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Abstract: The spread of crypto-currencies globally has led to blockchain technology receiving greater
attention in recent times. This paper focuses more broadly on the uses of ledger databases as a
traditional database manager. Ledger databases will be examined within the parameters of two
categories. The first of these are Centralized Ledger Databases (CLD)-based Centralised Ledger
Technology (CLT), of which LedgerDB will be discussed. The second of these are Permissioned
Blockchain Technology-based Decentralised Ledger Technology (DLT) where Hyperledger Fabric,
FalconDB, BlockchainDB, ChainifyDB, BigchainDB, and Blockchain Relational Database will be
examined. The strengths and weaknesses of the reviewed technologies will be discussed, alongside a
comparison of the mentioned technologies.
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1. Introduction

In recent years, we have been witness to the rise of multiple new ledger technologies.
Since Satosi Nakamoto wrote the Bitcoin white paper [1] in 2009, many different systems
that endeavour to provide decentralization and trustless collaboration have been developed
based on blockchain technology. Of late, a great amount of research and academia has been
focused on the further development and reformation of the basis of blockchain in an attempt
to solve the issues that continue to arise [2–4]. However, blockchain is still very much
in its infancy; new technologies appear seemingly daily, and yet, countless unanswered
questions and unsolved performance issues still exist. Thus, the attention that ledger
databases has received in both global marketplaces and in academia provides excellent
opportunities for future development. Ledger technology, which utilises blockchain data
structure and decentralised structure, is one of the best possible options in regards to
security against malicious behaviour and privacy management; thus, it is already being
used in, for example, global healthcare sectors [5–9], the finance field [10–14], and IOT
networks [15–20]. Thus, the need for new improvements is constantly growing, which are
as diverse as the fields in which ledger technology is used.

Blockchain is an append-only ledger technology that endeavours to be decentralised.
From their genesis, blockchain-based systems were easily accessible and permissionless
and have remained such. Thus, connecting to the network and accessing public data
was and is attainable for all. However, the emergence of private enterprises utilising
blockchain technologies gave rise to new needs and requirements. The creation of a private
network that maintained the ideological basis of blockchain technology, one in which only
the creators and maintainers of a network have access to it (referred to as permissioned
blockchain), fulfilled one of the greatest requirements of private entities.

Blockchain technologies are decentralised, as they are based on Decentralised Ledger
Technologies (DLT), which have lower performance and transaction throughput compared
to traditionally distributed databases or the later discussed centralised approach to ledger
technology. By default, blockchain-based networks are safer in regards to malicious
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behaviour targeting the system than traditionally distributed databases. DLT’s weaknesses,
when compared to traditionally distributed databases, led to the need for a centralised
approach that is able to compete with the performance of traditionally distributed databases.
As a result, private enterprises were driven to venture towards a centralised approach.
This approach is based on Centralised Ledger Technologies (CLT), which uses blockchain
data structure to store data as mentioned in blockchain technology. This is referred to as a
Centralised Ledger Database (CLD) [21]. The primary differences between blockchain and
CLD are the maintenance of the system by a trusted third party and the lack of a need for a
consensus mechanism. When examining secure and tamper-proof databases, it is critical to
discuss the technologies within CLD and permissioned blockchain-based databases. This
paper classifies CLD and permissioned blockchain-based databases as ledger databases.
From a corporate perspective, this has the opportunity to be an ideal technology, as it
provides trustless collaboration between enterprises.

First, there will be a short summary of the basis of ledger technology and blockchain
and an introduction to the corresponding definitions and concepts, then a discussion of
the relationship between blockchain and distributed databases. Following this, a variety
of ledger databases will be briefly examined with the greatest focus being on transac-
tion processing as this provides the backbone of a system. Furthermore, both types of
ledger databases will be examined, with consideration regarding the type of database
used, transaction processing flow, and the use of the smart contract. These are the only
shared characteristics that can be compared between centralised and decentralised ledger
databases. The replication model and consensus mechanism will only be discussed regard-
ing decentralised ledger databases, centralised ledger databases that either do not allow
access to such information or source code, or operations that occur on a higher level as a
result of using cloud service, and all corresponding nodes being located in the same cloud
hosted by a single service provider. In contrast, the majority of decentralised databases
are open-source projects. The replication model is important regarding the examination
of decentralised ledger databases, as it can define the mode of use of the ledger. Later
discussed, permissioned blockchain-based databases in which the replication model is
storage-based, where transaction processing is dependant on the existing blockchain on
which the given databases are based. The architecture of these databases is comprised
of different functionality layers. Finally, the strengths and weaknesses of the discussed
technologies will be compared and contrasted.

2. Basic Concepts

Blockchain has become something of a catchall in recent times, leading to many
misconceptions and misunderstandings. Its unanimous association with crypto-currency
disregards the fact that blockchain is most widely used in financial sectors. The most
appropriate definition of blockchain is that of a Decentralised Ledger Technology (DLT),
which uses peer-to-peer connections between nodes. As has been previously mentioned,
the primary aim, and one of the most important characteristics, of this technology is the
creation of a decentralised system, which can support the creation of a trustless system.
In this technology, sensitive data are organised into a block, which then form chains. The
basis of blockchain and its transaction processing is the consensus mechanism, which
provides a transaction order between nodes. The new block, which is to be added to
the chain, is determined by the consensus mechanism. In addition to the structure of
the technology, there is an opportunity to examine and deconstruct blockchain networks
into two types in regards to the accessibility of nodes. Blockchain can be permissioned
or permissionless [22,23], determined by the regulations regarding the joining of nodes
into the network. Permissionless blockchains can be joined by any nodes and are public,
whereas participation in permissioned blockchains are defined by given maintainers,
usually private enterprises, and the blockchains are, therefore, private. As a result of
networks being permissioned, Sybil attacks are not an issue. It is true for both these types
that they provide a secure and tamper-resistant network in which malicious behaviours
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are quickly detected. Data are stored in the ledger, allowing for easy proof and validation.
The very first block is referred to as the ‘genesis block’.

These key characteristics are also applicable to CLD, wherein the system is maintained
by a trusted third party. Thus, with this approach the degree of centralisation is increased.
Due to this increase, a consensus mechanism is not necessary or typical, in contrast with
the decentralised structure. Often, these trusted third parties are enormous tech companies
that provide Blockchain as a Service (BaaS) [24,25]. This service allows smaller enterprises
to integrate blockchain functions effortlessly into their systems. When the two types of
blockchain are examined from a security perspective, permissionless blockchain proves
to be more secure as a result of its architecture, which requires no identity assumption,
as opposed to permissioned blockchain, where identity assumption is necessitated due
to its public nature. Nonetheless, CLD proves to be more secure than even permissioned
blockchain as a result of the trusted third party.

The higher security of permissioned blockchain is noticeable even when comparing
the differing types of consensus mechanisms that can be used in the two blockchains.
Permissionless blockchains generally use probabilistic consensus mechanisms to reach
agreement in the nodes regarding new blocks. Thus, they guarantee consistency in the
ledger. However, in the use of probabilistic consensus mechanisms, there is a possibility
that certain nodes have different states of the ledger—referred to as a ledger fork. In these
cases, the transaction order is not globally agreed and defined. This possibility, a ledger
fork, in a permissioned blockchain would cause inappropriate and uncertain results from
an enterprise’s perspective, as single enterprises would be using different states of the
ledger in their blockchain network. As a result, permissioned blockchains generally use
deterministic consensus mechanisms, which always have a globally agreed ledger state.
Within blockchain-based databases globally agreed ledger states are an important criteria;
thus, permissioned blockchains are most often considered when discussing blockchain-
based databases generally.

Smart contracts are a useful feature of blockchain technology; however, they are not
necessary, nor are they implemented in every blockchain. Smart contracts are an executable
code on blockchain that result in changes in the state of the blockchain. They work as a
deterministic program. There are options when it comes to the programming language; for
example, Solidity or Java can be used. Smart contracts can be controlled using predefined
rules regarding the allowed operations and the state of the database.

Distributed Database vs. Blockcahin

Many research papers [26–29] examine the similarities and differences between blockchain
and distributed databases. These will be unpacked in this section, considering the ways
in which these two technologies with shared similarities in their fundamentals also differ
in many aspects. As previously mentioned, blockchain is most often used when there is
no trust between nodes, whilst distributed databases are implemented in performance,
rather than security, oriented cases. Distributed databases offer better performance as they
have higher transaction throughput and lower latency. Blockchain’s higher latency is a
result of its use of consensus mechanisms, which provide strong consistency, as well as
the decentralised structure that is fundamental to blockchain. This structure provides new
opportunities for applications despite the decreased performance. An important difference
between the two technologies is the deletion and modification of the data; in blockchain,
this is impossible as the ledger is immutable. However, in distributed databases, this
feature can be enabled, although it is not often put into practice. CAP theorem’s [30] basic
principles, as introduced 20 years ago, can be used to group distributed databases. CAP
comprises of consistency, availability, and partition tolerance; however, it states that all
three features cannot be achieved simultaneously. In actual use, partition tolerance is
crucial as the system needs to work with arbitrary network failures. Thus, the compromise
is between consistency and availability. In the same way that CAP applies to distributed
databases, so was DCS theorem [31] proposed to define blockchain technology’s property-
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set. DCS consists of decentralisation, consistency, and scalability. Similarly to CAP, only two
system properties are available at once of the three. However, in permissioned blockchain,
total decentralisation cannot be achieved due to its enterprise-associated characteristics;
thus, in these cases, consistency and scalability must be best exploited.

3. Centralised Ledger Databases
3.1. LedgerDB

According to the creators of LedgerDB [21], many applications that are built on per-
missioned blockchains stumble into performance issues, resulting in low throughput, high
latency, and significant storage overhead. Thus, if a decentralised structure is not necessary,
it is possible to shift towards a centralised system, as current trends in the industry lean
towards a single service provider supplying the total nodes of an application. As a result,
the CLD solves the mentioned issues through its inherent architectural characteristics.
LedgerDB, in an effort to meet customer needs, concentrates on the achievement of high
write performance, whilst maintaining acceptable read and write verification performance.
A new possibility presents itself for LedgerDB on Alibaba Cloud, which is a centralised
database with tamper-evidence and non-repudiation features similar to blockchain and
provides strong auditability. The majority of ledger databases tend to assume Ledger
Service Provider (LSP) trust; however, LedgerDB takes up multi-granularity verification
and non-repudiation protocols, thus foregoing the trust assumption. Therefore, it opposes
user and LSP malicious behaviour.

There are three key node types in LedgerDB: ledger master, ledger proxy, and ledger
server. As a ledger master manages the corresponding cluster-level events and all the
corresponding cluster data, it is at the heart of LedgerDB. The ledger servers and ledger
proxies issue resolution is seamless as a result of their statelessness. Clients’ requests
are preprocessed and forwarded to the corresponding ledger server by a ledger proxy.
The preprocessed client requests are completely processed by a ledger server, which then
communicates with the underlying storage layer. The storage layer, which stores data, can
take a variety of forms, for example, key-value stores, file systems, and so on. The storage
layer, following Raft protocol, is implemented in the shared abstraction, which makes the
replication of data possible within various zones and regions. There is a possibility to
delete from the database through API without breaking the verification or audit process.
Therefore, the requirements for storage can be reduced.

LedgerDB requires a third-party timestamp authority (TSA) to be trusted. This ensures
the maintenance of the above-mentioned threat model. The TSA attaches a true and valid
timestamp to a given piece of sent data. A new, special journal type which contains a ledger
snapshot and a timestamp, called a TSA journal, is approved by the TSA. The use of a
TSA is of assistance in proving the existence of a piece of data before a given point in time.
This is a two-way pack protocol, wherein a ledger digest is first signed by the TSA, then
it will appear as a TSA journal on the ledger. As a result, the vulnerability time window
is reduced.

3.1.1. Verification

LedgerDB, through its verify app, allows for the possibility of verification and authen-
tication of returned journals from journal proofs. In LedgerDB, proofs are tamper resistant,
as they are signed by a component. There are two options for verification, server side
or client side. Verification can be sped up through the use of trusted anchors. A trusted
anchor is a ledger position where the verification of the digest has been successful.

3.1.2. Transaction Processing

The state of the ledger can be modified through transactions, which result in journal
entries that will be added to the ledger. A block is made up of multiple journal entries.
Instead of the usual order-then-execute approach, LedgerDB uses a new execute–commit-
index transaction model, as is depicted in Figure 1. This model makes the most of the
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centralised structure and connects the execution and validation phases. There is no consen-
sus mechanism implemented, as a single service provider manages the network.

Figure 1. Execute–commit-index transaction processing model.

The use of permissionless or permissioned blockchain verification models for data
management, such as smart contract or UTXO, continue to give rise to issues regarding
performance. For example, a recursive search is necessary for the UTXO verification model
to locate the appropriate data. As a result, LedgerDB uses clues, which are user-specified
labels (keys) that realise business logic. Clues can be ordered for given assets with a unique
ID. Therefore, as opposed to key-value models, a clue indicates every state of an asset is
connected through only one clue index.

Execute Phase: the transaction sent from the client is verified and checked for neces-
sary permissions for the operations. If checks are successful, the transaction is stored in the
storage layer, decreasing communication and storage costs. After execution is completed
and transactions have been executed, successfully or unsuccessfully, they are sent to an
appropriate ledger server.

Commit Phase: following the sending of transactions by a ledger proxy to an appro-
priate ledger server, the journals of the previous phase are collected and are then processed
in a group. These collected executed transactions are ordered in this phase in a global order.
The transactions are forwarded to the storage system, where they are stored. The success
of a transaction is determined in the commit phase, and only successful transactions are
stored. A client is issued a receipt regarding their transactions, regardless of the transac-
tion’s success. Thus, clients receive updates in the form of these receipts regarding the
status of their transactions.

Index Phase: the index phase is important due to its retrieve and verification mecha-
nisms. The necessary indexes for data stored in the commit phase are created. There are
three types of indexes in LedgerDB: clue index, bAMT accumulator, and block information.
The block information is not a digest of a single block, rather it is a summary of the entire
ledger. Thus, all ledger information is easily globally verifiable as they were all created at a
given time using this summary. After indexes are built at the end of the index phase, the
receipt is sent back to the client.

4. Permissioned Blockchain Based Databases
4.1. Blockchain Relational Database

The main idea behind Blockchain Relational Database (BRD) [32] is similar to Hyper-
ledger Fabric [33], but this system is implemented at the low level, as BRD is a part of
PostgreSQL. As a result, a huge dependency on PostgreSQL developed. Thus, BRD works
as a relational database. Four thousand lines of C code are supplemented in PostgreSQL.
Despite this, it has one of the most developed approaches to transaction management in the
blockchain-based database world. Researchers’ experiments show it has one of the highest
transaction throughput. Note that smart contracts in this system are stored procedures
in PostgreSQL. Database nodes execute transactions independently of one another and
connect with decentralised consensus to commit the order for transactions, as the consensus
mechanism determines the order. There are two techniques to process transactions: the
more straightforward consists of lower performance as ordering takes place first, while
in the other, executing happens first and ordering occurs parallel. This system has three
particular types of nodes:
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• client: An administrator is responsible for clients’ access to the network. Clients’
digital certificates are stored in database peers. Clients can receive the transaction
status through a notification channel.

• database peer node: The blockchain’s crux is the nodes’ storage of all important data.
Every database note maintains their ledger and executes smart contracts. Validation
and the addition of new blocks happen through these nodes.

• ordering service: The ordering service is made up of the consensus mechanism or
orderer nodes. If the ordering service is ordered nodes, differing ordered nodes must
be owned by different organisations. The ordering service is pluggable and agnostic.

4.1.1. Serializable Snapshot Isolation (SSI)

Serializable Snapshot Isolation (SSI) achieves serializability using a modified Snapshot
Isolation (SI) [34] technique. A Multi-Version Serialization [35] History Graph is used to
detect SI anomalies. Every transaction is represented as a node in the graph. An edge
signifies a transaction to another transaction, if the first one is preceded in the order of
execution. Three types of dependencies can create these edges:

• rw-dependency
• ww-dependency
• wr-dependency

A cycle in the graph presents an anomaly; thus, the execution does not correspond to
any serial order. Anomalies are automatically detected and resolved by tracking rw and wr
dependencies, which abort during commit. These are helped by the maintenance of two
lists per transaction.

SSI Based on Block Height: In order to permit transaction execution to happen in
parallel with ordering based on consensus, a new variant of SSI based on block height is
devised. By default, SSI cannot guarantee the same committed state of executed transac-
tions on all database nodes. It is used only to execute and order in parallel. To guarantee
transaction execution of the same committed data on all database nodes, each row of a table
contains a creator and deleter block number. These represent row creation and deletion
by the appropriate block number. All submitted transactions include the block height and
number on which it should be executed.

As previously mentioned, it is used by only one of the approaches, but implementation
of the order-then-execute approach incorporates this modification of SSI for provenance
queries. To guarantee the appropriate serializability, analogous transactions that result in
phantom reads and stale data reads will be aborted.

SSI variant—block-aware abort during commit: To ensure consistency between
nodes, we need to ensure that the same set of transactions are aborted on all nodes. This
technique uses an abort rules table with flags from supposed SSI for which transaction
must be aborted. A phantom read or stale read problem can occur as a result of concur-
rent transactions that commit during or after current-block. This devised SSI tracks these
problematic transactions in the commit phase.

4.1.2. Transaction Processing

Two approaches are identified to achieve a blockchain-based relational database be-
tween untrusted nodes. The first step of the first technique, order-then-execute, is the
ordering of all transactions by a consensus service, which are then executed by database
peer nodes simultaneously. The second technique has a different approach; first, database
peer nodes, without knowledge of ordering, execute transactions. During execution, order-
ing is determined by an ordering service. The second technique has better performance
compared to the first; however, the tradeoff is a greater requirement of implementations
and modifications on the relational database.

Order then Execute: submitted client transactions in the order-then-execute are re-
quired to be firstly ordered by an ordering service, followed by the execution and commit-
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ment on the database peer node and, finally, being recorded in the checkpoint phase. This
model can be seen in Figure 2.

Figure 2. Order-then-execute transaction processing model.

Order Phase: Clients send transactions directly to any one of a number of ordering
service nodes. On an intermittent timeout (for example, every one second), ordering service
nodes attempt to agree on a consensus to create a new block of sent transactions from
clients. Following the construction of a block, all nodes receive the block from the ordering
service by broadcast.

Execute Phase: Following the order phase, every database node must verify that
the current block is in sequence and was sent by the ordering service. Every transaction
from the received block is appointed a thread. The PL/SQL procedures are executed
separately on each thread with the received arguments corresponding with the transaction.
Using the ‘abort during commit’, the SSI variant ensures the same committed state on all
database nodes. The next block will only be processed if the current block of transactions is
committed.

Commit Phase: The commit phase begins after the execution of all transactions. These
transactions can be committed or aborted. The order in which transactions appear in the
block is the same as the order in which they are committed. This is to ensure that the
commit order aligns on all database nodes. As in the execute phase, ‘abort during commit’
SSI variant is used to ensure execution of transactions on the same committed state.

Checkpoint Phase: Following the processing of all transactions in a block, to ensure
that the execution and commitment on all non-faulty nodes was successful, these nodes
calculate the hash of the write set. This hash represents all changes made to the database
by the block. This is submitted as proof for the ordering service that all prior phases were
successful. This submitted proof will be the same if there were no faulty nodes that sent
proof. It is not necessary for all blocks to include a record of a checkpoint.

Execute and Order in Parallel: Having better performance than the aforementioned,
as the ordering by the ordering nodes and execution by the database nodes happens
simultaneously, the execute and order phases occur parallel. Following this are the commit
and checkpoint phases. This model can be seen in Figure 3.

Figure 3. Execute and order in parallel transaction processing model.

Execute Phase: Clients send transactions in the same way as has been detailed prior.
However, here, the database node that receives this request, sends it to the other nodes
and as well as to the ordering service to be ordered in the background. Every transaction
received by a database node is designated a thread. This thread is used to forward and
execute the transaction. Thus, execution and ordering happen in parallel. As a result of
this parallel action, a shared transaction includes the block height to guarantee the same
committed data on all database nodes.

Order Phase: The ordering service receives transactions from the database nodes,
differing from the order-then-execute approach. Therefore, the ordering can occur simul-
taneously as a result of the ordering service, while the execution of transactions in the
database nodes occurs. The remainder of the processes correspond with the order-then-
execute approach.
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Commit Phase: The transactions pertaining to a block are completely executed and
can be committed or aborted as in the previous order-then-execute approach. However,
order-then-execute approach differs in two primary aspects due to its parallel architecture:

1. If a received block has transactions that have not been executed, these transactions
begin to be executed. After all the missing transactions have been executed, they
continue to the commit phase, as in order-then-execute techniques.

2. Blind updates are not supported due to the feasibility that transactions may be
executed at differing snapshot heights. On one node, a transaction has the possibility
to not be concurrent, whilst on another, it may be concurrent. Thus, the block-aware
abort during the commit variant of SSI is used as opposed to the abort-during-commit
variant of SSI.

Checkpoint Phase: The order-then-execute approach’s checkpoint phase is identical
to this checkpoint phase.

4.2. BigchainDB

Released as an open source project in 2016, BigchainDB [36] has been steadily im-
proving since. However, lately its active programming community has diminished. It is
one of the most well-known blockchain-based databases in the research field. It attempts
to examine the questions and issues of blockchain-based databases’ transaction models
from a compelling position, as it utilises the concept of owner-controlled assets. Therefore,
BigchainDB presents the most appropriate solutions to questions of supply chains, intellec-
tual property rights management, and data governance, for example. In these instances,
where comparable assets are considered, e.g., products or people, the opportunity still
exists to use it as a key value database. In opposition, certain research [37] suggests the
implementation of smart contract features ensures more and better opportunities for supply
chains. Another study [38] has brought attention to the minimal hardware resources and
low energy consumption observable in supply chain management due to the high use of
IOT devices, which in the case of BigchainDB, does not occur. The key concept behind
BigchainDB was to approach the characteristics of databases such as low latency, high
transaction rate and high capacity. BigchainDB uses the MongoDB database. Every node
has its own local replica of the database. Tendermint [39] is used as BigchainDB’s consensus
mechanism. Due to Tendermint being Byzantine Fault Tolerance (BFT) [40], the resulting
system is also BFT.

4.2.1. Owner-Controlled Assets

The concept of owner-controlled assets, as with most blockchains, is present in
BigchainDB. Thus, a transfer of an asset is possible only by the owner/s. Transfers are not
possible even by node operators. Usually, there is only one built in asset in a blockchain
technology, such as in Bitcoin or Monero [41]; however, in BigchainDB, as many assets
as are required can be created. An asset can store arbitrary data in JSON with only one
restriction as opposed to a limit. This restriction is the transaction size, which is adjustable.
The owner-controlled asset is divisible but cannot be less than a single unit. Data and
metadata are where arbitrary JSON documents can be stored.

As previously mentioned, stored asset data cannot be changed or deleted; the only
possibility to add new information to transactions is to use the metadata field. This is a
useful tool in the TRANSFER transaction to add new information to transactions regarding
what has been changed, for example, the kilometres driven on a car, the age of the vehicle,
or any type of data. There are five types of transaction operations:

• CREATE
• TRANSFER
• VALIDATOR_ELECTION
• CHAIN_MIGRATION_ELECTION
• VOTE
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The final three operations are connected to the consensus mechanism. The CREATE
and TRANSFER operations are more important from the data creation and modification
point of view.

Create: To register any type of asset, a CREATE transaction can be used with arbitrary
data and metadata. A CREATE transaction can be used to register any kind of asset
(divisible or indivisible), along with arbitrary metadata. An asset can have any number
of owners, including the possibility of none. Later, only owners can use their assets.
The number of owners agreed on the validity of a transaction regarding a certain asset
is configurable.

Transfer: A user must fulfil the condition in order to transfer an asset. Thus, permis-
sion to transfer is only afforded to certain users. In this way, the owner/s of an asset can be
changed or metadata can be modified.

4.2.2. Transaction Processing

BigchainDB’s transaction processing is the simple order-then-commit, as can be seen
in Figure 4. It is similar to order-then-execute transaction processing. Firstly, received
transactions are ordered by Tendermint, then, based on the answer from Tendermint, the
block is committed to the local MongoDB by each server, and each server sends a response
back to their own Tendermint component.

Figure 4. Order-then-commit transaction processing model.

Order phase: Clients can communicate with BigchainDB via APIs. Gunicorn web
server, inside the server node, accepts HTTP requests. Then, as mentioned, the Tendermint
instance receives the message. Messages are then sent through the Tendermint Broadcast
API. If all validation has occurred, consensus is reached by Tendermint. All transactions in
the memory pool will be made part of the block and a block will be successfully created,
following which all servers vote on the validity of the block.

Commit phase: Consensus having been reached between all Tendermint component
of servers, BigchainDB commits the block to the local MongoDB database. BigchainDB
does not store transactions which failed validation and does not provide information about
them in APIs. In Tendermint both failed and successful transactions are included in the
current blocks.

Checkpoint phase: Each server indicates to their own Tendermint component via a
response message the successful commit of the block to their local MongoDB database.

4.3. FalconDB

FalconDB [42] nodes can be server or client, which assist clients who have limited
hardware requirements. Thus, low storage, computation, and bandwidth do not influence
the operations of the decentralised network. To achieve this goal, only the server nodes
store the whole database, while clients only store the blocks’ headers. As server nodes
store the whole database, queries and update requests are received and processed by only
the server nodes. Authentication Data Structures (ADS) are stored in the database on the
server nodes. This ensures the possibility for clients to verify requests sent to the server
nodes. A small piece of digest is generated for the current database content by the ADS,
which can be used by clients to grant authentication of the returned server results. Every
block header contains the digest generated for the given state. As clients store blockchain
headers, they can access the digest of the current database content. The design of the
authenticated database with this digest enables FalconDB to be made up of 1/3 malicious
nodes and can continue to function with all server nodes being malicious excluding one.
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FalconDB is independent from the blockchain platform. Thus, any blockchain platform
can be built in FalconDB, which can be used in an incentive model. FalconDB has the
ability to use a variety of ADS solutions, whichever satisfies the model. The FalconDB
model is built in an incentive model to ensure the appropriate honest replies to any
queries or update requests. It is not a priority for server nodes to produce or collect
profits, but an environment can be created in which costs can be shared according to use.
Furthermore, a consequence is assured in the case of a dishonest node; the consequence
being a monetary loss.

4.3.1. Authenticated Data Structure

Recognising malicious server nodes in outsourced databases is a function of Authen-
ticated Data Structures (ADS) [43], where databases are uploaded to a cloud server and
used remotely. ADS provides clients the opportunity to verify server results; thus, it can
validate query and update requests. ADS has five key functions for querying, validating,
and calculating the digest. The digest is generated for the current database content.

The correct execution of the request can be validated through running verification and
proof validation over the results and proofs received from the server node. The validation
is successful if the server executed the appropriate functions of the ADS.

Limitation of ADS: ADS has two major limitations, which are solved by blockchain
architecture:

1. outdated, malicious digest causes issues, as the user must have the most recent
valid digest.

2. an attack can cause changes to the data, for example inserting or deleting records, this
data cannot be recovered by ADS, nor can the attacker be identified.

The first limitation is solved with a BFT consensus mechanism, which synchronises
the digest among the clients easily. The second limitation is solved through immutable and
transparent property.

4.3.2. Transaction Processing

FalconDB is incentive model-based and creates the opportunity for low hardware
requirement clients to use an honest service in which servers are incentivised to provide
services and penalised for dishonest behaviour. At the core of this model are smart contracts
(e.g., on Ethereum [44]). Clients and servers can communicate with one another and make
deposits through these contracts. As a result of the incentivised model, either the client or
the server must pay a fee, or if a server is malicious, all funds in the smart contract account
will be lost. There are two key aspects to the smart contacts:

• Service fee contract: a server receives a fee from the client to process queries and
requests.

• Authentication contract: for the duration of this contract the server’s account is
temporarily frozen until it shares proof regarding the requested smart contract.

The architecture of FalconDB can be split into two layers. These are the authentication
layer and the consensus layer. To better understand the basics of FalconDB, let us take a
look at the details of a sent query through the layers.

Consensus layer: Queries are sent from a client to the server nodes via the service
fee smart contract. The server account receives a fee for the processing of the queries.
Immediately upon executing the query, the result is returned to the client. After the
agreement through the BFT consensus protocol, the new block will be committed in
the blockchain, and the new generated digest is available for all clients to update their
own digest.

Authentication layer: As has been mentioned, clients have the opportunity to use the
authentication contract to be reassured of the success of the request. However, in this case,
an extra fee must be paid to the server from the client. Thus, ADS proof is generated by the
server to validate the digest by the client.



Future Internet 2021, 13, 197 11 of 22

4.4. ChainifyDB

Chainfy’s [45] main aim is the creation of heterogenous transaction processing systems.
This means that organisations and companies do not have to execute transactions similarly;
thus, transactions are not expected to be deterministic on every server node. Therefore,
ChainifyDB can connect numerous database managers with various implementations.
Hence, the above-mentioned divergence in transaction execution is a cause of the different
interpretation of the SQL standard or the used data types. The usual transaction processing
models are not able to meet this set target. As the execute phase usually follows the
consensus phase, there must be an assumption of proper execution. A new model needs
to be created, which ChainifyDB will use. Referred to as the Whatever-Ledger Consensus
model, this will make it possible to chainify heterogeneous infrastructures, as opposed to
the usual model, which is not compatible due to its assumptions. To approach different
transaction processing through a heterogeneous blockchain network, in the whatever
phase, each organisation processes a batch of inputs however they like. Thus, there are
no assumptions in the whatever phase. Following this, the whatever phase passes to the
ledger-consensus phase, where it attempts to achieve a consensus on the transactions.
There is a necessary requirement in the use of database systems; a trigger mechanism must
be supported, as defined in SQL 99. This trigger assists in creating digest tables for every
block. The digest table assures tamperproofing and the achievement of consensus. To
achieve consensus, ChainifyDB uses a lightweight voting algorithm. This is configurable
as to how many organisations must be in agreement to achieve consensus. If the defined
number of organisations have the same hash and the single organisation likewise, the
single organisation adds a block to its own ledger.

A Chainify network is built on the servers provided and run by organisations—an
untrusted OrderingServer and a set of Kafka nodes. The blocks created by the Order-
ingService are broadcast by the Kafka nodes. Within the ChainifyDB network, a single
organisation can run on various servers. Of these, at least one server is necessary so that an
organisation can participate completely in the network. The server can be a ChainifyServer,
an AgreementServer, an ExecutionServer, or the ConsensusServer. The ChainifyServer
communicates with the AgreementServer, which collects the agreements required for
transactions. These agreements are defined by the policies, which describe the set of or-
ganisations needed to be in agreement. The ExecutionServer receives the created blocks
from the OrderingServer. The transactions in the blocks are executed in the underlying
database system. Once all the transactions have been executed, the ExecutionServer gen-
erates the corresponding hash with the aforementioned trigger. This will be used by the
ConsensusServers in communication with one another.

Transaction Processing

ChainifyDB uses Whatever-Ledger Consensus transaction processing, as depicted in
Figure 5. As has been mentioned, Chainfy is made up of various servers. The processing of
the transaction through these servers is ChainifyServer, AgreementServer, ExecutionServer,
and the ConsensusServer. Firstly, ChainifyServer receives the signed transaction from the
client. It then communicates with the AgreementServer in the already detailed manner
to collect the agreements required for the transaction. If this collection is successful, the
OrderingServer receives the transactions and creates a block. This block is forwarded to a
Kafka node. Following this, all the ExcecutionServers receive the block from this node. The
transactions contained in the received block are executed by the ExecutionServers, and the
corresponding block hash is generated for the consensus. The ConsensusServer receives
the hash corresponding to the block and can decide if a consensus has been achieved or
not. If it has been achieved, the block is added to the ledger; if not, recovery is performed.
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Figure 5. Whatever-Ledger Consensus transaction processing model.

By default, the batch of transactions is executed sequentially. However, this approach
has low performance issues, is time consuming, and is inefficient. Better performance can
be achieved through the parallel execution of transactions. This must be achieved through
a well-defined parallel model, as it naturally has consequences regarding commit-order,
increasing the likelihood of inconsistency. The actual model builds on many small batches
of transactions that can be executed safely in parallel. To achieve this, in the execute
subphase, conflicts between transactions are located.

Whatever Phase: Order Subphase: The order subphase consists of block creation; the
global ordering and grouping of a block from a batch of input transactions. In opposition
to the OCM model, a consensus round does not occur after the ordering is completed.

Execute Subphase: If a transaction in the block is valid, it is executed in the local
database. Notice that opposed to the OCE model, this execution is not deterministic in
all nodes.

Ledger Consensus Phase: In this phase, consensus can be established, as has been
mentioned, on the basis of whatever phase produced effects.

4.5. BlockchainDB

In a unique way, BlockchainDB [46] uses classical data management techniques, which
consist of data sharing. The primary notion behind BlockchainDB is the use of blockchains
as a storage layer as well as implementing a database layer on top. Thus, the native storage
layer can be an existing blockchain technology, which can be then used as decentralised
storage. With the assistance of the database layer, shared tables can be accessed. As a
result of this architectural choice, a possibility is ensured that nodes do not store all data in
the blockchain network locally. Due to the sharding, an arbitrary number of peers store
the shards. This intention is observable in the architectural features of and changes to
Ethereum 2.0 [47] and Rapidchain [48]. The use of data sharing does not negatively impact
security or the aforementioned basic principles of blockchain.

The participating nodes in a BlockchainDB network can be full peer or thin peer. Thin
peer does not store any shards; thus, it can take part in a blockchain network with limited
resources and use the shared table, while the full peers manage databases and store at least
one shard replica. Clients must trust in their own BlockchainDB peers. They can request
transactions through a limited put–get interface. This key–value interface can be used to
read and write data without knowledge of the blockchain technology. Moreover, clients
can verify the methods of database layers through the use of off-chain verification. As
has been mentioned, the architecture of BlockchainDB can be split into two layers. The
aforementioned key–value interface is used by the database layer, while the storage layer
stores all data built on blockchains.

Database Layer: The database layer within BlockchainDB is found on top of the
storage layer. It serves the clients through the aforementioned put–get interface. With the
assistance of the Shard Manager, the necessary shard of a given table is found. Depending
on the definition of the partitioning scheme and the replication scheme, the sought after
shard can be in either local storage or remotely in another peer’s storage. Alongside the
Shard Manager, a Transaction Manager assists in the maintenance of consistency levels and
defines the behaviour for concurrent transactions.
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Storage Layer: The storage layer is built on an existing blockchain technology, the
backend of BlockchainDB. Its task is the storage of all data, which interacts with the
BlockchainDB. Furthermore, it is responsible for the creation of shards and providing access
for shards through the mentioned well-defined interface. The creation of shards is based on
the key value data model. The interfaces are independent from the blockchain technology,
as BlockchainDB uses them through backend connectors. The backend connectors ensure
a stable, predefined interface for the management of data via the smart contracts. These
smart contracts need to be installed in BlockchainDB to use their basic read/write functions.
There is a possibility to process data simultaneously, across different blockchains, wherein
various blockchains are various shards. These blockchain technologies can be Ethereum or
Hyperledger Fabric, for example.

Transaction Processing

As has been presented, BlockchainDB’s transaction model and consensus mechanism
relies in part on the chosen existing blockchain. Thus, the route of a transaction from a
client to the database and the storage layer, up until the chosen blockchain receives the
given request, will be examined here in abstract.

Database Layer: Clients communicate with their trusted BlockchainDB peer through
put/get requests. These requests are received by the database layer and then are processed
by the transaction manager. The transaction manager processes transactions with the
customisable consistency level. Before a put/get request is sent to the storage layer, it
is forwarded to the ShardManager. The task of the ShardManager is to ascertain the
appropriate shard for a given key.

Storage Layer: The storage layer is already aware of the exact location of the necessary
shard on the basis of the data received from the database layer. Thus, it can interact with
the blockchain network and can perform the necessary function with the aforementioned
interface, for example, read-write-async.

Offchain verification: Clients can verify the appropriate execution of their sent re-
quests through the database layer. This offchain verification can be completed on- or offline.
With online verification, clients can be assured of the validity of their received results
through the verify operation. Offline verification does not call verify operation for single
requests; it defers verifications until multiple operations can be executed at once.

4.6. Hyperleder Fabric

Hyperledger Fabric [33] is the first blockchain system and one of the Hyperledger
projects supported by the Linux Foundation. Almost 400 organisations and companies
use and test this recently popular open-source blockchain project. It is able to execute
distributed applications within standard programming languages, for example, Java, Go,
and Node.js. As a result of its support, it is able to achieve the effect of execution on a single
globally distributed blockchain computer. Thus, Fabric is the first distributed operating
system [49] for permissioned blockchains. However, this can be used easily in even simple
applications [50].

Hyperledger Fabric is a jack of all trades. It attempts to solve an organisation’s every
problem. The basic unit is the channel, which is the separate ledger of transactions. The
rights to this ledger are granted by a group of members. From a business perspective, a
useful feature is the ability to create complex networks. Furthermore, Hyperledger Fabric
has a number of pluggable options, such as the use of an arbitrary Membership Service
Provider (MSP) and consensus mechanism.

Hyperledger Fabric contains smart contracts, which define the business logic. With
the assistance of smart contracts, the state of the ledger can be changed, as the ledger stores
the current and historical state. Typically, a chaincode is used by administrators to create
groups relating to smart contracts. These are run in isolation in Docker containers. The
GetState, PutState, and DelState are used to reach local states in the chaincode.
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The MSP assists in the identification and authentication of members of a blockchain
network. The communication between nodes takes place with the assistance of the gRPC
framework. There are three types of nodes in a Fabric network:

• clients: Clients can send transactions to peers for execution, and having executed,
send for ordering service.

• peers: All peers store the full replica of the ledger. Transactions are executed on the
peers according to the given policy of the transaction.

• Ordering Service Nodes (OSN): There is one task for the nodes—the total order of all
transactions. Thus, it has no role in the validation-and-execute phase. The application
state is unknown to the ordering service.

In regards to data storage, along with the ledger, the world state assumes a key
position, as in a given moment the world state is the state of the ledger. The world state
is the database of the ledger. The world state database can be two similar key/value
store databases. By default, it is a LevelDB; however, it supports fewer opportunities for
queries as opposed to CouchDB, which supports rich queries. If CouchDB is the world
state database, the data on the ledger is stored as JSON. The other important component of
the ledger is the transaction log. The transaction log records before and after values of the
ledger database being used by the blockchain network.

The consensus mechanism can be adjusted to best serve the requirements and needs
of the blockchain network. Since the secon version, Raft is the advised crash fault tolerant
ordering service. Set up is done more easily in Raft as opposed to the older Kafka-based
ordering service. Raft is established on a “leader and follower” model, where leader nodes
are chosen per channel, and its decision is reproduced in the other follower nodes. The
transaction model of Hyperledger Fabric is not built on the usual order-validate-execute
model, rather it uses execute-order-validate, which is very similar to the aforementioned
model used in the BRD.

Transaction Processing

The transaction model of Fabric uses an innovative execute-order-validate model,
as can be seen in Figure 6, wherein there are three separate stages that are capable of
executing on separate nodes in the blockchain network. Before transactions are ordered,
the client sends it to the endorsing peers to execute the transactions and endorse its validity.
Then, transactions are ordered by the ordering service, following which they are validated
according to the specific assumptions.

Figure 6. Execute-order-validate transaction processing model.

Execute Phase: In this model, clients send transactions to one or more endorsing
peer/s, which execute the necessary chaincodes. During this process, no communication or
synchronization occurs between the peers. After execution has been completed, otherwise
known as the simulation, every node can prepare its own endorsement, which contains
the read-write sets of the simulation. The client is required to collect as many of these
endorsements as is dictated by the chaincode. Following this, the client is able to send the
transaction to the ordering service.

Order Phase: As has been mentioned, once the client has collected the necessary
number of endorsements, the ordering service receives the transaction and determines the
order as consensus is achieved on transactions. In the interest of better performance, the
ordering service can organise and group multiple transactions on a single block.
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Validation Phase: The ordering service, having completed its task, forwards the
block to the peers, which complete the following three sequential steps to validate the
received block:

1. Endorsement policy evaluation: The peers evaluate all the transactions in the block
simultaneously to determine if each satisfies the given endorsement policy and the
peers mark the transactions as either valid or invalid. Only transactions marked as
valid will have effects in the database.

2. Read-write conflict check: The keys in the current state of the ledger are compared
with the keys in the readset to determine if they match. If they match, they continue
to be marked as valid; if not, they become invalid.

3. Ledger Update Phase: Following the completion of the previous two validity checks,
the state of the blockchain is updated with the results of the validations, and the block
is added to the local ledger.

4.7. Corresponding Studies to Hyperledger Fabric

As Hyperledger Fabric is a popular topic nowadays, and hundreds of companies are
trying to achieve better and better performance, much research has been devoted to the
development of increased performance. This research usually either creates completely
new systems whilst maintaining the basics or suggests improvements on certain aspects of
Hyperledger’s architecture. This research is also interesting in the way that they illumi-
nate the various weaknesses of Hyperledger Fabric, for example, in the throughput and
processing model of transactions.

4.7.1. Fabric++

Two simple experiments recognised a number of issues with Hyperledger Fabric’s
simultaneous transaction processing [51]. These problems limit parallel transaction pro-
cessing, the main issue being the abortion of very high numbers of transactions caused
by serialisation conflicts. If the number of successful transactions is to be increased, two
necessary modifications must be done. The ordering and abortion of transactions must
be further developed. The ordering of transactions is developed through the use of an
advanced transaction reordering mechanism whilst implementing the concept of early
abort in multiple phases is a solution to transaction abortions.

Transaction Reordering: Firstly, the conflicting transactions must be identified. It is
challenging to determine these transactions as they are executed in isolation. Thus, it is not
possible for the transactions to see one another’s later problematic and conflicting modifica-
tions. Transactions must be ordered such that the reading of the given key occurs before the
given key is written. Cycles of conflicts can occur. As a result, the suggested mechanism
for transaction reordering deletes certain transactions to form a cycle-free subset. The
transactions present in the highest number of cycles are aborted first until a cycle-free state
is reached. The remaining transactions are integrated into a serialisable schedule.

Early Transaction Abort: To reduce the number of broadcast transactions in the
network, the transactions that were removed in the mentioned reordering mechanism
can now be aborted in the order phase rather than later in the validation phase. A form
of early abort is also accessible to reduce performance issues. Eventually, this concept
of early abort places only those transactions in the block that have a likely possibility
of commit. To further reduce the number of problematic and invalid transactions in the
pipeline, abortions are also attempted in the execute phase.

To allow for simultaneous validation in the execution and validation phase within
a peer, Fabric’s concurrency control mechanism must be made more efficient. With this
further developed concurrence mechanism in the execute phase, it is possible to recognise
stale reads and abort the corresponding transaction during execution. In the order phase,
early abort is similar to the previously described execute phase. The primary aim is to have
two transactions read the same version of the key within the block.
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4.7.2. FastFabric

Architectural changes were made to the 1.2 version of Hyperledger Fabric [52], all of
which have a great impact on transaction processing, thus achieving major improvements
in performance. The research claims to have increased transactions per second from 3000
to 20,000. Two primary changes have been made to the ordering service, and a number of
improvements have been implemented in the peers.

Ordering Improvements: The first change in the ordering service is that it is able
to decide on the transactions’ order based on the transaction’s ID. Thus, the communica-
tion overhead is decreased, with which throughput capability is increased. The second
change implements the parallel validation of transactions. Therefore, instead of by default
sequentially validating transactions, transactions are able to be validated simultaneously.

Peer Improvements: In the case of peer tasks, there is much room for improvement.
One of these improvements has to do with the use of a hash table as opposed to the world
state database. Thus, servers are able to reach necessary keys faster as they are stored in
memory. This modification has another consequence: the blockchain log and the state
base are stored using a peer cluster in various hardware. The next modification frees up
resources on the peer through separating commitment and endorsement onto different
hardware, as up until now, the same peer has been completing these tasks.

The research parallelizes all things that have a positive effect on performance; thus, the
validation of the block and transaction headers will be parallelised. The last improvement
considers transaction validation by temporarily caching unmarshalled data until the end
of validation.

4.7.3. Nexledger Accelerator

Nexledger Accelerator [53] attempts to improve throughput with the assistance of
an accelerator, which is an intermediate standalone server between applications and
blockchain network/Hyperledger Fabric. Thus, no modifications occur in Hyperledger
Fabric. The primary concept of this approach is the collection of those transactions that
do not read or write the same key into smaller batches. These collected transactions,
which are uncorrelated, are compressed into a new transaction, and this is forwarded to
the blockchain network. As a result, multiple transactions can be processed in a single
consensus phase.

The Accelerator has three essential components that happen sequentially. First, the
type of received transaction is determined through a combination of its channel name,
chaincode name, and function name in the chaincode, resulting in classification. Following,
the classified transactions are grouped on the basis of their type into a new transaction.
The new transaction is then routed to the blockchain network for consensus.

5. Summary

The discussed ledger databases are summarised in Tables 1–3. Key-value and
document-oriented databases are dominant in ledger databases; however, only some
approaches provide SQL databases. The differences in performance and architecture be-
tween centralised and decentralised structures are easily observed in the tables. While CLD
does not require a consensus mechanism, decentralised permissioned blockchain-based
database necessitates the consensus mechanism to reach agreement between participants
in the network. The other observable divergence between the two structures is the imple-
mentation of smart contracts. The API interfaces in the centralised structure is generally
more easily modified and expanded then the decentralised structure, where necessary
software updates must be completed separately on every node, which are maintained by
given enterprises. As a result, smart contracts provide a better approach due to their ability
to be efficiently deployed on blockchain. Thus, similarly to an API interface update, they
are accessible by all participants. As a result of the mentioned differences, summarising
these technologies into CLDs and decentralised permissioned blockchain-based databases
categories is logical.
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Table 1. Overview of discussed Centralised Ledger Technology.

Name LedgerDB

Database type key-value
Transaction processing Execute-commit-index

Smart contract supported not supported
Transactions per second 100k

Table 2. Overview of discussed permissioned blockchain technologies.

Name Blockchain
Relational Database BigchainDB FalconDB

Database type PostgreSQL MongoDB MySQL and IntegriDB
Replication

model Txn-based Txn-based Storage-based

Transaction
processing

Execute and
order in parallel Order-then-commit Order-then-execute

Consensus
mechanism Kafka Tendermint Tendermint

Smart contract
supported

procedures
as smart contract not supported

Underlying Blockchain
required

Transactions
per second 1.5k 600 2k

Table 3. Overview of discussed permissioned blockchain technologies.

Name ChainifyDB BlockchainDB Hyperledger Fabric

Database type PostgreSQL
and MySQL Key-Value CouchDB

Replication
model Txn-based Storage-based Txn-based

Transaction
processing

Whatever
Ledger Consensus Order-then-execute Execute-order-validate

Consensus
mechanism Kafka Proof of Work Raft

Smart contract
supported not supported

Underlying Blockchain
required supported

Transactions
per second 1k <100 600

The information found in the table relates to the setup of experiments corresponding
to the given transactions per second. Some mentioned information is adjustable depending
on the specification of the given technology. The transactions per second measurement is a
median value to be able to order the performance of technologies. Transaction throughput
depends on the type and size of transaction, the use of smart contracts, the bandwidth,
and the discussed variations in architectural structure. The data found in the transactions
per second row are calculated based on numerous sources from articles [54,55] and re-
search [21,32,42,45,46]. During experiments, transactions included both read and write
operations. The configurations for each discussed ledger database’s experiment:

• BigchainDB: four nodes were in the same Azure data centre. Each node had 2nd
Generation Intel Xeon Platinum 8272CL processor and Intel Xeon Platinum 8168
processor and 4 GB RAM. Three different types of test were done with one million
and 16.0000 transactions.

• BlockchainDB: four nodes were in the same Azure data center with 16 vcpus and
32 GB memory. All experiments used an Ethereum backend. During experiments
4000 and 8000 transactions were sent. Experiments were run for online verification,
offline verification and no verification.
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• ChainifyDB: Two types of Nodes used, one being Two quad-core Intel Xeon CPU
E5-2407 running at 2:2 GHz, equipped with 48 GB of DDR3 RAM, and the other Two
hexa-core Intel Xeon CPU X5690 running at 3:47 GHz, equipped with 192 GB of DDR3
RAM. There were three organizations in experiments. Each organization owned
two nodes. Experiments were for different consensus mechanism configuration.
During the experiments, a hundred thousand transactions were sent.

• Hyperledger Fabric: five or ten nodes were in the same IBM cloud. Each node had
3.8 GHz Intel Xeon-CoffeeLake (E-2174G-Quadcore) processor and 2× 32 GB Hynix
32 GB DDR4 2Rx8 NON REG RAM. Experiments used different smart contracts as
empty contract, asset read, and asset creation, written in GO language and using
CouchDB as world state database.

• FalconDB: five server nodes were in the same cloud. Each node had 2.4 GHz Ten-core
Intel E5-2640v4 processor and 64 GB DRAM. During experiments the authentication
process was skipped. Tendermint was used as an existing blockchain.

• Blockchain Relational Database: from 4 nodes to 16 nodes were in different clouds.
Each node had with 32 vCPUs of Intel Xeon E5-2683 v3 2.00 GHz and 64 GB of memory.

• LedgerDB: measurements were in two-node cluster. Each node had Intel Xeon Plat-
inum 2.5 GHz CPU, 32 GB RAM.

5.1. Centralised Ledger Database

CLDs have a mandatory requirement of trust in a third party, which facilitates the
database service. LedgerDB provides opportunities, interfaces, the deletion or modification
of stored data in the database, as well as the immutability of the ledger. The discussed CLD
technology, LedgerDB, uses TSA peg protocol opposed to LSP. In the case of AWS Quantum
Ledger Database [56], full trust in the LSP is necessary. As a result, malicious behaviour
from the LSP or collusion between participants and the LSP is not noticeable for participants.
In contrast, TSA peg protocol eliminates the aforementioned issues but causes a new
dependency on a third party. As has been mentioned, the use of a consensus mechanism is
not required in databases with a centralised structure, e.g., LedgerDB does not use one,
in contrast with the discussed approaches with a decentralised structure. The replication
model takes place at a higher level, and it does not fall under the LedgerDB’s tasks.

LedgerDB’s performance rises above the discussed decentralised databases, but it has
one of the best performances among centralised ledger databases as well, for example, better
than ProvenDB [57] and AWS QLDB. One of the main causes of this excellent performance
is the implementation of an index phase in the transaction processing. In the last step,
LedgerDB builds different index structures to later access data faster. The user-specified
label, clue index, uses this one of pre-built index structures. Smart contract is not imple-
mented in LedgerDB, but it is barely missed, as interface changes are easier and less costly
than in an permissioned blockchain-based database due to its centralised structure.

5.2. Permissioned Blockchain-Based Databases

When it comes to the implementation of decentralised blockchain, the comparisons
diverge more so than with centralised systems. The primary reason for this is that the
maintenance of trustless decentralised networks through numerous nodes from different
enterprises provides a variety of opportunities for the use of different consensus mecha-
nisms and transaction processing models in an attempt to achieve better performance in a
secure and tamper-proof network. The majority of the discussed blockchain technologies
implement pluggable consensus mechanisms, which are naturally changeable. This is
also true regarding the mentioned databases that require the whitepaper, for example,
ChainfyDB, where there is a requirement for the support of the SQL-99 compliant.

The parallelisation of the transactions and the separation of tasks into different nodes,
such as specialised validation or execution nodes, can achieve better performance. More-
over, the use of transaction monitoring can also be a tool to improve performance, as in this
way problematic transactions which cannot be committed in a given block are detected
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earlier, and thus, the amount of data in processing and in communication are reduced.
Transactions that conflict with one another or that are not valid are labelled as problematic.
However, the use and implementation of parallelisation must be done carefully, as it can
cause issues, in most cases being the modification of transaction ordering. Hyperledger
Fabric’s mentioned expanded version, FastFabric, in which although performance was
improved through the implementation of parallelisation during transaction processing and
validation, it nevertheless experienced this common issue. In another expanded version
of Hyperledger Fabric, Nexledger Accelerator, which offers the best performance of de-
centralised networks, it also encounters numerous issues. As Nexledger Accelerator adds
a standalone server between the user and Hyperledger Fabric, it has reduced the level of
decentralisation present in Hyperledger Fabric due to more centralised processing. This
mentioned standalone server is able to modify transactions and mis-sign transactions. The
largest issues it faces as a result of the use of this server is non-standard APIs and further
development tasks, as wrappers must be written for chaincode usage. Thus, the use of
Nexledger Accelerator must be well considered as it best serves specific, and often extraor-
dinary, purposes. Nexledger Accelerator is most suited to cases in which the network is
maintained by a single enterprise, the senders of transactions are not relevant, and high
transaction throughput is crucial.

The aforementioned conflicting transactions are best managed in BRD, where SSI
is implemented to attain a highly competitive transaction throughput per block. In the
instances of the mentioned permissioned blockchain-based databases, there are a variety of
validation models, for example, in FalconDB, where it may take up to hours to validate the
commit of a transaction to the blockchain, as a result of the use of an incentive model. Thus,
the maintainers must consider whether the detection of malicious behaviour requiring
hours is appropriate for their predefined conditions regarding the security of the blockchain
network. The use of this incentive model enables lightweight nodes to also participate in
the network, which is able to validate request proofs. Similar time-consuming validation
issues are also present in BlockchainDB.

The replication models of permissioned blockchain-based databases can be categorised
as either transaction-based or storage-based. The transaction-based replication model stores
transactions in the ledger. These systems are based on three primary characteristics; each
node having its own database, global ordering being achieved through consensus, and the
storing of transactions on the ledger, which serves as a secure shared log. Hyperledger
Fabric uses a transaction-based replication model as well; however, it varies from the
aforementioned approaches, as it is a complete blockchain system. As a result of this,
BlockchainDB is also able to implement it as an underlying blockchain. In this case, the use
of databases is facilitated through smart contracts. In contrast, the storage-based replication
model replicates storage operations using a consensus mechanism. These two, FalconDB
and BlockchainDB, decentralised permissioned blockchain-based databases use established
blockchain technology, as well as implementing interfaces with a database feature set on
top of this. Naturally, the storage-based replication model has higher storage usage than
the transaction-based.

In recent times, more and more blockchain networks use sharding, which allows for
stored data to be distributed onto various nodes, but not all. However, of the mentioned
technologies, there is only one that allows this feature. BlockchainDB is unique and rather
rudimentary in the implementation of this sharding feature as it can only achieve this
through the use of already established blockchain technologies.

Much examination and comparison of the various aforementioned consensus mech-
anisms have already been discussed in previous studies [58–60]; thus, they will not be
expanded on here. The consensus mechanisms used in centralised blockchain technologies
all share similar features, generally being deterministic.

The mentioned various transaction processing models indicate that effective perfor-
mance can be best achieved through the prioritisation of the validation of and conflict
detection in transaction processing. As a result, problematic or conflicting transactions,
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which are not committed in a given block, can be abandoned as soon as possible. Further-
more, the parallelisation of validation and execution increases the transaction throughput
of the blockchain network.

6. Conclusions

In the past few years, both interest and development in the field of ledger databases,
especially blockchain, have been growing exponentially, thanks to the increased attention
from both academia and industry sectors. However, at present, less consideration is
given to permissioned blockchain in contrast with permissionless blockchain. It can be
observed in given technologies that they gain inspiration from permissionless blockchain
networks, which are occasionally questionable, as the structural differences between these
two blockchain types, specifically their either public or private nature, may not always
best serve the interests of the participants. Alongside this, the question arises for private
entities of the necessity of a blockchain-based network without any third parties. The
introduction of CLD facilitates the use of blockchain-esque technologies for smaller private
enterprises, which is a more economical option for these enterprises, as opposed to the
implementation and maintenance of a whole permissioned blockchain technology. The
discussed technologies, when compared to databases, can be considered to be less effective
and still in their infancy, as the majority does not attempt to replace traditional database
technologies, even if they were capable of doing so. Therefore, the use of permissioned
blockchain or CLD as a database manager requires much consideration [61,62] as to whether
it meets the requirements of the system specification.
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