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Abstract: Reconstructed 3D foot models can be used for 3D printing and further manufacturing
of individual orthopedic shoes, as well as in medical research and for online shoe shopping. This
study presents a technique based on the approach and algorithms of photogrammetry. The presented
technique was used to reconstruct a 3D model of the foot shape, including the lower arch, using
smartphone images. The technique is based on modern computer vision and artificial intelligence
algorithms designed for image processing, obtaining sparse and dense point clouds, depth maps,
and a final 3D model. For the segmentation of foot images, the Mask R-CNN neural network was
used, which was trained on foot data from a set of 40 people. The obtained accuracy was 97.88%.
The result of the study was a high-quality reconstructed 3D model. The standard deviation of linear
indicators in length and width was 0.95 mm, with an average creation time of 1 min 35 s recorded.
Integration of this technique into the business models of orthopedic enterprises, Internet stores, and
medical organizations will allow basic manufacturing and shoe-fitting services to be carried out and
will help medical research to be performed via the Internet.

Keywords: 3D foot reconstruction; photogrammetry; segmentation; orthopedic shoes; deep
neural networks

1. Introduction

According to statistics [1] from the World Health Organization (WHO), about 80%
of people suffer from various diseases of the locomotor system, with 45% having flatfoot.
In addition, about 25% of women and 15% of men over 30 years of age suffer from foot
diseases associated with wearing uncomfortable shoes.

Many business processes have moved to a remote format in the last two years due
to COVID-19. Nowadays, 3D scanning of human body forms is an emerging field, and
the results of such studies can significantly improve the quality of virtual fitting, clothing
selection, and the detection of medical diseases in a remote format. This paper deals with
the reconstruction of the shape of the human foot.

Kulikajev et al. carried out a series of studies [2–4] involving 3D reconstruction of
the entire human body. These studies were unique due to their consideration of data as
objects from an imperfect real-world frame; that is, the original data for reconstruction may
include noise, glare, highlights, and low photo quality. Two authors’ datasets were used in
the experiments: a dataset containing synthetic data and a dataset containing real-world
data. The synthetic dataset included data generated using Blender software, while the real
dataset included human poses recorded using two Intel Realsense devices. In the case of
the synthetic dataset, the authors specified strict measurement requirements, including
the distance from the cameras to the object and to the ground and the tilt angle. When
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generating the real-world dataset, participants performed specified actions in front of the
camera (e.g., raise an arm, touch nose, turn away from the camera). It was noted that
in the case of the real dataset, there were no special requirements for the elimination of
glare and illumination in the room. The authors’ methodology involved three stages of
data processing, including a deep auto-refining adversarial neural network capable of
working with real-world depth data of an entire human body. The results were obtained
according to EarthMover and Chamfer distance metrics as 0.059 and 0.079, respectively.
The processing of noisy real-world data was possible due to the authors’ approach of
training the adversarial auto-refiner. The addition of adversarial refinement to the network
allowed this approach to work with real-world depth-sensor data. The authors also paid
attention to the quality of reconstruction depending on the sex of the subjects and the
position of the body, considering the possibility of the network being able to restore the
distinctly male or female features. The obtained results significantly improved various
processes, including virtual fitting, the selection of clothes, and the detection of diseases
in a remote format. The purpose of this work was to create a 3D model of the foot
suitable for the individual tailoring of shoes. Since the human foot has some anatomical
features that require measurements to the nearest millimeter, attention should be paid to
the accurate reconstruction of the foot as a separate object of the human body. In the case
of reconstruction of the whole body, an error of a few millimeters is acceptable, but when
sewing shoes, this can lead to complications of existing foot diseases due to discomfort
from shoes being the wrong size.

Traditional methods of foot reconstruction, such as the use of stationary laser scanners
or plaster castings, cannot be completed with only remote participation from the customer.
Orthopedic tailoring of individual shoes is a complicated process due to many different
factors, such as individuals having swollen feet, various diseases, and missing parts of the
foot. Therefore, in order for custom orders to be completed, companies currently need to
operate logistics centers or open branch offices in different cities.

This study considers the use of modern computer vision algorithms, photogrammetry,
and machine-learning methods to create 3D foot models based on a video stream obtained
from a smartphone. Existing analog approaches often focus only on the extraction of foot
parameters for size recommendations in online stores, but not on the full reconstruction of
the foot shape. Full reconstruction includes the lower arch, which is particularly important
because it is impossible to sew shoes without this information. As such, the creation of a
methodology and development of a mobile application based on this information will allow
orthopedic enterprises to improve the technological process of manufacturing individual
shoes and enable them to fulfill custom orders remotely.

The scientific novelty of this work lies in the reconstruction of 3D human foot models,
including the lower arch, using photogrammetry and deep NNs. To obtain a high-quality
3D model, a series of RGB images were obtained via processing of a standard video record-
ing. The offered technique can be modified and used in the field of medical diagnostics of
orthopedic diseases.

Additionally, 3D models obtained based on the presented methodology can be used
in the following areas:

• Orthopedic tailoring of individual shoes. Enterprises can use 3D models for subse-
quent printing on industrial 3D printers and for the construction of individual shoes
based on the original pads;

• Medical diagnostics. Medical staff with orthopedic qualifications will be able to
diagnose the initial stages of diseases affecting the human locomotor system via a
remote format;

• Online shoe selection. People who actively use online stores often lack necessary
information regarding their shoe size or face a discrepancy in the size grid. The
methodology allows them to accurately determine their size, according to the dimen-
sional grid, down to the millimeter.
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The purpose of this study was to develop a technique that involves using a standard
smartphone video camera as a tool for obtaining 3D models of the human foot shape,
including the lower arch.

Section 2 analysis of existing technology solutions provides a summary analysis
containing information on current products on the market and technologies for 3D scanning.
The details about the proposed methodology are subsequently determined in Section 3. This
section presents a methodology of reconstructing the 3D foot shape and describes dataset
formation, feature extraction and matching, structure from motion, segmentation foot
images, the dataset for training, the neural network, estimation and filtering, depth maps,
and a complete scheme of the approached methodology. Information about the experiments
performed is contained in Section 4. The experiments section also includes information
on training the neural network, the effects of various feature-extraction algorithms and
resolutions on quality, and standard deviations. Section 5, Discussion, presents the possible
limitations of the developed methodology. A summary of the results is provided in
Section 6, Conclusions.

2. Analysis of Existing Technology Solutions
2.1. Developed Products and Applications

Today, there are several software products that functionally include the reconstruction
of 3D models of human feet.

For instance, 3D Avatar feet [5] is a mobile application developed by Instituto de
Biomecanica (IBV), Valencia, Spain. This system enables obtaining a reconstructed 3D
foot model based on three images. The system is based on principal component analysis
(PCA) [3], and its application on 40 parameters allows the creators to obtain the maximum
error of 1.7 mm on length and width rates. At the output, the user receives a summary of
more than 20 parameters (length, width, different foot girths) and a 3D model in STL/PLY
format. However, a significant disadvantage of the system is the absence of an individual
reconstructed lower arch of the 3D model. This fact makes it only applicable for shoe size
recommendations and not for orthopedic tailoring.

FITTIN [6] is a piece of software that was developed by a Russian IT enterprise. The
authors of the system offer the user two methods for 3D reconstruction with the help of
special sensors and on the basis of a series of images obtained from a smartphone. The
FITTMScope device [7] consists of a camera and special probes, which it is assumed are to
be used when working with special sensors. Information about the position of each probe
is collected in real-time by the built-in mini-video camera with illumination. Indicator
probes provide information about cross-sections of the inner surface in each shot, and the
data obtained are then converted into a non-linear space or three-dimensional coordinate
system, and the initial point cloud is formed into a 3D model. In the case of a series of
images to calibrate measurements, the authors suggest using a white sheet of A4 paper or
other items such as a coin, a bank card, or a ruler. By taking a circular photo, the system
converts the series of images into a lower resolution to simplify the calculations. After that,
the contour of the foot is highlighted on the A4 sheet. The extracted unique voxels further
form a polygonal mesh (3D model). The noted disadvantage of the product is a large linear
error (1.3 mm). This method is well suited for virtual shoe fitting or size recommendations
but not for reconstructing the shape of the foot.

The authors of the DomeScan/IBV [8] solution suggest using a small universal scanner
for home use, which weighs less than 5 kg. The developers state that the scanning time for
this product is less than 0.1 s, and the 3D reconstruction time is less than one minute. The
mathematical methods for reconstruction are based on PCA. In the study [9], the authors
conducted experiments and scanned 16 human feet (8 men and 8 women), which resulted
in a linear measurement deviation of less than 0.97 mm.

Volumental [10] is a mobile application for Apple devices. The application is based
on the use of a special LiDAR depth sensor, which has been integrated into Apple mobile
devices since the iPhone 12 Pro. This solution makes it possible to obtain output information
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in the form of generated foot size parameters, instep height, foot width, arch height, and a
3D model. The developers state that their solution has already scanned around 22 million
feet for more than 2500 online stores. Further, it should be noted that the deviation of
the three-dimensional reconstruction method by linear measurements is about 5 mm,
which corresponds to half the shoe size, and this is much higher than that of analogs
mentioned earlier.

Analysis of the listed products points to the conclusion that the issue of creating a
system for reconstructing the 3D shape of the human foot remains relevant today. Therefore,
it is necessary to analyze a set of methods and tools to achieve this goal.

2.2. Methods, Tools, and Techniques

Approaches to the 3D reconstruction of the human foot based on computer vision
algorithms can be divided into three types: the use of special sensors, classical stereometry
algorithms, and machine-learning methods.

The authors of [11] suggest using the Microsoft Kinect device [12,13]. Special con-
struction is used to automate the process. This construction consists of a small table and
an engine that rotates the device around the human foot. The scanning angle, in this case,
is 270 degrees. To obtain a series of depth images, a point cloud is constructed, which is
then filtered using the iterative closest point (ICP) algorithm [14]. Finally, a 3D model of
the foot is generated. The authors state that the use of this method makes it possible to
achieve a maximum deviation of 0.85 mm in linear measurements while reconstructing the
lower arch.

Other works [15,16] use modern portable IntelRealsense depth scanners. Researchers
of the method used in [17] assume that for a full-fledged reconstruction, including a lower
arch, it is necessary to use four angles with a difference of 90 degrees. These four depth
images are used for several transformations involving merging, point cloud building,
and smoothing. After this post-processing, the extra reconstructed objects are performed.
Thus, the deviation of length and width measurements is 0.355 mm. The authors of the
method in [18] suggest using smartphones with integrated depth sensors (LiDAR, Face
ID, etc.) to obtain a 3D model. The authors used the PCA method to establish the final 3D
model, in addition to the point cloud obtained by a circular foot survey. The main idea
of the approach is to create a deformable model based on 63 sets of feet. Applying the
PCA method minimizes model shape error. Based on the 12 parameters extracted by the
authors, the researchers achieved a coverage of 93% of the manually measured parameters.
RANSAC is used as a segmentation algorithm, which works with a point cloud and is
known as a stable method for estimating model parameters based on random samples. The
experiments showed that the presented method has a deviation of 1.13 mm.

The developers of the Sensock method [19] used their own sensor, which consists
of four stretchable sensors made of silk fibrin threads. The authors determined four
characteristic girths of the foot based on the available knowledge of anatomy and measured
their length using the resistance value of the stretched sensors. Based on these extracted
parameters, a 3D model can be constructed. As an experiment, the researchers recruited
15 men and 10 women and used their feet for 10 sessions of reconstruction. The authors
used standard deviation to estimate the error on the studied parameters; in the case of
linear measurements, the average deviation was 1.01 mm.

The advantages of using special sensors include high accuracy compared to other
methods (minimal deviation) and the quickest time creating 3D models. The disadvantages
are the high cost of the sensors and smartphones that support laser scanning.

In [20], the approach and methods of photogrammetry [21,22] were used. By perform-
ing serial circular photography with a smartphone, the authors used the feature-extraction
and -matching algorithm SIFT [23]. The essence of SIFT is to form a set of feature descrip-
tors on the images. Three-dimensional space is formed based on extracted and matched
features, which then allows for the construction of a sparse point cloud (Structure-from-
Motion). After, the RANSAC algorithm selects points that are connected to each other and
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removes unconnected points. After these stages, a dense point cloud model is constructed
using the PMVS tool [24]. Based on this model, polygons for the 3D shape of the human
foot are generated, and textures are constructed. Post-processing of the 3D model includes
the removal of unnecessary reconstructed objects and backgrounds. Based on experiments
conducted by the authors, the error in linear measurements, such as the length and width
of the foot, was found to be 1.09 mm and 1.07 mm, respectively.

The authors of [25] used OpenMVG algorithms for 3D reconstruction of the human
body shape [26]. To obtain a 3D model, a circular video recording is used to take a number
of 2D images. Camera calibration and sparse point cloud formation are performed in
VisualSFM tools software. Additionally, the method includes the extraction and matching
of informative features based on the SIFT algorithm. Then, each image in the set is manually
segmented to remove noise and extra objects. Depth maps are generated based on the
segmented images in the dataset. Based on the generated depth maps, a dense point cloud
and a 3D human model are created. Thus, after manual processing, the reconstructed 3D
models can be used for printing.

In [27], the author used 50 images of feet obtained with a 48-megapixel smartphone
camera to perform 3D reconstruction using Autodesk Recap, Meshroom, and 3DF Zephyr
photogrammetric software. The processing of the 3D models was performed using special-
ized Autodesk Meshmixer software. After, the 3D model was printed on a special printer,
and the individual orthopedic insole was made according to the physical model.

The advantages of using classical stereometry algorithms and photogrammetry ap-
proaches are their flexibility and high accuracy of 3D reconstruction. In data processing, it
is possible to monitor the changes step by step and make adjustments to the algorithms
that affect the errors in the 3D model. The disadvantages are the high requirements for the
computer and the slow processing of calculations.

Machine-learning-based approaches allow for the automatic extraction of informative
features. Using these features, a 3D model can be constructed. One of the steps in the
process of obtaining a 3D model is the segmentation or extraction of the foot contour.
The quality of segmented images directly affects the accuracy of 3D models. The lack of
important segments usually leads to the incorrect extraction of informative features, which
worsens the quality of the reconstruction. Models based on machine-learning techniques
are usually used as tools for segmentation.

The author of [28] proposed the use of the following convolutional network archi-
tectures (CNN): ENet [29], LinkNet [30], MobileSeg [31], and FastLinkNet. The dataset
for training was 111 images obtained by manual extraction of the foot contour, as well
as the augmentation process, which was applied to the training sample. The following
metrics were used to evaluate the results obtained: mean pixel accuracy, mean IoU, and
mean dice. The best segmentation accuracy on the validation dataset was achieved using
MobileSeg architecture. The scores for each of the proposed metrics were 97.78%, 95.52%,
and 97.64%, respectively.

In [32], a CNN U-Net [33] was used for segmentation. The model was trained on
1601 images of foot silhouettes. Using PCA on 10 foot parameters, the authors applied a
trained regression model that predicts parameter coefficients, the dimensions of these foot
silhouettes, and the corresponding camera coordinates in space at the time of the shooting.
The network architecture for building 3D models is a three-stage system consisting of an
encoder, combinator, and decoder. The input for the neural network (NN) is the foot-shape
silhouette and the predicted camera coordinates in space. The encoder can be replicated
as many times as there are input images. All formed vectors are combined into several
vectors for all of the obtained features. These vectors are fed to the decoder, which in
turn regresses the coefficients of the PCA on 10 parameters. A 3D model of the human
foot shape is obtained by applying inverse component analysis to the length and width
coefficients. Based on the experiments, the error of the foot length on the real data was
found to be 4 mm and 1 mm for the artificially generated data.
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In [34], deep NNs were used. These networks are based on the one input image,
which is represented as a depth map. As a dataset for the training network, the authors
used the 4301 3D human body model CAESAR [35]. The points associated with the left
and right foot were selected for each model in the dataset. Thus, after this process, the
dataset increased to 8602 3D models. Then, to visualize the images using the Panda3D tool,
128 × 128 pixels foot depth maps were obtained and fed to the CNN input for training.
Using only one depth map image as the model input, a 3D point cloud was formed with
an error of 2.92 ± 0.72 mm.

The advantages of using machine-learning methods include the efficiency of data
processing, the ability to automate the process of recognizing the initial stage of foot disease,
and the high accuracy of foot contour extraction (segmentation). The disadvantages include
a significant deviation relative to the methods presented earlier. They also lack a universal
3D reconstruction approach, which would allow for the step-by-step tracking of the changes
involved in creating a 3D foot shape model.

3. Methodology of Reconstructing the 3D Foot Shape

In this study, the approach of photogrammetry was defined as the main method for
reconstruction. The application of modern algorithms of photogrammetry and computer
vision makes it possible to obtain the qualitative reconstructed lower arch of the foot, which
is necessary for individual orthopedic footwear manufacturing. The main feature of the
methodology is the use of a series of images obtained from a smartphone at home. Figure 1
shows a schematic representation of the methodology, the interaction of algorithms, and
the process of reconstructing 3D models.

Figure 1. Scheme of the algorithm’s interaction and reconstruction process of 3D foot shape models.
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3.1. Dataset Formation (Series of Images Based on Video Stream)

The first step to generating a dataset suitable for the requirements of 3D foot recon-
struction is to meet the following criteria:

1. To obtain a high-quality reconstruction, it is important to involve an assistant (some-
one who can help in the process of creating the dataset);

2. The person whose foot is to be reconstructed must be in a horizontal position. The
foot should be fixed in space by hands;

3. Using a smartphone that allows for video recording with a resolution of at least
1920 × 1080 (pixels);

4. The video format can be both horizontal and vertical;
5. The duration of the circular video must be 30 s. The foot must be strictly fixed in the

center of the stream during the entire video;
6. It is acceptable to vary the distance between the camera lens and the foot from 30 to

70 cm;
7. Avoid glare, flare, and other artifacts during shooting. The person that is recording

the video should minimize extra actions during the shooting;
8. The angle of shooting is shown in Figure 2. The angle between the foot and the surface

should be between 75 and 90 degrees. The bend angle of the knee should be between
135 and 150 degrees;

9. The resulting video stream must be split into N frames (from 50 to 150).

Figure 2. This scene demonstrates the angle that must be used when shooting a person’s foot in a
circular manner.

3.2. Feature Extraction

The next step will be to extract metadata from the images, sensor and device informa-
tion, and the focal length obtained from the resulting dataset. This is necessary to calibrate
the camera in space. Thus, in the process of image creation, the image pixel coordinate
system, the camera coordinate system, and the world coordinate system are applied. The
process of extracting informative features involves detecting distinctive groups of pixels,
which are invariant to changes in camera viewpoints during shooting from different an-
gles. For this purpose, the algorithms use the scale-invariant transformation of features
in SIFT and DSP-SIFT. The essence of these algorithms is the extraction of a set of binary
descriptors from the image. Binary descriptors describe the area around a key point as a
binary string obtained by pairwise comparison of the brightness of pixels in a given area.
These algorithms can be divided into four main steps:
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• Definition of extremums of the scale space;
• Precise localization of key points;
• Defining the orientation of the camera in space;
• Calculation of the local image descriptor.

These algorithms are complemented by the AKAZE method [36], which in turn uses
the fast explicit diffusion method to form a nonlinear scale space. Thus, the idea of this
method is to create a series of intermediate images at different scales (multiscale space) by
applying different kinds of filtering to the original image. To detect and extract features in
such a space, the determinant of the Hessian matrix is calculated for each of the images in
the set. The calculated Hessian determinants for N-matrices, 3 × 3 for each of the N-images,
form informative features, which, as a result, form descriptors.

The obtained determinants are normalized by the scale. All descriptors computed by
the algorithms are robust in handling various types of image transformations (changes
in viewpoint, noise, blur, changes in contrast); all extracted features remain sufficiently
distinguishable for further processing and comparison.

3.3. Feature and Image Matching

The purpose of this step is to find and filter images in the obtained dataset. After
forming descriptors for previously extracted informative features, the vocabulary tree
approach [37] is used for comparison and filtering. Classification and comparison with
those descriptors in each node of the tree are performed by passing all extracted feature
descriptors to the vocabulary tree. Each descriptor results in a single “leaf”, which can be
stored using a simple index of that leaf in the tree. The image descriptor is represented by
a collection of these leaves. Finally, the descriptor filters out images that have nothing in
common with others in the dataset.

To match all previously obtained informative features between pairs of candidate
images, a photometric comparison is performed between the set of descriptors from the
two input images. For each extracted informative feature in image A, a list of potential
features is extracted from image B; as the area of descriptors is not in a linearly defined
space, absolute distance values are not used.

3.4. Structure-from-Motion

The goal of this step is to form a sparse point cloud. To achieve this, it is necessary to
merge all feature matches between pairs into a certain sequence. Since it is impossible to
obtain a valid point cloud structure at this stage during the merging of all sequences into a
single sequence, any unconnected points are removed.

The first step of the incremental algorithm is selecting the pair of images with the
greatest number of features previously extracted and matched.

The second step is calculating the fundamental matrix between the best pair of images
from step 1. Then, a 3D coordinate system is formed in space from the obtained points.

The third step is the triangulation of appropriate informative features from 2D space
into a 3D point cloud based on data of the position of the first two cameras in space
(coordinate system).

In the fourth step, it is necessary to determine the position of the camera in space that
has the greatest number of extracted and compared features between the images and the
already reconstructed 3D point cloud. This is necessary to select the best representations
in the available dataset. For each of the cameras, using the perspective-n-point algorithm
(PnP) within the RANSAC framework, nonlinear minimization is performed to refine the
position of the camera in space.

In the final step, after the full camera parameter information is available, the data are
adjusted to refine all points in 3D space. Finally, all observations with a high error value
are filtered out. The resulting output of this step forms a sparse point cloud.
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3.5. Segmentation Foot Image

Segmentation of the shape of the human foot in the image is necessary to further clean
the depth map data from objects that were in the background of the images. The concept of
depth map segmentation consists of two objects: a black-and-white mask of a segmented
foot and a depth map. These objects are converted into matrices of the same dimensionality.
Then, each element in the depth map receives a value of “−1” if the element in the mask
with the same indices has a value of “0”. The value “−1” in the depth map means that this
element will not be used in future reconstruction.

For this purpose, it was decided to use the library Detectron2 [38], implemented on
the basis of PyTorch. This library has several pretrained models, which are used to solve
segmentation problems.

3.5.1. Dataset for Training

The CAESAR 3D human model dataset [39] presented in the analysis is unsuitable,
because its data are artificially generated, missing the necessary measurements, textures,
and extraneous objects usually found in actual photographs. This may affect the accuracy of
the segmentation model in real conditions. Therefore, it was decided to create our dataset.

As a training dataset, we decided to use 1200 feet images. The resolution of each
image was 1920 × 1080 (pixels). The sample contained 50% female and 50% male feet,
with a total of 40 people involved. The dataset contained 600 images of female and male
feet (300 of left and 300 of right foot). All participants of the experiments signed informed
consent. All personal data were anonymized for research.

Table 1 summarizes the information, including the minima (min), maxima (max),
means (avg), and standard deviations for both feet for each of the dimensions.

Table 1. Summary information. Values of men’s and women’s feet for each of the measurements.

Measurements

Men Women

Left Foot Right Foot Left Foot Right Foot

Min Max Avg Std Min Max Avg Std Min Max Avg Std Min Max Avg Std

Length foot (mm) 253 307 266.15 13.91 252 307 267.07 14.05 228 319 255.93 23.02 232 321 255 23.07
Width foot (mm) 95 128 116 12.56 95 129 13.29 44.53 80 111 94.93 9.85 80 111 96.07 10.46
Instep girth (mm) 200 265 247.43 19.91 204 270 248.93 17.14 210 270 228.79 15.33 208 277 229.43 17.27

Ball girth (mm) 232 270 250 9.27 231 270 249.71 9.65 199 282 228.14 21.63 210 279 229.36 19.30
Heel girth (mm) 245 360 322.64 31.13 243 360 323.43 31.41 280 360 311.57 26.51 282 360 309.93 25.90
Shin girth (mm) 203 260 226.86 16.76 201 261 226.86 18.22 182 280 218.86 27.50 181 260 217.64 22.35

In the process of forming the dataset for NN training, an instruction to follow was
given to all volunteers. The instruction is described in “Dataset formation” in Section 3.1.
Since the methodology is aimed at practical use, data heterogeneity is one of the key
factors that positively affect the quality of reconstruction based on real data. Here, the
heterogeneity of the data was derived from the different genders of the volunteers: the
length of their feet varied from 228 to 321 mm, and the hair cover of the foot varied for each
participant. In addition, due to the home environment of video recording, the background
and light for each video were unique.

Each of the participants videotaped their feet at home. This fact allowed us to collect
images from different backgrounds. Additionally, it affects the variability of the model
under other conditions. Another reason to use video is the condition of the high complexity
of determining the optimal number of photos and angles to obtain an acceptable 3D model
of the foot.

The dataset was processed using the following algorithm: extract a series of images
from a video file (30 from each video), manually mark each extracted image and form masks
(Figure 3), divide the resulting set into training and test samples by an 80/20 proportion,
and convert the resulting mask set into a COCO-annotation file.



Future Internet 2021, 13, 315 10 of 21

Figure 3. Demonstration of the original image and the image converted into a mask. (a) The original image; (b) A mask,
formed based on original image.

3.5.2. Architecture

Detectron2 includes a set of detection models: Faster R-CNN [40], DensePose [41],
Cascade R-CNN [42], and Mask R-CNN [43]. It was decided that Mask R-CNN would be
used since it is used to segment objects in an image. Figure 4 shows the architecture of the
Mask R-CNN.

Figure 4. Mask R-CNN architecture.

The figure shows that the use of MASK R-CNN has three stages. In the first stage, the
original image is convolved using CNN. In the second stage, each candidate is bounded by
a rectangle (region proposal network). In the third stage, the feature matrices for each of the
candidate regions are determined, along with the classification, regression, and bit masking
for each of the candidates. The feature matrix is created using the RolAlign function, which
generates a matrix with real values. Interpolation by the four nearest integer points is used
for this purpose. This allows matching of the feature matrix to the original image.



Future Internet 2021, 13, 315 11 of 21

3.5.3. Loss Function

For each region of interest (ROI), a multi-objective loss function consisting of classifi-
cation losses (1,2), localization losses (3,4), and mask segmentation (5) is used.

Lcls =
1

Ncls
∑

i
Lcls(pi, p∗i ) (1)

Lcls(pi, p∗i ) = −p∗i logpi − (1 − p∗i ) ∗ log(1 − pi) (2)

where Lcls is the classification loss function; Ncls is a normalizing term, which has a value
equal to mini-batch (~256); Lcls(pi, pi

∗) is the logarithmic loss function, which is used to
convert the multi-class classification into a binary one, which allows one to determine
whether an object is a target or not; p∗i is a label reference value (binary) used to determine
if the anchor box is an ith object; and pi is the probability that an ith anchor box is an object.

Lbox =
ג

Ncls
∑

i
p∗i ∗ Lsmooth

1 (ti − t∗i ) (3)

Lsmooth
1 (ti − t∗i ) =

{
0.5 ∗ (ti − t∗i )

2 i f
∣∣∣ti − t∗i

∣∣∣< 1,∣∣ti − t∗i
∣∣−0.5 otherwise

(4)

where Lbox is the localization loss function; ג is the balancing parameter for the importance
of the classification and localization loss function; Nbox is the normalizing term associated
with the location, and this has a value equal to the anchor location (~2400); Lsmooth

1 is the
loss function, which is used for box regression; ti is the predicted coordinate value; and ti

∗

is the true coordinate value.

Lmask = − 1
m2 ∑

1≤i,j≤m
[yij log ŷk

ij + (1 + yij) log(1 − ŷk
ij] (5)

where Lmask is the mask segmentation loss function, ŷk
ij is the label of cell (i, j) in the true

mask, yij is the predicted value for the cell in the mask, and m is the value of the selection
contour dimensionality m ∗ m.

Thus, the final formula for the multi-task loss function is represented by the following (6):
L = Lcls + Lbox + Lmask (6)

3.6. Estimate and Filtering Depth Maps

The first step is to select the N-best cameras in space. Then, frontal-parallel planes are
selected for these cameras. Selection is based on the intersection of the optical axis with the
pixels of the selected neighboring cameras by creating a volume for the voxels.

The second step calculates zero-mean normalized cross-correlation (ZNCC) [44] for
all candidates. For each neighboring image, the similarity is accumulated, and then
the axis filtering is performed and local minima are selected, forming depth maps with
subpixel accuracy.

The third step is filtration between all the cameras in the space to ensure coherence.
The fourth step is the segmentation of the depth maps (Figure 5) using the mask

obtained earlier with the image segmentation mode.

Figure 5. Demonstration of the original and transformed depth map. (a) Original depth map;
(b) Transformed depth map.
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The process of segmentation of the original depth maps into segmented depth maps
is shown in Algorithm 1.

Algorithm 1 Depth map segmentation

1: procedure segmentation_depth_map(dm_dir, mask_dir)
2: dm_matrix <- {∅}{∅} I Create empty DM matrix
3: dm_matrix <- read_dm (dm_dir) I Read DM and covert in matrix
4: mask_matrix <- {∅}{∅}{∅} I Create empty mask matrix
5: mask_matrix <- read_mask(mask_dir) I Read mask and convert in RGB matrix
6: for x < dm_matrix {max} do
7: for y < dm_matrix {max}{max} do
8: if mask_matrix {x}{y} = {0,0,0} IWhere {0,0,0} means black color in RGB
9: dp_matrix {x}{y} <- -1 I −1 means that this point
10: end for I Will not use in reconstruction
11: end for
12: return dm_matrix
13: end procedure

3.7. Meshing and Filtering

The goal of this stage is to create a dense geometric representation of the scene.
The first step is to merge all the resulting depth maps that have passed the segmenta-

tion step into a global octree, where compatible depth values form octree cells.
The second step is to perform a 3D Delaunay tetrahedralization and a voting procedure

to calculate the weights on the cells and the weights on the borders that form these cells.
The third step is to calculate the optimal mesh volume reduction and Laplacian

filtering of the mesh to remove local artifacts. After this step, a 3D model of the foot shape
in OBJ format is generated at the output. Figure 6 shows an example of the same model
with and without a filtering process. Algorithm 2 shows the process of obtaining a mesh
and its subsequent filtering.

Algorithm 2 Meshing and filtering

1: procedure create_filtering_mesh(dm_dir, sfm_data, cameras_dir, lambda, iter)
2: list_depth <- {∅}
3: list_depth <- list_of_files_in_dir(dm_dir) I Read all depth_maps
4: hexah <- {8}{∅}{∅}{∅} IInit start of hexahedron matrix
5: nb_cameras <- {∅} I Init list of neighbour cameras
6: for g < count(list_depth) do
7: nb_cameras <- find_nb_cameras (list_depth[g], sfm_data)
8: octree <- create_octree(list_of_files_in_dir[g], nb_cameras)
9: end for
10: dense_geometric_representation <- {∅}{∅}{∅}
11: dense_geometric_representation <- create_dense(hexah, octree, sfm_data)
12: mesh_object <- create_mesh(dense_geometric_representation)
13: mesh_filtered <- mesh_filtering(lambda, iter, mesh_object)
14: return mesh_filtered
15: end procedure

Figure 6. Demonstration of the original and filtering mesh (a). Original mesh; (b) Filtering mesh.
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4. Experiments

According to the previously presented methodology, circular video shooting of
1920 × 1080 (pixels) was performed using different smartphones under approximately
the same lighting conditions. Segmentation model training, data processing, and 3D re-
construction were performed in the Google Colab service using a Tesla K80 GPU. The
free Meshroom 2021.1 system was used as photogrammetric software [45]. This choice
was due to the system having a large number of integrated modules for working with
computer vision, as well as the active development of the system in the 3D modeling
community. Since the system is open-source, additional modules for the segmentation and
framing of images were implemented. This action allowed us to automate the process of
the post-processing of the 3D model.

4.1. Training and Evaluate Model Accuracy

The Mask R-CNN NN model for segmentation was trained with the following modi-
fied parameters:

1. Number of iterations—6000;
2. Number of classes—1;
3. Learning rate—0.00025.

A dropout layer with a value of 0.2 was also added to avoid overfitting. This
value was chosen empirically. The size of the training and test samples was 800 and
200 images, respectively.

A large number of metrics can be used to compare the predicted segments to the
original masks. In this study, it was decided to use metrics that are the same as the
considered analogs. DICE [46] and IoU [47] were used as metrics for accuracy estimation.
The time taken to process one image by the model was also calculated. For this purpose,
a smartphone with the same processor as the one used to estimate MobileSeg speed was
used. The authors of the UPD model did not test their model on mobile devices. Formulas
for the DICE (7) and IoU (8) metrics are presented below.

DICE =
1
M

∗
M

∑
i

2TPi
FPi + 2TPi + FNi

(7)

IoU =
1
M

∗
M

∑
i

TPi
FPi + TPi + FNi

(8)

where M is the number of images, TP is the true positive pixels, FN is the false negative
pixels, and FP is the false positive pixels. To determine the clustering accuracy, 200 photos
were used that had not been used before (Table 2).

Table 2. Comparison of NN models for foot segmentation.

Model DICE (%) IoU (%) Inference Time (ms)

Mask R-CNN 97.88 98.27 471
UPD [48] 95.35 91.11 -

MobileSeg [29] 97.64 95.52 552

For the resulting set of estimates, a one-sided Student’s t-test was calculated with a
degree of freedom level α = 0.01. The value of the criterion with a degree of freedom of 199
and a t-score of 2.613 was between 0.01 and 0.005, which made it possible to conclude that
the accuracy of our model was statistically significant in comparison with analogs.

It can be observed from the tables above that the Mask R-CNN model was found to
have the best accuracy performance for the DICE and IoU metrics. Additionally, the value
of the t-criterion confirmed the significance of our model.

Figure 7 shows an example of a segmented human foot using the trained Mask
R-CNN model.
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Figure 7. Segmented foot with the Mask R-CNN model.

4.2. Formation of an Experimental Dataset for 3D Modeling

Ten video files (five males, five females) obtained earlier were selected as a dataset to
perform a 3D reconstruction of the foot shape. Each volunteer took measures of length and
width using a caliper. From the obtained video fragments for further experiments, a series
of images consisting of 100 frames were used. Then, each of the series was subjected to a
resolution change of two, three, and four times.

4.3. Extracting Foot Parameters

To evaluate the quality of reconstructed 3D models by foot length and width, the
Grand control point method was used. This approach allows converting point cloud model
coordinates to world coordinates using the actual size. Thus, in the process of generating
a dataset for 3D modeling, a coin with known real-world readings was attached to the
bottom of the volunteers’ feet. This is necessary to calibrate and establish the ratio between
the 3D coordinate system and the world coordinate system. Since it is rather difficult to
automate such an evaluation process, special tools in the MeshLab software were used to
measure the distance between points.

Equations (9) and (10) were used to calculate the parameters of length (FL) and width
(FW) of the foot. The left part of the formulas shows the measurements obtained manually
with a caliper, and the right part shows the distances between the points obtained by
repeated measurements and averaging.

FL(worldsize)
CL(worldsize)

=
FL(3Dmodelsize)
CL(3Dmodelsize)

(9)

FW(worldsize)
CW(worldsize)

=
FW(3Dmodelsize)
CW(3Dmodelsize)

(10)

Based on the presented formulas, with data on the length and width of the coin in
the real world, it is possible to express the parameters of the foot. Formulas (11) and (12)
demonstrate the calculation of the length and width of the foot, respectively.

FL(worldsize) =
FL(3Dmodelsize)
CL(3Dmodelsize)

∗ CL(worldsize) (11)

FW(worldsize) =
FW(3Dmodelsize)
CW(3Dmodelsize)

∗ CW(worldsize) (12)
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4.4. Investigation of the Influence of Different Algorithms for Extracting and Comparing
Informative Features on the Quality of 3D Models

The key point that affects the quality of 3D foot models is the correct selection of algo-
rithms for feature extraction and matching. The SIFT, DSP-SIFT, and AKAZE algorithms
were proposed earlier in the described methodology. Table 3 demonstrates the effect of
combinations of algorithms on length (FL) and width (FW) deviations relative to manual
measurements for 10 subjects. The limit for the number of extracted features was set to
2000 per image. The created depth maps were scaled down two times relative to the origi-
nal image. Additionally presented is the average time to create a 3D model for 100 images
in 1920 × 1080 (pixels) format and the standard deviations for the samples. Figure 8 shows
an example of a reconstructed 3D model with a resolution of 1920 × 1080 (pixels) of a
series of images.

Table 3. Results of the influence of informative feature extraction/comparison algorithms on foot parameters.

Number of
Models

Manual Measurement SIFT SIFT, AKAZE SIFT, AKAZE, DSP-SIFT

FL
(mm)

FW
(mm)

FL
(mm)

FW
(mm)

FL
(mm)

FW
(mm)

FL
(mm)

FW
(mm)

1 265 123 264.5/(0.5) 122.9/(0.1) 264.7/(0.3) 122.9 (0.1) 264.9/(0.1) 122.9/(0.1)
2 247 98 247.3/(0.3) 98.8/(0.8) 247.1/(0.1) 98.5/(0.5) 247.2/(0.2) 98.4/(0.4)
3 242 95 243.2/(1.2) 97.3/(2.3) 243.1/(1.1) 96.9/(1.9) 242.9/(0.9) 96.3/(1.3)
4 285 125 288.3/(3.3) 127.1/(2.1) 287.7/(2.7) 126.8/(1.8) 286.9/(1.9) 126.4/(1.4)
5 235 93 235.2/(0.2) 93.4/(0.4) 235.2/(0.2) 93.3/(0.3) 235.1/(0.1) 93.2/(0.2)
6 261 119 262.5/(1.5) 120.9/(1.9) 262.1/(1.1) 120.5/(1.5) 261.5/(0.5) 120.3/(1.3)
7 238 91 237.5/(0.5) 90.7/(0.3) 237.7/(0.3) 90.8/(0.2) 237.8/(0.2) 90.9/(0.1)
8 235 92 239.5/(4.5) 92.9/(0.9) 238.7/(3.7) 92.7/(0.7) 238.4/(3.4) 92.5/(0.5)
9 269 121 268.1/(0.9) 121.7/(0.7) 268.5/(0.5) 121.5/(0.5) 268.8/(0.2) 121.5/(0.5)
10 272 127 274.3/(2.3) 127.9/(0.9) 274.1/(2.1) 127.7/(0.7) 273.8/(1.8) 127.6/(0.6)

Avg. Time (min) 3.31 9.58 11.29
Standard deviation (mm) 1.14 0.99 0.87

Figure 8. Demonstration of a reconstructed 3D model of the foot based on a series of images with
resolution of 1920 × 1080 (pixels). (a) Left side of the foot; (b) Right side of the foot.

Thus, the range of length measurements on a sample of 10 volunteers was varied
from 235 to 285 mm, and that of the width measurements from 91 to 127 mm. The best
standard deviation of 0.87 mm was obtained with the combination of the SIFT, AKAZE,
and DSP-SIFT feature-extraction algorithms, and the average time to create one model,
including series generation and image segmentation, was 11 min 29 s.
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4.5. Research on the Effect of Different Image Resolutions on the Processing Efficiency and Quality
of 3D Models

To increase the efficiency of data processing, it was decided to use a number of 2D
images with reduced resolutions of two, three, and four times relative to the original.
Table 4 shows experiments using a combination of the feature-extraction and -matching
algorithms SIFT, DSP-SIFT, and AKAZE. The limit on the number of features was set to
equal 10,000 per image. The created depth maps were scaled down two times relative to
the original image. The average time to create 3D models and the standard deviations of
the studied samples were calculated.

Table 4. Results of the effect of different resolutions on the foot and average time to create a 3D model.

Number of
Models

Manual Measurement 960 × 540 640 × 360 480 × 270

FL
(mm)

FW
(mm)

FL
(mm)

FW
(mm)

FL
(mm)

FW
(mm)

FL
(mm)

FW
(mm)

1 265 123 264.5/(0.5) 122.8/(0.2) 264.7/(0.3) 122.8 (0.2) 264.8/(0.2) 122.9/(0.1)
2 247 98 247.4/(0.4) 98.7/(0.7) 247.2/(0.2) 98.7/(0.7) 247.3/(0.3) 98.4/(0.4)
3 242 95 243.3/(1.3) 97.4/(2.4) 243.3/(1.3) 97/(2.0) 243.1/(1.1) 96.7/(1.7)
4 285 125 288.5/(3.5) 127.3/(2.3) 288.3/(3.3) 127.1/(2.1) 288.2/(3.2) 127/(2.0)
5 235 93 235.4/(0.4) 93.3/(0.3) 235.3/(0.3) 93.3/(0.3) 235.3/(0.3) 93.2/(0.2)
6 261 119 262.7/(1.7) 121.1/(2.1) 262.6/(1.6) 120.9/(1.9) 262.4/(1.4) 120.8/(1.8)
7 238 91 237.3/(0.7) 90.5/(0.5) 237.4/(0.6) 90.5/(0.5) 237.4/(0.6) 90.4/(0.6)
8 235 92 238.5/(3.5) 92.7/(0.7) 238.3/(3.3) 92.7/(0.7) 238.4/(3.4) 92.6/(0.6)
9 269 121 268/(1.0) 121.8/(0.8) 268.3/(0.7) 121.7/(0.7) 268.4/(0.6) 121.6/(0.6)
10 272 127 274.1/(2.1) 127.7/(0.7) 273.9/(1.9) 127.5/(0.5) 273.8/(1.8) 127.5/(1.5)

Avg. Time (min) 3.22 2.12 1.35
Standard deviation (mm) 1.03 0.97 0.95

The best standard deviation of 0.95 mm was obtained using a combination of the SIFT,
AKAZE, and DSP-SIFT feature-extraction algorithms and 2D image series at 480 × 270 (pixels);
the average time to create one model, taking into account series generation and the image
segmentation process, was 1 min 35 s. Three-dimensional models obtained at this resolu-
tion are smoother, but a large part of their features is lost due to a reduction in the number
of reconstructed points in the sparse cloud.

Figures 9 and 10 show an example of a reconstructed 3D model with a resolution of
480 × 270 (pixels) of a series of images.

Figure 9. Demonstration of reconstructed 3D model #1 of the foot based on a series of images with
resolution of 480 × 270 (pixels). (a) Left side of the foot; (b) Right side of the foot.
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Figure 10. Demonstration of reconstructed 3D model #2 of the foot based on a series of images with
resolution of 480 × 270 (pixels). (a) Left side of the foot; (b) Right side of the foot.

4.6. Evaluation of the Results

Thus, the best linear standard deviation of 0.87 mm was achieved when a combination
of the SIFT, AKAZE, and DSP-SIFT feature-extraction algorithms and a series of 2D images
at 1920 × 1080 (pixels) resolution was used. The average time to create a 3D model was
11 min and 29 s. However, the most efficient approach was the reconstruction with a series
of 2D images with a resolution of 480 × 270, as the processing was faster at 257%. In
addition, a linear deviation value of 0.95 mm is acceptable in the case of tailored orthopedic
shoes as well as shoe-size recommendations.

Additionally, it should be noted that the deviations for models 4 and 8 were the highest.
Length parameters for these models were the minimum and maximum, respectively. Such
anomalies of deviations can be explained by the following factors:

• The small dataset for training the segmentation model—the average length for the
male and female sets for both feet was about 266.71 mm and 255.47 mm, respec-
tively. Important foot segments (parts of the toes) were not captured during mask
formation; an example for model 4 is shown in Figure 11. Thus, reconstructed mod-
els whose values are close to the mean values are recommended, as they have the
smallest deviations;

• Influence of lighting—the photogrammetry approach is very sensitive to different
types of glare, shadows, and the amount of light flux (lumens) hitting the object in the
process of shooting;

• The peculiarity of circular video lies in the process of obtaining a video stream: users
should consider all parts of the foot from all sides. The foot should remain stationary
during the video recording process. An example of an unsuccessful reconstruction
for model #4, where the volunteer was unable to capture the heel part of the foot, is
shown in Figure 12.

Table 5 presents a comparison of the technique with the performance of analogs that
use special depth sensors, machine-learning methods, and classical stereometry algorithms.
In order to evaluate the quality of 3D models in general, and with such metrics as IoU or
DICE, a benchmark dataset is needed (made on a high-precision scanner). In the absence
of such a set, the results obtained were compared with counterparts by the standard
deviations (in millimeters) of linear indicators (length and width).
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Figure 11. Demonstration of failed masks, missing part of the thumb. (a) Front of the foot; (b) Side of
the foot.

Figure 12. Demonstration of an unsuccessful reconstruction of the foot for 3D model #4, missing the
heel. (a) Left side of the foot; (b) Right side of the foot.

Table 5. Methods for 3D reconstruction of human feet based on images and portable depth scanners.

Author Year Method Input Data Standard
Deviation (mm)

The Lower Arch of
the Foot is Included

Parrilla E. et al. [5] 2015 PCA Multiple RGB
images 1.7 -

Pambudi D. S.,
Hidayah L. [18] 2018 RGB-D—camera,

Intel Realsense Depth image 0.355 +

Wang M. et al. [12] 2018 RGB-D—camera,
Microsoft Kinect Depth Image 0.85 +

Kobayashi T. et al. [19] 2018 Smartphone
depth-camera, PCA Depth image 1.13 +

Revkov A., Kanin D. [7] 2020 Multi-stage decision
tree is based on NNs

Multiple RGB
images 1.3 −

Kok F., Charles J.,
Cipolla R. [33] 2020 CNN, PCA Multiple RGB

images 4 −

Niu L. et al. [21] 2021 Photogrammetry Multiple RGB
images 1.08 −

Ours 2021 Photogrammetry,
CNN

Multiple RGB
images 0.95 +
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5. Discussion

The proposed methodology has limitations that affect the quality, accuracy, and time
of creating a 3D model. The main factors that affect the limitations in the presented
methodology and, as a result, the accuracy of the obtained models, are presented below:

1. Software and hardware factors—in order to obtain a high-quality 3D model, the
method requires a modern smartphone that supports video recording in 1920 × 1080 (pixels)
resolution. The video format can be both vertical and horizontal. It is important to note the
method’s and algorithms’ demand of photogrammetry to computing resources. Depending
on the specific CPU and GPU model, there are different processing and 3D model creation
times. In addition, it is necessary to use video cards (GPUs) that support CUDA technology.
The optimal number of frames sufficient to obtain a complete and high-quality 3D model
varies from 50 to 150;

2. Human factor—two people should be involved in the reconstruction process. The
first person whose foot is to be reconstructed should lie on a flat surface, holding the foot
with their hands in space. The foot should be strictly in the center of the frame and remain
fixed throughout the video shooting. The second person records the video of the first
participant at a certain angle. In this case, limitations may be low stabilization due to
camera shake when shooting without using a tripod; the height of the shooter: a tall person
will find it uncomfortable to bend down to maintain the correct angle when shooting;
reluctance to comply with the requirements due to a lack of time to read the requirements;

3. The conditions of the placement, where the shooting was taken—in order to obtain
high-quality data, it is important to avoid glare, highlights, and shadows in the camera lens
and to choose a contrasting background. It is also important to provide the necessary free
space in the room, because the shooter should move strictly in a circular path and travel
around the foot. The distance from the camera lens to the foot can vary from 30 to 70 cm.

6. Conclusions

This work demonstrates the method and algorithms of photogrammetry for manufac-
turing custom orthopedic shoes, sizing, and medical research.

The main problem of analogs is missing in the specialization of the reconstruction of
the foot’s lower arch, although this is important in orthopedic production. The advantage of
the proposed technique is the minimal linear deviations in foot length and width indicators
of 0.95 mm, which is comparable to the indicators of 3D models obtained with special
depth scanners.

The values of such deviations were achieved using the Mask R-CNN trained for
segmentation; the clustering accuracy, when estimated using the DICE and IoU metrics,
was found to be 97.78% and 98.27%, respectively. The average time to create a 3D foot
model based on a combination of the SIFT, AKAZE, and DSP-SIFT informative feature-
extraction and -matching algorithms from 100 photos using 480 × 270 (pixels) resolution
with the Tesla K80 GPU was found to be 1 min and 35 s.

The technique involves reconstruction of the lower arch, which makes 3D models
unique and applicable in different areas. The proposed approach makes it possible to
reconstruct the foot using a smartphone at home. This can reduce the time costs in
orthopedic industries arising from postal shipments of plaster casts or polymeric materials.
Currently, the presented methodology is automated as a final software product and allows
the reconstruction of 3D models without manual post-processing.

In the future, we plan to work with machine-learning methods to create high-quality
depth maps. Algorithms from AliceVision, presented in the open-source software Mesh-
room 2021.1, cope with the task of implementing such maps, but the use of NNs can
improve their accuracy and efficiency of data processing. It is also necessary to carry out
detailed studies aimed at extracting different foot girths and the influence of lighting on
the quality of the reconstructed models.
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