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Abstract: Nowadays, the majority of everyday computing devices, irrespective of their size and
operating system, allow access to information and online services through web browsers. However,
the pervasiveness of web browsing in our daily life does not come without security risks. This
widespread practice of web browsing in combination with web users’ low situational awareness
against cyber attacks, exposes them to a variety of threats, such as phishing, malware and profiling.
Phishing attacks can compromise a target, individual or enterprise, through social interaction alone.
Moreover, in the current threat landscape phishing attacks typically serve as an attack vector or
initial step in a more complex campaign. To make matters worse, past work has demonstrated
the inability of denylists, which are the default phishing countermeasure, to protect users from the
dynamic nature of phishing URLs. In this context, our work uses supervised machine learning to
block phishing attacks, based on a novel combination of features that are extracted solely from the
URL. We evaluate our performance over time with a dataset which consists of active phishing attacks
and compare it with Google Safe Browsing (GSB), i.e., the default security control in most popular
web browsers. We find that our work outperforms GSB in all of our experiments, as well as performs
well even against phishing URLs which are active one year after our model’s training.

Keywords: phishing; supervised machine learning; classifier; heuristics; URL-based; phishing

1. Introduction

While the exploitation of trust or personality traits such as agreeableness or obedience
is not a new phenomenon, the pervasiveness of the Internet has brought a new conceptual
framework in which such activities can be conducted. Comparing those to a face-to-face
setting, the former provides several advantages for the attacker, such as anonymity and a
greater geographical reach. Once with this contextual shift, the term phishing has been
popularised. Phishing is described as a scam by which an Internet user is manipulated into
disclosing personal or confidential information that the attacker can use illicitly [1].

In its primitive form, a phishing attack requires elementary technical knowledge.
The main skills required are the ones easily transferable from manipulation or deceit in
face-to-face interaction. This factor, among others, have contributed to the popularity
growth of phishing attacks in the past twenty-five years.

The increased use of phishing as an attack vector is reflected in the numbers registered
by the Anti-Phishing Working Group [2]. Their archives open with the reports from across
2004. These add up to 33.5 thousand unique registered phishing attacks with missing data
for September 2004. After fifteen years, the APWG registered 479,468 unique phishing
attacks in 2019. Besides the growth in numbers, these reports outline a clear advancement
in the technical aspects of registered phishing campaigns as well. One example of this
is the adoption of Transport Layer Security (TLS) used to serve phishing websites over
Hypertext Transfer Protocol Secure (HTTPS). Reported usage has grown from close to 0%
in 2016, to 68% by the end of the third quarter of 2019 [2].
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The majority of Internet users today use their smartphone to surf the web instead of
any other computing device. This adds another enabler for a successful phishing attack.
This holds true as using a mobile phone to surf the web reduces the width of the address
bar, making URL inspection harder for the user. In addition, users have a predisposition
of being a victim of phishing attacks, irrespective of their sex, age, education, browser,
operating system, or hours of computer usage [3].

While investigating the same issue, Rachna Dhamija, J. D. Tygar et al. [3] show that
even in the best-case scenarios when a user is expecting a phishing attack, the best phishing
website deceived 90% of the participants. Domain squatting [4], the popular attack where
malicious parties register domain names that are purposefully similar to popular domains
is also manifesting in every form (e.g., typosquatting, homophone squatting, homograph
squatting, bitsquatting and combosquatting). To make the matter worse, the use of HTTPS,
which is perceived as a popular indicator of a trustworthy website, is utilised by threat
actors while mounting their phishing attacks (APWG [2]). This allows the threat actors to
create the feeling of a safe and secure website, which coupled with the content served to
the user can increase the likelihood of the attack’s success.

The out-of-the box, and often the only, safeguard against phishing attacks a web user
has is the browser’s denylist. For the majority of the web users this is the technology
that is provided by Google, namely Google Safe Browsing (GSB). Usage statistics show
that Google Chrome, Apple Safari, and Mozilla Firefox comprise 86.59% of the browser’s
market share [5]. These browsers use GSB denylist service in an attempt to provide to
their users protection against phishing attacks. An alternative anti-phishing safeguard
used in Microsoft products such as Windows Explorer and Edge is Microsoft Defender
SmartScreen. SmartScreen is embedded in the Windows operating system and delivers
protection against a wide range of threats. The phishing protection provided through
Microsoft’s Internet Explorer and Edge browsers accounts for 4.25% of the market share.

Threat actors who conduct phishing attacks as part of their tactics, techniques and
procedures contribute to a dynamic environment, where phishing links appear and are
taken down on a daily basis. Given that the reported median phishing webpage lifespan
is of less than twenty-four hours [6], synchronisation speed and frequency of denylist
updates are crucial factors in defending against this type of threat. For this reason web
browsers synchronise their denylist frequently in an attempt to have the most up-to-date
threat information. Nonetheless, previous work has uncovered that the aforementioned
technologies provide a sub-optimal update and classification process in terms of execution
time and thus limited phishing protection to its users [7–10].

For this reason, the relevant literature includes security controls that use machine
learning in order to defend against phishing [11]. In this work, we propose and evaluate
a phishing detection engine, which uses supervised machine learning in order to detect
phishing attacks based on a novel combination features that are extracted from the URL.
This allows us to avoid any delays which stem from the computation of features that need
access to third-party resources, such as access to WHOIS records. In summary, our work
makes the following contributions:

• We train, optimise and evaluate a phishing detection engine which relies on supervised
machine learning, based on features that stem from the URL. Our feature selection
process includes features that have been proven suitable by the literature, coupled
with new ones that we propose and evaluate. To the best of our knowledge, we are the
first to use the Levenshtein distance as a similarity index feature for training a range
of machine learning algorithms in this domain. We also, revisit the use of suggestive
vocabulary, which was used in the past [12], as one of our features.

• We evaluate the performance of our phishing detection engine over time by classifying
active phishing attacks that were reported on PhishTank, without model retraining.
We find that the performance of the classification is not affected by time, as well as it
significantly outperforms the protection that is offered by GSB.
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The rest of the paper is structured as follows. Section 2 discuses related work and
Section 3 presents our methodology with regards to feature selection, model selection and
tuning. Section 4 shows the evaluation of our model before the paper’s conclusion in
Section 5.

2. Related Work

Mitigating phishing, with either prevention or detection, has been well-studied in the
academic literature. The following subsections focus on the discussion of software-based
approaches, as user awareness is considered out of scope for this work.

2.1. Rule-Based Phishing Detection

Rule-based anti-phishing approaches classify websites as malicious or legitimate
based on a set of pre-defined rules. Since the ruleset is the centrepiece of the detection
system, its performance is tightly linked to its design. As a consequence, the focus is set on
rule selection and conditional relationship setting.

Ye Cao et al. [13] proposed an automated allowlist capable of updating itself with
records of the IP addresses of each website visited that features a login page. If a user
attempts to submit data through such a login user interface, they get a warning that
they are doing so on a webpage outside of the allowlist. The proposed solution uses
the Naive Bayesian as the classifier, which has delivered high effectiveness in previous
studies on anti-spam [14] and junk email filters [15]. After the decision has been made,
the classification is expected to be further confirmed by the user. Although the proposed
solution delivered an impressive performance with true positives rate 100% and false
negatives rate 0%, this approach relies on the involvement of the users and cannot discover
new phishing webpages.

Another allowlist based approach is presented by A. K. Jain and B.B. Gupta [16], which
achieves phishing detection using a two-phase method. The proposed system logically
splits webpages into not visited and re-visited. The first module is triggered when a page
is re-visited and consists of a domain lookup within the allowlist. If the domain name
is found, the system matches the IP address to deliver the decision. When the domain
name cannot be found in the allowlist, the system uses statistical analysis of the number of
hyperlinks pointing to a foreign domain. After extraction, the system examines the features
from the hyperlinks to take the decision. The proposed system covers a variety of phishing
attacks (e.g., DNS poisoning, embedded objects, zero-hour attack), and its experimental
results report a 86.02% true-positive rate and 1.48% false-negative rate.

Yue Zhang et al. [17] proposed an adaptation of the term frequency-inverse document
frequency (TF-IDF) information retrieval algorithm for detecting phishing webpages in a
content-based approach called CANTINA. CANTINA uses the TF-IDF algorithm to extract
the most frequently used five words, which are then fed into a search engine. The website’s
domain name is then compared with the top N domain names resulted from the search, and
if there is a match, the website is labelled as legitimate. To lower the rate of false-positives,
they included a set of heuristics checking the age of the domain, the presence of characters
such as @ signs, dashes, dots or IP addresses in the URL. Furthermore, it features some
content-based checks such as inconsistent well-known logos, links referenced and forms
present. The experimental results show a true positive rate of 97% and a false positive
rate of 6%. After the addition of these heuristics, the false positive rate decreased to 1%
but so did the true positive rate, which decreased to 89%. Finally, one should note that
CANTINA’s effectiveness is tightly linked to the use of the English language.

Rami Mohammad and Lee McCluskey [18] present an intelligent rule-based phishing
detection system, whose ruleset is produced through data mining. The study begins with a
proposed list of seventeen phishing features derived from previous work on anti-phishing
detection systems. These are then fed into different rule-based classification algorithms,
each of which utilises a different methodology in producing knowledge. The conclusion
presents C4.5 [19] as the algorithm that produced the most effective ruleset. The extracted
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set presents features related to: (a) the request URL, (b) domain age, (c) HTTPS and SSL,
(d) website traffic, (e) subdomain and multi subdomain, (f) presence of prefix or suffix
separated by “–” in the domain, and (g) IP address usage. The limitation of this work is
the reliance on third-party services providing information about the age of the domain,
webpage traffic, and DNS record data. Furthermore calibrating the thresholds for each
feature requires complex statistical work.

S.C. Jeeva and E.B. Rajsingh [20] approach phishing detection by firstly focusing on
the extraction of quintessential indicators, statistically proven to be found in phishing
websites. The work then presents a set of heuristics based on the aforementioned statistical
investigations and analysis, which are translated into fourteen rules responsible for URL
classification. Similar to the work of Rami Mohammad and Lee McCluskey [18], the
identified rules are fed into two data mining algorithms (Apriori and Predictive Apriori),
to discover meaningful associations between them. The work provided two sets resulted
from associative rule mining and reported an experimental accuracy of 93% when using
the ruleset mined by the apriori algorithm.

2.2. Machine-Learning Based Phishing Detection

Machine learning-based solutions centre around the processes of feature extraction and
the training of machine learning models. These features take the shape of information from
different parts of the website, such as the URL or the Hypertext Markup Language (HTML)
content. This subsection will briefly discuss a variety of machine learning approaches to
anti-phishing detection systems, and the essential takeaways from the studies covered.

A. Le et al. [21] propose PhishDef—a system which performs on-the-fly classifica-
tion of phishing URLs based on lexical features and adaptive regularisation of weights
(AROW [22]). The AROW algorithm allows the calibration of the classification mechanism
upon making a wrong prediction. As a result, the predictions will be of high accuracy even
when the trained model is provided with noisy data. Furthermore, PhishDef uses an online
classification algorithm, as opposed to a batch-based one. Online classification algorithms
continuously retrain their model when encountering new data, instead of just delivering the
prediction. PhishDef reports an accuracy of 95% with noise ranging from 5% to 10%, and
above 90% when noise is between 10% and 30%. It is worth noting that the aforementioned
performance of PhishDef comes with low computational and memory requirements.

Guang Xiang et al. [23] extend CANTINA ([17]) by adding a feature-rich machine
learning module. The iteration is named CANTINA+ and it aims to address the high
false-positive rate of its predecessor. Besides machine learning techniques, this enhanced
iteration brings focus on search engines, and the HTML Document Object Model (DOM),
adding several checks on brand, domain, hostname search and HTML attributes. Besides
the inherited trade-offs of CANTINA, the authors state that one of the limitations of
CANTINA+ is the incapability of delivering predictions on phishing websites that are
composed of images, thus offering no text which can be analysed. Furthermore, compared
to CANTINA, while it manages to provide improved accuracy rate of 92%, it is still prone
to considerable false positives rate.

Ling Li et al. [24] present a multi-stage detection system that aims to both pro-actively
and reactively thwart banking botnets. The first module of this model is an early warning
detection module which supervises the malicious-looking newly registered domains. The
second module does spear phishing detection using a machine learning model trained on
different variations of popular domains such as bitsquatting, omission, and other alteration
techniques. Although this work is focused more on banking botnets, the approach used in
URL variations detection and spear-phishing protection is well designed.

Li Yukun et al. [25] take a different approach by utilising a stacked machine learning
model that surpasses the capability of single model implementations of anti-phishing detec-
tion systems. The work provides a thorough comparison of the proposed stack composed
of Gradient Boosting Decision trees [26], XGBoost [27], and LightGBM [28] and single mod-
els using algorithms such as Support Vector Machine, nearest neighbour classifier, decision



Future Internet 2021, 13, 154 5 of 15

trees, and Random Forest. To measure inter-rater reliability for qualitative (categorical)
items and select the best candidates for the stacking model the authors used Cohen’s kappa
static [29] and the lower average error. This lowered the false-positive and false-negative
rates of the stacking model, when compared to all its components individually, achieving
an accuracy rate of 97.3%, false positive rate of 1.61% and a false negative rate of 4.46%.

Similarly, Rendall et al. [30] implemented and evaluated a two-layered detection
framework that identifies phishing domains based on supervised machine learning. The
authors considered four supervised machine learning algorithms, i.e., Multilayer Percep-
tron, Support Vector Machine, Naive Bayes, and Decision Tree, which were trained and
evaluated using a dataset consisting of 5995 active phishing and 7053 benign domains.
Their detection engine used static and dynamic features derived from domain and DNS
packet-level data. Finally, the authors discussed the features’ ability to resist tampering
from a threat actor who is trying to circumvent the classifiers, e.g., by typosquatting, as
well as their applicability in a production environment.

Sahingoz Koray Ozgur et al. [31] investigate the possibility of a real-time anti-phishing
system by training seven different classification algorithms with natural language process-
ing (NLP), word vector and hybrid features. In doing so, Sahingoz Koray Ozgur et al. [31]
state the lack of a worldwide acceptable test dataset for effectiveness comparison between
phishing solutions, and proceeds to construct one containing 73,575 URLs of which 34,600
legitimate and 37,175 malicious. This dataset is used to conduct comparisons between pre-
vious work in the field and the selected classification algorithms (Decision Trees, Adaboost,
Kstar, K-Nearest Neighbour, Random Forest, Sequential Minimal Optimization and Naive
Bayes). The most effective combination discovered is the Random Forest algorithm trained
with NLP features. It achieved an experimental accuracy of 97.98% in URL classification,
while being language and third-party service independent, and achieving real-time exe-
cution and detection of new websites. Finally, the authors’ experiments suggest that the
NLP features seem to improve accuracy across the majority of machine learning algorithms
covered in their work.

M. A. Adebowale et al. [10] use an artificial neural network named Adaptive Neuro-
Fuzzy Inference System (ANFIS [32]) which is trained with integrated text, image, and
frame features. The work presents a brief comparison between the proposed solution and
numerous other anti-phishing detection systems. The works builds a set of 35 features
from phishing websites analysis and related work while also comparing their efficiency.
These are then bound in sets and fed into ANFIS, SVM, and KNN algorithms to study their
performance. The ANFIS-based hybrid solution (including text, image and frame features)
delivered an accuracy of 98.30%. Although the work considers the previously mentioned
solution as the conclusive, the ANFIS text-based classification records an accuracy of
98.55%. Besides this, throughout the study, there is evidence that text-based detection
systems tend to outperform image-based, frame-based and hybrid ones.

Mahmood Moghimi and Ali Yazdian Varjani [33] present a solution based on a selec-
tion of seventeen web content features fed into a Support Vector Machine (SVM) learning
algorithm. The most effective features are chosen based on accuracy, error, Cohen’s Kappa
Static [29], sensitivity, and the F-Measure [29]. Before evaluation, the features are fed
into the SVM algorithm to extract knowledge under the shape of rules to increase com-
prehensibility. By doing this, the importance and effect of each feature can be extracted.
The authors benchmark the features and discuss the consequences of omitting different
rules, outlining the ones with the biggest contribution in making accurate predictions.
The study reports an impressive experimental result of 99.14% accuracy, with only 0.86%
false negative. Moreover, the proposed solution achieves zero-day phishing detection and
both third party service and language independence. Christou et al. [34] also used SVM
and Random Forest implemented in the Splunk Platform to detect malicious URLs. They
reached 85% precision and 87% recall in the case of Random Forests, while SVM achieved
up to 90% precision and 88% recall.
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Finally, Mouad Zouina and Benaceur Outtaj [35] examined how similarity indexes
influence the accuracy of Support Vector Machine models. The aim of the study is the
production of a lightweight anti-phishing detection system, suitable for devices such as
smartphones. The work first presents a set of base URL features composed of: (a) the
number of hyphens, (b) number of dots, (c) the number of numerical characters, and (d)
IP presence. The authors extended this set by adding the: (a) classic Levenshtein distance,
(b) normalised Levenshtein distance, (c) Jaro Winkler distance, (d) the longest common
subsequence, (e) Q-Gram distance, and (f) the Hamming distance, while measuring their
influence on accuracy. Their solution achieves an accuracy of 95% and presents 2000 records
(1000 legitimate and 1000 malicious) on which it performs all the calculations mentioned
earlier when classifying a URL. The authors conclude that the Hamming distance is the
most effective feature from the studied set improving the overall recognition rate by 21.8%.

The literature includes a number of works that facilitate machine learning to mitigate
phishing as a threat. From the above works, it is evident that supervised machine learning
algorithms, e.g., SVM, Naive Bayes, perform well in a binary classification problem like
phishing detection. Nonetheless, contrary to our work, the majority of the literature is using
machine learning algorithms that are trained and evaluated in balanced datasets. This
means that the evaluation took place using a scenario that is not realistic [11]. Furthermore,
multiple data sources have been used for feature selection. We differentiate from prior
works in the literature by proposing a new combination of features, which is evaluated
over time. Finally, while the use of Levenshtein distance has been explored in the previous
literature, e.g., explored but not used in the SVM classifier of [35], to the best of our
knowledge we are the first to use it as a feature in phishing detection model.

2.3. Google Safe Browsing

Google Safe Browsing (GSB) is a deny list that is used in the three most popular
browsers in terms of market share, i.e., Google Chrome, Apple’s Safari and Mozilla Firefox.
Priyam Kaur Sandhu and Sanjam Singla [36] describe the mechanism behind GSB and
capture the differences between the different API versions. However, the study dates back
to 2015, and as a consequence, the comparison includes only the first three versions. Since
then, version four has been released, marking the end of support for version two and
three. Google [37] does not mention any fundamental changes to the version four API but
details a series of adjustments focusing towards the growth in usage of mobile devices,
where previous work has demonstrated the absence [38,39] or the limited protection that
is offered by denylist as a security control [7–9]. The new GSB API is optimised for the
challenges of the mobile environment, i.e.: the limited power, network bandwidth and
poor quality of service. Moreover, the protection per bit is maximised, due to cellular data
being a direct expense to the user.

3. Methodology

In order to build the phishing detection engine our work explored the use of super-
vised machine learning algorithms that have been frequently used in relevant literature [11],
namely Naive Bayes [40], Decision Tree [41], Random Forest [42], Support Vector Machine
[43], and Multi-Layer Perceptron [44]. These algorithms are trained using Python 3 and
the SciKitLearn library [45]. The comparison of the machine learning models performance
utilizes a set of metrics which are commonly used in this domain, i.e., (i) precision, (ii)
sensitivity, (iii) F- Measure, (iv) Accuracy, (v) Receiver Operating Characteristic (ROC)
curve, and (vi) Confusion matrix.

Precision =
TP

TP + FP
(1)

Sensitivity =
TP

TP + FN
(2)
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F − Measure = 2 × Precision × Sensitivity
Precision + Sensitivity

(3)

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

The metrics above are using True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN) for their calculations. TP classify URLs pointing to phishing
websites, correctly, as phishing and TN classify benign URLs, correctly, as benign. FP
misclassify benign URLs as phishing and FN misclassify phishing URLs as benign URLs.
A system is said to be precise (1) when it delivers a high level of correct prediction values.
Sensitivity (2), also known as recall, outlines the system’s predisposition in classifying a
legitimate URL as being malicious. As the system increases in sensitivity, it reduces the
number of false-negatives it produces. For clarification, precision is the ratio between all
adequate classification errors and all classification errors. In contrast, recall is the ratio of
all classification errors and all existing errors. The F-Measure (3) is the harmonic mean
of precision and sensitivity. It is a composed metric which penalises the extreme values
and is meant to provide a single measurement for a system which illustrates the level of
optimisation. The accuracy (4) measures the ratio of true-positives and true-negatives.
Finally, the Receiver Operating Characteristic (ROC) curve illustrates how well a model is
capable of distinguishing between a phishing and a benign URL and the Confusion matrix
offers a view of the classification performance details of the model.

The best-performing models were selected for both hyperparameter tuning and fur-
ther experimentation with feature selection. Model optimisation is performed using Grid-
SearchCV which performs an exhaustive search over specified parameters and selects the
best performing model.

The dataset used for training the classifiers is based on the datasets from [46] and
PhishTank. It includes 100,000 URLs that were collected in April 2020 and fed into the
training phase with a 80/20 split between training and testing data respectively. Specifically,
it consists of the first 40,000 benign URLs from Kumar Siddharth [46] and 60,315 phishing
URLs from PhishTank.

3.1. Feature Selection

Our work uses a new combination of features consisting of features (F1-F10) that have
been used for phishing detection [11] and proposes F11 and F12. These are summarized in
Table 1 along with their descriptions. For the majority of the features, their computation is
straightforward based on their description.

F8-F10 flag the presence of the most popular suggestive vocabulary in the (i) subdo-
main, (ii) domain, and (iii) path sections of the URL [12]. To identify the most popular sug-
gestive vocabulary we measured their word frequency with the use of valid phishing URLs
from PhishTank. These are split in the format of <subdomain>.<domain>/<path>?<query>.
These sections are further probabilistically split using natural language processing (NLP)
based on English unigram frequencies. The words that resulted from this process are sorted
based on their frequency. It is worth noting that the exploration of the suggestive vocabulary
of the query segment showed overlaps with the one used in benign URLs, thus, introducing
a lot false positives. As such, our work only considers the lists of suggestive words from the
subdomain, domain and path section of the URL. Furthermore, the path section of the URLs
is searched for popular domains, as it is a common practice in phishing URLs to use the tar-
get domain or brand in the path under the form of “www.example.com/brand/signin.html”.
If no suggestive word is found in the path, the first 2500 domains are searched throughout
the path URL section.
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Table 1. Summary of features used.

Feature Description

F1. URL Length
A frequently used feature in this domain. As in previous work (e.g., [25]), our experiments
suggest a discrepancy in the average URL length between legitimate and phishing URLs,
i.e., correlation of URL length and phishing instances (Table 2).

F2. HTTPS usage

The dataset analysis shows a lack of TLS usage in phishing websites. Although TLS
adoption in phishing web sites is growing [2], serving a website through HTTPS requires
more resources, which threat actors might decide to avoid. Furthermore, the low average
lifespan of a phishing webpage could also deter non sophisticated threat actors from using
TLS.

F3. Numerical characters Numerical characters are uncommon for benign domains and especially subdomains in
our dataset.

F4. Special characters
The number of ‘@’ and ‘∼’ characters are uncommon; the tilde is an outdated practice of
accessing a user’s folder on a Linux system, while the ‘@’ causes unexpected behaviour in
the browser.

F5. Number of dots (.)

Given the popularity of hosting or storage services today and the existence of many open
redirect vulnerabilities, some phishing URLs hide their real domain behind the trusted
domain of another company. This can be easily identified by checking if the number of
periods in the path of the URL exceeds one.

F6. Number of hyphens

If there is no domain present in the path portion of the URL, the hyphen count is
determined based on the network location only, otherwise for the whole URL. This allows
the feature to include cases such as “target-brand.example.com” and
“storage.service.com/website/target-brand.example.com/”.

F7. Number of subdomains

Most of the benign URLs use only one subdomain, such as “www”. In contrast, phishing
URLs may use a multi-component subdomain for social engineering purposes with the
misuse of a known brand. Based on this, this feature will flag any URL whose subdomain
components’ count exceeds two.

F8–F10. Suggestive vocabulary
These features indicate the presence of suggestive vocabulary, in the subdomain, domain,
and path sections of a URL. Past work [12] uncovered that suggestive vocabulary, such as
login, banking, confirm, etc, is often found in phishing URLs.

F11–F12. Similarity index This feature reflects the similarity index between the URL’s domain and subdomain, and the
top benign domains in the dataset.

Table 2. Statistical analysis of URL length over the training dataset.

Benign Phishing

Average 57.81 77.54
Median 52 58

90th percentile 90 143
95th percentile 107 218
99th percentile 141 321

Finally, F11 and F12 are based on the similarity index between the URL’s domain and
subdomain, and the top 25K benign domains from [47]. This feature directly targets the use
of domain obfuscation techniques, i.e., as those in Table 3. These are commonly used by
phishing URLs with the aim to trick the users that they are accessing trusted, i.e., known
brand domain. To this end the Levenshtein distance between the target URL and the top
25,000 benign domains is used. To the best of our knowledge, we are the first to use the
Levenshtein distance as a feature in phishing detection model. Specifically, based on our
analysis, if the Levenshtein distance for the domain section (i.e., F11) is lower than six and
greater than zero, then the URL is flagged as suspicious. For the subdomain section (i.e.,
F12), if the distance is lower than three, then the URL is flagged as suspicious. It is worth
noting that our experimentation suggested that subdomains closer to popular domain
names are more suspicious than different variations of a domain. Moreover, zero distances
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on the subdomain must not ignored as these represent the presence of a benign domain in
the subdomain section of a given URL.

Table 3. Domain variation techniques.

Method Example Result

Original example.com
Addition examplea.com

Bitsquatting azample.com
Homoglyph ēxãmple.com

Hyphenation exampl-e.com
Insertion examplme.com
Omission exaple.com
Repetition exxample.com

Replacement esample.com
Subdomain ex.ample.com

Transposition exapmle.com
Vowel-swap exomple.com

TLD inclusion examplecom.com

3.2. Model Selection and Tuning

Based on the F1 scores of the algorithms (Table 4), Random Forest was the best
candidate algorithm to be selected. The F1-score is used here as it is fit for generalising
performance. Furthermore, Figure 1 presents both the ROC and confusion matrix for the
Random Forest model. The maximum area under the curve (AOC) points out that the
model can easily distinguish between the two classes of URLs. The confusion matrix reveals
that it is uncommon for the model to mislabel URLs; only 104 URLs out of 10 thousand
URLs were misclassified.

Table 4. F-measure results of models’ training.

F1-Score

Naive Bayes 98.37
Decision Tree 98.74

Random Forest 98.86
Support Vector Machine 98.76
Multi-Layer Perceptron 97.21

Progressing to the next phase, we conducted the process of hyperparameter tuning or
optimisation which consists of training a model with different values for its parameters.
Trying different permutations of values for these parameters influences prediction accuracy,
thus improving overall performance. It is worth noting that hyperparameter tuning
is computationally expensive. For this reason, only the three algorithms with the best
performance were selected for optimisation, namely: (a) Random Forest, (b) Support Vector
Machine, and (c) Multi-Layer Perceptron.

During the optimisation of the Random Forest classifier, the number of n_estimators
is increased to raise the number of decision trees. By doing so, the model can deliver better
predictions at the expense of both training and prediction time. As such, the number of
n_estimators is set to either 150, 295 or 350. Next, the max_depth of each decision tree is set
to be either 15, 18 or 21. The last optimisation involves the max_features parameter. This
sets the number of maximum features provided to each tree to auto and sqrt.

Tuning the SVM classifier involves searching for the best performing C parameter,
which influences the misclassification threshold of the model. A classifier with a greater C
value will use a smaller-margin hyperplane, rendering the model less prone to delivering
wrong predictions. However, a bigger C value will increase the chance of overfitting.
Finally, the values of the C fed into the GridSearchCV are 10, 100 and 1000.
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Given the opaque nature of the training process of neural networks, the calibration
of the Multi-Layer Perceptron matches a hit-or-miss experimentation. As such, different
models have been trained using most of the optimisation parameters that the MLP classifier
takes as input (see Appendix A).

Finally, our results suggest that Random Forest remains the best performing algorithm,
having a slight performance increase upon optimisation (see Table 5). Figure 2 summarizes
the methodology that has been described in this section, applied to the selected model, i.e.,
Random Forest.

Table 5. Comparison of optimised models.

F1-Score F1-Score (Optimised) Delta

Random Forest 98.86 98.92 0.08
Support Vector Machine 98.76 98.87 0.11
Multi-Layer Perceptron 97.21 98.76 1.25

Figure 1. ROC and confusion matrix of the Random Forest model.
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Figure 2. High-level description of the methodology applied to Random Forest model.

4. Evaluation

Our phishing detection engine was evaluated with a dataset of ∼380,000 benign and
phishing URLs. This dataset included 305,737 benign URLs and 74,436 phishing URLs. We
note that the use of an imbalanced dataset for this evaluation allowed us to evaluate the
selected classifier in a realistic scenario [11]. This holds true as real traffic has proportionally
more benign URLs compared to the phishing ones.

Our results suggest (Table 6), that our detection engine continues to perform very
well using this imbalanced dataset. The high accuracy shows that our proposed model
shows little confusion in classifying URLs, either benign or phishing. Moreover, during
our experiments the model’s sensitivity was slightly higher than precision. This means that
our model tends to produce false positives more frequently than false negatives. This is
an acceptable trade-off, as frequent false positives would only mean irritation to the user,
when benign web sites are classified as phishing. On the contrary, a higher false negative
rate would mean that the model would miss active phishing attacks, which could lead to a
security breach.

Table 6. Optimised Random Forest results on the 380,000 mixed records dataset.

Metric Value

Precision 97.40
Sensitivity 99.06
F-measure 98.22
Accuracy 99.29

The performance of our work in detecting phishing URLs over time was further
evaluated by classifying phishing URLs on a daily basis for six consecutive days (i.e., 5–10
May 2020), as well as individual days after several months, i.e., 15 November 2020 and
25 April 2021 (see Table 7). During this experiments, every day we used the latest URLs
provided by PhishTank at the time of testing. These included all the confirmed online
and active phishing attacks by the PhishTank community at the time of our experiment.
Our results were compared with the performance of Google Safe Browsing (GSB), which
is the default protection that is offered by the most popular web browsers at the time of
our experiments, namely Chrome, Firefox and Safari. To access the most up to date threat
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information from GSB we used its online query functionality instead of relying to local
browser caches, which might not contain latest GSB data [7]. Our experiments, which are
summarized on Table 7, suggest that our phishing detection engine outperforms GSB, i.e.,
on average ∼94% accuracy compared to ∼45%.

Table 7. Evaluation of accuracy over time using PhishTank.

Date (# URLs) Google Safe Browsing Our Work

5 May 2020 (14,671) 44.47 94.80
6 May 2020 (14,666) 44.33 94.78
7 May 2020 (14,705) 44.94 94.75
8 May 2020 (14,608) 45.34 94.63
9 May 2020 (15,311) 45.33 94.64
10 May 2020 (13,788) 43.60 95.08
15 Nov. 2020 (11,663) 40.90 93.66
25 April 2021 (9652) 31.61 94.01

5. Conclusions

Phishing is one of the main attack vectors that is often used by attackers in the
current threat landscape. In this work, we proposed a phishing detection engine that
uses supervised machine learning on features extracted from URLs. In doing so, we
experimented, configured and optimised different supervised machine learning algorithms
that are typically used throughout this area of work. Contrary to previous works in the
literature, we evaluated the work with an imbalanced dataset, where the number of benign
URLs are considerable more than the ones hosting a phishing attack. This allowed us to
evaluate the protection that is offered in a realistic scenario, as such a ratio of benign and
phishing URLs is more likely to occur in a real system.

Furthermore, we evaluated the performance of the phishing detection over time.
This involved the evaluation of phishing detection after several days or months, without
model retraining. Our experiments uncovered that the detection capability of our model
remains similar even if it is evaluated against a dataset that is available several months
after its training. This suggests that a thorough feature selection and model tuning, as
the one described in this work, could allow an organisation to avoid frequent model
retraining, which is expensive in a production environment. For future work we would
like to explore the effectiveness of our methodology on other datasets, as well as the
experimentation with more novel features and their influence. Additionally, we would
like to investigate the robustness of our methodology against adversarial attacks that are
frequently used by the malicious parties. Having finalized the feature list and fortified
our solution against malicious activities our goal is the inclusion of our phishing detection
engine as a component of a system that is deployed in a real-world production environment
where competitive solutions seem to under perform.
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Appendix A. Models’ Configuration

Appendix A.1. Naive Bayes

"name": "Naive Bayes", "filename": "naive_bayes", "model": GaussianNB()
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Appendix A.2. Decision Tree

"name": "Decision Tree",
"filename": "decision_tree",
"model": DecisionTreeClassifier(random_state=1)

Appendix A.3. Random Forest

"name": "Random Forest",
"filename": "random_forest",
"model": GridSearchCV(
RandomForestClassifier(random_state=1),
[
{
"n_estimators": [150, 295, 350],
"max_features": ["auto"],
"min_samples_split": [8, 12],
"max_depth": [15, 18, 21],
}
],
cv=5,
)

Appendix A.4. Support Vector Machine

"name": "Support Vector Machine",
"filename": "support_vector",
"model": GridSearchCV(
SVC(kernel="rbf", random_state=1),
[{"C": [1, 10, 100, 1000],}],
cv=5,
)

Appendix A.5. Multilayered Perceptron

"name": "Neural Network",
"filename": "ml_perceptron",
"model": GridSearchCV(
MLPClassifier(max_iter=2500),
[
{
"hidden_layer_sizes": [
(25, 50, 25),
(50, 50, 50),
(50, 100, 50),
(100,),
],
"activation": ["tanh", "relu"],
"solver": ["sgd", "adam"],
"alpha": [0.0001, 0.05],
"learning_rate": ["constant", "adaptive"],
}
],
cv=5,
)
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