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Abstract: Classification of resource can help us effectively reduce the work of filtering massive
academic resources, such as selecting relevant papers and focusing on the latest research by scholars
in the same field. However, existing graph neural networks do not take into account the associations
between academic resources, leading to unsatisfactory classification results. In this paper, we propose
an Association Content Graph Attention Network (ACGAT), which is based on the association
features and content attributes of academic resources. The semantic relevance and academic relevance
are introduced into the model. The ACGAT makes full use of the association commonality and the
influence information of resources and introduces an attention mechanism to improve the accuracy
of academic resource classification. We conducted experiments on a self-built scholar network and
two public citation networks. Experimental results show that the ACGAT has better effectiveness
than existing classification methods.

Keywords: academic resource; attention; association features; content attributes; classification

1. Introduction

With the rapid development of the internet, we have entered the era of big data [1]. In
the academic field, scientific research has been supported and a large number of academic
resources have been generated with the development of science and technology. Academic
resources include a large number of academic research papers, academic researchers, and
all the information that can be mined, such as an author’s research field and activities. Faced
with the rapid growth of information resources, it is difficult for users to filter information.
Academic resources are different from general information resources [2]. On the one hand,
there is a wide range of information sources, and information is freely released. On the
other hand, there are many and diverse types of academic resources. Therefore, it is
particularly important to classify academic resources quickly and effectively [3]. At the
same time, as an important means of resource organization and management, information
classification [4] can effectively integrate academic resources and easily realize information
retrieval, which is also the premise and foundation of personalized recommendation.

However, existing graph neural networks still have some limitations in the classi-
fication of academic resources. They ignore the influence information of the academic
resources and allocate the neighborhood aggregation coefficient uniformly. Furthermore,
they only use the connectivity and do not fully utilize the association information of edges,
such as the strength and type [5]. As a result, the deviation of information aggregation
in an academic resource network affects the accuracy of classification. In order to cope
with the challenges above, this paper proposes an Association Content Graph Attention
Network (ACGAT), which is based on association features and content attributes in order
to classify academic resources. First, on the one hand, the model mines the association
commonality among academic resource nodes to improve the aggregation of the network
by reducing the existence of isolated nodes in the existing graph attention network. On the
other hand, the model calculates the influence of a node, which enhances the positive effect
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of the node on the network and weakens the negative impact of the isolated nodes. Then,
the content attributes of academic resources are extracted to mine the semantic similarity
of nodes, which enriches the content of nodes. Finally, the model integrates the acquired
information of academic relevance and semantic relevance from two dimensions. The
attention mechanism is used to update the features of academic resources. The ACGAT
can improve the accuracy of the classification of academic resources, including the types of
papers and the research fields of the scholars. In addition, it can also classify other social
networks that can mine edge information.

2. Related Work

Graph data contain two types of information: attribute information [6] and structure
information [7]. Attribute information describes the inherent properties of objects in a
graph, and structure information describes the information on associations between objects.
The structure generated by associations is not only helpful for the description of nodes
in graph data, but also plays a key role in the description of the whole graph. It is a key
challenge in graph learning to effectively learn the complex non-Euclidean structure of
graph data. The existing graph-embedding methods aim to learn the low-dimensional
potential representations of nodes in a network [8]. The learned feature representation can
be used as a feature in various graph-based tasks, such as classification, clustering, and link
prediction. The traditional methods of realizing graph learning are mainly divided into
two categories. One is comprised of embedding methods based on matrix decomposition,
such as the graph factorization (GF) algorithm [9] and GraRep [10]. The other is based
on a random walk, such as DeepWalk [11], LINE [12], and node2vec [13]. However, the
embedding of traditional graph learning cannot capture complex patterns and does not
incorporate node features, resulting in low-accuracy node classification results.

A graph neural network (GNN) [14] is a kind of neural network model that can
operate on graph structure data to convey graph information. It uses the node information
and structure information of a graph to effectively mine the information contained in the
graph data. GNNs have achieved excellent results in many application fields, such as
image recognition [15] and heterogeneous graph learning [16]. Convolution operations
have been extended to graph learning with graph convolution networks (GCNs) [17].
Niepert et al. [18] proposed a convolution method that was applied to a graph data model,
which needed to sort graph nodes and had high complexity. Kipf et al. [19] mapped graph
features in the time domain to the spectral frequency domain and approximately simplified
them with Chebyshev polynomials, which achieved successful results in semi-supervised
classification of graph nodes. In addition to graph convolution networks, many researchers
have introduced attention mechanisms to implement graph node classification. Petar [20]
first proposed a graph attention network (GAT) that assigned different weights to different
nodes in the neighborhood. Gong and Cheng [5] added edge feature vectors directly,
which extended the attention mechanism proposed for the first time and focused on each
type of feature neighborhood. Gilmer et al. [21] introduced an edge network in which the
eigenvectors of edges were used as input and output matrices to transform the embedding
of adjacent nodes. Lu et al. [22] proposed a channel graph attention network based on edge
content, which could find the fine-grained signals of node interaction from text information
and improve the accuracy of node characterization. The classification results of graph
nodes show that the adaptive ability of GATs makes them more effective in fusing the
information of node features and graph topology.

In existing research, it was effective to combine edge content in information aggre-
gation. However, the feature content on the edge of the connections, such as intensity,
has not been fully explored. In the classification of academic resources, ignoring the rich
information on associations between resource nodes will lead to unsatisfactory classifica-
tion results. Therefore, in this paper, we use semantic relevance and academic relevance
(commonality between resources and influence information) for information aggregation
to effectively improve the classification accuracy of academic resource network nodes.
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3. Definition
3.1. Definition of Notations

We define the academic resource network as an undirected graph G = (V, E), where
V is the node set, and |V| = N is the number of nodes. The feature vector of a set of nodes
can be expressed as h = {h1, h2, . . . , hN}, hi ∈ RF. The feature vector is generated by
keywords of statistical academic resources, where F is the dimension of the node features.
The size of matrix h is N ∗ F, which represents the features of all nodes in the graph, and
each node is represented by a word vector of dimension F. Each element of the word
vector corresponds to a word, and the element has only two values of 0 (nonexistence)
or 1 (existence). E is a set of edges that indicates the connectivity between nodes. The
aggregation coefficients involved in the aggregation process are the academic association
commonality coefficient eij, association influence coefficient βij, and semantic similarity
coefficient αij. We define a minimal set of definitions required to understand this paper in
Table 1.

Table 1. Commonly used notations.

Notations Descriptions

G A graph.
V The set of nodes in a graph.
vi A node vi ∈ V.
E The set of edges in a graph.
N The number of nodes, N = |V|.
h ∈ RF The feature vector of a set of nodes.
F The dimension of the node features.
qij The academic association commonality coefficient.
eij The weighted coefficients of the association commonality.
λij The association influence coefficient.
αij The semantic similarity coefficient.
A The influence factor matrix.
D The degree matrix, D.
d(vi)

The degree of node vi.
M The number of neighbors of a node v.
θ The shared attention mechanism.
Nv The neighbors of a node v.
W The sharing parameter.
[· ||· ] Splicing operation.
Wε, We, WD Learning parameters, including the academic semantic relevance,

academic association commonality, and influence coefficient.
λij The final coefficient.
σ(· ) The activation function.
K The multi-attention number.

3.2. Academic Resource Networks

In the construction of academic resource networks, this paper constructs a cooperation
network based on the cooperative relationships between scholars and a citation network
based on the citation relationship between papers. In the cooperation network, vi represents
an author, the node feature F is described by the keywords extracted from the author’s
published papers as the content attributes of the node, and the association information on
the edge indicates the cooperation relationships between authors. In the citation network,
vi stands for a paper. The keywords of the papers are used as content attributes to represent
the feature F of the node. The edge indicates that there is a citation relationship between
papers. We provide two simple examples of a scholar cooperation network (Figure 1a) and
a citation network (Figure 1b).
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(a) (b)

Figure 1. (a) Scholar cooperation network. (b) Citation network.

In the scholar cooperation network, nodes represent scholars, and the edges between
nodes represent the cooperative relationships between scholars. The final aggregation
coefficient λij is determined by the semantic similarity coefficient αij, association influence
coefficient βij, and weighted coefficients of the association community eij. In the citation
network, nodes represent papers, and the edges between nodes represent the citation
relationships between papers. The black solid line represents the actual reference relation-
ship, and the red dotted line represents the built reference relationship. Similarly, the final
aggregation coefficient λij is also composed of three coefficients.

4. Proposed Method

We propose an Association Content Graph Attention Network (ACGAT) based on
association features and content attributes to classify academic resources. Semantic associa-
tion and academic association are introduced into the model. Firstly, the discrete academic
resources are integrated into an academic resource network by using the association com-
monality and influence information between resources through a transformation operation.
Then, an attention mechanism [23] is used to aggregate the neighborhood information to
obtain the final node features to improve the accuracy of academic resource classification.
The overall framework is shown in Figure 2.

Figure 2. Diagram of the overall framework of the Association Content Graph Attention Network (ACGAT). The left part is
the transformation operation, which transforms the discrete points into the resource graph structure. The right part is the
aggregation operation, which aggregates the domain information and uses the final aggregation coefficient λij to get the
new feature representation of the central node.
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4.1. Mining and Representation of Academic Relevance

Academic relevance includes the influence information and the commonality between
resources. Inspired by PageRank [24], the influence of the node is of great significance for
the aggregation of information of neighboring nodes. However, the existing model does
not consider the influence factor. In collaborative networks, the author weight represents
the degree of activity of authors in a certain research field. In citation networks, node
weights represent the academic relevance and influence in the networks. Thus, the ACGAT
introduces the influence factor of the node, thus enhancing the positive effect of the node
on the network and weakening the possible negative effects of isolated nodes.

The calculation method for the influence factor matrix A is as follows:

• We calculate the degree matrix D of a network of N nodes, where d(vi)
is the degree of

node vi.

D =


d(v1)

0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...
0 0 . . . d(vN)


• The influence Dij of neighboring node j on central node i is expressed as the ratio

of the degree of node j to the degree of node i, which can be obtained according to
Equation (1).

• The influence factor βij of each node and A =


β11 β12 . . . β1N
β21 β22 . . . β2N

...
...

. . .
...

βN1 βN2 . . . βNN

 are ob-

tained through normalization according to Equation (2).

Dij =
dj

di
(1)

βij =
Dij

∑M
m Dim

(2)

Dij is the influence of node j on node i. In the author cooperation network, Dij is the
ratio of the number of collaborators of author j to that of author i. In the citation network,
Dij is the ratio of the number of citation associations of paper j to that of paper i. βij is the
influence factor of the normalized final node j on node i.

In this paper, we not only introduce the influence of academic resource nodes, but
also integrate the association commonality between nodes into the model. In the citation
network, the citation relationship between papers is a sparse matrix. We refer to the
network-embedded model LINE [12], which not only obtains the local similarity of two
nodes in the network, but also retains the second-order similarity between a pair of nodes
(u, v), that is, the similarity of their adjacent network structures. Citation networks have
not only first-order similarity in content, but also second-order similarity in structure [25].
If the second-order similarity is high, there are no direct citation relationships, but there are
a large number of co-cited relationships between papers. The higher the correlation, the
more similar the two papers are. As shown in Figure 3, the relationship between paper
6 and paper 7 is a first-order local similarity, while the relationship between paper 5 and
paper 6 belongs to second-order global similarity because they have the same co-citations,
but no direct reference relationship. Based on this, when we construct the correlation
matrix in the citation network, we are not limited to the information of directly related
papers. We consider the papers that are adjacent and similar in structure, but have no real
citation relationships. The shortest path [26] between nodes can exactly reflect the structural
relationships between authors. We calculate the shortest path between nodes in the citation
network as the association information between nodes. According to Equation (3), we
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get the coefficient qij as the coefficient of association commonality between two nodes in
the citation network. qij is positively correlated with the degree of association and the
commonality between two papers.

qij =
1

disij
(3)

Figure 3. Diagram of second-order relationships between resources.

Similarly, in the author cooperation network, nodes represent scholars and the con-
necting edges indicate that there is cooperation between authors. When the number of
papers co-authored by two authors is larger, it means that the collaboration between the
authors is closer, the commonality between the authors is greater, and the research fields are
more related. As shown in Figure 4, author A has published six papers with author B, and
author A has published three papers with author C. Obviously, the cooperation intensity
between A and B is higher than with of other collaborators. Therefore, we introduce the
cooperation strength into the scholar network as the association coefficient qij of the nodes
in the model.

Figure 4. Schematic diagram of scholar cooperation. The number between scholars indicates the
number of articles written in collaboration.

Existing graph neural networks have a drawback in the representation of academic
resource relationships, that is, the adjacency matrix belongs to a binary matrix (0 or 1),
which can only indicate the existence of connectivity between nodes. However, the connec-
tion edge in the graph of an academic resource network contains rich information, such as
strength and type, which is not a binary index variable. Therefore, the ACGAT combines
the common association features of the edges and normalizes them in a bidirectional man-
ner. We obtain the weighted coefficients eij of the association commonality between nodes
i and j according to the Equation (4):

eij =
qij

∑M
m=1 qim

, (4)

where M is the number of neighbor nodes of the central node. In the citation network, M
represents the number of papers related to paper i in the association graph constructed
above, and qij represents the reciprocal of the shortest path between papers. In the author
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cooperation network, M represents the number of authors who have cooperative relation-
ships with author i, and qij represents the intensity of paper cooperation between authors.

After obtaining the weighted coefficient of correlation commonality, we transform
the original binary adjacency graph (Figure 5a) into a bidirectional edge feature graph
(Figure 5b) about the central node i, which is not a symmetric matrix and retains more
abundant academic resource information.

(a) (b)

Figure 5. Adjacency feature graph. (a) Original binary adjacency graph; (b) an asymmetric bidirec-
tional edge feature graph of the central node.

4.2. Aggregation Based on an Attention Mechanism

In the application of academic resources, existing graph attention networks only cal-
culate the attention based on the semantic similarity of nodes, but often neglect association
information between academic resource nodes. The ACGAT introduces the semantic rele-
vance and academic relevance of academic resources into the model and integrates them.
In the process of the dissemination of information of graph nodes, it is necessary to learn
three distribution parameters, which are the semantic similarity, association commonality,
and influence information. According to these three parameters, we get the final updated
feature of the aggregated attention coefficient and classify the academic resource nodes to
improve the accuracy.

The ACGAT takes the semantic feature h = {h1, h2, . . . , hN}, hi ∈ RF of the academic
resource node as input, and all of the node features will be transformed by the linear
change matrix Wg. A shared attention mechanism θ is used on the node to calculate the
measurement of similarity between nodes according to the features of the input nodes.
Similarly to the graph attention model [20], this model calculates the measurement of
similarity between the adjacent node and the center node using Equation (5):

εij = θ
([

Whi||Whj
])

, j ∈ Ni, (5)

where Ni is the neighbor collection of node i. First, a linear-mapping sharing parameter W
is used to increase the dimensions of the vertex features. Then, [· ||· ] splices the transformed
features of vertices i and j. Finally, θ(· ) maps the spliced high-dimensional features to a
real number.

The similarity measurement of the content features is normalized by the so f tmax
function [27] of Equation (6) to obtain the attention coefficient αij of the academic seman-
tic features.

αij = so f tmax
(
εij
)
=

exp
(
εij
)

∑k∈Ni
exp(εik)

(6)

The advantage of using LeakyReLU is that in the process of back propagation, the
gradient can also be calculated for parts of the input of LeakyReLU activation function that
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are less than zero [28]. The factor calculated by the attention mechanism is obtained using
Equation (7).

αij = so f tmax
(
εij
)
=

exp
(

LeakyReLU
(
θ
[
Whi‖Whj

]))
∑k∈Ni

exp(LeakyReLU(θ[Whi‖Whk]))
(7)

Then, the aggregation coefficient is obtained as shown in Equation (8):

λij = Wεαij + Weeij + WDβij, (8)

where Wε, We, and WD are learning parameters that reflect the influence of three dimen-
sions of academic semantic similarity, including academic semantic relevance, academic
association commonality, and the influence coefficient. λij is the coefficient of the final
fusion of academic resources.

The final aggregate attention coefficient is used to calculate the linear combinations
of related features. The result is the final output of each node, and σ(· ) is the activation
function, as shown in Equation (9).

h′i = σ

(
∑

j∈Ni

λijWhj

)
(9)

According to the existing multiple-attention mechanism [29], K independent attention
mechanisms are used to execute Equation (9), and their features are related. The essence
of multiple heads is the calculation of multiple independent attentions, which acts as an
integrated function to prevent over-fitting. In the last layer of the neural network, the
output feature expression of the result is updated, resulting in Equation (10).

h′i = σ

(
1
K

K

∑
k=1

∑
j∈Ni

λk
ijW

khj

)
(10)

5. Experiment

In order to verify the feasibility of the ACGAT, we conducted comparative experiments
on a self-built dataset and two public datasets. The following two sub-sections will
introduce the datasets and analyze the results.

5.1. Datasets

In this paper, we used a self-built scholar cooperative network dataset, SIG, and the
public citation network datasets Cora and Citeseer [30] to verify the classification effect of
our model on academic resources. The basic situations of these three data networks are as
follows.

SIG is composed of research scholars of special interest groups on the ACM website,
including information retrieval (IR), the Ada programming language (DA), information
technology education (ITE), computer graphics (GRAPH), accessibility and computing (AC-
CESS), bioinformatics and computational biology (BIO), knowledge discovery in data (KDD),
and artificial intelligence (AI)—a total of eight categories. We selected 3669 scholars who
published at least four papers in various fields for research. According to their published
academic papers, we obtained the cooperation relationships between scholars, selected the
keywords with word frequencies greater than 10 as the feature dimension, and constructed
a scholar cooperation network. The scholar cooperation network contained 3669 nodes and
10,399 edges, and each node had 3664 feature dimensions.

Cora is composed of machine learning papers, which are divided into seven categories:
case-based, genetic algorithms, neural networks, probabilistic methods, reinforcement
learning, rule learning, and theory. In the final corpus, each paper was cited by at least
one other paper. There were 2708 papers in the whole corpus. There were 2708 nodes and
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5429 edges in the citation network of the Cora dataset, and each node had 1433 feature
dimensions.

Citeseer contains 3312 scientific publications, which are divided into six categories:
agents, artificial intelligence (AI), database (DB), information retrieval (IR), machine learn-
ing (ML), and human–computer interaction (HCI). The dataset contains 3312 nodes and
4732 edges, and each node has 3708 feature dimensions.

The specific information of the three datasets is shown in Table 2.

Table 2. Summary of the datasets.

Datasets Nodes Edges Features Classes

Scholar cooperation network SIG 3669 10,399 3664 8

Citation network
Cora 2708 5429 1433 7

Citeseer 3312 4732 3708 6

We implemented the ACGAT based on the PyTorch framework. All the three datasets
were split into training, validation, and test subsets with a ratio of 8:1:1. In all experiments,
two layers of the ACGAT were used, and Adam was used as the optimizer. The learning
rate was 0.005. For input features and normalized attention coefficients, we used a dropout
rate of 0.6 and L2 regularization with a full attenuation of 0.0005.

5.2. Experimental Analysis

We dealt with the three datasets individually. When the authors in the scholar coop-
eration network of the the SIG had the same name, we adopted the method of “author
name + organization” to determine unique authors. The cooperation intensity between
authors was the feature of the association commonality between nodes. In the citation
network datasets, Cora and Citeseer, we calculated the shortest path between nodes as
the feature of the association commonality between nodes and constructed an incidence
matrix of the citation networks for node classification. The three networks constructed
with this method are shown in Figure 6, in which the isolated nodes in the datasets are
removed from the Citeseer network diagram. Different sizes of nodes in the network graph
indicate the influence of academic resources on the network graph. Large nodes have great
influence on adjacent nodes and obvious aggregation effects.

We compared the proposed method with five existing benchmark methods—
DeepWalk [11], LINE (2nd) [12], structural deep network embedding (SDNE) [31], a graph
convolutional network (GCN) [19], and a graph attention network (GAT) [20]. We also
compared it with versions of the proposed model that only add the association common-
ality feature (A-GAT) or only add the association influence factor (C-GAT). Due to space
limitations, we show only visualized classification results of the traditional methods (Fig-
ures 7–9). We used classification accuracy as the experimental index, which was obtained
from Equation (11) [32].

Accuracy =
TP + TN

TP + FP + TN + FN
, (11)

where TP (true positives) is the number of positive cases that are correctly classified. FP (false
positives) is the number of false positive cases. FN (false negatives) is the number of false
negatives. TN (true negatives) is the number of cases that are correctly classified as negative.
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(a) SIG

(b) Cora (c) Citeseer

Figure 6. The networks constructed for the three datasets. (a) SIG scholar collaboration network.
(b) Cora citation network. (c) Citeseer citation network. In the networks, different colors represent
different categories, and the size of a node represents its influence on other nodes.

(a) DeepWalk (b) LINE (c) SDNE

Figure 7. A comparison of the visualization results of the three methods for the SIG dataset. (a) The result of DeepWalk,
(b) the result of LINE, and (c) the result of structural deep network embedding (SDNE). Differently colored nodes rep-
resent different categories. The dataset contains eight categories (Ada programming language (DA); computer graphics
(GRAPH); information retrieval (IR); information technology education (ITE); accessibility and computing (ACCESS);
artificial intelligence (AI); computational biology (BIO); knowledge discovery in data (KDD)).
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(a) DeepWalk (b) LINE (c) SDNE

Figure 8. A comparison of the visualization results of the three methods for the Cora dataset. (a) The result of DeepWalk, (b)
the result of LINE, and (c) the result of SDNE. Differently colored nodes represent different categories. The dataset contains
seven categories (neural networks; rule learning; reinforcement learning; probability methods; theory; genetic algorithms;
case-based).

(a) DeepWalk (b) LINE (c) SDNE

Figure 9. A comparison of the visualization results of the three methods for the Citeseer dataset. (a) The result of DeepWalk,
(b) the result of LINE, and (c) the result of SDNE. Differently colored nodes represent different categories. The dataset
contains six categories (agents; artificial intelligence (AI); database (DB); information retrieval (IR); machine language (ML);
human–computer interaction (HCI)).

The classification results for scholars in the SIG are shown in Figure 10. The classifica-
tion results for papers in the Cora and Citeseer citation networks are shown in Figure 11.
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Figure 10. Classification results for SIG.

In the experiment on the scholar network dataset SIG, the use of A-GAT means that
only the cooperation intensity relationships between scholars are added as the association
commonality feature for the model; the use of C-GAT means that only the weights of the
scholar nodes were added as the content influence feature for the model. As shown in
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Figure 10, the ACGAT achieves the best classification results compared with the other
seven models. It shows that in the scholar network, under the original expression of the
authors’ academic similarities, combining the cooperation intensity between the authors
and an author’s influence weight can effectively improve the division of an author’s field.
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(b)

Figure 11. (a) Classification results for Cora. (b) Classification results for Citeseer.

Similarly, in the experiments on the Cora and Citeseer citation network datasets, A-
GAT only adds the citation association commonality information between papers, that is,
combining the shortest distance information between nodes; C-GAT only adds the weight of
paper nodes as the feature of content influence. As shown in Figure 11, ACGAT also obtains
the best classification result compared with other seven models. The results show that
in the citation network, under the original paper feature representation, the combination
of the papers’ similarity and structure relevance information can effectively improve
the classification results of electronic academic resources. However, after combining the
commonality features and influence information on Citeseer, the classification effect is
not improved much compared with the A-GAT. The reason is that the classification in the
Citeseer dataset is more general than that in the Cora dataset, and there are some isolated
nodes, which affects the classification effect.

In addition to the classification accuracy, we also compared the Micro-F1 [32] and
Macro-F1 [33] of the models. Equations (12)–(14) [34] and explanations of the two indices
are given in the following.

Precision =
TP

TP + FP
(12)

Recall =
TP

(TP + FN)
(13)

F1 = 2× Precision × Recall
Precision + Recall

(14)

• Micro-F1: We calculate this metric globally by counting the total true positives, false
negatives, and false positives, and then calculate F1.

• Macro-F1: We calculate this metric for each label and find its unweighted mean. This
does not take label imbalance into account.

The experimental results are shown in Table 3. In addition, we compared the accuracy
curves over 300 epochs (one epoch is when all of the training samples have a forward
propagation and a back propagation in the neural network) of five graph neural network
models, including the model that we present in this paper. The curve comparison diagrams
are shown in Figures 12–14, which prove the reliability of our model.
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Table 3. Micro-F1 and Macro-F1 of various algorithms.

Dataset
Metrics (%)

SIG Cora Citeseer

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 60.91 53.66 57.75 54.12 41.63 35.70
LINE 65.28 56.52 62.55 61.23 54.49 49.34
SDNE 69.23 60.01 70.11 67.47 60.01 55.38
GCN 75.31 69.32 78.72 71.38 64.35 58.21
GAT 80.20 77.65 86.83 78.84 68.72 64.36

A-GAT 83.11 75.27 88.71 83.26 73.26 69.24
C-GAT 86.26 81.39 88.43 85.17 71.11 66.83
ACGAT 90.67 85.22 92.62 88.54 74.69 70.30
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Figure 12. The comparison results of neural network models on the SIG scholar network.
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Figure 13. Comparison results of neural network models on the Cora citation network.
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Figure 14. Comparison results of neural network models on the Citeseer citation network.

From Table 3 and Figures 7–9, we can observe that the performance of the network
representation learning method DeepWalk, which is based on a random walk, and the LINE
method, which is based on the assumption of domain similarity, was not good for the three
academic resource datasets, and they could not effectively classify different types of nodes.
This indicates that more similar nodes have the same vector representations with a certain
deviation by relying on simple empirical indicators, which cannot reflect the structural
characteristics around the nodes well. In contrast, SDNE, which is based on deep learning,
achieved better classification results than the traditional methods. SDNE performed better
in the self-built scholar cooperation network, SIG, and the Cora citation network, but the
node classification effect was still unsatisfactory due to the limited modeling ability.

The GCN assigned the same weights to the domain nodes [35], and its classification
effect was inferior to that of the GAT. By introducing the attention mechanism, the graph
attention network calculated the weight of each node’s neighbor nodes and learned to
allocate different aggregation coefficients to obtain new features of nodes. The A-GAT, C-
GAT, and ACGAT proposed in this paper are all based on the GAT combined with the edge
information and the influence information. The ACGAT mines the resource association
features and content attributes and integrates an attention mechanism to update the node
features of academic resources. Figures 12–14 show that the ACGAT has better effectiveness
than the existing classification methods.

6. Conclusions

The classification of academic resources has important research status and practical
significance. This paper mainly studies the use of academic resources to aggregate domain
information for classification. We focused on the content attributes, structure attributes, and
the edge attribute information of academic resources. The proposed model combines the
academic semantic relevance, academic association commonality, and association influence
factors to describe the characteristics of an academic resource network in order to mine
more abundant information. At the same time, the attention mechanism is used to model
and learn the different coefficients to get the best proportional distribution. We conducted
experiments on a self-built scholar network dataset and public citation network datasets.
The experimental results show that the algorithm in this paper has an improvement of
2.5–4.7% compared with the original graph attention network, and the classification effect
is better than that of other existing methods. In addition to academic resource classification
tasks, the ACGAT is also suitable for dealing with other social network classification tasks
that are based on graph data. In the future, we will improve the model to realize the
classification of heterogeneous vertices in academic networks.
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