communicate with many
hosts.

Achieves 0.93 of the
F-measure score by using
graphlets of TCP and UDP
with 10% of total traffic in
3-minute duration [195].
99.49% accuracy is
achieved [196].

[195,196]

Application monitoring Mitigation: user warnings
if something is suspicious.

SMS and social network
applications are not
monitored.

N/A. [197]
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Another point of interest in botnet detection is the detection of smartphone-based
botnets. Some papers, such as Abdullah and Saudi [18], propose assessing the potential
risk of malicious apps by evaluating the API calls used by given apps. Apps shown to
behave more like botnets are categorised as higher-risk and might potentially be blocked.
Reference [18] also attempts to evaluate apps based on risk factors, weighing botnet-
behaving apps as higher-risk compared to more benign apps. Reference [19] compares
an app’s permissions with a list of known harmful permissions and creates a threat level
hierarchy on the basis of said permissions. Reference [194] extends the approach used
in [19] by detecting botnets on the basis of both permissions and also the used API calls of
each app. Reference [195] proposes the use of a graphlet-based machine learning algorithm
on smartphone communication and then executing principal components analysis to
identify P2P botnets on smartphones. Other approaches such as [196] run as an active
agent on the smartphone OS to capture run-time data. The data is then labelled using
a machine learning algorithm to determine whether or not an app acts like a botnet.
Reference [197] instead asks the user to specify trusted apps and what permissions a given
app should have according to the user. Any apps performing unauthorised or suspicious
actions are flagged, and the user is informed. Periodic scans are performed to identify new
threats and inform the user of unused apps.

6.1.7. Vehicle Networks

With the development of autonomous vehicles, vehicular ad hoc networks (VANETs)
have been designed to provide traffic safety by allowing the ad hoc transmission of safety
information between vehicles. This additional communication makes VANETs a likely
target for malicious attackers. Reference [198] introduces novel attack VANETs and propose
a honeypot approach to notify nearby vehicles to ignore messages stemming from vehicles
infected by botnets. The paper also proposes the use of localisation mechanisms to limit
the exposure to far-away botnets. Reference [12] introduces Shieldnet, which employs a set
of machine learning algorithms to detect the use of the GHOST [81] vehicular botnet. The
algorithm detects suspicious activity by searching for outlier data within the Basic Safety
Messages (BSM) fields of VANET broadcasts, also isolating known infected hosts using a
reputation-based identification system.

6.1.8. Social Network Botnets

Social network-based botnets (SnB) have become a major security issue in the past
few years. Their incentives are based on sensitive information stealing, and perform
complex communication procedures. Publicly available resources are highly vulnerable
and provide an obfuscation layer in the C&C communication for botnets. The study [87]
of this new malware method is essential to understand the actual challenges in detecting
and mitigating social botnets. Social networks contain information such as sensitive and
personal data of both registered and unregistered users. Moreover, it acts as a human-
driven communication channel to share, talk and learn. This tool can be helpful in some
respects, but it can also be destructive, e.g., propagating the influence of botnets [199].

To understand the behaviour of social network botnets, T. Yin and Y. Zhang and
S. Li detail [60] the design and implementation of a Social Network-based botnet called
DR-SNBot. The paper presents the necessary framework to deploy a C&C channel on the
Sina blog website with a nickname generation algorithm and divide-and-conquer strategy.
Compared to [60,166], it contains strong analysis on how to detect covert SnB in the real
world. It is focused on the Stegobot and how to monitor host profile activity from a social
network, and by extension, differentiate a normal profile from a Stegobot’s one. Profiles
are analysed by looking at their number of friends, likes and shares. A Stegobot has
predictable patterns and communicates secret messages via carrier images, called “stego
images”, through the content sharing system from social networks. Their strategy is to
study statistical correlation and build a classification algorithm using Machine Learning to
identify malicious activities and suspicious accounts.
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6.2. Mitigation Mechanisms

After detecting a botnet and the threat they can represent, mitigation and countermea-
sures have to be deployed to limit the propagation of the botnet-enabling malware and
protect the devices from being compromised. Mitigation mechanisms for botnets can be
either reactive or proactive and can occur at different levels. The following section lists
some of the mitigation strategies that can be employed when dealing with botnet and
botnet-based attacks. These countermeasures can be found in Table 9 below.

Table 9. This table details the specific mitigation methods described in the following section, the advantages and disadvan-
tages, as well as associated papers.

Mitigation Mechanism Advantages Disadvantages Papers

Best practices for end-users
and organisations

Increases overall organisational
security, considered best-practice,
many well-known standards (i.e.,
ISO 27001).

Does not specifically target
botnets, high user inconvenience
cost.

[53,200]

Network-level blocking and
packet analysis

Very high protection rate, many
solutions and detection
frameworks.

Very botnet-specific, can
introduce additional latency at
network edge.

[5,84,98,136,176,201–205]

Honeypots and botnet
isolation

No effect on internal networks.
Low cost.

Lower protection rate compared
to network-level blocking,
requires additional logically
separated network.

[13,22,33,206–208]

Attacking P2P botnets

Helps mitigate botnet threat for
others. Can target specific
botnets. Hinders P2P advantages
compared to centralised C&C
models.

Only targets specific botnets
(P2P-based). Low efficiency for
organisations.

[209,210]

IoT-specific mitigation
strategies

Low or offloaded compute
resource cost. Some solutions
provide general integrity for
IoT-based networks.

Specific for IoT-based threats.
Still few and untested options
compared to network-level
blocking.

[2,106,175,211,212]

Community-driven
approaches

Potentially quicker adaption to
newer botnets. Free and Open
Source for organisations to use.

Dependent on community
development. No de-facto
standard decided yet.

[119,213]

Botnet mitigation with
ethical issues (spreading
anti-botnets, attacking
suspected hosts)

Mitigates botnets for others.
Slows botnet propagation.

Ethically questionable or illegal.
Very specific per-botnet. [49,82,214–217]

6.2.1. Best Practices for End-Users and Organisations

In general, following IT best practices is a good way to avoid the propagation and
infection of botnets. An article of Justice news [53] coming from the Department of Justice
(DOJ) of the United States announced “a multi-national effort to disrupt the Gameover
Zeus Botnet”. The GameOver Zeus (GOZ) botnet is described as being capable of infecting
victim computers to harvest credentials and banking information in order to gather millions
of dollars from companies and customers. Therefore, a cybersecurity alert [200] at the
National Cyber Awareness System has been released to explain how the botnet works
and how attacks can be avoided. This assessment and mitigation document is written
in collaboration with Department of Homeland Security (DHS), the DOJ and the Federal
Bureau of Investigation (FBI). From this source, it is possible to get a grasp on the default
methods of countermeasures used against every common botnet or malware:

• Updating/changing passwords: typically, botnets will try to access credentials from
all connected devices and web accounts. The best way of protection is to follow
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the rules of ensuring high entropy of random password generation and execute
frequent updates.

• Updating devices: infections are coming from unwanted vulnerabilities. Updating
the operating system and the integrated software can help prevent devices from
being compromised.

• Updating/using anti-malware and anti-virus tools: remediation tools and anti-viruses
can erase malware infection and protect the device against new ones.

• Being aware: the hardest part to protect from is human behaviour. There ar multiple
incentives, but botnets such as GOZ are mostly coming from spam and phishing
messages, which can be avoided if the potential victim is aware of this potential
threat source.

However, individual techniques are often not efficient enough to eradicate such threats.
The Justice news article [53] explains the authorisation and capacity of redirecting requests
made by the infected computers away from the malicious operators. With the evolution
of the botnets detailed in this report, cyber defence needs to evolve and new mitigation
techniques need to handle more complex attacks. Moreover, some of the newly described
strategies only target specific types of botnets.

6.2.2. Network-Level Blocking and Packet Analysis

Within technical mitigation for botnet propagation, the use of network-level blocking
is one of the most cited strategies. Many detection papers focus on network-level detection,
which can be used by intrusion detection systems to block and contain botnets. In [202], an
autonomous system (AS) is used to mitigate botnet threats. The AS stores a list of hosts’ IP
addresses and a threshold per host based on classification. Categories can be “Blacklist”,
“Whitelist”, “Suspected Attacker” and “Possible Victim”. AS are connected synchronously
via the Ethereum blockchain. The threshold is monitored by every AS and refreshed
after 20 s. Another way to ensure packets blocking is the software-defined networking
approach [84,203]. The main purpose is to analyse the incoming packets rate at defined
IoT switches to separate legitimate from malicious communication. Legitimate traffic
is accepted, while malicious ones are blocked. Many mitigation strategies use a locally
installed agent on host machines to block detected botnet traffic, informing the user of the
infected nature of their machine [201]. Blocking can also be performed at the edge of the
service provider but would face high implementation costs and requires some coordination
across ISPs [204]. At the network level, removal of malware can be performed by agents
installed locally or by the use of a continuous communication protocol with a master device.
This validates of the integrity of local hosts and allows administrators to perform removal
of botnet-enabling malware from hosts, either automatically or manually [5,176,205].

In [136], the authors propose a self-adaptive system for mitigation. In corporate
area networks for instance, resilience can be ensured by using scenario-driven adaptive
reconfiguration of networks. Scenarios are assessed and based on cluster analysis coming
from previous botnet attacks. Moreover, the described system can apply more advanced
actions such as reducing requests timeouts, decreasing allowed HTTP request size and
blocking source hostname and IP addresses. In [98], a neural network-based system called
BoNeSSy will notify the administrator if a threat is found and apply appropriate security
actions such as blocking IP addresses or putting the system or suspicious network segment
under surveillance. Many papers describe the detection of botnets using Machine Learning
clustering via statistical behaviour correlation, but some of them are lacking of specific
countermeasures description. Some characteristics can be countered by packets or IP
addresses blocking.

6.2.3. Honeypots and Botnet Isolation

One of the most frequently described strategies [13] for mitigation is to isolate the bot-
net in order to perform information gathering and analysis of its behaviour and interaction
via, for instance, honeypots [33,206] and honeynets [22]. From this information collection
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and assessment, it is possible to categorise the botnet based on behavioural characteristics
and botnet structure. Organisations and researchers are producing and studying many
methods of mitigation with various qualities and limitations. Honeypot behaviour has
been shown to be detectable by intelligent botnets however. Although this is the case, the
research and deployment of honeypots still has value for the scientific and industrial com-
munities. The continued research in covert honeypots is therefore paramount to continue
reaping the insights gained by using honeypots [207,208].

6.2.4. Attacking P2P Botnets

Reference [209] proposes the use of poisoning of the routing table of P2P botnets as a
potential mitigation method. By disrupting the majority of entries in the shared routing
table of P2P botnets, it becomes possible to hinder some of the advantages that these
types of botnets enjoy over the centralised model, such as resource efficiency and fault
tolerance. Reference [210] also proposes disrupting P2P botnets but uses an optimised and
tailored Sybil attack to infiltrate botnets and therefore mitigate them by disrupting or even
taking them down from the inside. Placing Sybil nodes in the botnet shows that random
placement is just as effective as informed placement due to the nature of P2P botnets. These
nodes are able to disrupt communication between other nodes within the P2P botnet.

6.2.5. Mitigation against IoT Attacks and Botnets

Learning from the Mirai botnet attack illustrates multiple general best practices, which
can be used as a mitigation against IoT botnets. These methods include changing default
credentials, closing unused service ports like telnet, detecting disabled watchdogs (Mirai
specific) and the use of automated scripts to validate the implementation of the proposed
mitigation [2,106]. Other proposed mitigation methods include switching from telnet to
SSH (if possible) or changing the default service ports of services. Ensuring proper isolation
of users and service account permissions and disabling any unencrypted communications
(like HTTP) might mitigate some IoT botnet attacks [211]. Known ports vulnerable to
attacks should also be continually monitored to quickly react to suspicious traffic [212].
Some local IoT agents have also been proposed to collectively mitigate the potential damage
of DDoS attacks targeting local IoT installations [175].

6.2.6. Community Driven Tools against Botnets

Reference [119] proposes the use of a community driven framework, BotFlex, to contin-
ually improve mitigation of botnets across the entire IT community. The approach attempts
to standardise network-based intrusion detection systems with an extensible module sys-
tem. Other researchers and corporations can contribute to the system with modules to
improve upon BotFlex. In other community-driven approaches, Reference [213] proposes
the use of a botnet defence description language to describe the tasks and information shar-
ing primitives between devices handling botnet defence. Some community-driven efforts
attempt to detect and prevent botnets by providing databases with known spam bots such
as the The Spamhaus Project [218] and IBM X-Force exchange [219], where IT researchers
can report suspected IP addresses and see a list of IP addresses along with a % indicator of
how likely the IP is used for C&C. Furthermore Structured Threat Information eXpression
(STIX) is used for exchanging cyber threat intelligence (CTI) as described in [220]. Dog
et al. [221] examined the value of sharing IDS logs between enterprises and not just sharing
IP addresses, domains and specific attacks. The study shows that intelligence sharing can
provide good strategic threat information for enterprises.

6.2.7. Botnet Mitigation with Potential Ethical Issues

Reference [214] discusses the ethical implications of fighting botnets with sinkholes.
The information gathered by these sinkholes can be sold to government agencies, politi-
cians, contractors and many more. This information includes geographical location of
compromised hosts, operation system including version and the ability to target these
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already compromised hosts for future botnet or malware attacks. On the bright side, it
could also help ISPs to provide their customers the service of malware protection. Another
popular approach to mitigate botnets is to use their propagation mechanisms to propagate
harmless versions of the given botnet. Actively ttacking the Mirai botnet and other IoT
botnets to mitigate their threat has also been proposed [82]. Some researchers have tried to
attack spam botnets to send unknowing users to more safe sites [215]. Another example,
Reference [49], attempts to mitigate the Conficker botnet by spreading an anti-botnet,
which blocks Conficker from executing and overtakes the propagation mechanism of Con-
ficker to spread the anti-botnet instead. These approaches can be considered ethically
problematic, as they intentionally spread (harmless as they might be) self-propagating
malware [216,217].

7. Current Trends and Challenges

For the purpose of clarification, Table 10 below details a number of papers discussed
in this section. The table denotes the overall topic, the overall trends within aforementioned
topic, the relative interest for this specific trend, and a listing of all associated papers.

Table 10. Overview of papers discussing current trends and topics concerning botnets. The columns describes the trends of
the overall associated area of interest, the detailed topics discussed in each paper, the relative interest amongst the associated
trend and finally a listing of all the associated papers.

Trend Topics Within Trend Relative Interest Papers

Pervasive Computing

Spread of botnets in home appliances 2 out 18 papers listed. [31,201]

Spread of botnets in mobile phones 2 out 18 papers listed. [222,223]

Spread of botnets in (non)-autonomous vehicles. 2 out 18 papers listed. [81,198]

Remotely disrupting the controls of an autonomous
vehicle. 1 out of 18 papers listed. [81]

Smartphones exploited via insufficient app certification
process. 2 out of 18 papers listed. [37,197]

Lack of restrictions hinders the process of avoiding botnet
apps on mobile devices. 2 out of 18 papers listed. [207,211]

Various proposals for IoT malware protection, both
generalised and specialised. 4 out of 18 papers listed. [2,205,207,

211]

Usage of honeypots helps make more real-life like data for
mitigation strategies. 1 out of 18 papers listed. [224]

No standardised way to protect pervasive computing
device hurts development of mitigation strategies. 1 out of 18 papers listed. [225]

Best-practices in IT security yearns for standardising
security in IoT and mobile devices. 1 out of 18 papers listed. [2]

Increasing complexity
of botnets

Most firewalls and intrusion detection systems are not
able to filter IPv6 traffic. 2 out of 3 papers listed [226,227]

Modern botnets can circumvent traditional detection
methods using encrypted channels for traditionally
unencrypted traffic.

1 out of 3 papers listed. [228]

Social Botnets

Social botnets can be used for multiple purposes,
including spam, C&C and falsifying/impersonating user
behaviour.

2 out of 4 papers listed. [87,199]

It is growing increasingly harder for users to discern
between true and false information, benefiting botnets. 1 out of 4 papers listed. [166]

New and more advanced counter measures are necessary
to combat this new development of social botnets. 1 out of 4 papers listed. [1]
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Table 10. Cont.

Trend Topics Within Trend Relative Interest Papers

Machine learning and
neural networks for
botnet detection

New research on machine learning based detection
schemes shows high rates of true positive detection of
botnet behaviour.

8 out of 9 papers listed.
[24,92,99,109,

124,125,127,
136]

Discussion on the ability to train for zero-day
vulnerabilities with custom created datasets. 1 out of 9 papers listed. [170]

Proactive botnet
mitigation

Proactive botnet mitigation techniques show promising
results. 3 out of 6 papers listed. [130,207,229]

Proactive mitigation strategies and tools need to be
developed for both the local and international stage. 2 out of 6 papers listed. [230,231]

Users willing to pay for botnet prevention, but lack
awareness. 1 out of 6 papers listed. [232]

Cloud-based botnets

Cloud services can be used for C&C communications
between bots and bot masters, masquerading as benign
user traffic.

1 out of 3 papers listed. [187]

Cloud services offer options for researchers to create
botnets without hassle. 2 out of 3 papers listed. [87,233]

The current state of botnets and botnet research is consistently changing. As described
in Section 5, on the topic of botnet evolution, botnets are constantly evolving. This section
lists some of the general trends and challenges that have been identified during the reading
for this paper.

7.1. The Continued Spread of Botnets within Pervasive Computing (VANETs, IoT and Mobile)

The most common trend and challenge within botnet research between 2013 and
2021 is the continued spread of botnets anchored in pervasive computing devices. With
the increase in computational power within normally benign devices, such as home
appliances [31,201], mobile phones [222,223] and (non)-autonomous vehicles [81,198],
a higher potential of malicious activity within these devices becomes viable. As devices
are allowed more computational headroom, botnets’ ability to perform increasingly effec-
tive obfuscation techniques to mask their existence within pervasive devices grows ever
more concerning.

Section 5 explains that the damage of botnets has mostly been within information
channels, with attacks on the availability of computing system and acquisition of user
credentials and national intelligence data being some of the primary targets of botnets.
With pervasive computing, however, that threat of disruption transitions into the physical
realm. Remotely disrupting the controls of an autonomous vehicle [81] can have potentially
fatal results for the people within. Smart devices such as pacemakers and other computer-
enabled medical devices may also provide a potentially fatal target for malicious actors or
terrorists [234].

The mitigation of these attacks may vary greatly, depending on the specific scenario
and device in question. Some devices, such as smartphones, are shown to be ripe for
exploitation. An example of this is the app certification process, which has been shown
to be insufficient [37,197] to prevent malicious apps from getting into various app stores.
Furthermore, some device operating systems, like Android, do not place strict limitations
on installing apps through unauthorised sources or package repositories. This considerably
complicates the process of avoiding botnet apps on mobile. For IoT devices, attacks such
as the Mirai botnet [207,211] shows the lack of basic security configuration and security
investment within IoT development. Some solutions for IoT malware protection, both
generalised and specialised, have been proposed within research though [2,205,207,211].
Attempts have also been made to make more real-life data based on honeypots available
for researchers, in order to propose more IoT mitigation strategies [224]. However, so



Future Internet 2021, 13, 198 32 of 43

far no standardised ways to protect pervasive computing devices from botnets have
been implemented. The lack of data sets for large IoT botnets in the wild is also seen
as a challenge for the further development of mitigation against botnets targeting IoT
installations [225]. With the differences in architecture and use-scenario of vehicles, IoT
and mobile, a completely standardised approach across platforms might be a stretch. Some
general best-practises within IT security, like avoiding default credentials, closing unused
services and continuous validation of the platform, still apply for all pervasive computing
devices [2].

7.2. Increasing Complexity of Botnets

Ravishankar expects future botnet threats to include encrypted communication, where
a bot herder would encrypt the bot binary with a strong public/private key pair. Self-
destruction mechanisms where the bot deletes registry files to try and enforce the user
to reinstall the operation system and thereby get rid of most logged evidence, makes it
hard for antivirus companies to analyse the botnets. Decentralised botnets such as P2P do
not suffer from the vulnerability of a single point of failure, making the take down more
complex. Tor-based onion routing can obfuscate communication to make eavesdropping
and traffic analysis almost impossible. Tor can also be used for the bot herder to stay
anonymous while setting up a new botnet. IPv6 can be misused to carry edited binary files
and instructions to bots, malware tunnelling would also be possible in some situations,
and lastly, most firewalls and intrusion detection systems are not yet able to filter IPv6
traffic [226,227]. Traditional detection methods by performing traffic analysis of DNS
queries can be prevented by modern botnets utilising encrypted channels for traditionally
unencrypted traffic [228].

7.3. Social Botnets

Social botnets are another challenge that have been under development for a while
and are predicted to threaten online security and the integrity of information online. Social
botnets specifically use social platforms for multiple purposes, including spam, C&C and
falsifying or impersonating user behaviour [87] at an increasing rate [199]. This gives botnet
developers more tools and ways to avoid typical detection mechanisms by communicating
through seemingly benign social user accounts. Furthermore, as the amount of information
processing of individuals increases and social botnets for the purpose of spam grow more
advanced, it becomes increasingly unlikely for casual social network users to distinguish
between true and false information [166]. Online social networks have recently stepped up
by increasingly removing false social accounts. However, additional research is necessary
to provide more generalised as well as specialised anti-measures for social botnets [1].

7.4. Machine Learning and Neural Networks for Botnet Detection

Detecting botnets using machine learning and neural networks has gained prominence
amongst researchers and developers. Section 6 shows a clear majority of recent papers
focusing on these techniques in order to achieve a high true positive rate of detection of
botnet behaviour [24,92,99,109,124,125,127,136]. The additional advantages of potential
real-time detection and mitigation and cloud-offloading for training/learning has allowed
these techniques to establish themselves as the solution to botnet detection for the foresee-
able future. Some parameters, such as the ability to train for zero-day botnet behaviour, are
still a topic for discussion. Some papers, such as Zago et al.’s [170], have already tried to
create data sets suitable to train machine learning algorithms for detecting certain patterns
occurring within botnets. It is therefore expected that research will continue to attempt to
improve upon the detection techniques based on machine learning and neural networks.

7.5. Proactive Botnet Mitigation

Most botnet detection mechanisms specified in Section 6 are reactive by nature. This
allows botnets to flourish outside of properly protected and monitored networks. Because
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of the aforementioned reactive nature of both the detection and mitigation mechanisms,
the proposed techniques only allow for protection at the local network level. This leaves
many unprotected users vulnerable to botnet attacks, which may lead to technical and
financial headaches for entities such as ISPs and the corporations supporting said users.
Some proactive botnet mitigation techniques, such as honeypots and botnets overtaking
other botnets show promising results, as documented in [130,207,229]. These new methods
help raise user awareness while rendering other botnets harmless. An increased focus on
proactive mitigation and detection strategies is necessary, not just to mitigate botnets at
the local network level, but the international stage as well [230,231]. Research shows that
users are willing to pay for services from their ISPs to prevent botnet attacks, but the lack
of awareness nevertheless hurts the potential reach of such offerings [232].

7.6. Cloud-Based Botnets

Finally, the normalisation of cloud-computing has allowed for greater computing
power to both aid and combat botnets. This increase in computing resources and publicly
available communication services, such as Google Cloud, has also been exploited by
hackers to create botnets in the cloud. As cloud deployments are virtually instantaneous
and on-demand, the cloud allows bot masters to dynamically scale the size of their botnets
to match the needed computing power for attacks. Additionally, cloud services have been
shown to be used for C&C communications between bots and bot masters, masquerading
as benign user traffic [187]. Mitigation techniques based on IPs and locations are shown
to be ineffective due to the relative in-deterministic nature of cloud deployment locality.
The cloud can also be seen as a potentially attractive option for botnet research due to its
low price, allowing researchers to instantly create botnets without having to make ethically
questionable decisions such as infecting user computers in the wild [87,233].

8. Conclusions

This paper sought out to produce a novel systematic literature review detailing
different subjects related to botnets, a growing subgroup of malware-enabled attacks.
Botnets are widely used by malicious actors with various motivations and intentions, from
simple denial-of-service attacks to advanced cyber espionage. The actors behind botnets
therefore span a large range from security researchers spreading anti-botnets to foreign
nations attempting to destabilise infrastructure.

The relatively simple structure and potential payoff of a successful attack has been
a driving force in the evolution of botnets for decades. The adaptability of botnets are
seen in their evolution towards modern platforms such as vehicles, smartphones and IoT
devices. Modern botnets are still evolving rapidly, and more advanced counter-detection
mechanisms and command-and-control channels are being introduced.

It has been shown that recent detection mechanisms based on machine learning and
artificial neural networks provide very high rates of detecting botnet threats. Both these
approaches provide additional accuracy to common network behaviour-based approaches.
These detection techniques support traditional mitigation strategies such as security best
practices and network-level blocking to reduce the risk and impact of botnet attacks.

In particular, the spread of pervasive computing paradigms such as the Internet of
Things and vehicular networks provide a fertile ground for botnets to spread. Current
trends point towards the increase of computing power within pervasive computing as an
enabler for botnets to enable malware to spread. Other now-commonplace computing
paradigms, such as cloud computing and interconnected social networks, have also seen
an increase in interest as potential enablers of botnets.

Author Contributions: Conceptualization and methodology, all authors contributed equally; inves-
tigation and writing—original draft preparation, S.N.T.V., M.S., P.I.E.-H. and J.B.; writing—review
and editing, all authors contributed equally; supervision, N.D.; project administration, N.D.; funding
acquisition, N.D. All authors have read and agreed to the published version of the manuscript.



Future Internet 2021, 13, 198 34 of 43

Funding: This research was partially funded by Industriens Fond (Danish Industry Foundation),
project “CIDI–Cybersecure IoT in Danish Industry”, grant number 2018-0197.

Data Availability Statement: Not applicable, the study does not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silva, S.S.; Silva, R.M.; Pinto, R.C.; Salles, R.M. Botnets: A survey. Comput. Netw. 2013, 57, 378–403. Botnet Activity: Analysis,

Detection and Shutdown. [CrossRef]
2. Margolis, J.; Oh, T.T.; Jadhav, S.; Kim, Y.H.; Kim, J.N. An In-Depth Analysis of the Mirai Botnet. In Proceedings of the 2017

International Conference on Software Security and Assurance (ICSSA), Altoona, PA, USA, 24–25 July 2017; pp. 6–12. [CrossRef]
3. Haria, S. The growth of the hide and seek botnet. Netw. Secur. 2019, 2019, 14–17. [CrossRef]
4. ENISA Threat Landscape 2020—Botnet. Available online: https://www.enisa.europa.eu/publications/enisa-threat-landscape-

2020-botnet (accessed on 28 May 2021).
5. Hsiao, S.; Chen, Y.-N.; Sun, Y.S.; Chen, M.C. A cooperative botnet profiling and detection in virtualized environment. In

Proceedings of the 2013 IEEE Conference on Communications and Network Security (CNS), National Harbor, MD, USA, 14–16
October 2013; pp. 154–162. [CrossRef]

6. European Union Agency Cybersecurity. Available online: https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/
botnets (accessed on 30 July 2020).

7. Zhang, W.; Wang, Y.J.; Wang, X.L. A Survey of Defense against P2P Botnets. In Proceedings of the 2014 IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing, Dalian, China, 24–27 August 2014; pp. 97–102. [CrossRef]

8. Ianelli, N.; Hackworth, A. Botnets as a Vehicle for Online Crime. CERT Coord. Cent. 2005, 28, 19–39. [CrossRef]
9. Etaher, N.; Weir, G.R.S.; Alazab, M. From ZeuS to Zitmo: Trends in Banking Malware. In Proceedings of the 2015 IEEE

Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 1386–1391. [CrossRef]
10. Elliott, C. Botnets: To what extent are they a threat to information security? Inf. Secur. Tech. Rep. 2010, 15, 79–103. Computer

Crime—A 2011 Update. [CrossRef]
11. Eslahi, M.; Salleh, R.; Anuar, N.B. Bots and botnets: An overview of characteristics, detection and challenges. In Proceedings of

the 2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 23–25 November
2012; pp. 349–354. [CrossRef]

12. Garip, M.T.; Lin, J.; Reiher, P.; Gerla, M. SHIELDNET: An Adaptive Detection Mechanism against Vehicular Botnets in VANETs.
In Proceedings of the 2019 IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, USA, 4–6 December 2019; p. 9062790.
[CrossRef]

13. Garg, S.; Sharma, R.M. Anatomy of botnet on application layer: Mechanism and mitigation. In Proceedings of the 2017 2nd
International Conference for Convergence in Technology, I2CT 2017 Mumbai, India, 7–9 April 2017; pp. 1024–1029. [CrossRef]

14. Lange, T.; Kettani, H. On Security Threats of Botnets to Cyber Systems. In Proceedings of the 2019 6th International Conference
on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 176–183. [CrossRef]

15. García, S.; Zunino, A.; Campo, M. Survey on network-based botnet detection methods. Secur. Commun. Netw. 2014, 7, 878–903.
[CrossRef]

16. Karim, A.; Salleh, R.; Shiraz, M.; Shah, S.; AWAN, I.; Anuar, N. Botnet detection techniques: Review, future trends and issues. J.
Zhejian Univ. Comput. Electron. 2014, 15, 943–983. [CrossRef]

17. Khehra, G.; Sofat, S. Botnet Detection Techniques: A Review. In Proceedings of the 2018 Second International Conference on
Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 1319–1326. [CrossRef]

18. Abdullah, Z.; Saudi, M. RAPID-Risk Assessment of Android Permission and Application Programming Interface (API) Call for
Android Botnet. Int. J. Emerg. Technol. Learn. 2018, 7, 49–54. [CrossRef]

19. Kothari, S. Real Time Analysis of Android Applications by Calculating Risk Factor to Identify Botnet Attack. Lect. Notes Electr.
Eng. 2020, 570, 55–62. [CrossRef]

20. Eslahi, M.; Salleh, R.; Anuar, N.B. MoBots: A new generation of botnets on mobile devices and networks. In Proceedings of
the ISCAIE 2012—2012 IEEE Symposium on Computer Applications and Industrial Electronics, Kota Kinabalu, Malaysia, 3–4
December 2012; p. 6482109. [CrossRef]

21. Kaur, N.; Singh, M. Botnet and botnet detection techniques in cyber realm. In Proceedings of the 2016 International Conference
on Inventive Computation Technologies (ICICT), Tamilnadu, India, 26–27 August 2016; Volume 3, pp. 1–7. [CrossRef]

22. Feily, M.; Shahrestani, A.; Ramadass, S. A Survey of Botnet and Botnet Detection. In Proceedings of the 2009 Third International
Conference on Emerging Security Information, Systems and Technologies, Athens, Greece, 18–23 June 2009; pp. 268–273.
[CrossRef]

23. Abdullah, R.; Abu, N.; Abdollah, M.; Muhamad Noh, Z.A. Understanding the Threats of Botnets Detection: A Wide Scale Survey.
Res. J. Inf. Technol. 2014, 6, 135–153. [CrossRef]

24. Gaonkar, S.; Dessai, N.F.; Costa, J.; Borkar, A.; Aswale, S.; Shetgaonkar, P. A Survey on Botnet Detection Techniques. In
Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (IC-ETITE),
Vellore, India, 24–25 February 2020; pp. 1–6. [CrossRef]

http://doi.org/10.1016/j.comnet.2012.07.021
http://dx.doi.org/10.1109/ICSSA.2017.12
http://dx.doi.org/10.1016/S1353-4858(19)30037-6
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-botnet
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-botnet
http://dx.doi.org/10.1109/CNS.2013.6682703
https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/botnets
https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/botnets
http://dx.doi.org/10.1109/DASC.2014.26
http://dx.doi.org/10.5769/J200701002
http://dx.doi.org/10.1109/Trustcom.2015.535
http://dx.doi.org/10.1016/j.istr.2010.11.003
http://dx.doi.org/10.1109/ICCSCE.2012.6487169
http://dx.doi.org/10.1109/VNC48660.2019.9062790
http://dx.doi.org/10.1109/I2CT.2017.8226284
http://dx.doi.org/10.1109/SPIN.2019.8711780
http://dx.doi.org/10.1002/sec.800
http://dx.doi.org/10.1631/jzus.C1300242
http://dx.doi.org/10.1109/ICCONS.2018.8663082
http://dx.doi.org/10.14419/ijet.v7i4.15.21370
http://dx.doi.org/10.1007/978-981-13-8715-9_7
http://dx.doi.org/10.1109/ISCAIE.2012.6482109
http://dx.doi.org/10.1109/INVENTIVE.2016.7830080
http://dx.doi.org/10.1109/SECURWARE.2009.48
http://dx.doi.org/10.3923/rjit.2014.135.153
http://dx.doi.org/10.1109/ic-ETITE47903.2020.Id-70


Future Internet 2021, 13, 198 35 of 43

25. Shetu, S.F.; Saifuzzaman, M.; Moon, N.N.; Nur, F.N. A Survey of Botnet in Cyber Security. In Proceedings of the 2019 2nd
International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, 28–29 September
2019; pp. 174–177. [CrossRef]

26. Stevanovic, M.; Pedersen, J.M. An analysis of network traffic classification for botnet detection. In Proceedings of the 2015
International Conference on Cyber Situational Awareness, Data Analytics and Assessment (Cybersa), London, UK, 8–9 June
2015; p. 8. [CrossRef]

27. Haddadi, F.; Le Cong, D.; Porter, L.; Zincir-Heywood, A.N. On the Effectiveness of Different Botnet Detection Approaches.
In Information Security Practice and Experience; Lopez, J., Wu, Y., Eds.; Springer International Publishing: Cham, Switzerland,
2015; pp. 121–135.

28. Alazzam, H.; Alsmady, A.; Shorman, A.A. Supervised Detection of IoT Botnet Attacks. In Proceedings of the Second International
Conference on Data Science, E-Learning and Information Systems, DATA ’19, Dubai, United Arab Emirates, 2–5 December 2019;
Association for Computing Machinery: New York, NY, USA, 2019; [CrossRef]

29. Falco, G.; Li, C.; Fedorov, P.; Caldera, C.; Arora, R.; Jackson, K. NeuroMesh: IoT security enabled by a blockchain powered botnet
vaccine. ACM Int. Conf. Proc. Ser. 2019, 148162, 1–6. [CrossRef]

30. Hoque, N.; Bhattacharyya, D.K.; Kalita, J.K. Botnet in DDoS Attacks: Trends and Challenges. IEEE Commun. Surv. Tutor. 2015,
17, 2242–2270. [CrossRef]

31. Dange, S.; Chatterjee, M. IoT Botnet: The Largest Threat to the IoT Network. Adv. Intell. Syst. Comput. 2020, 1049, 137–157.
[CrossRef]

32. Wazzan, M.; Algazzawi, D.; Bamasaq, O.; Albeshri, A.; Cheng, L. Internet of Things Botnet Detection Approaches: Analysis and
Recommendations for Future Research. Appl. Sci. 2021, 11, 5713. [CrossRef]

33. Raghava, N.S.; Sahgal, D.; Chandna, S. Classification of Botnet Detection Based on Botnet Architechture. In Proceedings
of the 2012 International Conference on Communication Systems and Network Technologies, Bangalore, India, 3–7 January
2012; pp. 569–572. [CrossRef]

34. Zhang, W.; Jin, C. The Research on Approaches for Botnet Detection. Energy Procedia 2011, 13, 9726–9732. [CrossRef]
35. Soe, Y.N.; Feng, Y.; Santosa, P.I.; Hartanto, R.; Sakurai, K. Machine learning-based IoT-botnet attack detection with sequential

architecture. Sensors 2020, 20, 4372. [CrossRef] [PubMed]
36. Abraham, B.; Mandya, A.; Bapat, R.; Alali, F.; Brown, D.E.; Veeraraghavan, M. A Comparison of Machine Learning Approaches

to Detect Botnet Traffic. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de janeiro,
Brazil, 8–13 July 2018; pp. 1–8. [CrossRef]

37. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An
update. Inf. Softw. Technol. 2015, 64, 1–18. [CrossRef]

38. Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering; EASE ’14.; Association
for Computing Machinery: New York, NY, USA, 2014. [CrossRef]

39. Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; John Wiley & Sons: Hoboken, NJ, USA, 2008.
[CrossRef]

40. Digital Object Identifier FAQs. Available online: https://www.doi.org/faq.html (accessed on 14 December 2020).
41. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [CrossRef]
42. Nazario, J. Politically motivated denial of service attacks. Cryptol. Inf. Secur. Ser. 2009, 3, 163–181. [CrossRef]
43. Sgouras, K.I.; Kyriakidis, A.N.; Labridis, D.P. Short-term risk assessment of botnet attacks on advanced metering infrastructure.

IET Cyber-Phys. Syst. Theory Appl. 2017, 2, 143–151. [CrossRef]
44. Li, Z.; Liao, Q.; Blaich, A.; Striegel, A. Fighting botnets with economic uncertainty. Secur. Commun. Netw. 2011, 4, 1104–1113.

[CrossRef]
45. Salamatian, S.; Huleihel, W.; Beirami, A.; Cohen, A.; Médard, M. Why Botnets Work: Distributed Brute-Force Attacks Need No

Synchronization. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2288–2299. [CrossRef]
46. Dev, J.A. Usage of botnets for high speed MD5 hash cracking. In Proceedings of the 2013 3rd International Conference on

Innovative Computing Technology, Intech 2013, London, UK, 29–31 August 2013; p. 6653658. [CrossRef]
47. Bederna, Z.; Szadeczky, T. Cyber espionage through Botnets. Secur. J. 2020, 33, 43–62. [CrossRef]
48. Herwig, S.; Harvey, K.; Hughey, G.; Roberts, R.; Levin, D. Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet.

In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium, San Diego, CA, USA, 24–27 February
2019; p. 15. [CrossRef]

49. Xiang, C.; Lihua, Y.; Shuyuan, J.; Zhiyu, H.; Shuhao, L. Botnet spoofing: Fighting botnet with itself. Secur. Commun. Netw. 2015,
8, 80–89. [CrossRef]

50. Osagie, M.S.U.; Enagbonma, O.; Inyang, A.I. The Historical Perspective of Botnet Tools. arXiv 2019, arXiv:1904.00948. [CrossRef].
51. Goodin, D. Record-Breaking DDoS Reportedly Delivered by >145 k hacked Cameras. Available online: arstechnica.com/

information-technology/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/ (accessed on 30
July 2021).

52. Fruhlinger, J. The Mirai Botnet Explained: How Teen Scammers and CCTV Cameras almost Brought down the Internet. Available
online: csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-
down-the-internet.html (accessed on 30 July 2021).

http://dx.doi.org/10.1109/ICCT46177.2019.8969048
http://dx.doi.org/10.1109/CyberSA.2015.7361120
http://dx.doi.org/10.1145/3368691.3368733
http://dx.doi.org/10.1145/3312614.3312615
http://dx.doi.org/10.1109/COMST.2015.2457491
http://dx.doi.org/10.1007/978-981-15-0132-6_10
http://dx.doi.org/10.3390/app11125713
http://dx.doi.org/10.1109/CSNT.2012.128
http://dx.doi.org/10.1016/j.egypro.2011. 12.792
http://dx.doi.org/10.3390/s20164372
http://www.ncbi.nlm.nih.gov/pubmed/32764394
http://dx.doi.org/10.1109/IJCNN.2018.8489096
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1002/9780470754887
https://www.doi.org/faq.html
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.3233/978-1-60750-060-5-163
http://dx.doi.org/10.1049/iet-cps.2017.0047
http://dx.doi.org/10.1002/sec.235
http://dx.doi.org/10.1109/TIFS.2019.2895955
http://dx.doi.org/10.1109/INTECH.2013.6653658
http://dx.doi.org/10.1057/s41284-019-00194-6
http://dx.doi.org/10.14722/ndss.2019.23488
http://dx.doi.org/10.1002/sec.749
https://doi.org/10.9734/cjast/2019/v32i630040
arstechnica.com/information-technology/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/
arstechnica.com/information-technology/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/
csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html
csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html


Future Internet 2021, 13, 198 36 of 43

53. Office of Public Affairs (USA Department of Justice)—“U.S. Leads Multi-National Action against Gameover Zeus Botnet and
Cryptolocker Ransomware, Charges Botnet Administrator”. Available online: https://www.justice.gov/opa/pr/us-leads-multi-
national-action-against-gameover-zeus-botnet-and-cryptolocker-ransomware (accessed on 30 July 2021).

54. Dabrowski, A.; Ullrich, J.; Weippl, E.R. Botnets causing blackouts: How coordinated load attacks can destabilize the power grid.
Elektrotechnik Und Informationstechnik 2018, 135, 250–255. [CrossRef]

55. Zou, C.C.; Cunningham, R. Honeypot-aware advanced botnet construction and maintenance. Proc. Int. Conf. Dependable Syst.
Netw. 2006, 2006, 1633509. [CrossRef]

56. Zeng, J.; Tang, W.; Liu, C.; Hu, J.; Peng, L. Efficient detect scheme of botnet command and control communication. Commun.
Comput. Inf. Sci. 2012, 307, 576–581. [CrossRef]

57. Abu Rajab, M.; Zarfoss, J.; Monrose, F.; Terzis, A. A multifaceted approach to understanding the botnet phenomenon. In Proceed-
ings of the 6th ACM SIGCOMM Conference on Internet Measurement, Rio de Janeriro, Brazil, 25–27 October 2006; pp. 41–52.
[CrossRef]

58. Heron, S. Working the botnet: How dynamic DNS is revitalising the zombie army. Netw. Secur. 2007, 2007, 9–11. [CrossRef]
59. Liu, C.; Lu, W.; Zhang, Z.; Liao, P.; Cui, X. A recoverable hybrid C C botnet. In Proceedings of the 2011 6th International

Conference on Malicious and Unwanted Software, Fajardo, PR, USA, 18–19 October 2011; pp. 110–118. [CrossRef]
60. Yin, T.; Zhang, Y.; Li, S. DR-SNBot: A Social Network-Based Botnet with Strong Destroy-Resistance. In Proceedings of the 2014

9th IEEE International Conference on Networking, Architecture, and Storage, Tianjin, China, 6–8 August 2014; pp. 191–199.
[CrossRef]

61. Sood, A.K.; Zeadally, S.; Enbody, R.J. An Empirical Study of HTTP-based Financial Botnets. IEEE Trans. Dependable Secur. Comput.
2016, 13, 6991594. [CrossRef]

62. Wang, H.; Gong, Z. Collaboration-based botnet detection architecture. In Proceedings of the 2009 2nd International Conference
on Intelligent Computing Technology and Automation, ICICTA 2009, Changsha, China, 10–11 October 2009; Volume 2, p. 5287910.
[CrossRef]

63. Ogu, E.C.; Ojesanmi, O.A.; Awodele, O.; Kuyoro, S. A botnets circumspection: The current threat landscape, and what we know
so far. Information 2019, 10, 337. [CrossRef]

64. Chen, Z.; Chen, C.; Wang, Q. Delay-Tolerant botnets. In Proceedings of the International Conference on Computer Communica-
tions and Networks, ICCCN, San Francisco, CA, USA, 3–6 August 2009; p. 5235321. [CrossRef]

65. Anagnostopoulos, M.; Kambourakis, G.; Gritzalis, S. New facets of mobile botnet: Architecture and evaluation. Int. J. Inf. Secur.
2016, 15, 455–473. [CrossRef]

66. Hamon, V. Android botnets for multi-targeted attacks. J. Comput. Virol. Hacking Tech. 2015, 11, 193–202. [CrossRef]
67. Mulliner, C.; Seifert, J.P. Rise of the iBots: Owning a telco network. In Proceedings of the 5th IEEE International Conference on

Malicious and Unwanted Software, Malware 2010, Nancy, France, 19–20 October 2010; p. 5665790. [CrossRef]
68. Malatras, A.; Freyssinet, E.; Beslay, L. Mobile Botnets Taxonomy and Challenges. In Proceedings of the 2015 European Intelligence

and Security Informatics Conference, EISIC 2015, Manchester, UK, 7–9 September 2015; p. 7379739. [CrossRef]
69. Rodriguez-Gomez, R.A.; Macia-Fernandez, G.; Garcia-Teodoro, P. Survey and taxonomy of botnet research through life-cycle.

ACM Comput. Surv. 2013, 45, 2501659. [CrossRef]
70. Pieterse, H.; Olivier, M.S. Android botnets on the rise: Trends and characteristics. In Proceedings of the 2012 Information

Security for South Africa—Proceedings of the ISSA 2012 Conference, Johannesburg, South Africa, 15–17 August 2012; p. 6320432.
[CrossRef]

71. Chang, W.; Wang, A.; Mohaisen, A.; Chen, S. Characterizing botnets-as-a-service. In Proceedings of the Sigcomm 2014 ACM
Conference on Special Interest Group on Data Communication, Chicago, IL, USA, 17–22 August 2014; Volume 44, pp. 585–586.
[CrossRef]

72. Li, H.; Hu, G.; Yang, Y. Research on P2P botnet network behaviors and modeling. Commun. Comput. Inf. Sci. 2012, 307, 82–89.
[CrossRef]

73. Aanjankumar, S.; Poonkuntran, S. An efficient soft computing approach for securing information over GAMEOVER Zeus Botnets
with modified CPA algorithm. Soft Comput. 2020, 24, 16499–16507. [CrossRef]

74. Yan, G.; Ha, D.T.; Eidenbenz, S. AntBot: Anti-pollution peer-to-peer botnets. Comput. Netw. 2011, 55, 1941–1956. [CrossRef]
75. Andriesse, D.; Rossow, C.; Stone-Gross, B.; Plohmann, D.; Bos, H. Highly resilient peer-to-peer botnets are here: An analysis of

Gameover Zeus. In Proceedings of the 2013 8th International Conference on Malicious and Unwanted Software: “The Americas”,
Malware 2013, Fajardo, PR, USA, 22–24 October 2013; p. 6703693. [CrossRef]

76. Zhuang, D.; Morris Chang, J. Enhanced PeerHunter: Detecting Peer-To-Peer Botnets Through Network-Flow Level Community
Behavior Analysis. IEEE Trans. Inf. Forensics Secur. 2019, 14, 8536452. [CrossRef]

77. Rossow, C.; Andriesse, D.; Werner, T.; Stone-Gross, B.; Plohmann, D.; Dietrich, C.J.; Bos, H. SoK: P2PWNED—Modeling and
evaluating the resilience of peer-to-peer botnets. In Proceedings of the IEEE Symposium on Security and Privacy, Berkeley, CA,
USA, 19–22 May 2013; p. 6547104. [CrossRef]

78. Wang, T.; Wang, H.; Liu, B.; Shi, P. What is the pattern of a botnet? In Proceedings of the 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, Trustcom 2013, Melbourne, Australia, 16–18 July 2013; p. 6680849.
[CrossRef]

https://www.justice.gov/opa/pr/us-leads-multi-national-action-against-gameover-zeus-botnet-and-cryptolocker-ransomware
https://www.justice.gov/opa/pr/us-leads-multi-national-action-against-gameover-zeus-botnet-and-cryptolocker-ransomware
http://dx.doi.org/10.1007/s00502-018-0618-3
http://dx.doi.org/10.1109/DSN.2006.38
http://dx.doi.org/10.1007/978-3-642-34038-3_79
http://dx.doi.org/10.1145/1177080.1177086
http://dx.doi.org/10.1016/S1353-4858(07)70005-3
http://dx.doi.org/10.1109/MALWARE.2011.6112334
http://dx.doi.org/10.1109/NAS.2014.37
http://dx.doi.org/10.1109/TDSC.2014.2382590
http://dx.doi.org/10.1109/ICICTA.2009.326
http://dx.doi.org/10.3390/info10110337
http://dx.doi.org/10.1109/ICCCN.2009.5235321
http://dx.doi.org/10.1007/s10207-015-0310-0
http://dx.doi.org/10.1007/s11416-014-0216-9
http://dx.doi.org/10.1109/MALWARE.2010.5665790
http://dx.doi.org/10.1109/EISIC.2015.13
http://dx.doi.org/10.1145/2501654.2501659
http://dx.doi.org/10.1109/ISSA.2012.6320432
http://dx.doi.org/10.1145/2619239.2631464
http://dx.doi.org/10.1007/978-3-642-34038-3_12
http://dx.doi.org/10.1007/s00500-020-04956-y
http://dx.doi.org/10.1016/j.comnet.2011.02.006
http://dx.doi.org/10.1109/MALWARE.2013.6703693
http://dx.doi.org/10.1109/TIFS.2018.2881657
http://dx.doi.org/10.1109/SP.2013.17
http://dx.doi.org/10.1109/TrustCom.2013.35


Future Internet 2021, 13, 198 37 of 43

79. Perrotta, R.; Hao, F. Botnet in the browser: Understanding threats caused by malicious browser extensions. IEEE Secur. Priv.
2018, 16, 8425617. [CrossRef]

80. Boshmaf, Y.; Muslukhov, I.; Beznosov, K.; Ripeanu, M. Design and analysis of a social botnet. Comput. Netw. 2013, 57, 556–578.
[CrossRef]

81. Garip, M.T.; Reiher, P.; Gerla, M. Ghost: Concealing vehicular botnet communication in the VANET control channel. In
Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference, IWCMC 2016, Paphos,
Cyprus, 5–9 September 2016; p. 7577024. [CrossRef]

82. Yamaguchi, S. Botnet defense system: Concept, design, and basic strategy. Information 2020, 11, 516. [CrossRef]
83. Bertino, E.; Islam, N. Botnets and Internet of Things Security. Computer 2017, 50, 7842850. [CrossRef]
84. Mendes, L.D.; Aloi, J.; Pimenta, T.C. Analysis of IoT botnet architectures and recent defense proposals. Proc. Int. Conf.

Microelectron. ICM 2019, 2019, 9021715. [CrossRef]
85. Kudo, T.; Kimura, T.; Inoue, Y.; Aman, H.; Hirata, K. Behavior analysis of self-evolving botnets. In Proceedings of the IEEE CITS

2016—2016 International Conference on Computer, Information and Telecommunication Systems, Kunming, China, 6–8 July
2016; p. 7546428. [CrossRef]

86. Bock, L.; Alexopoulos, N.; Saracoglu, E.; Muhlhauser, M.; Vasilomanolakis, E. Assessing the Threat of Blockchain-based Botnets.
Ecrime Res. Summit Ecrime 2019, 2019, 9037600. [CrossRef]

87. Yin, J.; Lv, H.; Zhang, F.; Tian, Z.; Cui, X. Study on advanced botnet based on publicly available resources. In Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham,
Switzerland, 2018; Volume 11149, pp. 57–74. [CrossRef]

88. Hua, J.; Sakurai, K. A SMS-Based Mobile Botnet Using Flooding Algorithm. In Information Security Theory and Practice. Security
and Privacy of Mobile Devices in Wireless Communication; Ardagna, C.A., Zhou, J., Eds.; Springer: Berlin/Heidelberg, Germany,
2011; pp. 264–279.

89. Geng, G.; Xu, G.; Zhang, M.; Yang, Y.; Yang, G. An improved SMS based heterogeneous mobile botnet model. In Proceedings of
the 2011 IEEE International Conference on Information and Automation, ICIA 2011, Shenzhen, China, 6–8 June 2011; p. 5948987.
[CrossRef]

90. Lee, H.; Kang, T.; Lee, S.; Kim, J.; Kim, Y. Punobot: Mobile Botnet Using Push Notification Service in Android. In Information
Security Applications; Kim, Y., Lee, H., Perrig, A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 124–137.

91. Porras, P.; Saidi, H.; Yegneswaran, V. An Analysis of the iKee.B iPhone Botnet. In Security and Privacy in Mobile Information and
Communication; Springer: Berlin/Heidelberg, Germany, 2010; pp. 141–152.

92. Li, X.G.; Wang, J.F. Traffic detection of transmission of botnet threat using BP neural network. Neural Netw. World 2018,
28, 511–522. [CrossRef]

93. Nguyen, H.T.; Ngo, Q.D.; Le, V.H. A novel graph-based approach for IoT botnet detection. Int. J. Inf. Secur. 2020, 19, 567–577.
[CrossRef]

94. Pei, Z.; Gan, G. Research on p2p botnet traffic identification technology based on neural network. IOP Conf. Ser. Earth Environ.
Sci. 2020, 428, 012011. [CrossRef]

95. Taheri, S.; Salem, M.; Yuan, J.S. Leveraging image representation of network traffic data and transfer learning in botnet detection.
Big Data Cogn. Comput. 2018, 2, 37. [CrossRef]

96. Jung, W.; Zhao, H.; Sun, M.; Zhou, G. IoT botnet detection via power consumption modeling. Smart Health 2020, 15, 100103.
[CrossRef]

97. Kim, J.; Shim, M.; Hong, S.; Shin, Y.; Choi, E. Intelligent detection of iot botnets using machine learning and deep learning. Appl.
Sci. 2020, 10, 7009. [CrossRef]

98. Nogueira, A.; Salvador, P.; Blessa, F. A botnet detection system based on neural networks. In Proceedings of the 5th International
Conference on Digital Telecommunications, ICDT 2010, Athens, Greece, 13–19 June 2010; p. 5532380. [CrossRef]

99. Javed, Y.; Rajabi, N. Multi-Layer Perceptron Artificial Neural Network Based IoT Botnet Traffic Classification. Adv. Intell. Syst.
Comput. 2020, 1069, 973–984. [CrossRef]

100. Zeidanloo, H.R.; Hosseinpour, F.; Borazjani, P.N. Botnet detection based on common network behaviors by utilizing Artificial
Immune System(AIS). In Proceedings of the ICSTE 2010—2010 2nd International Conference on Software Technology and
Engineering, San Juan, PR, USA, 3–5 October 2010; Volume 1, p. 5608967. [CrossRef]

101. Sriram, S.; Vinayakumar, R.; Alazab, M.; Soman, K.P. Network flow based IoT botnet attack detection using deep learning. In
Proceedings of the IEEE Infocom 2020—IEEE Conference on Computer Communications Workshops, Infocom WKSHPS 2020,
Toronto, ON, Canada, 6–9 July 2020; p. 9162668. [CrossRef]

102. Jithu, P.; Shareena, J.; Ramdas, A.; Haripriya, A.P. Intrusion Detection System for IOT Botnet Attacks Using Deep Learning. SN
Comput. Sci. 2021, 2, 1–8. [CrossRef]

103. Alharbi, A.; Alosaimi, W.; Alyami, H.; Rauf, H.T.; Damasevicius, R. Botnet Attack Detection Using Local Global Best Bat
Algorithm for Industrial Internet of Things. Electronics 2021, 10, 1341. [CrossRef]

104. Kanehara, H.; Takahashi, T.; Murakami, Y.; Inoue, D.; Shimamura, J.; Murata, N. Real-time botnet detection using nonnegative
tucker decomposition. Proc. ACM Symp. Appl. Comput. 2019, 147772, 1337–1344. [CrossRef]

105. Bansal, A.; Mahapatra, S. A Comparative Analysis of Machine Learning Techniques for Botnet Detection. In Proceedings of the
10th International Conference on Security of Information and Networks, Jaipur, India, 13–15 October 2017; pp. 91–100. [CrossRef]

http://dx.doi.org/10.1109/MSP.2018.3111249
http://dx.doi.org/10.1016/j.comnet.2012.06.006
http://dx.doi.org/10.1109/IWCMC.2016.7577024
http://dx.doi.org/10.3390/info11110516
http://dx.doi.org/10.1109/MC.2017.62
http://dx.doi.org/10.1109/ICM48031.2019.9021715
http://dx.doi.org/10.1109/CITS.2016.7546428
http://dx.doi.org/10.1109/eCrime47957.2019.9037600
http://dx.doi.org/10.1007/978-3-030-01950-1_4
http://dx.doi.org/10.1109/ICINFA.2011.5948987
http://dx.doi.org/10.14311/NNW.2018.28.028
http://dx.doi.org/10.1007/s10207-019-00475-6
http://dx.doi.org/10.1088/1755-1315/428/1/012011
http://dx.doi.org/10.3390/bdcc2040037
http://dx.doi.org/10.1016/j.smhl.2019.100103
http://dx.doi.org/10.3390/app10197009
http://dx.doi.org/10.1109/ICDT.2010.19
http://dx.doi.org/10.1007/978-3-030-32520-6_69
http://dx.doi.org/10.1109/ICSTE.2010.5608967
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162668
http://dx.doi.org/10.1007/s42979-021-00516-9
http://dx.doi.org/10.3390/electronics10111341
http://dx.doi.org/10.1145/3297280.3297415
http://dx.doi.org/10.1145/3136825.3136874


Future Internet 2021, 13, 198 38 of 43

106. Eustis, A.G. The Mirai Botnet and the Importance of IoT Device Security. In Proceedings of the 16th International Conference on
Information Technology-New Generations (ITNG 2019), Las Vegas, NV, USA, 1–3 April 2019; Latifi, S., Ed.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 85–89.

107. Ribeiro, G.H.; De Faria Paiva, E.R.; Miani, R.S. A comparison of stream mining algorithms on botnet detection. In Proceedings
of the 15th International Conference on Availability, Reliability and Security, Dublin, Ireland, 25–28 August 2020; pp. 1–10.
[CrossRef]

108. Chu, Z.; Han, Y.; Zhao, K. Botnet Vulnerability Intelligence Clustering Classification Mining and Countermeasure Algorithm
Based on Machine Learning. IEEE Access 2019, 7, 8935236. [CrossRef]

109. Tuan, T.A.; Long, H.V.; Son, L.H.; Kumar, R.; Priyadarshini, I.; Son, N.T.K. Performance evaluation of Botnet DDoS attack
detection using machine learning. Evol. Intell. 2020, 13, 283–294. [CrossRef]

110. Indre, I.; Lemnaru, C. Detection and prevention system against cyber attacks and botnet malware for information systems and
Internet of Things. In Proceedings of the 2016 IEEE 12th International Conference on Intelligent Computer Communication and
Processing, ICCP 2016, Cluj-Napoca, Romania, 8–10 September 2016; p. 7737142. [CrossRef]

111. Park, Y.; Kengalahalli, N.V.; Chang, S.Y. Distributed Security Network Functions against Botnet Attacks in Software-defined
Networks. In Proceedings of the 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks,
NFV-SDN 2018, Verona, Italy, 27–29 November 2018; p. 8725657. [CrossRef]

112. Lu, W.; Tavallaee, M.; Ghorbani, A.A. Automatic Discovery of Botnet Communities on Large-Scale Communication Networks.
In Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS ’09,
Auckland, New Zealand, 9–12 July 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 1–10. [CrossRef]

113. Goyal, M.; Sahoo, I.; Geethakumari, G. HTTP Botnet Detection in IOT Devices using Network Traffic Analysis. In Proceedings of
the 2019 International Conference on Recent Advances in Energy-Efficient Computing and Communication, ICRAECC 2019,
Nagercoil, India, 7–20 March 2019; p. 8995160. [CrossRef]

114. Heydari, B.; Yajam, H.; Akhaee, M.A.; Salehkalaibar, S. Utilizing Features of Aggregated Flows to Identify Botnet Network
Traffic. In Proceedings of the 2017 14th International ISC (Iranian Society of Cryptology) Conference on Information Security and
Cryptology, ISCISC 2017, Shiraz, Iran, 6–7 September 2017; p. 8488370. [CrossRef]

115. Haddadi, F.; Morgan, J.; Filho, E.G.; Zincir-Heywood, A.N. Botnet behaviour analysis using IP flows: With http filters using
classifiers. In Proceedings of the 2014 IEEE 28th International Conference on Advanced Information Networking and Applications
Workshops, IEEE Waina 2014, Victoria, BC, Canada, 13–16 May 2014; p. 6844605. [CrossRef]

116. Yong, W.; Tefera, S.H.; Beshah, Y.K. Understanding botnet: From mathematical modelling to integrated detection and mitiga-
tion framework. In Proceedings of the 13th ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/distributed Computing, SNPD 2012, Kyoto, Japan, 8–10 August 2012; p. 6299259. [CrossRef]

117. AsSadhan, B.; Bashaiwth, A.; Al-Muhtadi, J.; Alshebeili, S. Analysis of P2P, IRC and HTTP traffic for botnets detection. Peer-to-Peer
Netw. Appl. 2018, 11, 848–861. [CrossRef]

118. Zand, A.; Vigna, G.; Yan, X.; Kruegel, C. Extracting probable command and control signatures for detecting botnets. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March; pp. 1657–1662.
[CrossRef]

119. Khattak, S.; Ahmed, Z.; Syed, A.A.; Khayam, S.A. BotFlex: A community-driven tool for botnet detection. J. Netw. Comput. Appl.
2015, 58, 144–154. [CrossRef]

120. Richer, T.J. Entropy-based detection of botnet command and control. In Proceedings of the Australasian Computer Science Week
Multiconference, Geelong, Australia, 31 January–3 February 2017; p. a75. [CrossRef]

121. AsSadhan, B.; Moura, J.M. An efficient method to detect periodic behavior in botnet traffic by analyzing control plane traffic. J.
Adv. Res. 2014, 5, 435–448. [CrossRef]

122. Lagraa, S.; François, J.; Lahmadi, A.; Miner, M.; Hammerschmidt, C.; State, R. BotGM: Unsupervised graph mining to detect
botnets in traffic flows. In Proceedings of the 2017 1st Cyber Security in Networking Conference, CSNET 2017, Rio de Janeiro,
Brazil, 18–20 October 2017; pp. 1–8. [CrossRef]

123. Sousa, R.; Rodrigues, N.; Salvador, P.; Nogueira, A. Analyzing the Behavior of Top Spam Botnets. In Proceedings of the 2012
IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 6540–6544. [CrossRef]

124. Kozik, R.; Choraś, M. Pattern Extraction Algorithm for NetFlow-Based Botnet Activities Detection. Secur. Commun. Netw. 2017,
2017, 6047053. [CrossRef]

125. Chen, R.; Niu, W.; Zhang, X.; Zhuo, Z.; Lv, F. An Effective Conversation-Based Botnet Detection Method. Math. Probl. Eng. 2017,
2017, 4934082. [CrossRef]

126. Pandey, A.; Thaseen, S.; Aswani Kumar, C.; Li, G. Identification of botnet attacks using hybrid machine learning models. Adv.
Intell. Syst. Comput. 2021, 1179, 249–257. [CrossRef]

127. Kirubavathi, G.; Anitha, R. Botnet detection via mining of traffic flow characteristics. Comput. Electr. Eng. 2016, 50, 91–101.
[CrossRef]

128. Li, S.H.; Kao, Y.C.; Zhang, Z.C.; Chuang, Y.P.; Yen, D.C. A network behavior-based botnet detection mechanism using PSO and
K-means. ACM Trans. Manag. Inf. Syst. 2015, 6, 3. [CrossRef]

129. Su, S.C.; Chen, Y.R.; Tsai, S.C.; Lin, Y.B. Detecting P2P Botnet in Software Defined Networks. Secur. Commun. Netw. 2018,
2018, 4723862. [CrossRef]

http://dx.doi.org/10.1145/3407023.3407053
http://dx.doi.org/10.1109/ACCESS.2019.2960398
http://dx.doi.org/10.1007/s12065-019-00310-w
http://dx.doi.org/10.1109/ICCP.2016.7737142
http://dx.doi.org/10.1109/NFV-SDN.2018.8725657
http://dx.doi.org/10.1145/1533057.1533062
http://dx.doi.org/10.1109/ICRAECC43874.2019.8995160
http://dx.doi.org/10.1109/ISCISC.2017.8488370
http://dx.doi.org/10.1109/WAINA.2014.19
http://dx.doi.org/10.1109/SNPD.2012.78
http://dx.doi.org/10.1007/s12083-017-0586-0
http://dx.doi.org/10.1145/2554850.2554896
http://dx.doi.org/10.1016/j.jnca.2015.10.002
http://dx.doi.org/10.1145/3014812.3014889
http://dx.doi.org/10.1016/j.jare.2013.11.005
http://dx.doi.org/10.1109/CSNET.2017.8241990
http://dx.doi.org/10.1109/ICC.2012.6364709
http://dx.doi.org/10.1155/2017/6047053
http://dx.doi.org/10.1155/2017/4934082
http://dx.doi.org/10.1007/978-3-030-49336-3_25
http://dx.doi.org/10.1016/j.compeleceng.2016.01.012
http://dx.doi.org/10.1145/2676869
http://dx.doi.org/10.1155/2018/4723862


Future Internet 2021, 13, 198 39 of 43

130. Vishwakarma, R.; Jain, A.K. A Honeypot with Machine Learning based Detection Framework for defending IoT based Botnet
DDoS Attacks. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 23–25 April 2019; pp. 1019–1024. [CrossRef]

131. Al-Hakbani, M.M.; Dahshan, M.H. Avoiding honeypot detection in peer-to-peer botnets. In Proceedings of the ICETECH
2015—2015 IEEE International Conference on Engineering and Technology, Coimbatore, India, 20 March 2015; p. 7275017.
[CrossRef]

132. Dwyer, O.P.; Marnerides, A.K.; Giotsas, V.; Mursch, T. Profiling iot-based botnet traffic using DNS. In Proceedings of the 2019
IEEE Global Communications Conference, Globecom 2019, Waikoloa, HI, USA, 9–13 December 2019; p. 9014300. [CrossRef]

133. Wang, K.; Huang, C.Y.; Tsai, L.Y.; Lin, Y.D. Behavior-based botnet detection in parallel. Secur. Commun. Netw. 2014, 7, 1849–1859.
[CrossRef]

134. Bahsi, H.; Nomm, S.; La Torre, F.B. Dimensionality Reduction for Machine Learning Based IoT Botnet Detection. In Proceedings
of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November
2018; pp. 1857–1862. [CrossRef]

135. Beigi, E.B.; Jazi, H.H.; Stakhanova, N.; Ghorbani, A.A. Towards effective feature selection in machine learning-based botnet
detection approaches. In Proceedings of the 2014 IEEE Conference on Communications and Network Security, CNS 2014, San
Francisco, CA, USA, 29–31 October 2014; p. 6997492. [CrossRef]

136. Lysenko, S.; Savenko, O.; Bobrovnikova, K.; Kryshchuk, A. Self-adaptive system for the corporate area network resilience in the
presence of botnet cyberattacks. Commun. Comput. Inf. Sci. 2018, 860, 385–401. [CrossRef]

137. Hung, C.L.; Wang, H.H. Parallel botnet detection system by using GPU. In Proceedings of the 2014 IEEE/ACIS 13th International
Conference on Computer and Information Science, ICIS 2014, Taiyuan, China, 4–6 June 2014; p. 6912109. [CrossRef]

138. Blaise, A.; Bouet, M.; Conan, V.; Secci, S. Botnet Fingerprinting: A Frequency Distributions Scheme for Lightweight Bot Detection.
IEEE Trans. Netw. Serv. Manag. 2020, 17, 9097931. [CrossRef]

139. Lin, S.C.; Chen, P.S.; Chang, C.C. A novel method of mining network flow to detect P2P botnets. Peer-to-Peer Netw. Appl. 2014,
7, 645–654. [CrossRef]

140. Lee, Y.C.; Tseng, C.M.; Liu, T.J. A HTTP botnet detection system based on ranking mechanism. In Proceedings of the 2017 12th
International Conference on Digital Information Management, ICDIM 2017, Fukuoka, Japan, 12–14 September2017; pp. 115–120.
[CrossRef]

141. Mai, L.; Noh, D.K. Cluster Ensemble with Link-Based Approach for Botnet Detection. J. Netw. Syst. Manag. 2018, 26, 616–639.
[CrossRef]

142. Lu, W.; Ghorbani, A.A. Botnets Detection Based on IRC-Community. In Proceedings of the IEEE GLOBECOM 2008—2008 IEEE
Global Telecommunications Conference, New Orleans, LA, USA, 30 November–4 December 2008; pp. 1–5. [CrossRef]

143. Hoang, X.D.; Nguyen, Q.C. Botnet detection based on machine learning techniques using DNS query data. Future Internet 2018,
10, 43. [CrossRef]

144. Wang, Z.; Qin, M.; Chen, M.; Jia, C.; Ma, Y. A learning evasive email-based P2P-Like botnet. China Commun. 2018, 15, 15–24.
[CrossRef]

145. Rezaei, A. Using Ensemble Learning Technique for Detecting Botnet on IoT. SN Comput. Sci. 2021, 2, 1–14. [CrossRef]
146. Lee, S.; Abdullah, A.; Jhanjhi, N.Z.; Kok, S.H. Honeypot Coupled Machine Learning Model for Botnet Detection and Classification

in IoT Smart Factory—An Investigation. MATEC Web Conf. 2021, 335, 04003. [CrossRef]
147. Ibrahim, W.N.H.; Anuar, S.; Selamat, A.; Krejcar, O.; Gonzalez Crespo, R.; Herrera-Viedma, E.; Fujita, H. Multilayer Framework

for Botnet Detection Using Machine Learning Algorithms. IEEE Access 2021, 9, 9359784. [CrossRef]
148. Hao, S.; Liu, D.; Baldi, S.; Yu, W. Unsupervised detection of botnet activities using frequent pattern tree mining. Complex Intell.

Syst. 2021, 1–9. [CrossRef]
149. Asadi, M. Detecting IoT botnets based on the combination of cooperative game theory with deep and machine learning

approaches. J. Ambient. Intell. Humaniz. Comput. 2021, 1–15. [CrossRef]
150. Bhatt, P.; Thakker, B. A Novel Forecastive Anomaly Based Botnet Revelation Framework for Competing Concerns in Internet of

Things. J. Appl. Secur. Res. 2021, 16, 258–278. [CrossRef]
151. Soleymani, A.; Arabgol, F. A Novel Approach for Detecting DGA-Based Botnets in DNS Queries Using Machine Learning

Techniques. J. Comput. Netw. Commun. 2021, 2021, 4767388. [CrossRef]
152. Panda, M.; Allah A. Mousa, A.; Ella Hassanien, A. Developing an Efficient Feature Engineering and Machine Learning Model for

Detecting IoT-Botnet Cyber Attacks. IEEE Access 2021, 9, 91038–91052. [CrossRef]
153. Kwon, J.; Lee, J.; Lee, H.; Perrig, A. PsyBoG: A scalable botnet detection method for large-scale DNS traffic. Comput. Netw. 2016,

97, 48–73. [CrossRef]
154. Wang, T.S.; Lin, H.T.; Cheng, W.T.; Chen, C.Y. DBod: Clustering and detecting DGA-based botnets using DNS traffic analysis.

Comput. Secur. 2017, 64, 1–15. [CrossRef]
155. Zhao, D.; Traore, I.; Sayed, B.; Lu, W.; Saad, S.; Ghorbani, A.; Garant, D. Botnet detection based on traffic behavior analysis and

flow intervals. Comput. Secur. 2013, 39, 2–16. [CrossRef]
156. Ichise, H.; Jin, Y.; Iida, K. Analysis of via-resolver DNS TXT queries and detection possibility of botnet communications. In

Proceedings of the IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, Victoria, BC, Canada,
24–26 August 2015; p. 7334837. [CrossRef]

http://dx.doi.org/10.1109/ICOEI.2019.8862720
http://dx.doi.org/10.1109/ICETECH.2015.7275017
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014300
http://dx.doi.org/10.1002/sec.898
http://dx.doi.org/10.1109/ICARCV.2018.8581205
http://dx.doi.org/10.1109/CNS.2014.6997492
http://dx.doi.org/10.1007/978-3-319-92459-5_31
http://dx.doi.org/10.1109/ICIS.2014.6912109
http://dx.doi.org/10.1109/TNSM.2020.2996502
http://dx.doi.org/10.1007/s12083-012-0195-x
http://dx.doi.org/10.1109/ICDIM.2017.8244664
http://dx.doi.org/10.1007/s10922-017-9436-x
http://dx.doi.org/10.1109/GLOCOM.2008.ECP.398
http://dx.doi.org/10.3390/fi10050043
http://dx.doi.org/10.1109/CC.2018.8300268
http://dx.doi.org/10.1007/s42979-021-00585-w
http://dx.doi.org/10.1051/matecconf/202133504003
http://dx.doi.org/10.1109/ACCESS.2021.3060778
http://dx.doi.org/10.1007/s40747-021-00281-5
http://dx.doi.org/10.1007/s12652-021-03185-x
http://dx.doi.org/10.1080/19361610.2020.1745594
http://dx.doi.org/10.1155/2021/4767388
http://dx.doi.org/10.1109/ACCESS.2021.3092054
http://dx.doi.org/10.1016/j.comnet.2015.12.008
http://dx.doi.org/10.1016/j.cose.2016.10.001
http://dx.doi.org/10.1016/j.cose.2013.04.007
http://dx.doi.org/10.1109/PACRIM.2015.7334837


Future Internet 2021, 13, 198 40 of 43

157. Jin, Y.; Ichise, H.; Iida, K. Design of Detecting Botnet Communication by Monitoring Direct Outbound DNS Queries. In
Proceedings of the 2nd IEEE International Conference on Cyber Security and Cloud Computing, Cscloud 2015—IEEE International
Symposium of Smart Cloud, IEEE SSC 2015, New York, NY, USA, 3–5 November 2015; p. 7371456. [CrossRef]

158. Nguyen, T.D.; Dung, T.C.; Nguyen, L.G. DGA botnet detection using collaborative filtering and density-based clustering. In
Proceedings of the Sixth International Symposium on Information and Communication Technology, Hue, Vietnam, 3–4 December
2015; pp. 203–209. [CrossRef]

159. Mohd Safar, N.; Abdullah, N.; Kamaludin, H.; Abd Ishak, S.; Isa, M. Characterising and detection of botnet in P2P network for
UDP protocol. Indones. J. Electr. Eng. Comput. Sci. 2020, 18, 1584–1595. [CrossRef]

160. Tsai, M.H.; Chang, K.C.; Lin, C.C.; Mao, C.H.; Lee, H.M. C&C tracer: Botnet command and control behavior tracing. In
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Anchorage, AK, USA, 9–12 October
2011; p. 6083942. [CrossRef]

161. Lysenko, S.; Bobrovnikova, K.; Savenko, O.; Kryshchuk, A. BotGRABBER: SVM-Based Self-Adaptive System for the Network
Resilience against the Botnets Cyberattacks. Commun. Comput. Inf. Sci. 2019, 1039, 127–143. [CrossRef]

162. Tong, V.; Nguyen, G. A method for detecting DGA botnet based on semantic and cluster analysis. In Proceedings of the
Seventh Symposium on Information and Communication Technology, Ho Chi Minh, Vietnam, 8–9 December 2016; pp. 272–277.
[CrossRef]

163. Kelley, T.; Furey, E. Getting Prepared for the Next Botnet Attack: Detecting Algorithmically Generated Domains in Botnet
Command and Control. In Proceedings of the 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, UK, 21–22 June
2018; pp. 1–6. [CrossRef]

164. Vishvakarma, D.K.; Bhatia, A.; Riha, Z. Detection of Algorithmically Generated Domain Names in Botnets. In Advanced
Information Networking and Applications; Barolli, L., Takizawa, M., Xhafa, F., Enokido, T., Eds.; Springer International Publishing:
Cham, Switzerland, 2020; pp. 1279–1290.

165. Truong, D.T.; Cheng, G. Detecting domain-flux botnet based on DNS traffic features in managed network. Secur. Commun. Netw.
2016, 9, 2338–2347. [CrossRef]

166. Natarajan, V.; Sheen, S.; Anitha, R. Multilevel analysis to detect covert social botnet in multimedia social networks. Comput. J.
2015, 58, 679–687. [CrossRef]

167. Alhomoud, A.; Awan, I.; Pagna Disso, J.F.; Younas, M. A next-generation approach to combating botnets. Computer 2013,
46, 6459493. [CrossRef]

168. Sharafaldin, I.; Gharib, A.; Lashkari, A.H.; Ghorbani, A.A. BotViz: A memory forensic-based botnet detection and visualization
approach. In Proceedings of the 2017 International Carnahan Conference on Security Technology (ICCST), Madrid, Spain, 23–26
October 2017; pp. 1–8. [CrossRef]

169. Virustotal.com. 2020. Available online: Virustotal.com (accessed on 18 December 2020).
170. Zago, M.; Gil Perez, M.; Martinez Perez, G. UMUDGA: A dataset for profiling algorithmically generated domain names in botnet

detection. Data Brief 2020, 30, 105400. [CrossRef]
171. k. Idriss, H. Mirai Botnet In Lebanon. In Proceedings of the 2020 8th International Symposium on Digital Forensics and Security

(ISDFS), Beirut, Lebanon, 1–2 June 2020; pp. 1–6. [CrossRef]
172. Balasubramanian, Y.; Baggam, D.S.; Venkatraman, S.; Ramaswamy, V. Quantum IDS for mitigation of DDoS attacks by mirai

botnets. Commun. Comput. Inf. Sci. 2018, 828, 488–501. [CrossRef]
173. Tzagkarakis, C.; Petroulakis, N.; Ioannidis, S. Botnet Attack Detection at the IoT Edge Based on Sparse Representation. In

Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [CrossRef]
174. Prokofiev, A.O.; Smirnova, Y.S.; Surov, V.A. A method to detect Internet of Things botnets. In Proceedings of the 2018 IEEE

Conference of Russian Young Researchers in Electrical and Electronic Engineering, Elconrus 2018, Moscow, Russia; St. Petersburg,
Russia, 29 January–1 February 2018; pp. 105–108. [CrossRef]

175. Giachoudis, N.; Damiris, G.P.; Theodoridis, G.; Spathoulas, G. Collaborative agent-based detection of DDoS IoT botnets. In
Proceedings of the 15th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2019, Santorini
Island, Greece, 29–31 May 2019; p. 8804480. [CrossRef]

176. Spathoulas, G.; Giachoudis, N.; Damiris, G.P.; Theodoridis, G. Collaborative blockchain-based detection of distributed denial of
service attacks based on internet of things botnets. Future Internet 2019, 11, 226. [CrossRef]

177. Cui, P.; Guin, U. Countering Botnet of Things using Blockchain-Based Authenticity Framework. In Proceedings of the 2019 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL, USA, 15–17 July 2019; p. 8839425. [CrossRef]

178. Zareh, A.; Shahriari, H.R. BotcoinTrap: Detection of Bitcoin Miner Botnet Using Host Based Approach. In Proceedings of the
2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology, ISCISC 2018,
Tehran, Iran, 28–29 August 2018; p. 8546867. [CrossRef]

179. Zhuang, D.; Chang, J.M. PeerHunter: Detecting peer-to-peer botnets through community behavior analysis. In Proceedings of
the 2017 IEEE Conference on Dependable and Secure Computing, Taipei, Taiwan, 7–10 August 2017; p. 8073832. [CrossRef]

180. Priyanka; Dave, M. PeerFox: Detecting parasite P2P botnets in their waiting stage. In Proceedings of the 2015 International
Conference on Signal Processing, Computing and Control, ISPCC 2015, Solan, India, 24–26 September 2015; p. 7375054. [CrossRef]

181. Obeidat, A.A.; Al-Kofahi, M.M.; Bawaneh, M.J.; Hanandeh, E.S. A novel botnet detection system for P2P networks. J. Comput.
Sci. 2017, 13, 329–336. [CrossRef]

http://dx.doi.org/10.1109/CSCloud.2015.53
http://dx.doi.org/10.1145/2833258.2833310
http://dx.doi.org/10.11591/ijeecs.v18.i3.pp1584-1595
http://dx.doi.org/10.1109/ICSMC.2011.6083942
http://dx.doi.org/10.1007/978-3-030-21952-9_10
http://dx.doi.org/10.1145/3011077.3011112
http://dx.doi.org/10.1109/ISSC.2018.8585344
http://dx.doi.org/10.1002/sec.1495
http://dx.doi.org/10.1093/comjnl/bxu063
http://dx.doi.org/10.1109/MC.2013.67
http://dx.doi.org/10.1109/CCST.2017.8167804
Virustotal.com
http://dx.doi.org/10.1016/j.dib.2020.105400
http://dx.doi.org/10.1109/ISDFS49300.2020.9116456.
http://dx.doi.org/10.1007/978-981-10-8660-1_37
http://dx.doi.org/10.1109/GIOTS.2019.8766388
http://dx.doi.org/10.1109/EIConRus.2018.8317041
http://dx.doi.org/10.1109/DCOSS.2019.00055
http://dx.doi.org/10.3390/fi11110226
http://dx.doi.org/10.1109/ISVLSI.2019.00112
http://dx.doi.org/10.1109/ISCISC.2018.8546867
http://dx.doi.org/10.1109/DESEC.2017.8073832
http://dx.doi.org/10.1109/ISPCC.2015.7375054.
http://dx.doi.org/10.3844/jcssp.2017.329.336


Future Internet 2021, 13, 198 41 of 43

182. Wang, P.; Wang, F.; Lin, F.; Cao, Z. Identifying Peer-to-Peer Botnets Through Periodicity Behavior Analysis. In Proceedings
of the 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE
International Conference on Big Data Science and Engineering, Trustcom/bigdatase 2018, New York, NY, USA, 1–3 August
2018; p. 8455919. [CrossRef]

183. Barthakur, P.; Dahal, M.; Ghose, M.K. A framework for P2P botnet detection using SVM. In Proceedings of the 2012 International
Conference on Cyber-enabled Distributed Computing and Knowledge Discovery, Cyberc 2012, Sanya, China, 10–12 October
2012; p. 6384967. [CrossRef]

184. Chen, Z.; Yu, X.; Zhang, C.; Zhang, J.; Lin, C.; Song, B.; Gao, J.; Hu, X.; Yang, W.; Yan, E. Fast botnet detection from streaming logs
using online lanczos method. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA,
USA, 11–14 December 2017; pp. 1408–1417. [CrossRef]

185. Ersson, J.; Moradian, E. Botnet Detection with Event-Driven Analysis. Procedia Comput. Sci. 2013, 22, 662–671. [CrossRef]
186. Almutairi, S.; Mahfoudh, S.; Almutairi, S.; Alowibdi, J.S. Hybrid Botnet Detection Based on Host and Network Analysis. J.

Comput. Netw. Commun. 2020, 2020, 9024726. [CrossRef]
187. Lu, W.; Miller, M.; Xue, L. Detecting Command and Control Channel of Botnets in Cloud. In Intelligent, Secure, and Dependable

Systems in Distributed and Cloud Environments; Traore, I., Woungang, I., Awad, A., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 55–62.

188. Zeng, Y.; Yan, G.; Eidenbenz, S.; Shin, K.G. Measuring the effectiveness of infrastructure-level detection of large-scale botnets.
In Proceedings of the 2011 IEEE Nineteenth IEEE International Workshop on Quality of Service, San Jose, CA, USA, 6–7 June
2011; p. 5931312. [CrossRef]

189. François, J.; Wang, S.; Bronzi, W.; State, R.; Engel, T. BotCloud: Detecting botnets using MapReduce. In Proceedings of the 2011
IEEE International Workshop on Information Forensics and Security, Wifs 2011, Iguacu Falls, Brazil, 29 November–2 December
2011; p. 6123125. [CrossRef]

190. Saraubon, K.; Limthanmaphon, B. Fast Effective Botnet Spam Detection. In Proceedings of the 2009 Fourth International
Conference on Computer Sciences and Convergence Information Technology, Seoul, Korea, 24–26 November 2009; pp. 1066–1070.
[CrossRef]

191. Crespo, B.G.; Garwood, A. Fighting Botnets with Cyber-Security Analytics: Dealing with Heterogeneous Cyber-Security
Information in New Generation SIEMs. In Proceedings of the 2014 Ninth International Conference on Availability, Reliability and
Security, Fribourg, Switzerland, 8–12 September 2014; pp. 192–198. [CrossRef]

192. Derhab, A.; Bouras, A.; Muhaya, F.B.; Khan, M.K.; Xiang, Y. Spam Trapping System: Novel security framework to fight against
spam botnets. In Proceedings of the 2014 21st International Conference on Telecommunications (ICT), Lisbon, Portugal, 4–7 May
2014; pp. 467–471. [CrossRef]

193. Tang, Y.; Cheng, G.; Yu, J.T.; Zhang, B. Catching modern botnets using active integrated evidential reasoning. J. Internet Serv.
Appl. 2013, 4, 1–10. [CrossRef]

194. Yusof, M.; Saudi, M.M.; Ridzuan, F. A New Android Botnet Classification for GPS Exploitation Based on Permission and API
Calls. Lect. Notes Electr. Eng. 2018, 465, 27–37. [CrossRef]

195. Mongkolluksamee, S.; Visoottiviseth, V.; Fukuda, K. Robust Peer to Peer Mobile Botnet Detection by Using Communication
Patterns. In Proceedings of the AINTEC ’18, AINTEC Asian Internet Engineering Conference, Bangkok, Thailand, 12–14
November 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 38–45. [CrossRef]

196. Karim, A.; Salleh, R.; Khan, K. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify
Mobile Botnet Applications. PLoS ONE 2016, 11, e0150077. [CrossRef] [PubMed]

197. Tidke, S.K.; Karde, P.; Thakare, V. Identification of Botnet hidden behind smartphone applications. In Proceedings of the 2017
International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August
2017; pp. 420–424. [CrossRef]

198. Garip, M.T.; Reiher, P.; Gerla, M. RIoT: A Rapid Exploit Delivery Mechanism against IoT Devices Using Vehicular Botnets.
In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September
2019; pp. 1–6. [CrossRef]

199. Baltazar, J.; Costoya, J.; Flores, R. Steep rise in Koobface variants is boosted by social networking. Comput. Fraud. Secur. 2009,
2009, 19–20. [CrossRef]

200. Cybersecurity & Infrastructure Security Agency—“Alert (TA14-150A)—GameOver Zeus P2P Malware”. Available online:
https://us-cert.cisa.gov/ncas/alerts/TA14-150A (accessed on 4 August 2016).

201. Hatzivasilis, G.; Soultatos, O.; Chatziadam, P.; Fysarakis, K.; Askoxylakis, I.; Ioannidis, S.; Alaxandris, G.; Katos, V.; Spanoudakis,
G. WARDOG: Awareness detection watchbog for Botnet infection on the host device. IEEE Trans. Sustain. Comput. 2019, 6, 4–18.
[CrossRef]

202. Ahmed, Z.; Danish, S.M.; Qureshi, H.K.; Lestas, M. Protecting IoTs from mirai botnet attacks using blockchains. In Proceedings
of the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), Limassol, Cyprus, 11–13 September 2019; p. 8858484. [CrossRef]

203. Yin, D.; Zhang, L.; Yang, K. A DDoS Attack Detection and Mitigation with Software-Defined Internet of Things Framework.
IEEE Access 2018, 6, 24694–24705. [CrossRef]

http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00051
http://dx.doi.org/10.1109/CyberC.2012.40
http://dx.doi.org/10.1109/BigData.2017.8258074
http://dx.doi.org/10.1016/j.procs.2013.09.147
http://dx.doi.org/10.1155/2020/9024726
http://dx.doi.org/10.1109/IWQOS.2011.5931312
http://dx.doi.org/10.1109/WIFS.2011.6123125
http://dx.doi.org/10.1109/ICCIT.2009.128
http://dx.doi.org/10.1109/ARES.2014.33
http://dx.doi.org/10.1109/ICT.2014.6845160
http://dx.doi.org/10.1186/1869-0238-4-20
http://dx.doi.org/10.1007/978-3-319-69814-4_3
http://dx.doi.org/10.1145/3289166.3289172
http://dx.doi.org/10.1371/journal.pone.0150077
http://www.ncbi.nlm.nih.gov/pubmed/26978523
http://dx.doi.org/10.1109/ICECDS.2017.8390201
http://dx.doi.org/10.1109/VTCFall.2019.8891228
http://dx.doi.org/10.1016/S1361-3723(09)70089-2
https://us-cert.cisa.gov/ncas/alerts/TA14-150A
http://dx.doi.org/10.1109/TSUSC.2019.2914917
http://dx.doi.org/10.1109/CAMAD.2019.8858484
http://dx.doi.org/10.1109/ACCESS.2018.2831284


Future Internet 2021, 13, 198 42 of 43

204. Sadeghian, A.; Zamani, M. Detecting and preventing DDoS attacks in botnets by the help of self triggered black holes. In
Proceedings of the 2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE), Bali, Indonesia, 10–12
February 2014; pp. 38–42. [CrossRef]

205. De Donno, M.; Donaire Felipe, J.M.; Dragoni, N. ANTIBIOTIC 2.0: A Fog-based Anti-Malware for Internet of Things. In
Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), Stockholm, Sweden, 17–19
June 2019; pp. 11–20. [CrossRef]

206. Wang, P.; Wu, L.; Cunningham, R.; Zou, C.C. Honeypot Detection in Advanced Botnet Attacks. Int. J. Inf. Comput. Secur. 2010,
4, 30–51. [CrossRef]

207. Jerkins, J.A. Motivating a market or regulatory solution to IoT insecurity with the Mirai botnet code. In Proceedings of the 2017
IEEE 7th Annual Computing and Communication Workshop and Conference, CCWC 2017, Las Vegas, NV, USA, 9–11 January
2017; p. 7868464. [CrossRef]

208. Oliveri, A.; Lauria, F. Sagishi: An undercover software agent for infiltrating IoT botnets. Netw. Secur. 2019, 2019, 9–14. [CrossRef]
209. Tetarave, S.K.; Tripathy, S.; Kalaimannan, E.; John, C.; Srivastava, A. A Routing Table Poisoning Model for Peer-to-Peer (P2P)

Botnets. IEEE Access 2019, 7, 67983–67995. [CrossRef]
210. Davis, C.R.; Fernandez, J.M.; Neville, S. Optimising sybil attacks against P2P-based botnets. In Proceedings of the 2009 4th

International Conference on Malicious and Unwanted Software, Malware 2009, Montreal, QC, Canada, 13–14 October 2009;
p. 5403016. [CrossRef]

211. Kelly, C.; Pitropakis, N.; McKeown, S.; Lambrinoudakis, C. Testing and Hardening IoT Devices against the Mirai Botnet. In
Proceedings of the 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin,
Ireland, 15–19 June 2020; p. 9138887. [CrossRef]

212. Hallman, R.; Bryan, J.; Palavicini, G.; Divita, J.; Romero-Mariona, J. IoDDoS—The internet of distributed denial of sevice attacks
A case study of the mirai malware and IoT-Based botnets. In Proceedings of the IOTBDS 2017—2nd International Conference on
Internet of Things, Big Data and Security, Porto, Portugal, 24–26 April 2017; pp. 47–58. [CrossRef]

213. Huan, L.; Yu, Y.; Lv, L.; Li, S.; Xia, C. A botnet-oriented collaborative defense scheme description language. In Proceedings
of the 9th International Conference on Computational Intelligence and Security, CIS 2013, Emeishan, China, 14–15 December
2013; p. 6746511. [CrossRef]

214. Bradbury, D. Fighting botnets with sinkholes. Netw. Secur. 2012, 2012, 12–15. [CrossRef]
215. Kanich, C.; Kreibich, C.; Levchenko, K.; Enright, B.; Voelker, G.M.; Paxson, V.; Savage, S. Spamalytics: An empirical analysis of

spam marketing conversion. Commun. ACM 2009, 52, 99–107. [CrossRef]
216. Watkins, L.; Kawka, C.; Corbett, C.; Robinson, W.H. Fighting banking botnets by exploiting inherent command and control

vulnerabilities. In Proceedings of the 9th IEEE International Conference on Malicious and Unwanted Software, Malcon 2014,
Fajardo, PR, USA, 28–30 October 2014; p. 6999411. [CrossRef]

217. Stone-Gross, B.; Cova, M.; Gilbert, B.; Kemmerer, R.; Kruegel, C.; Vigna, G. Analysis of a botnet takeover. IEEE Secur. Priv. 2011,
9, 5560627. [CrossRef]

218. The Spamhaus Project. Available online: https://www.spamhaus.org/bcl/ (accessed on 23 June 2020).
219. IBM X-Force exchange. Available online: https://exchange.xforce.ibmcloud.com/collection/Botnet-Command-and-Control-

Servers-7ac6c4578facafa0de50b72e7bf8f8c4 (accessed on 23 June 2020).
220. Li, J.; Xue, Z. Distributed Threat Intelligence Sharing System: A New Sight of P2P Botnet Detection. In Proceedings of the 2nd

International Conference on Computer Applications and Information Security, ICCAIS 2019, Riyadh, Saudi Arabia, 1–3 May
2019; p. 8769511. [CrossRef]

221. Dog, S.E.; Tweed, A.; Rouse, L.; Chu, B.; Qi, D.; Hu, Y.; Yang, J.; Al-Shaer, E. Strategic cyber threat intelligence sharing: A case
study of IDS logs. In Proceedings of the 2016 25th International Conference on Computer Communications and Networks,
ICCCN 2016, Waikoloa, HI, USA, 1–4 August 2016; p. 7568578. [CrossRef]

222. Eslahi, M.; Rostami, M.R.; Hashim, H.; Tahir, N.M.; Naseri, M.V. A data collection approach for Mobile Botnet analysis and
detection. In Proceedings of the 2014 IEEE Symposium on Wireless Technology and Applications (ISWTA), Kota Kinabalu,
Malaysia, 28 September–1 October 2014; pp. 199–204. [CrossRef]

223. Garcia, S.; Erquiaga, M.J.; Shirokova, A.; Garcia Garino, C. Geost Botnet. Operational Security Failures of a New Android Banking
Threat. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), Stockholm,
Sweden, 17–19 June 2019; pp. 406–409. [CrossRef]

224. Vidal-González, S.; García-Rodríguez, I.; Aláiz-Moretón, H.; Benavides-Cuéllar, C.; Benítez-Andrades, J.A.; García-Ordás, M.T.;
Novais, P. Analyzing IoT-Based Botnet Malware Activity with Distributed Low Interaction Honeypots. In Trends and Innovations
in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Orovic, I., Moreira, F., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 329–338.

225. Safaei Pour, M.; Mangino, A.; Friday, K.; Rathbun, M.; Bou-Harb, E.; Iqbal, F.; Samtani, S.; Crichigno, J.; Ghani, N. On data-driven
curation, learning, and analysis for inferring evolving internet-of-Things (IoT) botnets in the wild. Comput. Secur. 2020, 91, 101707.
[CrossRef]

226. Borgaonkar, R. An analysis of the asprox botnet. In Proceedings of the 4th International Conference on Emerging Security
Information, Systems and Technologies, Securware 2010, Venice, Italy, 18–25 July 2010; p. 5633693. [CrossRef]

http://dx.doi.org/10.1109/APCASE.2014.6924468
http://dx.doi.org/10.1109/EuroSPW.2019.00008
http://dx.doi.org/10.1504/IJICS.2010.031858
http://dx.doi.org/10.1109/CCWC.2017.7868464
http://dx.doi.org/10.1016/S1353-4858(19)30009-1
http://dx.doi.org/10.1109/ACCESS.2019.2906875
http://dx.doi.org/10.1109/MALWARE.2009.5403016
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138887
http://dx.doi.org/10.5220/0006246600470058
http://dx.doi.org/10.1109/CIS.2013.143
http://dx.doi.org/10.1016/S1353-4858(12)70073-9
http://dx.doi.org/10.1145/1562164.1562190
http://dx.doi.org/10.1109/MALWARE.2014.6999411
http://dx.doi.org/10.1109/MSP.2010.144
https://www.spamhaus.org/bcl/
https://exchange.xforce.ibmcloud.com/collection/Botnet-Command-and-Control-Servers-7ac6c4578facafa0de50b72e7bf8f8c4
https://exchange.xforce.ibmcloud.com/collection/Botnet-Command-and-Control-Servers-7ac6c4578facafa0de50b72e7bf8f8c4
http://dx.doi.org/10.1109/CAIS.2019.8769511
http://dx.doi.org/10.1109/ICCCN.2016.7568578
http://dx.doi.org/10.1109/ISWTA.2014.6981187
http://dx.doi.org/10.1109/EuroSPW.2019.00051
http://dx.doi.org/10.1016/j.cose.2019.101707
http://dx.doi.org/10.1109/SECURWARE.2010.32


Future Internet 2021, 13, 198 43 of 43

227. Li, X.; Duan, H.; Liu, W.; Wu, J. The growing model of Botnets. In Proceedings of the 2010 International Conference on Green
Circuits and Systems, Shanghai, China, 21–23 June 2010; p. 5543027. [CrossRef]

228. Patsakis, C.; Casino, F.; Katos, V. Encrypted and covert DNS queries for botnets: Challenges and countermeasures. Comput. Secur.
2020, 88, 101614. [CrossRef]

229. Stone-Gross, B.; Cova, M.; Cavallaro, L.; Gilbert, B.; Szydlowski, M.; Kemmerer, R.; Kruegel, C.; Vigna, G. Your Botnet is My
Botnet: Analysis of a Botnet Takeover. In Proceedings of the 16th ACM Conference on Computer and Communications Security,
CCS 09, Chicago, IL, USA, 9–13 November 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 635–647.
[CrossRef]

230. Barford, P.; Yegneswaran, V. An Inside Look at Botnets. In Malware Detection; Christodorescu, M., Jha, S., Maughan, D., Song, D.,
Wang, C., Eds.; Springer: Boston, MA, USA, 2007; pp. 171–191.

231. Shahrestani, A.; Feily, M.; Masood, M.; Muniandy, B. Visualization of invariant bot behavior for effective botnet traffic detection.
In Proceedings of the 2012 International Symposium on Telecommunication Technologies, ISTT 2012, Kuala Lumpur, Malaysia,
26–28 November 2012; p. 6481606. [CrossRef]

232. Rowe, B.; Wood, D.; Reeves, D. How the public views strategies designed to reduce the threat of botnets. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6101, pp. 337–351. [CrossRef]

233. Khattak, S.; Ramay, N.R.; Khan, K.R.; Syed, A.A.; Khayam, S.A. A Taxonomy of Botnet Behavior, Detection, and Defense. IEEE
Commun. Surv. Tutor. 2014, 16, 898–924. [CrossRef]

234. Peterson, A. Yes, Terrorists Could Have Hacked Dick Cheneys Heart. Available online: https://www.washingtonpost.com/
news/the-switch/wp/2013/10/21/yes-terrorists-could-have-hacked-dick-cheneys-heart/ (accessed on 14 December 2020).

http://dx.doi.org/10.1109/ICGCS.2010.5543027
http://dx.doi.org/10.1016/j.cose.2019.101614
http://dx.doi.org/10.1145/1653662.1653738
http://dx.doi.org/10.1109/ISTT.2012.6481606
http://dx.doi.org/10.1007/978-3-642-13869-0_25
http://dx.doi.org/10.1109/SURV.2013.091213.00134
https://www.washingtonpost.com/news/the-switch/wp/2013/10/21/yes-terrorists-could-have-hacked-dick-cheneys-heart/
https://www.washingtonpost.com/news/the-switch/wp/2013/10/21/yes-terrorists-could-have-hacked-dick-cheneys-heart/

	Introduction
	Contribution and Research Questions
	Outline

	Related Work
	Methodology
	Search Strategy
	Exclusion/Inclusion Process
	Initial Exclusion
	Title and Abstract Review
	Introduction/Conclusions Review
	Full Text Review
	Backwards Snowball Sampling


	Incentives
	Malevolent Botnets
	Designated Targets
	Reasons for Attack

	Benevolent Botnets

	Evolution of Botnets
	Disguises and Subterfuge
	P2P-Based Botnets and Their Intricacies
	Extension and Browser Based Botnets
	Smartphone-Based Botnets
	Vehicular Botnets and Its Effect on Modern Traffic
	Blockchain-Based Botnets
	IoT-Based Botnets
	Atypical New Botnet Variants

	Detection and Mitigation
	Detection Mechanisms—Techniques
	Neural Network Detection Mechanisms
	Machine Learning and Network-Based Detection Mechanisms
	Domain Name System (DNS) Based Detection
	Detection Mechanisms—Pervasive Computing Paradigms
	IoT and P2P Botnets
	Mobile Botnets
	Vehicle Networks
	Social Network Botnets

	Mitigation Mechanisms
	Best Practices for End-Users and Organisations
	Network-Level Blocking and Packet Analysis
	Honeypots and Botnet Isolation
	Attacking P2P Botnets
	Mitigation against IoT Attacks and Botnets
	Community Driven Tools against Botnets
	Botnet Mitigation with Potential Ethical Issues


	Current Trends and Challenges
	The Continued Spread of Botnets within Pervasive Computing (VANETs, IoT and Mobile)
	Increasing Complexity of Botnets
	Social Botnets
	Machine Learning and Neural Networks for Botnet Detection
	Proactive Botnet Mitigation
	Cloud-Based Botnets

	Conclusions
	References

