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Abstract: In traditional production plants, current technologies do not provide sufficient context to
support information integration and interpretation. Digital transformation technologies have the
potential to support contextualization, but it is unclear how this can be achieved. The present article
presents a selection of the psychological literature in four areas relevant to contextualization: infor-
mation sampling, information integration, categorization, and causal reasoning. Characteristic biases
and limitations of human information processing are discussed. Based on this literature, we derive
functional requirements for digital transformation technologies, focusing on the cognitive activities
they should support. We then present a selection of technologies that have the potential to foster
contextualization. These technologies enable the modelling of system relations, the integration of data
from different sources, and the connection of the present situation with historical data. We illustrate
how these technologies can support contextual reasoning, and highlight challenges that should be
addressed when designing human–machine cooperation in cyber-physical production systems.

Keywords: operator assistance systems; cyber-physical production systems; contextualization; cogni-
tive psychology; digital transformation; information modelling

1. Introduction
1.1. The Challenges of Contextualization in Industrial Production Plants

In the process industries and discrete processing industries, operators’ process moni-
toring and process control activities can be characterized as problem solving [1–3]. First,
much of the available information is irrelevant. For instance, in the process industries, oper-
ators often receive about 50 alarms per hour [4] and data are typically presented as a large
number of individual values. As plant behavior is subject to the causal constraints resulting
from natural laws (e.g., chemical, thermodynamic), these values are interdependent and
not all combinations can occur [5]. Thus, it is possible to derive sufficient information from
only a few indicators. However, this requires operators to know which ones to check in
what situations, because the importance of data depends on the current production context.

A second, complementary problem is that much of the relevant information is un-
available. For instance, in many discrete processing plants, information from previous
production steps is not transmitted to operators of subsequent steps. As production steps
are highly interdependent, such information would provide the necessary context to in-
terpret current data and predict future developments. To understand what we mean by
context, consider an operator supervising a machine that packages chocolate bars. The
machine is subject to frequent faults and stoppages, which result from a complex interplay
of different factors [2]. These factors are not restricted to the operator’s packaging machine
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but also concern the broader production context: parameter settings and events in the
molding unit, the resulting characteristics of chocolate bars, characteristics of the packaging
materials, and environmental conditions. Therefore, operators should know about this
context and its causal relationship with their own machine. Usually, such knowledge
and data are not available. Hence, appropriately contextualizing the available data and
observations is a major challenge.

The challenges of contextualization can be specified in terms of the following context-
dependent cognitive activities: (1) Sampling the available information: What subset of the
huge amount of data is relevant? (2) Integrating different information elements: How should
data from different sources be combined to form a coherent picture? (3) Categorizing objects
and events: How should situations be interpreted and compared? (4) Reasoning about causes:
What are the causes and consequences of a currently observed data pattern?

These cognitive activities remain challenging in today’s plants, as contextualization is
barely supported by contemporary technologies. Although the Human Factors literature
has suggested interface concepts to address some of the challenges, e.g., [6–9], these
concepts cannot solve the contextualization problem in real plants. One reason for this
is that current technologies do not sufficiently support their implementation [10]. This is
expected to change in cyber-physical production systems (CPPS).

1.2. Digital Transformation and Human–Machine Cooperation in CPPS

A central aspect of Industry 4.0 and CPPS is the merging of the physical world with
the virtual world: CPPS are characterized by intensive connections between collaborating
computational entities and physical objects, relying on large quantities of data and using
a variety of services to access and process these data [11]. In this context, the exchange
of information plays a significant role [11,12]. For instance, planning data from different
disciplines are made available throughout the entire plant lifecycle, a close communica-
tion between different machines or devices is established, and current sensor data are
continuously analyzed and applied for control purposes. This technological innovation of
CPPS rests on a wide variety of concepts (e.g., formal semantics, information modelling
standards) and specific technologies (e.g., ontologies and Linked Data, OPC UA). For
instance, semantic networks of various planning data [13] can be used to model system
relations, and semantic communication standards for the processing of live data [14] can
be used to integrate data from different sources. As a result, the boundaries within the
classic automation pyramid are increasingly dissolved, and information systems are loosely
coupled in order to respond more flexibly to new requirements.

Such digital transformation technologies for information modelling, processing, ex-
change, and integration in CPPS have the potential to make relevant context information
available wherever it is needed in the system. On the one hand, in this context, information
can enhance system control and automatic failure detection within the system [15]. On
the other hand, it can be provided to human operators to support their context-dependent
cognitive activities, and thereby enhance human reasoning in unprecedented ways.

1.3. Aims of the Present Work

In the present article, we ask how contextualization can improve human–machine
cooperation: How can digital transformation technologies support the context-dependent
selection and integration of data from different sources, and thereby support categorization
and causal reasoning? We focus on supervisory control tasks that require operators to
monitor highly automated processes and intervene if necessary [16]. To specify how context-
dependent monitoring activities can be supported, we first provide a selection of literature
from different psychological areas. This literature overview is organized according to
four challenges that operators must face to contextualize data (i.e., information sampling,
integration, categorization, and causal reasoning). Based on this literature, we extract
requirements for technical support and provide an overview of digital transformation
technologies for information modelling, distribution, and integration. We ask how these
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technologies could address the issues identified in the psychological literature section and
discuss the challenges of their application.

On a more abstract level, we discuss how technology can address the problems de-
scribed in the psychological literature, and what cognitive requirements must be considered
to do this successfully. This focus differs from a large body of the Human Factors literature,
which argues that technological innovation creates new problems for humans. For instance,
the psychological literature on automation effects has engaged in the latter reasoning for
decades, e.g., [17–19], and recently this work has been extended to novel digital transfor-
mation technologies, e.g., [20–23]. Although this perspective has revealed many important
insights, the present article takes the opposite approach, considering technology as an
enabler rather than a problem source, and asking how it can be used in a way that benefits
human cognitive activities.

The potential of technology as an enabler of human–machine cooperation in CPPS has
been discussed in previous work on the concept of “Operator 4.0”, e.g., [24–26]. The present
article differs from this work in three ways. First, we focus on a specific aspect of human
cognition (i.e., interpreting data in context) and base our requirements for technologies
on empirical findings from the corresponding psychological literature, whereas previous
work has provided a general overview of operator assistance with issues as diverse as
collaboration, health, and physical strength. Second, we focus on information contents,
whereas previous work has often emphasized the presentation medium (e.g., virtual and
augmented reality). Based on the first two points, we focus on technologies for information
modelling and the integration of process data, whereas previous work has focused on
intelligent spaces that measure operator activities, states, and tacit knowledge (e.g., smart
sensors, wearable devices). Taken together, the scope of the present article is narrower and
more specific than that of previous related work.

At the same time, it is impossible to provide a comprehensive description of all
relevant research in just one article. This concerns both the psychology section and the
technology section of the article. In the psychology section, the selection of the four
research areas, the 45 component issues in these areas, and the individual studies used to
illustrate these issues only represents a fraction of the relevant literature, because the field
of cognitive psychology is immensely large. A thorough consideration of even one of the
research areas could easily fill a textbook, and each of the component issues raised in these
areas could be the topic of its own systematic review. In the technology section, we only
present relevant areas of technological development, instead of specifying how to apply
individual technologies. This will not allow the reader to extract ready-made solutions,
as the devil is in the details. However, going into the depth needed to specify solutions
would only allow us to cover one psychological issue or one technology.

Instead, we provide a broad overview of issues to consider when using digital trans-
formation technologies to design human–machine interaction. This choice was made
because cooperation between human-centered and technology-centered disciplines is more
important than ever in the context of CPPS, where more and more data are available to
operators, and technologies are increasingly capable of taking over cognitive tasks. How-
ever, engineers cannot be expected to read dozens of psychological research papers, and
vice versa, as a precondition for such cooperation. Therefore, our aim is to build bridges
between disciplines, and the broad approach of this article should serve as a starting point
for an interdisciplinary discussion about the cognitive potential of digital transformation.

2. Cognitive Challenges of Reasoning in Context

Although “contextualization” is not a psychological construct in itself, different areas
of psychology are relevant with regard to the question of how people put information in
context when trying to make sense of the world. In the following section, we specify what
this means by presenting examples of empirical studies from four areas of psychology
that investigate how people sample and use available information, how they integrate
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different information elements, how they categorize objects and events, and how they
reason about causes.

2.1. Sampling the Available Information

How do people sample from the large pool of available information and how do they
use these samples to draw conclusions about the world? For instance, will operators only
check whether chocolate bars deviate from their optimal state in case of a fault, or will they
also consider the base rates of such deviations? Which types and sources of information
will they consider in what situations? The following sections provide evidence that people
do not always generate unbiased, representative information samples, and often they are
unaware of their sampling biases. Information search is highly selective and people ignore
particular types of information. Moreover, search is modulated by characteristics of the
tasks and information sources.

2.1.1. Information Samples Are Biased

People are quite good at drawing inferences from a given sample, but bad at judging
whether their samples are representative [27]. The notion of sampling biases differs from
reasoning biases in that it stresses that bias already is present in the information sources.
Accordingly, Fiedler and Kutzner [28] (p. 380) conclude that, “in order to understand the
cognitive processes within the decision maker one first of all has to analyze the structure
and the constraints of the information input with which the decision maker is fed”. Biased
information sampling is partly responsible for commonly reported reasoning biases such as
the availability heuristic—the fact that people judge events as more common when they come
to mind easily [29]. That is, when particular events are overrepresented in the available
information, they are considered to be more likely than they actually are. Although this
is correct based on the available sample, it still leads to a distorted representation of the
actual state of the world.

Sampling biases often result from conditional sampling [28]. For instance, operators
might only check whether chocolate bars have geometrical distortions after a machine
stoppage. However, this strategy neglects the base rate of geometrical distortions, and
thus inflates their perceived impact. Sampling biases can also result from the fact that
people repeat choices that initially led to good outcomes [30]. For instance, if operators have
experienced that monitoring machine cooling allowed them to detect a critical event early,
they are more likely to sample this parameter again than if they have initially experienced
that it was not helpful. In the latter case, they might never find out that machine cooling
actually is important. Sampling biases can be counteracted by changing the presentation
of information, for instance, by making it transparent how the sample was selected [31]
or by asking people to find arguments against an anchor or standard, which mitigates the
selective accessibility of consistent information [32].

2.1.2. Selecting and Ignoring Particular Types of Information

People selectively use particular types of information while systematically ignoring
others. They often rely on salient cues or information elements even when they are in-
valid [33], and focus on the extremeness of evidence instead of on its weight or validity [34].
For instance, operators might overinterpret high temperature deviations instead of asking
how important temperature is in the current context.

When testing hypotheses, people are prone to confirmation bias [35]: They selectively
look for information that supports their hypothesis, especially when the amount of available
information is high [36]. However, some phenomena that look like confirmation bias
actually result from a positive test strategy, meaning that people preferably test cases that
have the property of interest [37]. For instance, when trying to find out whether low
temperatures cause chocolate bars to break, operators are more likely to sample situations
with low temperature or broken bars than situations with normal temperature or bars
that remained intact. This leads to unequal sample sizes for different parameters and
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outcomes, and thus can result in illusory evidence for the hypothesis [28]. Not only
is information search biased towards the preferred hypothesis but also the way people
react to hypothesis-consistent or inconsistent information, and novices, especially tend to
re-interpret information to fit their hypotheses [38].

In contrast, people often ignore information that contradicts their hypotheses or that
they were not actively searching for, and unexpected information can easily be overlooked.
Such inattentional blindness [39] also occurs when people receive automated decision support
in process control environments: they fail to cross-check information, especially when
the degree of automation is high [40]. When evaluating situations, people sometimes do
not take information about contextual constraints and possible negative consequences into
account [41,42]. This even is the case for very simple, well-known information. Finally,
people tend to focus on what they know instead of what they do not know, and this neglect
of unknown or missing information can lead to overconfidence [43].

2.1.3. Tasks and Information Sources Affect Information Search

Higher task complexity leads people to use different information sources more of-
ten, both when operationalized as the dependence of jobs on environmental factors [44]
and as the degree to which task outcomes, process, and information requirements are
uncertain [45]. In the latter study, task complexity also affected which types of informa-
tion sources people used. For simple tasks, they mostly relied on information about the
structure, properties, and requirements of the problem (e.g., problem location). For more
complex tasks, they increasingly used information about the domain (e.g., concepts or
physical laws) and the methods of how to formulate and treat a problem (e.g., pros and
cons of different strategies).

A second task characteristic that shapes information search and usage is the amount
of available information. Information overload can negatively affect information processing
and decision making (for a review, see [46]). For many people, the relation between infor-
mation quantity and information usage follows an inverted U-shape [47]. When too much
information is present, this leads people to ignore or misuse the available information [48].
Misuse can be reflected in increased error tolerance, source misattribution, incompletely
representing the message, or abstracting its meaning. In consequence, information overload
increases processing time [49] and reduces decision quality [47], especially under time
pressure [50]. It also makes people less confident in their decisions [51], and can even lead
them to refrain from making a decision altogether [52].

A third influence on information search is the accessibility of information sources [44].
Although people rate the importance of information sources according to their quality, the
actual frequency of use largely depends on accessibility [53]. However, in order to generate
testable theories and design operator support, it is important to define what accessibility
means [54]. For instance, it can mean that information has the right format, the right level
of detail, saves time, or that lots of information is available in one place. A particularly
important factor associated with accessibility is the familiarity of information sources, and
people most often select the sources they are familiar with.

2.1.4. Summary

Information samples are often biased, and people usually do not take these sampling
biases into account when making inferences. Biased samples emerge when people only
sample information in particular situations, are highly selective in the types and sources
of information they use, and miss or neglect important information. This selectivity
in sampling further increases when abundant information is present or information is
hard to access. However, people aim to acquire more information when tasks are more
complex, and technologies should support them in drawing appropriate samples from
different sources.
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2.2. Integrating Different Information Elements

How do humans combine information from different sources (e.g., previous pro-
duction step, product characteristics, environment) to generate an overall model of the
situation? This issue has mainly been studied in the context of decision making, where dif-
ferent information elements (i.e., cues) provide evidence for one of several options. In this
context, people’s information integration strategies differ with regard to whether the inte-
gration proceeds in a systematic manner and how much of the available information is used.
Moreover, information integration is influenced by task and information characteristics.

2.2.1. Strategies of Information Integration

Cues can be integrated in a formal or informal manner. Formal integration means
that cues are combined algorithmically, according to clearly specified rules. Informal
integration means that they are combined in a subjective, impressionistic way. People
usually believe they are better integrators than algorithms, because their experience allows
them to weight and combine cues more appropriately [55]. However, a meta-analysis of
136 studies revealed that, on average, algorithms are 10% more accurate [56]. The effect
size varies with factors such as the type of prediction, the setting of data collection, the
type of formula, and the amount of information [57]. Under two opposing conditions,
people perform significantly worse than algorithms [58]: in low-validity environments
that are noisy or overly complex, so that humans cannot detect weak regularities (e.g.,
large samples of process data), and in high-validity environments that are almost entirely
predictable, and thus can easily be analyzed by algorithms, while humans experience
occasional attention lapses (e.g., automatic control of product flow). However, it should
be noted that algorithms can only generate accurate outcomes when fed with appropriate
data. This is an important constraint in production processes where some process states
cannot be measured but only perceived by human operators [2].

Another distinction concerns rule- versus exemplar-based integration. The former means
that cues are integrated based on cue–criterion relations (e.g., how strongly temperature
and machine speed predict broken chocolate), and the latter means that the criterion values
of exemplars with similar cue patterns are retrieved from memory (e.g., how often chocolate
broke in the past when temperature and machine speed were similar). When people have
sufficient knowledge about the cues, they prefer rule-based integration, whereas, when
such knowledge is difficult to gain, they rely on exemplar-based integration [59]. Exemplar-
based integration is also used as a backup strategy when cue abstraction (i.e., inferring the
predictive power of cues) is difficult [60]. In consequence, strategy selection depends on the
type of cue [61]: when cue abstraction is easy, with present/absent cues (e.g., geometrical
distortions of chocolate bars or not), people prefer rule-based strategies, whereas, when
cue abstraction is difficult, with alternative cues (e.g., geometrical distortions vs. soiled
conveyor belt), they use exemplar-based strategies.

When making decisions based on a set of cues, people usually do not combine all
cues weighted by their importance. Instead, they use simpler heuristics. For instance,
they eliminate options with low values on the most important cue, select the option that
performs best on most cues, or select the option that performs best on the most important
cue [62]. Such heuristics can be ecologically rational, and thus lead to good outcomes in
particular decision contexts [63–65].

2.2.2. Task and Information Characteristics Affect Integration

The selection of information integration strategies depends on task characteristics.
With higher task complexity, people are more likely to rely on heuristics [66]. However, more
information does not necessarily make decisions more difficult, and can even be processed
faster than less information when it leads to higher coherence (i.e., all information elements
fit together) and, thus, information can be integrated holistically [67]. The selection of
integration strategies also depends on the validity of easily accessible information [68]. When
easily accessible information has high predictive validity, people stop searching and choose
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the option that performs best on the respective cue (i.e., take-the-best heuristic). Instead,
when easily accessible information has low validity, they integrate all available informa-
tion. Similarly, information integration depends on presentation format: when all relevant
information is presented at once, people integrate it in a quick, holistic manner, while,
when it is presented sequentially, they use simpler strategies [69]. However, even when all
information is presented at once, strategy selection depends on the need for information
search imposed by a given presentation format [70]: with higher search demands, people
are less likely to integrate information holistically. Finally, time pressure drives people to
use simple heuristics that ignore parts of the available information [62,71].

2.2.3. Summary

Information can be integrated more or less systematically. Algorithms usually out-
perform humans, but this depends on the complexity of the environment and whether all
the relevant information is measurable. People can integrate information by relying on
rules or exemplars, and the latter is used as a backup strategy when rule-based integration
is not feasible. They often rely on heuristics, which can lead to good outcomes under
certain conditions. In contrast, people can integrate information holistically when data are
coherent, its presentation minimizes search demands, and sufficient time is available. Thus,
technologies should either take over the integration, provide data in ways that facilitate
integration, or make past exemplars (i.e., cases) available when situations are too complex
to integrate all relevant data.

2.3. Categorizing Objects and Events

Based on the information that people sample and integrate, they can categorize objects
and events. For instance, operators might categorize a conveyor belt soiled with chocolate
as either a temperature problem or a problem that reduces machine efficiency. A large body
of the literature describes how people form categories and concepts (for a recent discussion,
see [72]). It tackles issues such as whether people rely on prototypes or exemplars, or
how specific they are in their categorizations. As reviewing this literature is beyond the
scope of this article, we only focus on two complementary functions of categorization
that are relevant to dealing with context information: differentiation and generalization.
Differentiation enables people to acquire new knowledge while also retaining previous
knowledge, and decide which is needed in what contexts. Generalization enables them
to detect similarities between contexts, allowing them to go beyond the information that
is given. As the implications of these complementary functions for the process industries
have been discussed elsewhere [22], this article only focuses on two aspects: the flexibility
of categories and the role of similarity.

2.3.1. Differentiation: Context-Dependent, Flexible Categorization

To deal with a wide variety of situations, people need flexible category representa-
tions [73,74]. That is, knowledge must be interconnected, accessible from different perspec-
tives, and stored in multiple cases or analogies. People must be able to decompose and
reassemble their knowledge representations to deal with different situations, and consider
several alternative interpretations of a situation. While abstract schemas that go beyond
the specifics of a particular situation are necessary, the construction of these schemas relies
on concrete cases [73,75].

Flexibility in categorization is important for short and longer timescales. On short
time scales, people need to frequently update their knowledge about environmental con-
tingencies. First, this requires them to detect situation-specific changes in the regularity
of events [76,77]. For instance, when particular settings of parameter values lead to bro-
ken chocolate during the production of milk chocolate but not dark chocolate, operators
must detect these changed contingencies and differentiate the two situations accordingly.
Second, they must detect changes in the relations between interacting parameters such as
temperature, moisture, and machine speed. To do so, they need to predict metric outcomes
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and adapt these predictions to the current context. For instance, they need to realize
when in some process state, temperature loses its predictive power while machine speed
becomes more important. People are surprisingly good at this and can flexibly use different
parameters according to their current influence [78].

On longer timescales, it can be necessary to change the concepts people use to catego-
rize situations. Such conceptual change is difficult and prior knowledge can create conflict in
three ways [79]: People may have false beliefs, rely on flawed mental models, or use wrong
ontological categories. The latter is particularly hard as it requires people to fundamentally
change their understanding (e.g., heat transfer is an emergent process and not a relocation
of hot molecules). Learning information that contradicts prior knowledge is comparably
easy when only cue values change but hard when the relevance of cues changes, so that
previously irrelevant information has to be considered [80].

2.3.2. Generalization: The Role of Similarity

One function of categorization is that the acquired knowledge can be used later in
similar situations, allowing people to go beyond the given information and infer unseen
attributes [81]. However, the notion of similarity is context-dependent [82]. For instance,
grey is judged as more similar to white than black for hair, while the opposite is true for
clouds [83]. Moreover, similarity often cannot be assessed from obvious features of objects
or events but depends on the focus of attention. For instance, are children similar to jewelry?
Certainly not in terms of appearance or behavior, but perhaps when asking what things
should be saved from a burning house [84]. In this case, attention might be directed to
features such as “valuable”, “irreplaceable” and “portable”.

When judging the similarity of situations, attention is often captured by surface features
while neglecting structural features [85]: people consider situations as similar when they
share the same elements (e.g., both involve caramel chocolate) but fail to notice when
situations share the same relations between elements (e.g., in both situations the contact
between chocolate bars and the conveyor belt is impaired, but one time due to geometrical
distortions and one time due to a clogged vacuum filter). Accordingly, categorization based
on relations is more demanding [86] and domain expertise goes along with an increased
reliance on relations instead of features [87].

However, it needs to be noted that categorization also depends on features beyond
similarity. For instance, it is affected by people’s theories about the world [88]: people are
likely to judge a person who jumps into a pool fully clothed as drunk. Although there
probably is no a priori association between the category and the specific behavior, it is
in line with people’s theories about the effects of being drunk. Other features that affect
categorization are people’s goals or the distribution of information within a category (for a
review, see [82]).

2.3.3. Summary

People categorize objects and events to differentiate between situations and generalize
across situations. Differentiation requires people to use flexible category representations
and update their knowledge about environmental contingencies. Conceptual change may
be needed, which is difficult, especially when previously irrelevant information becomes
relevant. To generalize across situations, people must determine what similarity means
depending on the current context and focus of attention. People are often misled by surface
similarity and ignore the relationships between objects. Therefore, technologies should
support operators in detecting and evaluating both context-specific changes, as well as
structural similarities between situations.

2.4. Reasoning about Causes

Knowledge of the causal impacts of events is essential to explain, control, and pre-
dict the behavior of a plant. It can simplify decisions as it enables people to reduce the
abundance of available information to a manageable set [89]. For instance, when people
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know which parameters could be responsible for a fault, this allows them to focus on these
relevant parameters and ignore others. To infer that events are causally related, people
use different cues, such as covariation, temporal relations, and prior knowledge. In the
following sections, we discuss how people use different cues to infer causality and how
they deal with complexity while making such causal inferences.

2.4.1. Covariation

A first indication of causality is covariation [90], meaning that one event reliably
follows another (i.e., the probability of the outcome is higher when the potential cause is
present than when it is absent). However, covariation-based causality ratings are biased,
for instance, by the magnitude of probabilities. First, people’s causality ratings increase with
the base rate or total probability of the outcome [91]. Second, people even infer causality
when the outcome in the presence of a potential cause is as likely as the same outcome
in the absence of that cause (illusory correlations) [90]. Moreover, people are prone to
inattentional blindness for negative relations [92]. Taken together, these findings imply that
causality ratings can be distorted by salient cues.

The presence of alternative potential causes can either decrease or increase causality
ratings [93]. A situation in which it decreases them is overshadowing: if event A is associated
with an outcome but always appears together with event B, the causal influence of A is
rated lower [94,95]. A situation in which an alternative cause increases causality ratings
is super-learning: if event A together with event B leads to an outcome, event C leads to
the same outcome, but the combination of B and C do not lead to that outcome, the causal
influence of A is rated higher [96]. That is, event A is assumed to be extremely powerful,
as it can counteract the negative influence of B. The perceived influence of alternative
causes also depends on the type of task: people are sensitive to the strength of alternatives
in diagnostic reasoning from effect to cause, but not in predictive reasoning from cause to
effect [97].

2.4.2. Temporal Relationships

Solely relying on covariation to infer causality is problematic [98]. One reason for this
is that covariation does not provide information on the direction of the effect. Therefore, it
is important to consider time as an indicator of causality. Causality ratings are shaped by
two temporal factors: order and contiguity. As causes precede their effects, the temporal
order of events is a powerful indicator of causality and can even dominate covariation [99].
However, temporal order can also be misleading (e.g., lightning does not cause thunder).

The second temporal factor is temporal contiguity, or the close succession of two events.
Contiguity increases causality ratings, while long delays decrease them [100]. Moreover,
causality ratings decrease with a high temporal variability of the delay between cause and
effect [101]. The influence of delays is particularly important in the process industries,
where delays and dead times are common and it can take hours or even days for an
action to have an effect [102]. In the discrete processing industry, delays also play a role.
For instance, in chocolate production, the effects of changes to the molding unit are only
observable in the chocolate bars after about one hour. However, delays do not impair
causality ratings when people expect longer delays, as they are aware of the underlying causal
mechanisms and thus can understand why it takes time to generate an effect [103]. Such
temporal assumptions determine how people choose statistical indicators for causality,
select potential causes, and aggregate events [104]. This emphasizes the important role of
prior knowledge in causal reasoning.

2.4.3. Prior Knowledge

Causal reasoning is guided by prior assumptions, expectations, and knowledge [105–107].
People have assumptions about the causal roles of events, which affects how they perceive
contingencies [108]. Based on these mental models, they can even estimate the relationship
between events they have never experienced together [109,110]. This is important, as
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people typically only observe fragments of causal networks. To integrate these fragments,
they have to select appropriate integration rules. For quantities that depend on amount
(e.g., temperature of chocolate resulting from different sources) people add the impact
of different causal influences, whereas for quantities that depend on proportions (e.g.,
taste of chocolate resulting from the combination of ingredients), they average causal
influences [110]. Moreover, the selection of integration rules depends on domain knowledge
and context factors such as data presentation, task type, and transfer from other tasks.

When reasoning about a specific domain, thinking in terms of cause and effect is too
abstract [111]. For instance, operators need to conceptualize the relationships between
process elements as feeding, opening, sucking, allowing, or speeding. It cannot be taken
for granted that people have valid causal models, but this is a matter of experience. While
domain experts are able to reason about things in terms of causal phenomena (e.g., negative
feedback), novices are more likely to classify them by surface features [112].

2.4.4. Dealing with Complexity

Industrial plants are complex systems characterized by dynamic and partly intrans-
parent interactions between many variables. In such systems, there are several limitations
to people’s processing of causal information. For instance, people often engage in linear rea-
soning and do not take complex system features such as emergence or decentralization into
account [113]. While experts and novices do not differ considerably in their understanding
of system structures, novices have serious difficulties in understanding causal behaviors and
functions [114]. Although people typically believe that they know about the mechanisms of
complex systems, this knowledge is often imprecise, incoherent, and shallow [115]. This
illusion of understanding can be traced back to the fact that people think about systems in
too abstract terms [116].

2.4.5. Summary

When reasoning about causes, people use different cues such as covariation, temporal
relations, and prior knowledge. These cues are noisy indicators of causality and none of
them are completely reliable, but, in combination, they can provide compelling evidence
about the causal relations underlying the observed data [117]. However, people often
think in concepts that are too abstract, and find it difficult to understand complex system
concepts. Therefore, technologies should make the relationships between objects and events
understandable, support operators in reasoning about causes, and help select appropriate
integration rules despite disturbing factors such as time delays and interactions.

3. Requirements: What Should Technologies Do to Support Humans?

For each cognitive challenge identified in the previous section, we derived possible
ways of addressing it. These general requirements for operator support strategies do not
yet specify any technology. Altogether, we extracted 108 support strategies. In Table 1,
we present two examples for each psychological area (for a full list, see Appendix A,
Tables A1–A4). For instance, considering that people are prone to conditional sampling,
it should be made explicit when events are overrepresented in samples. This could be
done by informing operators that a particular geometry distortion of chocolate has only
been observed when a machine fault occurred, which might overestimate its impact on the
production process.

Table 1. Examples of deriving requirements for support strategies from the cognitive factors presented in Section 2.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Sampling the available information

Conditional sampling Make it explicit when events may be
overrepresented in samples

“Chocolate bars have mostly been checked for hollow
bottoms when faults have occurred, which may

overestimate the impact of this distortion”
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Table 1. Cont.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Availability heuristic Make information available in an
unbiased manner

Provide different data sources (e.g., temperature in
end cooler, buffer, and packaging machine) and data
types (e.g., temperature, soiling, and motor currents)

Integrating different information elements

Rule- versus
exemplar-based

Support cue abstraction (i.e., make
predictive power of cues explicit)

“Hollow bottoms are the strongest predictor of
skewed chocolate bars”

Relying on heuristics
Support operators in assessing the

context-dependent suitability of
heuristics

“To determine whether there was a problem with a
packing claw, it is sufficient to check whether every

eighth bar was affected”

Categorizing objects and events

Environmental
contingencies

Highlight changes in relations between
interacting parameters

“High temperature is less problematic now, because
you have reduced machine speed”

Conceptual change Provide factual information to help
operators detect and correct false beliefs

“The turning wheel is not responsible for squished
chocolate bars”

Reasoning about causes

Overshadowing and
super-learning

Make interactions between causes explicit
(e.g., additive, enhancing, suppressing)

“The effects of low temperatures in the molding unit
are cancelled out when chocolate bars remain in the

buffer for a long time”

Temporal variability Provide information about factors
affecting the variability of delays

“The delay of molding problems affecting the
packaging machine depends on the time that chocolate

bars remain in the buffer”

These general requirements or support strategies can be condensed into the following
abstract goals for operator support: technologies should facilitate the understanding of system
relations, help debias the use and interpretation of data, support the integration of different
data, direct attention to non-considered or unavailable information, and foster evaluation
and critical thinking. Based on these general support strategies and abstract goals, we
specified a number of functional requirements for technologies. This was done inductively by
clustering our 124 support strategies into requirement categories, while a support strategy
could be assigned to one or more categories. This procedure led to the following set of
functional requirements:

1. Provide models of the system and connect them with data:

• Make structural relations and rules explicit;
• Highlight constraints of the situation and equipment;
• Enable semantic zooming and switches between levels of abstraction;
• Process data in a context-dependent manner.

2. Provide and integrate data from different sources:

• Make data from different sources available;
• Pre-process and debias data to obtain a valid picture;
• Make procedures of sampling and integration transparent.

3. Process and integrate data across time:

• Provide timely information;
• Enable tracking of changes (past, current, and future data);
• Link current situation with historical data.

These functional requirements imply that technologies must be able to integrate data
from different phases of the plant lifecycle, different levels of the automation pyramid,
different parts of the plant, and different points in time. Data integration should be possible
even for brownfield plants, because many plants are quite old. The next section provides
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an overview of technological concepts and specific technologies that are able to address
these requirements.

4. Technologies to Support Contextualization

To support contextualization as summarized in the requirements above, information
modelling and formal semantics play a central role. In the following sections, we argue that
technologies are needed to build and interconnect formal models. These models form the
basis for sampling and integrating process data, as well as for connecting the current situa-
tion with historical information. Figure 1 provides an overview of the technical concepts
and technologies, their links to the functional requirements, and their interconnections.
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Before we delve into the technologies, two clarifications are due. First, the present
article does not focus on the contents of formal models. If technologies are to enable
an automated use of models, a prerequisite is that these models exist and their contents
allow operators to answer the right questions. Therefore, a first step is to understand the
details of the production process. This knowledge is often insufficient, either because it
is unavailable in principle or because its elicitation from domain experts is a major effort.
However, instead of discussing the contents or elicitation methods of formal models, we
ask how they can be worked with once they are available. Second, it is important to clarify
that most technologies presented in this article are not handled by operators. Instead, they
support programmers by enabling an automated use of plant and process knowledge that
needed to be looked up and connected manually in the past. Due to the effort associated
with that, many promising forms of operator support have not been implemented. Thus,
the technologies introduced here do affect operators, but indirectly, by ensuring that the
information they need can be provided in a cost-efficient and flexible way.

4.1. Building and Interconnecting Formal Models

If technologies are to support operators’ understanding of contextual constraints
based on the relations in a system, these relations need to be modelled. To this end, an
automated integration and use of lifecycle data is needed. This already starts during the
engineering stage of a plant. First, individual plant equipment must be described. What
technical specifications does it have? What can it do? How can it be connected to other
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equipment? In the process industries, various exchange formats for this purpose (e.g.,
DEXPI, NE150, NE159, and NE100) enable different views on a plant for the respective
engineering phase [118]. Nevertheless, some important aspects are not formally modelled
in contemporary plants (e.g., issues concerning functional requirements). Furthermore, the
concept of module type packages (MTP) was proposed for easy integration into higher-
level systems to standardize access to process variables and services of autonomous process
units [119]. For instance, a module that is capable of tempering and mixing must know
about the current state of these functions, and it must communicate this information in
a certain manner. Standardized descriptions such as MTP make it easy to integrate the
process data of modules from different vendors and provide operators with integrated and
consistent information about the module assembly. However, as the interface description
does not follow a semantic information model, capability descriptions are not part of the
MTP. This requires additional non-standardized documents in the plant design phase to
describe services and process variables.

Planning data that are based on formal descriptions such as DEXPI (see above) cannot
only describe individual components of a plant but also specify how equipment or functions
are connected. This requires descriptions on different levels of abstraction such as specific
physical connections (e.g., pipe and instrumentation diagrams) or abstract sequences of unit
operations (e.g., process flow diagrams). For the definition of single assets (e.g., pump or
motor), the concept of an asset administration shell (AAS) was introduced by the Industry
4.0 initiative. This AAS accompanies an asset in all phases of its life, from planning to
decommissioning, and keeps all digital information available. Standardized descriptions
exist, especially in the form of OPC UA Companion standards (see below) [120].

Such descriptions are not limited to individual machines but should include different
production steps within a plant. This knowledge can be used to draw conclusions. For
instance, if a buffer is located in front of the fourth of four parallel packaging machines, it
follows that problems resulting from the buffer (e.g., warm chocolate due to long storage
duration) can only affect the fourth machine but not the three previous ones. As easy as
this conclusion is for humans, it must be formalized to make it available for use in operator
support systems. This formal modelling can be realized with the help of ontologies [121].

However, modelling the physical setup only is a first step, and additional models are
needed. In the process industries, the required models are summarized in the products–
processes–resources (PPR) framework. Process models contain information about the current
and future state and behavior of the chemical process, process relations (e.g., thermody-
namic, chemical), suitable operation ranges, or safety-related issues. Product models refer
to raw materials, intermediates, waste, and end products. They encompass factors such
as the physical properties of pure substances, nonlinear interactions in mixtures, product
specifications, and risks for human health or the environment. Finally, resource models
describe the physical and functional properties of equipment and instrumentation, its
behavior, interdependencies between local control units or modules, and requirements for
performance and maintenance. The integration of these partial models is crucial to formally
describe the transformation of substances and the abilities of a plant or production line,
which is a prerequisite for operation models that are required to derive optimal process
parameters and interventions [122,123]. However, this integration is challenging as the par-
tial models stem from different trades with different perspectives (e.g., machine builders vs.
process engineers). Therefore, ontology-based collaboration environments for concurrent
process engineering have been developed to facilitate model integration [124], and different
ontology-based integration strategies have been compared [121].

How to build the models described above? A promising approach is the use of
Semantic Web Technologies [125,126]. These concepts are based on graphs (e.g., ontologies)
that describe how different elements are connected (for an example, see Figure 2). Graph-
based models can be implemented in specific technologies such as Linked Data [127]. To
address industrial requirements, the concept of Linked Data has been extended to Linked
Enterprise Data [128]. The power of graph structures such as ontologies lies in the fact
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that knowledge is interconnected and it is possible to make queries about relations (e.g.,
What features affect the transport of chocolate bars? What process steps are affected by
temperature?). Thus, operators can ask the system to return all elements that have a
particular relationship with a concept of interest. To this end, different query languages
such as SPARQL [129] are available.
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Based on an ontological modelling of relationships, knowledge can be generated by
drawing inferences from the model (e.g., if chocolate handling operations are affected by bar
geometry and the injection into the packing head is a handling operation, the faults of this
operation may result from geometrical distortions). Ontologies enable system descriptions
on different levels of abstraction (e.g., physics vs. function), can make connections between
these levels explicit, and allow operators to switch between them. In this way, ontologies
make it possible to inspect the system from different perspectives. Depending on the
technology used, they can also make it explicit when information is unavailable or explain
why an inference cannot be made. Moreover, different ontologies (e.g., machine and fault
ontologies) can be connected to draw conclusions that consider aspects from different
knowledge domains. They can also be used to contextualize process data and make them
interpretable, which will be explained in the following section.

4.2. Sampling and Integrating Process Data

When discussing data sampling and integration, two types of data have to be consid-
ered: static and dynamic data. Static data do not change during the production process (e.g.,
type of machine), whereas dynamic data change more or less rapidly (e.g., temperatures,
machine speed, presence of chocolate bars on a conveyor belt). To connect static and dy-
namic data, semantic descriptions are essential. It should be noted that these descriptions
do not suddenly enable an integration of data that has been impossible to date. In fact,
data have been integrated with older technologies for decades. However, this had to be
done manually for each machine or plant, and thus required immense programming effort.
Modern technologies can automate this process, making it feasible to flexibly provide the
information needed in a given context. Thus, it becomes realistic to use the potentials of
data integration for operator support.
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4.2.1. Sampling Dynamic Data

Dynamic data are sampled via different kinds of sensors. Often, not all the relevant
data are available, as older plants and machines lack modern sensor technology. In this case,
retrofitting is possible, e.g., [130] sensors are added that do not intervene in the process but
passively collect data and make it available. For instance, a sensor that measures rotation
angle can be attached to a chocolate packaging machine and, when combining its data with
machine models, it is possible to conclude where each machine part is located at any given
time. In this way, potential problems can be eliminated during fault diagnosis (e.g., if a fault
occurred while the injector made no contact with the chocolate bar, the injector cannot have
caused the broken chocolate). In the process industries, Namur Open Architecture (NOA)
provides access to existing field devices and makes it possible to use their information for
further applications without interfering with their primary function [131].

However, the present article is less concerned with the question of which data are
measured but focuses on the way these data are handled and made available to provide
context. This is achieved by middleware technologies [132,133]: software that serves as an
intermediary between devices and applications. A key technology for handling dynamic
data is OPC UA [134], a standard that defines how data can be described and exchanged. In
addition, the supplementary Companion Specifications create uniform information models
that can be used by different manufacturers. In this way, a common understanding of data
is guaranteed. The main advantage of OPC UA is that it relies on a semantic information
model: devices not only transmit their values but provide information about what they are
and how they work (e.g., type of sensor, range of possible values). For instance, this makes
it possible to connect a measurement of the current machine temperature with knowledge
about where the temperature sensor is located, how it functions, and how temperature
affects the process. In this way, knowledge about the plant can be used to interpret the
origin and consequences of process data. A disadvantage of OPC UA is its lack of real-time
ability. In consequence, it cannot easily handle the fast processes that are common in the
discrete processing industry (e.g., packaging 2300 pieces of candy per minute). However,
this problem can be solved by combining an OPC UA hardware implementation [135]
with time-sensitive networking (TSN) [136]. TSN is a standardized mechanism that is
implemented in devices and helps guarantee determinism in network timing, which allows
for real-time communication. When combining TSN with OPC UA [137], the advantage
of semantics is retained. Although operators usually do not need to see data at such high
rates, real-time communication can be a prerequisite for other technologies for operator
support (e.g., machine learning that requires data about each chocolate bar).

Computations based on sensor data can be performed at different locations. The
decision of where to perform computations depends on where the data are needed and
how time-critical they are. On the one extreme, data are processed on servers which are far
removed from the process. Such cloud computing can be used to integrate data of different
sub-plants, enabling conclusions about the state and performance of the entire plant
network [138,139]. Moreover, cloud-based services can perform advanced computations on
sensor data [140]. In this way, data can be stored and evaluated at the company level across
locations. These data can be pure sensor signals or data that were already pre-processed
and interpreted. Cloud-based approaches can also be used to distribute knowledge of
plants and fault diagnosis to make it accessible to specific groups. The other extreme
is decentralized architectures or edge computing [141]. That is, sensors and actuators are
equipped with local computing power and can perform simple computations themselves.
Currently, an increasing amount of smart equipment is being developed [122,142]. Such
equipment can also provide information about its own state. For instance, a valve cannot
only say whether it is open, but also indicate its degree of fouling. Edge computing can be
combined with a hardware implementation of OPC UA to retain the benefits of semantics
while using TSN to guarantee high-speed data-processing [135]. Regardless of where the
computations are performed, they can provide operators with pre-processed data that are
easier to interpret.
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4.2.2. Integrating Data from Different Sources

To support contextualization, three aspects of integrating data from different sources
should be considered: horizontal integration, vertical integration, and the integration of
static and dynamic data. Horizontal integration means that data from different devices in
different parts of the plant are brought together. For instance, the speed of a chocolate
packaging machine can be placed in relation to the temperature in a cooler of the previous
molding unit. This is a technical challenge, because machines from different vendors
cannot easily communicate with each other. Traditionally, this communication has been
realized via fieldbus technologies [143]. These standards describe how data are to be
handled. An advantage of many fieldbusses is that they can process data in real time.
However, a problem is that they have no standardized semantic capabilities. This issue
can be tackled with OPC UA, which not only provides an information model (see above)
but also a communication standard defining how data are exchanged between different
machines. In addition to the cable-based standards, there are first approaches to using the
5th generation mobile radio standard (5G) for industrial applications [144]. This wireless
technology makes it possible to distribute data throughout the plant without any need
for physical connections between different sensors and actuators. In line with retrofitting
and NOA, this enables a use of sensor data beyond what was planned when originally
designing the plant. Moreover, 5G enables real-time communication with low latencies
and high throughput.

The second aspect of integrating data is vertical integration: connecting different levels
in the automation pyramid with its field, control, supervisory, planning, and management
levels. That is, when interpreting low-level data from a specific sensor (e.g., temperature),
it might be necessary to contextualize them with high-level information about production
planning (e.g., type of chocolate, current recipe). Vertical integration is supported by the
NAMUR Open Architecture (NOA) [145], which describes how data from each level of the
automation pyramid can be made available to other levels via open interfaces such as OPC
UA. Moreover, integration with data from outside the plant (e.g., forecasts of energy prices)
and integration across different agents (e.g., co-workers, customers) might be needed.

A combination of static and dynamic data is beneficial for horizontal integration and
is the very core of vertical integration. It implies that completely different technologies
have to interact with each other. For instance, combining OPC UA with Linked Enterprise
Data [146] makes it possible to use the models or ontologies described above to aid in
the selection and interpretation of dynamic sensor data. Consider the following fault
scenario at a chocolate packaging machine. The fault is known to be connected to melting
chocolate (via fault ontologies); it is known that temperatures from the molding unit affect
the packaging process (via ontologies of relationships between production steps), and it
is known that there is a temperature sensor in the cooler of the molding unit (via plant
ontologies). Given this knowledge, it is possible to receive the current temperature from
the relevant sensor (via OPC UA or 5G) and relate it to the speed of the packaging machine.
Thus, current process data can be selected and interpreted in the light of its relations to
data from other production steps. In this way, context can be provided across technology
boundaries. Moreover, operators can be informed when data that are important according
to the ontologies (e.g., state of packaging material) are unavailable.

4.3. Comparing the Present Situation with Historical Data

We have discussed how data can be interpreted based on formal models of the system.
However, especially when systems are too complex to model sufficiently and datasets are
too large and noisy to be interpretable for humans, an alternative to such model-based
integration is to rely on comparisons with the past. Historical data can be used to find
patterns and similarities. Such similarities can either be determined based on large sets of
process data or based on situation descriptions generated by humans.
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4.3.1. Finding Patterns in Dynamic Data

A technology that can be used to find patterns and relations in large industrial datasets
is machine learning (ML) [147]. Based on statistical associations between data, algorithms
can make decisions or predictions without being explicitly taught how to do so. In indus-
trial settings, ML has been used for anomaly detection, e.g., [148,149] and fault diagnosis,
e.g., [150,151]. Anomaly detection addresses the need to support operators in noticing
changes. For instance, based on the sound emitted by ball-bearings, algorithms can deter-
mine the degree of wear or damage. This is commonly used for predictive maintenance,
e.g., [152], but it can also be helpful during operation. For instance, algorithms could detect
when the quality of chocolate bars that exit the molding unit starts to deteriorate. Con-
versely, classification algorithms for fault diagnosis can inform operators when a current
situation is similar to a previously encountered fault. For instance, motor current timelines
might reveal why a tray packer that puts chocolate packages into boxes produces a fault,
because different fault types lead to characteristic changes in these curves. Such changes
might be barely detectable for humans when visually inspecting the curves, but machine
learning is able to find small effects in noisy datasets.

A major problem of machine learning is that it is hard to understand what the algo-
rithms are doing. To address this lack of transparency, the concept of explainable artificial
intelligence (XAI) has been put forward [153,154]. For instance, attention mechanisms can
indicate what information algorithms have used to generate a solution [155]. Thus, when
analyzing images of chocolate exiting the molding unit, the algorithm could indicate what
areas of the chocolate it has looked at to determine that its quality is insufficient. Four
types of XAI technique can be distinguished [153]. Visualization techniques show model
representations to reveal the patterns inside neural units (e.g., tree view visualizations).
Knowledge extraction techniques try to extract the knowledge a model has acquired during
training. Influence methods estimate how important a feature is for the model by changing
this feature and observing its effects on performance. Finally, example-based explanations
reveal how a model performs with particular instances of a dataset. Research on the
effects of XAI has mainly focused on its potential to enhance trust and compliance with
the recommendations provided by algorithms [156,157]. However, explanations can also
foster the generation of mental models about the algorithms [158] and support users in
identifying false solutions, leading them to cross-check the ML results more carefully [159].

4.3.2. Storing and Retrieving Human Experience

Another valuable source of historical information operator experience, its storage
and retrieval can be supported by case-based reasoning (CBR) [160]. Based on a situation
description by the operator, the system searches for similar cases in a database. An
advantage of CBR is that it is explainable [161]. Thus, the system can make its selection of
cases transparent, justify its sampling strategies, explain the relevance of questions, help
users understand the meaning of concepts, and support learning [162].

Traditional CBR systems rely on a match between specific features. For instance, if
operators describe the current situation by stating that a high temperature in the production
hall and broken chocolate at the carrier belt are present, the system retrieves cases that
share the exact same features. To benefit from knowledge of system relations, CBR can
be combined with ontologies [163,164]. This makes it possible to go beyond specific
features and retrieve cases that share an underlying causal principle (i.e., high temperature
causes conveyor soiling, conveyor soiling causes displacements of chocolate bars, and
displacements cause breaking under high mechanical impact). In this way, cases can
be retrieved that differ in terms of their specific features but might still afford the same
solution (e.g., increase machine cooling or reduce machine speed). Moreover, ontological
modelling enables systems to make such matches between structural relations explicit. In
this way, operators can be supported in transferring knowledge to situations that differ in
terms of their surface features. However, a major technical challenge is that this requires a
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system that can interpret ontologies and make appropriate queries to extract the relevant
information.

CBR can be combined with dynamic process data, and some CBR systems are capable
of autonomous information gathering [165,166]. They retrieve information from databases
so that users do not have to describe all features of the situation by themselves. However,
enabling systems to retrieve relevant process data requires a combination of CBR with
the technologies described above. Based on formal models of the technical system, a CBR
system would know where to look for relevant information and, based on OPC UA, it
could extract this information from the respective machines. Such automatic extraction of
relevant process data would allow for much richer case descriptions, enabling future users
to assess whether the context of a previous situation matches the current one.

5. Discussion

Contextualizing data and observations is a major challenge for operators of industrial
plants. The present article addressed this challenge by presenting examples of the psycho-
logical literature that deals with the questions how people sample information, integrate
different information elements, categorize objects and events, and reason about causes.
In each area, characteristic limitations and biases were reported, which should form the
basis for the conceptualization of support strategies. Based on the literature section, we
extracted three groups of functional requirements for digital transformation technologies:
they should connect data to models of the system, provide and integrate data from different
sources, and process and integrate data over time.

A variety of technologies can address these requirements and support contextualiza-
tion. At the core of this endeavor is the generation and combination of formal models
of physical and functional system relations. This can be achieved by Semantic Web tech-
nologies such as ontologies and Linked Data. These models can provide the basis for
information sampling and integration. A model-based integration of data from different
sources calls for standards such as OPC UA that provide semantic modelling capabilities
and can be combined with other technologies, for instance to enable real-time communica-
tion. Machine learning can find patterns in complex datasets by matching dynamic and
historical data, but an important requirement is that it should be explainable. Moreover,
operator experience can be made available via case-based reasoning. Again, such ap-
proaches would greatly benefit from a combination with formal models of system relations.
Thus, the integration of different technologies provides immense potential to support
contextualization.

5.1. What Stands in the Way of Application?

Most technologies presented in this article are not completely new. This raises the
question why contextualization still is a challenge. Why are the available technologies
not used as much as they could be? Several reasons might account for this. First, using
the technologies can be difficult and effortful. For instance, eliciting high-quality models
of system relations from domain experts is a major effort [167]. In complex industrial
systems, models are incomplete and not even engineers can fully specify them [168,169].
For instance, it is impossible to exhaustively describe the behavior of chocolate under all
conditions that might occur in a plant. The modelling of system relations gets even more
difficult when models have to bridge domain boundaries (e.g., interactions of chocolate
characteristics and machines). Some people hope that purely data-driven approaches
such as machine learning can compensate for a limited understanding of the underlying
processes. However, statistical associations are not always informative. A promising
alternative is to use causal models that combine data based on relatively simple causal
diagrams by performing particular computations [98]. Initial evidence suggests that
such models can produce better predictions than searching for statistical associations and
controlling for known covariates [170]. Concerns about feasibility also apply to purely
data-driven approaches. If data are to be integrated, they must be available in the first place.
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However, lots of important data (e.g., state of packaging material) are not measurable in
principle, in-line, or at a reasonable price [171]. Additionally, simply acquiring more data
is insufficient if their quality is not guaranteed, as data can have biases, ambiguities, and
inaccuracies [172].

A second reason that people do not use the full potentials of digital transformation
technologies is that they are not used to it. For instance, despite the invaluable power of
the semantics offered by OPC UA, current controllers do not provide sematic information
models [173]. They do use OPC UA, but in the same way as they have previously used
list-based fieldbus standards. Concepts and technologies that are established in other
domains (e.g., ontologies from the area of knowledge engineering) are only gradually being
adopted, and it takes time for industrial practitioners to recognize their potential.

A third, similar reason is that engineers often do not know how to apply the technologies
in ways that bring out their benefits for human–machine interaction. For instance, it is
unclear how to use ontologies in ways that help people think (e.g., encourage them to
consider alternative hypotheses). Psychological knowledge is not usually considered in
the industrial application of technologies. Moreover, a psychologically valuable appli-
cation of ontologies calls for immense formalization efforts and sophisticated querying
mechanisms. Therefore, applying digital transformation technologies to optimize human–
machine interaction will require two things: technological advances to support the people
who conceptualize and implement these technologies, and a close cooperation between
different disciplines such as computer scientists, engineers, and psychologists.

5.2. The Question of Function Allocation

Contextualization is not only beneficial for humans but also for technical systems.
For instance, it can be used for automatic failure detection and prevention [15]. Thus, the
technologies described in the present article can be used to increase the level of automation,
enhance machine-to-machine communication, and minimize the role of operators. In fact,
keeping humans out of the loop is what many technological developments strive towards.
For instance, machine learning often confronts operators with a decision but does not
incorporate them in the evaluation and integration of the data that led to this decision. On
the one hand, one might argue that this is a good thing, as algorithmic integration is often
superior to human integration [55,56] and the large amount of data in complex industrial
systems makes automation indispensable for information processing and integration. On
the other hand, suggesting specific decisions can foster an uncritical acceptance of these
decisions, without cross-checking them [18,40], and these negative effects increase with the
degree of automation [174]. Although the ironies of automation were described decades
ago [175], they have not made their way into the design of many real-life applications.

A related question is what information should be available to operators to provide
them with the necessary tools and knowledge to intervene if necessary. This question
presents another dilemma. On the one hand, human–machine cooperation requires trans-
parency [176–178]. When humans only receive highly constrained information, they cannot
form an accurate mental model of the system. From this perspective, it might be necessary
to share more information with operators instead of only making it available for internal
use by the technologies. On the other hand, information overload can decrease the quality
of decisions [46]. Therefore, how to provide information in ways that do not overload
operators but foster productive thinking remains an important issue [5].

Such changes, enabled by a context-aware, interconnected production system, are
likely to generate benefits not only from the perspective of the production process, but also
from the perspective of the human operators themselves. By allowing them to derive a more
complete understanding of the technical system and the current situation, contextualization
can create more meaningful jobs [179] and lead to operator empowerment [180,181]. The
resulting increases in autonomy and flexibility are likely to enhance motivation [182] and
foster lifelong learning [22].
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The changes in function allocation between humans and machines that typically ac-
company technological advances have consequences far beyond the expected [183]. Imag-
ine an ideal world, in which technologies are used in the most thoughtful, human-centered
way: operators can inspect overviews of system relations, which are complemented with
relevant and up-to date context information from different sources. Will this lead to new
problems? If the presented system relations appear to be conclusive and complete, this
might encourage operators to trust them and fail to notice mistakes. Similarly, explainable
artificial intelligence (XAI) can lead people to over-rely on the system and comply with false
explanations [156,184,185]. We must consider that each new technology will change the
situation in unexpected ways. Therefore, it is crucial to keep people thinking. Addressing
even unexpected reasoning biases may require approaches that have not been considered in
human–machine interactions to date. For instance, according to the argumentative theory
of reasoning [186], a powerful way to eliminate reasoning biases is to put people into an
argumentative context in which they have to disconfirm the reasoning of others. Should we
make operators argue with the technologies to achieve the best cooperative performance?
Obviously, ideas that are based on research on human cognition must be balanced with
what is feasible in a production context.

5.3. Limitations and Future Work
5.3.1. The Psychological Literature Does Not Always Adequately Address Real-World
Demands

We mainly derived our contextualization challenges and our requirements for tech-
nologies from basic research in cognitive psychology. As the tasks used in these studies are
much simpler than the operation of industrial plants, it is unclear to what degree the results
are applicable in more complex environments. An alternative approach is to derive require-
ments from on-site observations in the domain. Although this would certainly increase
ecological validity, it also has pitfalls. It would only be possible to assess the status quo
(i.e., how operators work today) and it is hard to draw conclusions about counterfactuals
(i.e., what would happen if different technologies were available). People cannot provide
valid reports of their cognitive processes and limitations. Moreover, they often cannot
imagine what would help them when it is not yet available. Therefore, a mere focus on
domain observations is insufficient, and a multi-method approach is required that also
takes psychological knowledge about cognitive processes and biases into account.

It also must be considered that the introduction of cyber-physical production systems
(CPPS) will pose its own challenges for operator work [22,23,179]. One exemplary challenge
is that the requirement of being ‘in control’ becomes more abstract [20]. For instance,
consider anticipation. In traditional supervisory control, operators had to anticipate trends
of process parameters, while in CPPS they also have to anticipate when controllers will
become unable to self-regulate or the system will exhaust its adaptive capacities. Even in
today’s systems, people do not sufficiently understand the function of automatic controllers
or the conditions that make control non-effective [187]. With more system autonomy, this
challenge will be exacerbated and it will be necessary to investigate the cognitive demands
specific to this new workplace.

5.3.2. Only a Fraction of the Relevant Cognitive Challenges Was Addressed

In the present article, we considered four psychological areas, but it is impossible
to provide a comprehensive review of these areas in just one journal article. Moreover,
the selection of areas is limited as well, and we did not address all cognitive challenges
of contextualizing data in complex systems. Dörner (as cited in [188]) postulates four
process components of complex problem solving: (1) gathering information about the
system and integrating it into one’s model of the system, (2) goal elaboration and goal
balancing, (3) planning measures and making decisions, and (4) self-management. We
addressed the first component, asking how people sample and process information, but
we did not consider how people subsequently use this information. Digital transformation
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technologies certainly have the potential to also support the other three components of
problem solving, although different technological support strategies may be helpful (e.g.,
simulations). Future work should specify the cognitive challenges and technological
potentials of contextualization from a more action-oriented perspective, and draw on the
rich knowledge base of complex problem solving research (for an overview, see [189]).

Several other relevant psychological issues remained unaddressed. For instance, social
factors can affect contextualization, and research into issues such as social influence [190],
team coordination and reasoning [191], or team situation awareness [192] provides valuable
insights that should be considered when designing digital transformation technologies.
Additionally, information processing is subject to interindividual differences. One such
difference concerns people’s knowledge: the information search depends on prior knowl-
edge [193], and while experts do not always use more cues than novices, they use more
relevant ones [194]. Moreover, behavioral habits influence the search for and utilization
of information. People with strong habits often refrain from acquiring information but
simply select the option they usually select, irrespective of contextual constraints [195].
Thus, there are many more issues worth considering.

5.3.3. Support Strategies from the Psychological Literature Were Not Considered

The present article focused on information modelling technologies and largely ignored
the question of how information should be presented in the human–machine interface. This
focus was chosen because much of the Human Factors’ literature is concerned with interface
design, while information modelling has not received much attention to date. Concerning
the question of how to design interfaces that support contextualization, promising insights
can be drawn from the work on ecological interface design [6,8,196], visualizations of causal
relations [197,198], and visualizations that provide continuity and context across interfaces
with different levels of abstraction [199]. Besides interface design, the psychological
literature provides an arsenal of methods to support contextual and causal reasoning via
instruction and training. For instance, overconfidence can be reduced by asking people
to consider the unknowns [43], the understanding of causal relations can be enhanced by
explication and structural alignment [200], and the learning and transfer of complex system
principles can be supported by simulations [201]. Future work should extract support
strategies from different fields of psychology and integrate them with the technological
possibilities of digital transformation.

5.3.4. No Specific Implementations of Technologies Were Suggested

The article aimed to serve as a starting point for an interdisciplinary cooperation
between engineers and psychologists on the design of CPPS. Accordingly, we provided a
broad overview of different psychological issues and technologies, instead of going into
depth for any of them. A useful next step would be to translate scientific knowledge about
one particular psychological issue into detailed requirements for one specific technology,
and vice versa. For instance, if you want to foster the consideration and evaluation
of alternative explanations in causal reasoning, what does this mean for the design of
ontologies and the application of query languages? If you are developing a CBR system,
what would this system need to do to avoid sampling biases? We hope that the present
article will help to generate many such questions, which can then be pursued in subsequent
interdisciplinary work.

5.4. Conclusions

Contextualization is a major challenge in the process industries and discrete processing
industries. It requires operators to sample the correct information, integrate it in suitable
ways, appropriately categorize situations, and draw valid inferences about causal relations.
These cognitive activities can be supported by digital transformation technologies that
provide formal models of the technical system, rely on these models to access and integrate
data from different sources, and use historical data to interpret current situations. Based on
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these technologies, relevant context information can be made accessible to human operators.
For instance, the functional and causal relations within the system can be made explicit, the
interactions between data from different sources can be visualized, or the results of machine
learning algorithms can be explained. To leverage the full potential of these technologies,
their integration needs to span technological and disciplinary boundaries. For instance,
operator experience with regard to specific fault situations can be mapped onto formal
models of system relations.

In principle, the digital transformation technologies that support contextualization
could be used in two ways: either to further exclude humans from production processes, or
to finally establish a genuine human–machine cooperation that results in the optimization
of the entire system. The human-centered application of these technologies faces a number
of challenges: Their application can be difficult and effortful, engineers are not yet used to
the new potentials, and they often lack the psychological knowledge necessary to apply
the technologies in the way that is most conducive to human reasoning. Thus, a close
interdisciplinary cooperation will provide fruitful approaches to answering the question of
how digital transformation can support human reasoning in CPPS.
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Appendix A

The following tables translate the cognitive factors identified in Section 2 into general
requirements for operator support strategies, and present examples from a chocolate
packaging scenario to illustrate these requirements. They are organized according to the
four areas reviewed in Section 2: sampling the available information (Table A1), integrating
different information elements (Table A2), categorizing objects and events (Table A3), and
reasoning about causes (Table A4). When providing examples in the third column, plain
text indicates general instructions for operator support, whereas text in inverted commas
represents the information content that could be communicated to operators, without
intending to implicate that the exact formulation should be adopted.

Table A1. Sampling the available information.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Information samples are biased

Sampling biases

Reduce bias in the automated generation
of samples

Do not perform product control at fixed intervals (e.g., every
100th casting mold) as they might coincide with

temperature cycles

Make the selection of automatically
generated samples transparent

“Only every 100th casting mold is submitted to quality
control”
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Table A1. Cont.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Provide information as to whether
samples are representative

“The frequency of this fault have only been determined for
milk chocolate but not for caramel chocolate”

Provide hints when operators have
ignored potentially relevant information “You have not checked motor current trend charts, yet”

Support the generation of arguments
against a given anchor or standard

“Please check whether the temperature value from the
selected previous case applies to the current situation”

Availability heuristic

Make information available in an
unbiased manner

Provide different data sources (e.g., temperature in end
cooler, buffer, and packaging machine) and data types (e.g.,

temperature, soiling, and motor currents)

Provide information about the base rates
of process states and events “Hollow bottoms are present in 20% of the bars overall”

Provide hints that other information
sources are available

“The current hypothesis can also be checked by inspecting
the motor current trend chart”

Conditional sampling

Make it explicit when events may be
overrepresented in samples

“Chocolate bars have mostly been checked for hollow
bottoms when faults have occurred, which may

overestimate the impact of this deviation”

Use presentation formats that aid Bayes
reasoning Frequency grids or frequency trees

Repeating choices that
initially led to good

outcomes

Provide hints about own previous choices
and choices of others in similar situations

“In previous instances of this fault, you have only checked
for hollow bottoms. Other operators have also checked

motor current trend charts and vacuum suction”

Make the relevance of different data
sources and observations transparent

“Bar skewness after the stopper is predictive of this fault,
while bar skewness before the stopper is not”

Make it explicit when the contribution of
data sources is context-dependent

“Room temperature is predictive of this fault for milk
chocolate but not dark chocolate”

Selecting and ignoring particular types of information

Salient cues

Make cue validities explicit “Hollow bottoms have low predictive value for this fault”

Support evaluations of whether extreme
values are relevant

“High room temperature is irrelevant for bad packaging
quality”

Make non-salient but relevant cues
accessible

Provide height measurement of chocolate bars, which can
cause problems but is not visually perceivable for operators

Confirmation bias

Provide evidence/data in favor of
opposing hypotheses

“You assume the cause for skewed bars to be insufficient
ground contact due to hollow bottoms, but the motor
current trend chart indicates too much grip due to a

smeared conveyor belt”

Make it transparent which hypotheses
are supported by what information and
which have not been tested sufficiently

“The hypothesis of insufficient ground contact as a cause for
skewed bars is supported by hollow bottoms, but the motor

current trend chart indicates a soiled conveyor belt”

Positive test strategy

Present data for situations in which the
property of interest differs, thus
mitigating the effect of illusory

correlations

“Bars had hollow bottoms in 25% of the situations in which
this fault occurred, but also in 18% of situations without a

fault”

Make unequal sample sizes transparent “There are 311 measurements for milk chocolate but only 17
for caramel chocolate”

Weight evidence by sample size “The 17 measurements for caramel chocolate may not be
representative”
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Table A1. Cont.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Re-interpreting
information to fit

hypotheses

Ask operators to make interpretations
explicit, provide feedback about these

interpretations

“What do you conclude from the observation that bars were
skewed?” [Operator: “Insufficient ground contact due to

hollow bottoms”] “This conclusion is problematic, because
bar skewness can also be caused by too much grip on a

smeared conveyor belt”

Inattentional blindness Direct operators’ attention to information
they have not yet considered

“This problem can also be checked by inspecting the motor
current trend chart”

Ignoring contextual
constraints

Make constraints and side-effects
transparent

“Reducing machine speed below 500 will cause overflow in
the buffer, which may ultimately force the molding

unit to stop”

Neglecting unknown
or missing information

Make it explicit that data for some
relevant aspects are not available

“Temperature of chocolate filling affects bar stability but
cannot be measured”

Highlight the consequences of missing
information (what-if)

“If the (unavailable) temperature of chocolate filling
strongly differs from temperature of the coating, this can

lead to tensions and cause breakage”

Tasks and information sources affect information search

Task complexity

Provide information in a
task-/state-/context-dependent manner

“To determine whether the problem may have been caused
by bar temperature, you also need to consider the

temperature in the molding unit and whether this chocolate
type is susceptible to temperature variations” (and provide

specific values)

Make additional information available on
demand

“Click here to check information about the machine, from
the molding unit, and from the production planning system

. . . ”

Provide domain information and
problem solving information (instead of

just basic data) for complex tasks

“Too low temperatures of the cold stamp lead to ice crystals,
which cause instable walls” instead of just “The temperature

in the end cooler is −10 ◦C”

Information overload

Filter data according to their relevance,
use context-dependent filtering

Do not show foil characteristics in case of problems at the
feed conveyor

Highlight the relevance of information
elements

“Temperature variations are particularly important for this
fault”

Make consequences of misuse
understandable (e.g., consequences of

errors and filtering)

“If you ignore motor current trend charts, you may not find
out whether this problem is caused by too much grip on the

conveyor belt”

Make information sources explicit “Too much grip on the conveyor belt can be estimated from
motor current trend charts”

Provide information on different levels of
abstraction and support switching

“Physical Form: hollow bottoms; Physical Function:
insufficient ground contact on conveyor belt; Generalized

Function: dysfunctional transport of chocolate bars;
Abstract Function: frequent faults at carrier belt; Functional

Purpose: low efficiency”

Accessibility

Increase accessibility of context
information (e.g., right format, right level
of detail, saving time, lots of information

in one place)

Name and explain current problems in the molding unit
(previous production step), instead of individual molding

parameter values

Make format and level of detail
configurable

Let operators decide whether they want to see overall
efficiency during the previous shift or individual faults

Integrate information from different
sources

Present information about chocolate characteristics and
state of the molding unit together with associated problems

of the packaging machine
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Table A1. Cont.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Familiarity

Make unfamiliar sources easy to access Place a link to motor current trend charts on the main fault
screen

Highlight consequences of only
considering particular (familiar) sources

“If you only look at bar skewness but not motor current
trend charts, you may not see whether the problem is

caused by too much grip on the conveyor belt”

Table A2. Integrating different information elements.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Strategies of information integration

Formal or informal

Integrate cues algorithmically, especially
in low and high-validity situations

Automatically calculate whether speed of molding unit
matches the speed of packaging machines

Make algorithms transparent (i.e., use of
data, algorithmic procedures), allowing
operators to evaluate completeness and

appropriateness

“The image processing algorithm has attended to the
surface of the casting mold when determining that the mold

was faulty”

Enable operators to include/exclude cues
and change weights, show changes in

outcomes

Operators can indicate that temperature is less important in
a particular situation, and in consequence it receives less

weight in the selection of similar cases

Make it explicit what important factors
an algorithm cannot consider

“The algorithm ignores temperature of the filling as it
cannot be measured, and air moisture as its specific effects

are unknown”

Rule- or
exemplar-based

Make appropriate rules available,
depending on task, goals, and context

“High temperature may predict soiling of the conveyor belt,
but more so for milk chocolate than dark chocolate”

Support cue abstraction (i.e., make
predictive power of cues explicit)

“Hollow bottoms are the strongest predictor of skewed
chocolate bars”

Present each cue in terms of its
presence/absence or value “Hollow bottoms are present, temperature is 21 ◦C”

Support selection of suitable exemplars
(cases)

“Case 12 matches the current situation in terms of
temperature, motor currents, and chocolate type, Case 17

differs in chocolate type”

Highlight correspondence between cases
and rules (i.e., case abstraction)

“Case 14 has a lower molding temperature but still is
comparable as the bars remained in the buffer for longer,

which also leads to warming”

Relying on heuristics

Support operators in assessing the
context-dependent suitability of

heuristics

“To determine whether there was a problem with a packing
claw, it is sufficient to check whether every eighth bar was

affected”

Point out heuristics that lead to
problematic outcomes

“Evaluating the height of the downholder in isolation is
problematic, because a low downholder can be suitable if

bars are smaller”

Reduce the need to rely on heuristics by
providing algorithmic integration

Automatically calculate whether speed of molding unit
matches the speed of packaging machines

Task and information characteristics affect integration
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Table A2. Cont.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Task complexity

Support operators in partitioning the task

“(1) Check where the problem starts occurring, (2) check
whether all bars or only some of them are affected, (3) check
bar characteristics like geometry and temperature, (4) check

mechanical machine settings”

Support data integration and provide
overviews in complex tasks

Present information about chocolate characteristics and
state of the molding unit together with associated problems

of the packaging machine

Coherence

Highlight whether available information
is coherent (i.e., points in the same

direction) and point out mismatches

“Hollow bottoms are consistent with insufficient ground
contact, but the motor current trend chart indicates a soiled

conveyor belt”

Organize information to provide
overview and facilitate assessment of

coherence

Present current values of all variables that affect chocolate
smearing in one place (even when they stem from different

production steps)

Validity of easily
accessible information

Make valid/important information easy
to access

Present the five parameters that best predict the current
fault type on the main fault screen

Make validity of information transparent “Hollow bottoms have low predictive value for this fault”

Presentation format Reduce search demands by integrating
information from different sources

Present information about chocolate characteristics and
state of the molding unit together with associated problems

of the packaging machine

Time pressure
Provide higher degree of automated

integration in situations with high time
pressure

Automatically integrate high temperature in molding unit,
long time in buffer, high motor currents, and milk chocolate

into “the conveyor belt may need to be cleaned”

Table A3. Categorizing objects and events.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Differentiation: context-dependent, flexible categorization

Flexible category
representations

Make interconnections of information
transparent

“Both long times in the buffer and high temperatures may
cause melting, but what is an appropriate temperature

depends on chocolate type”; “bar weight often provides
information about bar height”

Allow operators to access information
from different perspectives (e.g., levels of

abstraction, task-dependent views)

“Physical Form: hollow bottoms; Physical Function:
insufficient ground contact on conveyor belt; Generalized

Function: dysfunctional transport of chocolate bars;
Abstract Function: frequent faults at carrier belt; Functional

Purpose: low efficiency”

Provide different instead of just similar
cases

“Case 26 has a similar symptom (soiled conveyor belt) but
different parameter values, and should be cross-checked as

a differential diagnosis”

Facilitate information decomposition
“Conveyor belt soiling should be checked for all four

conveyor belts, because if it only occurs at the vacuum belt,
this may indicate wear of the vacuum hole edges”

Suggest different interpretations or
prompt operators to generate them

“A soiled conveyor belt can indicate a temperature problem,
but it can also indicate friction due to differential speed of

adjacent conveyors”
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Table A3. Cont.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Environmental
contingencies

Provide information about relations and
parameter interactions

“Temperature in the molding unit and time in the buffer
both lead to warm chocolate, which can cause soiling.

However, the two parameters can compensate each other”

Highlight changes in regularities of
events

“High temperature is less problematic today, because dark
chocolate is being produced”

Highlight changes in relations between
interacting parameters

“High temperature is less problematic now, because you
have reduced machine speed”

Conceptual change

Provide factual information to help
operators detect and correct false beliefs

“The turning wheel is not responsible for squished
chocolate bars”

Provide information about system
structure and functional relations to

support mental model generation and
updating

“Hollow bottoms cause problems because they reduce
ground contact on the conveyor belt, which may lead to

misalignment of chocolate bars”

Provide semantic relations between
concepts and events to make ontological

structures understandable

“Temperature in the molding unit and time in the buffer
both lead to warm chocolate, which can cause soiling.

However, the two parameters can compensate each other”

Cue relevance Highlight and explain context-specific
changes in the relevance of information

“If machine speed is reduced, hollow bottoms are less
problematic, as the bars are not pulled into a skewed

position at conveyor boundaries as much”

Generalization: the role of similarity

Similarity depends on
context

Highlight the features most important to
determine similarity in the current

context

“With milk chocolate, temperature the most important
parameter to determine whether a previous case is similar”

Similarity depends on
focus of attention

Focus attention on relevant features
depending on context

“If you want to find out whether soiling of conveyor belts
may have caused the problem, you should focus on

parameters that are associated with melting: temperature
and time in the buffer”

Surface/structural
features

Show structural correspondence between
situations

“Case 14 has a lower molding temperature but still is
comparable as the bars remained in the buffer for longer,

which also leads to warming”

Provide information as relational
categories rather than just entity

categories

“Chocolate types that melt easily” and “chocolate types that
break easily”, rather than just “milk chocolate” and

“marzipan”

Highlight differences despite feature
similarity

“In Case 13, machine speed and temperature were as high
as in the current situation. However, as dark chocolate was
produced, these parameters were suitable, while now they

may be problematic”

Features beyond
similarity

Make it explicit when comparisons
should change depending on task goals

“If you need to solve the problem quickly, select cases that
offer solutions relying on machine speed or cleaning instead

of cases that require changes in the molding unit”

Support comparison between situations
according to different criteria, let

operators manipulate these criteria

Offer case similarity calculation methods based on feature
similarity, mechanism similarity, outcome quality, or

required effort

Show information distribution within
situation classes (e.g., variability of

parameters)

“For this fault, temperature fluctuations are normal:
temperature is very high in some cases of this fault class but

not in others”
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Table A4. Reasoning about causes.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Covariation

Magnitude of
probabilities

Make base rates of causes and outcomes
available

“Hollow bottoms occur in 20% of situations, but the
problem of skewed bars after the stopper only occurs in 5%”

Point out illusory correlations “This fault type occurs almost as often when hollow
bottoms are present and when they are absent”

Make absence of causal relations explicit “Foil color differs between the current situation and the
selected case but has no impact on the current problem”

Inattentional blindness
for negative relations Make negative causal relations explicit “Machine cooling reduces the impact of long time in the

buffer”

Overshadowing and
super-learning

Disentangle single causal effects
“Skewed bars can be caused by soiled conveyor belts,

hollow bottoms, insufficient vacuum suction, and incorrect
positioning of machine parts”

Make interactions between causes explicit
(e.g., additive, enhancing, suppressing)

“The effects of low temperatures in the molding unit are
cancelled out when chocolate bars remain in the buffer for a

long time”

Highlight simple correlations that do not
contribute to causal effects

“Low weight of chocolate bars is associated with skewness,
but this is not because weight causes skewness but because

weight and skewness both are a consequence of hollow
bottoms”

Type of task

State alternative outcomes in predictive
reasoning tasks

“Low temperatures of chocolate filling may not only cause
hollow bottoms but also tensions between coating and

filling, which can lead to breakage”

Highlight causal strengths in predictive
reasoning tasks

“Low machine cooling only has a weak impact on conveyor
belt soiling”

Temporal relations

Temporal order

Provide information about temporal
order and temporal dependencies of

events

“First, high temperatures cause chocolate to melt and lead to
soiling of the conveyor belts. This can result in skewed bars,
which later may break upon contact with the carrier belt”

Highlight temporal orders when they
cannot easily be perceived

“A chocolate bar is first touched by the injector and then by
the transfer finger, but it can quickly move back and forth
between the two components, which may cause breakage”

Make it explicit when events follow each
other but are not causally related

“Bars can break after they have moved into the turning
wheel, but it is not the turning wheel that causes breakage”

Temporal contiguity

Minimize time delays in information
presentation

Present past molding problems together with current
packaging problems instead of at the time when they occur

(about one hour delay)

Increase time delays when no causal
relation exists

Present the processes in the injection unit separately from
processes in the turning wheel when explaining how the

former cause breakage

Temporal variability

Make variable time lags between cause
and effect transparent

“Problems in the molding unit can affect the packaging
machine with a delay of 20 min to 1.5 h”

Provide information about factors
affecting the variability of delays

“The delay of molding problems affecting the packaging
machine depends on the time that chocolate bars remain in

the buffer”

Expecting longer
delays

Provide information about delayed
effects

Simulate how the current temperatures in the molding unit
will affect the packaging process in one hour

Prior knowledge
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Table A4. Cont.

Cognitive Factors General Requirements for Operator
Support Strategies Examples

Assumptions about
causal roles of events

Make causal relations within the system
and the causal roles of each factor

transparent

“Temperature in the molding unit and time in the buffer
both lead to warm chocolate, which can cause soiling.

However, the two parameters can compensate each other”

Point out common misconceptions for a
given problem situation

“People often think that the turning wheel squishes the bars,
but that is not true. The problem actually originates in the

injection unit and only becomes visible at the turning
wheel”

Selecting appropriate
integration rules

Support integration of fragments of
causal nets

Show causal diagram of factors from different process steps
affecting the breakability of chocolate bars

Make relations between causes explicit
(e.g., additive, compensatory)

“Bar height and downholder height can compensate each
other”

Show how relations are affected by
context, highlight differences between

situations

“Whether high temperatures cause skewed chocolate bars
depends on machine speed, and the relation is stronger for

milk chocolate than dark chocolate”

Experience

Specify the exact types of relations
between events or elements of the plant

instead of just their causal direction

Show mechanisms by which high temperatures cause
skewed chocolate bars (soiling of conveyor belts, increasing
grip on the belts, increasing the effects of speed differences

at conveyor boundaries)

Support novices by highlighting causal
phenomena (e.g., negative feedback)

“Reducing machine speed can mitigate problems due to
warm chocolate, but it also increases time in buffer, which

can cause even more warming”

Dealing with complexity

Linear reasoning
Make non-linear interactions and

complex system features transparent (e.g.,
emergence)

Show how problems result from interactions of temperature,
speed, machine and chocolate characteristics, and

mechanical settings, with none of them being sufficient to
cause problems

Understanding causal
behaviors and

functions

Connect information about system
structures to behaviors and functions

“Physical Form: hollow bottoms; Physical Function:
insufficient ground contact on conveyor belt; Generalized

Function: dysfunctional transport of chocolate bars;
Abstract Function: frequent faults at carrier belt; Functional

Purpose: low efficiency”

Illusion of
understanding

Provide information about actual system
relations

“Temperature in the molding unit and time in the buffer
both lead to warm chocolate, which can cause soiling.

However, the two parameters can compensate each other”

Prompt operators to think about the
system in more specific terms

Show slow motion video to show how bars move back and
forth between injector and transfer finger, instead of just
informing operators that bars break in the injection unit

Describe problems on different
abstraction levels and allow switching

between them

“Physical Form: hollow bottoms; Physical Function:
insufficient ground contact on conveyor belt; Generalized

Function: dysfunctional transport of chocolate bars;
Abstract Function: frequent faults at carrier belt; Functional

Purpose: low efficiency”
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