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Abstract: Recommendation systems are crucial in the provision of services to the elderly with
Alzheimer’s disease in IoT-based smart home environments. In this work, a Reminder Care System
(RCS) is presented to help Alzheimer patients live in and operate their homes safely and indepen-
dently. A contextual bandit approach is utilized in the formulation of the proposed recommendation
system to tackle dynamicity in human activities and to construct accurate recommendations that meet
user needs without their feedback. The system was evaluated based on three public datasets using a
cumulative reward as a metric. Our experimental results demonstrate the feasibility and effectiveness
of the proposed Reminder Care System for real-world IoT-based smart home applications.

Keywords: contextual bandit; IoT; recommender system

1. Introduction

Alzheimer’s disease (AD) has been considered as the most common cause of dementia
given its significant impairment of cognitive abilities, which comes with severe implications
in human day-to-day activities [1]. In 2017, over 6.08 million elderly people in the United
States reportedly suffer from various classes of AD with this figure potentially set to escalate
to 15.0 million by 2060 [2]. This comes with huge cost implications as the management of
AD and other types of dementia reportedly cost approximately $277 billion and $290 billion
in 2018 and 2019, respectively [3,4].

Generally, AD is categorised into three main stages, mild, moderate, and late or severe
stages with each of the stages presenting various symptoms. Patients suffering mild AD
lose only short-term memory where they experience difficulty in remembering people’s
names or recent events. At the mild stage, technological aids are deployed to manage the
disease. Patients suffering moderate AD may suffer intense memory loss, which could
impact their abilities for coordinating and handling easy tasks due to increased poor
judgments and deepened confusion.

Language problems, time consideration, and significant changes in their personality
are major indicators. In the last stage, patients suffering severe AD lose their comprehension
and physical abilities becoming unable to talk, swallow, walk etc. Consequently, patients at
this stage require intensive care from professional caregivers and family members. While
the mild and moderate stages may typically last for around 3 years, the late or severe stage
could continue throughout the remainder of the patient’s life [1].

The widened applications of IoT-based smart-home environments birthed the idea
of a recommender system, reminder care systems, which are adapted to improve the
management of patients with AD. A reminder care system considers patients who suffer
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from the mild stage of AD where patients begin losing short-term memory; however, they
still have the ability to use such a system [1,5]. A reminder care system is designed to
exploit sensory data from various sources, such as the environmental sensors, wearable
sensors, and appliance sensors for effective reminder recommendations. A feedback system
is not necessarily required to improve the quality of recommendations.

The scenario presented in Figure 1 reveals the importance of a reminder care system
for Alzheimer patients. In the scenario, the 77-year-old woman, Aris, lives independently
and she is diagnosed with the mild AD. The deployed reminder care system can monitor
and recognize Aris’ activity patterns and then use this pattern to automatically provide
recommendations on what Aris may need based on her current activity. For example, the
system is designed to promptly recommend switching off of appliances if she forgets to
do so after usage. The system is subsequently improved based on her acceptance of every
recommendation without needing Aris’ explicit feedback.

Here, the system considers all contexts about the user and items. For example, if Aris
starts to prepare a cup of coffee at midnight, no item will be recommended by the system
but instead it will remind her to go back to sleep because time is considered as a key context
in conducting the recommendations. Moreover, the system has the ability to learn all new
patterns and ignore old patterns. For illustration, when Aris no longer adds milk to her
coffee, the system will not recommend milk during this activity. This scenario could be
extended to become not only a smart home application but also for m-health applications.

Again, Aris at home can be better monitored by the hospital by utilizing the data from
sensors that are installed in her house to remotely monitor the development of her condition.
The hospital can also provide medical advice recommendations, such as recommending a
specific time for resting, recommending an exercise to be done, or recommending certain
kinds of foods. Our proposed system is suitable only for the first stage of Alzheimer as, in
other stages, patients face more changes in their behaviour where they require intensive
care. A number of studies have focused on reminder recommender systems aimed at
providing assistance to elderly people who suffer from AD.

Oyeleke et al. [6] designed a recommendations system for monitoring the daily indoor
activities of seniors with mild cognitive impairment while Ahmed et al. [7] proposed a smart
biomedical assisted system to help patients with Alzheimer’s. In some studies, smartphone
applications were developed for the provision of care services to AD patients [8–11].

However, the dynamicity in the complexities of human activities is yet to be adequately
addressed, thus, delivering low-quality recommendations. Another notable issue is the
increased focus on monitoring, which gives a reminder to patients while the system has to
wait for patient feedback to update itself. From the Aris scenario, consider if Aris follows
the following sequence of actions when starting to prepare a cup of coffee in the early
morning: first, switching the coffee machine and then bringing a cup, next, filling milk,
and then adding sugar.

Supposing then she picks up a cup and forgets what to do next? The system should
remind her to pick up the milk. Nonetheless, if one day, she changes this pattern by
deciding not to add milk in the future, the system should also cope with that. From
Aris’ perspective, the system should be a caregiver, i.e., to offer help only when necessary
without actively requesting feedback. Therefore, as a well-designed reminder system, the
system must be capable of assessing the quality of recommendations without necessarily
relying on user feedback.

In one of our previous works [12], we implemented a prototype system with great
consideration of the dynamicity of human activities, which was capable of detecting
complex activities. Then, in [13], we presented a Reminder Care System (RCS), which,
in addition to being able to learn the dynamicity of human activities, could also remind
patients about their needs correctly, without requiring their feedback. The problem was
formulated using a contextual bandit approach, which considers contexts as input to
recommend the next action. The RCS can support Alzheimer’s patients in their first stage
by constructing high quality recommendations only when the user is needed. Based on the
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Aris scenario, our system can be considered as caregiver where it considers all the context
of the exact time for needing recommendation.

For example, if Aris is in the kitchen for preparing a cup of coffee in the midnight,
our system instead of recommending an item for this activity; it will recommend for Aris
to go back to her bed because the time is too late. Considering context helps the system
not only recommend a correct item but also to know the suitable period of each activity.
Here, we extend this work by improving our RCS system of two main aspects, the reward
function calculation and updating the system. We also run more experiments on three
public datasets to validate our system. The main contributions of this paper are as follows:

• Proposition of a recommender system based on the contextual bandit approach by fusing
the context information from the past and current activities to recommend the correct item.

• Formulation of a reward function for automatic updates without requiring feedback
from users to improve the recommendations.

• Provision of minor and major updates to help tackle the dynamicity in human activities
while improving the quality of recommendations.

• Evaluation of the developed model using three public datasets.

Figure 1. Motivation scenario.

2. Related work

Multiple studies related to recommender systems for the IoT are found in the literature.
Some of these works exploit the traditional recommender system approaches: collaborative
filtering, content-based and hybrid-based. The collaborative filtering approach makes
recommendations on items for a particular user based on the ratings of previous user [14].
The authors in [15] proposed a unified collaborative filtering model based on a probabilistic
matrix factorization recommender system. It utilized three kinds of relations to extract the
latent factors among these relations to construct accurate recommendations.

Although the collaborative filtering approach has been adapted in numerous stud-
ies [16–19], there are potential shortcomings that make it inefficient for RSIoT particularly,
in terms of large amount of data, cold start problem, and data sparsity. In content-based,
instead of relying on ratings, it recommends items that are similar to the items previously
targeted by the user [20].

The authors in [21] adopt a content-based solution for the recommender engine
in their AGILE project, which aims to improve the health conditions of users. The CB
provides a number of features compared with CF, such as creating a profile for each user
that depends on the history of his rating, deciding recommended items based on the
extracted features of each item, and dealing with cold start problem; nonetheless, it has
a limitation where it builds its recommendations based on items and their features only
without considering any additional features that can tackle the RSIoT issues.

The hybrid-based approach combines two or more approaches to build an RS, such as
combining the collaborative and content-based methods where the limitations of each can
be addressed [22]. The authors in [23,24] built their recommender system engine using a
hybrid recommendation algorithm. Combining two approaches, such as content-based
with collaborative, may address their limitations but fails to tackle RSIoT problems: the
dynamicity in human activity patterns, and updating the system automatically without
needing feedback from users.
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Consequently, other studies started to shift for artificial intelligence techniques that
are able to present data in a good way and to deal with complex interaction pattern. For
example, machine learning was adopted to create a home automation framework [25]. It
can be used as recommender system to assist elderly people so, they can live independently
and safely. Here, the home appliances, like the TV, lights, etc. will be controlled using the
user voice. In addition, If someone needs to monitor the elderly people, they can remotely
control the smart devices with minimal cost and small effort.

Deep learning algorithms also have been adapted for building a recommender system
platform [26]. It helps doctors to determine the rehabilitation nutrition plan for cancer
patients. However, machine learning and deep learning algorithms learn from offline data,
which makes a recommender system for the IoT neither able to tackle any change of the
human pattern nor be updated automatically.

The reinforcement learning (RL) approach has been adapted in the implementation
of recommender systems for IoT environments. RL makes it possible for the learning of
the dynamics of a given environment and offers an architecture, which maximizes the
long-term reward particularly for continuous record updates. In the work presented by
Massimo et al. [27,28], an inverse RL was adopted to model user behaviours while Oyeleke
et al. [6] designed a recommender system for monitoring the daily indoor activities for
people with mild cognitive impairment using RL.

Most RL algorithms that deal with the modelling of dynamic environmental factors
usually focus on matching each state for an action using different sequence of policy
implementation. By considering future rewards, current actions are observed on how they
influence next action. However, a notable shortcoming of RL algorithms is their inability to
handle a system requiring learning and selection of the best action from different scenarios
where each state is treated independently.

As we mentioned in the Aris scenario, the system works as caregiver, which means
acting based on the patient behaviour by paying attention to her needs. Consequently,
the RSIoT system needs to consider all context from both user and item at the same time
to decide which item should be conducted at this moment. Unlike previous approaches,
which were mentioned above, contextual bandit (CB) approaches can exploit both offline
data and environment interactions that help in constructing recommendations with high
quality.

In CB, there are three main concepts in CB: State, which defines which activity is
performed by the user; Action, which represents the item that the user needs for this state;
and Reward, which the system receives based on the quality of the recommended item.
Contextual bandit utilizes the common features of RL by using policy to decide an action
based on the context of each state. This is similar to multi-armed bandit (MAB), which
focuses on the immediate reward.

As shown in Figure 2, both action and state affect the reward, which have a positive
impact to increase the quality of the recommendation. In contrast, the action in RL effects
not only the reward but also the action, which means that RL cannot deal with different sce-
narios as we mentioned before [29]. Some studies have adapted CB for their recommender
systems.

Li et al. [30] utilized the contextual bandit for the recommendations of news articles.
The presented algorithm, LinUCB, was reportedly applied to sparse and large data com-
bined with other algorithms, such as e-greedy. The study presented in [31], an online
learning recommender system, was developed by adapting CB where information for
history students were learnt, and current students were used as context to conduct the
learning recommendations to the students.

The author in [29] adapted CB to decide on action to be carried out by a robot de-
ployed to help dementia patients with their behavioural disturbances. Zhang et al. [32]
proposed a novel CB method named SAOR for online recommendations. The study offered
sparse interactions, which distinguished between a negative response and non-response to
improve recommendation quality. In our study, CB is adapted by utilizing three kinds of
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features, context past activities, current activity, and items. A reward model for automatic
update of the system requiring no feedback is also presented in this work.

Figure 2. The three main concepts in the Contextual Bandit Approach are (1) State, which represents
the current situation for the user; (2) Action, which provides the required item that meets the
user’s need; and (3) Reward, which considers feedback for the system to improve the quality of
recommendations.

3. Contextual-Bandit-Based Reminder Care System

The system proposed in this reminder recommendation has three major stages as
shown in Figure 3 and these are: complex activity recognition stage, prompt detection
stage and the recommendation stage. The complex activity recognition stage hinges on
three data sources, data from the wearable sensors, environmental sensory data, and home
appliance usage data. The prompt detection stage utilizes the data mining approach to
determine if an ongoing activity requires an item recommendation, while, at the reminder
recommendation stage, the CB approach is applied to extract context from the two previous
stages to recommend items to the user during an activity. The stages are further presented
in the subsections below.

Figure 3. Overview of the proposed methodology.

3.1. Complex Activity Detection

For a system to recommend appropriately, it needs to be aware of the user’s activities
to enable it effectively carry out desired recommendations. Despite the extensive studies
on Human Activity Recognition (HAR), most existing studies rely on wearable sensors for
the detection of simple activities, which are inadequate to support the detection of complex
activities. Therefore, further sources (e.g., environmental sensors and home appliance
sensors) are incorporated to help the system’s accurate detection of complex activity. In
our previous work [12], we designed a preliminary reminder care system based on the
detection of complex activities. We conduct recommendations via three main steps:
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• Elementary activity recognition: In this approach, the common configuration of
DeepConvLSTM was used as the classifier to detect elementary activities. The Deep-
ConvLSTM was configured to four convolutional layers with feature maps and two
LSTM layers with 128 cells. This stage was tested on two public datasets PAMAP2
dataset [33] and PUCK dataset [34]. The result shows that DeepConvLSTM achieved
a promising accuracy of 77.2%.

• Ontology for complex activity recognition: After achieving the detection of elementary
activities, we built an OWL (OntologyWeb Language3) model, which includes the
artefacts, locations, environment, and activities required to define things involved in
the interaction. From the Aris scenario, preparing a cup of tea could involve changes
in the motion sensor (local environmental sensor), status of the kettle in triggering the
usages, and time period for this activity, which would rarely be in the early morning
before sunrise. From the example, we can extract numbers of context: First, from the
motion sensor referring to Aris’ place (the kitchen); Secondly, the item context where
the kettle has been used; and finally, the time context of when this activity took place.

• Rule-based orchestration: This step utilizes the output from the two previous steps
for the detection of complex activities. A set of rules produced based on the previous
ontological models are implemented. Following the Aris tea preparation illustration,
we can create an ontological rule in a descriptive language as:

PreparingTea

@ Cooking

u∃ involving Artefact.Kettle

u∃ user_is_is Area.Kitchen

u∃ user_is_conducting Activity.Standing

u¬∃ has Time_constraint.EarlyMorning

3.2. Prompt Detection

At this stage, the data collected from the previous stage is used to determine the
prompt of an activity. The prompt is considered in two main situations: when the user
appears to be stuck within an activity for notable period without taking an action, and
when the user uses a wrong item that does not belong to this activity. In the previous stage,
the developed complex activity detection module is capable of complex activity detection
and learning of different activity patterns. The extracted features of each activity are used
to build the prompt detection system.

As mentioned earlier, Alzheimer patients in the mild stage may not be able to complete
their activities due to forgetfulness. For example, if Aris forgets to turn off the stove
after making her tea, the system can detect that the user needs a prompt and present an
immediate recommendation to turn off the stove. Various learning models are applied
in the determination of when a user needs a prompt during a monitored activity. Das
et al. [34] tested several classification algorithms (Support Vector Machines (SVM) [35],
Decision Tree [36] and Boosting [37]) on the PUCK dataset.

In particular, Boosting applies a classification algorithm to re-weight the training data
versions sequentially and then extract a weighted majority vote of the previous sequentially
classifiers. It generally outperforms the other two methods. For our experiments, only one
dataset provides the labels where the user needs a prompt or not by adding a class from 0
and 1. However, for the other two datasets, we create the points that define when the user
need prompt as we explain in detail in Section 4.

3.3. Conducting Recommendations

Having determined that a user’s activity requires a prompt, the system at this stage
then decides which item can be suitably recommended based on the user situation. One of
the main challenges is handling each activity differently. The system must always consider
what correct item is to be recommended even if it is the same activity by considering the
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user situation. For this reason, each activity is treated differently as a session during the
training where it helps the system to learn different pattern of each activity. This stage
represents our main contributions in this paper.

3.3.1. Problem Definition

When a complex activity that needs a prompt v where vi ∈ V = {v1, v2, .....vm} is
received by the agent G at time t, our algorithm extracts the context x and nominates an
appropriate item a from a set of actions A for the current activity. Notice that our system
recommends only one item at each time that needs a prompt. Then, the agent receives
feedback as reward r for the recommended item. Finally, the system is being updated
based on the received reward, which is called minor updated Miu, and the major update is
after a certain time of period Mju. Table 1 summarises the notations used throughout this
paper.

Table 1. System notations.

Notation Explanation

G Agent
x, X Context, set of context

a Action(item)
r Reward

A Set of items
M Memory
S State

Miu Minor update
Mju Major update

Tr Reward Delay Period
∏ Policies

SV State value of each sensor

3.3.2. Method

The problem is formulated based on a contextual bandit approach to tackle the dy-
namicity of human activity patterns and to recommend the correct item without having
to wait for the user’s feedback. Contextual bandit provides a learning model based on
context. Three kinds of context are extracted at this stage:

• Past activities context (PAC): Note that each activity is desired to have a different
pattern; thus, for each activity, the system extracts the path/sequences of items used
from the past records (recorded in the log file) as a type of context. The observed paths
of each activity are then stored in a memory based on which the agent can decide an
item to be recommended at a specific situation.

• Current activity Context (CAC): The contexts on the current states are extracted from
the received data obtained from the previous two stages. For example, when the
system receives that the user needs a prompt for preparing coffee, the context of the
current activity (locations, previous items, user position and time) will be extracted.

• Item context (IC): This essentially concerns information about items, such as deter-
mining to which activity an item belongs, how long such an item can be in use, and
how many times such items are needed by the user for the current activity. For ex-
ample, a coffee machine as an item can be used for the activity of ‘preparing coffee’,
where it can be used for around 2 min each time.

The contextual features of each session of the activities are received by the agent as
input (Algorithm 1). The CB combined three main components: an environment, which
represents the context of the user’s activity x ∈ X, an agent G, which chooses an action
a ∈ A, which is represented as an item in our system (notice that the common name in
CB is Learner but we call it an agent in our case) based on the received context and a
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reward r ∈ [0, 1], which the agent aims to maximize by recommending the correct action at
each round t= 1, 2, ...,T. We calculate the expected reward after each recommendations as
follows:

r(a) =
∑Tr

t=0 SVa,t

∑A
a=0 ∑Tr

t=0 SVa,t
(1)

where Tr is the Reward Delay Period (this is explained below) and SV depicts the state
value of each sensor at each time step t. The reward function for automatically obtaining the
feedback without waiting for the user is formulated. As shown in Figure 4, the calculated
reward gives a non-correct recommended item (the coffee machine). Consequently, the
system considers it for updating.

Two types of updates are carried out to keep the system in constant interactive
recommendation, minor update and major update. In minor update Miu, the system is
updated after the agent receives the reward where the system compares the recommended
item with the item already used by the user instead of it. Such item is then updated with
the newly used item to keep tracking the remaining items of the activity.

Algorithm 1 Our procedure to recommended a correct item for user’s activity. It takes
context x as input, and returns a recommended item as output a.

1: Initialize the capacity of storage memory M
2: Initialize a timer= 24h
3: for sessionvt ∈ V do
4: Observe state st
5: Extract xt, where xt = PAC, CAC, IC
6: Execute action following set of policies ∏
7: waiting for Tr
8: Compute r(a) according Equation (1)
9: Minimize R according Equation (2)

10: update Miu
11: Put xt, rt, a into M
12: Update Mju
13: end for
14: return

Major updates are considered after certain period before the end of the day where
the system is updated using the memory of historical data as obtained from the agent in
the last 24 h. The major update Mju helps the system to tackle any dynamicity of the user
pattern during the day as we mentioned before in the Aris scenario that her pattern could
be changed even if she has still doing the same daily activities.

Most traditional recommender systems focus on ‘click’ or ‘not click’ as feedback to
promptly evaluate the reward function and to update the system. In contrast, our system
having recommended an item, waits for sufficient time to determine if the recommended
item is used or not by checking its status (on/off or moved/not moved). This status is then
used to update the system accordingly. Furthermore, if the system recommends a coffee
machine to Aris (see Figure 4)) when she is preparing a cup of coffee, whereas she wants to
use it later and not on the immediate.

The recommended item may not be seen as incorrect due to the false negative feedback
at this time. The recommendation though not needed at this time can be used at another
time. To facilitate the above, we introduce a Reward Delay Period Tr, which accounts for
the different paces of users in carrying out activities, and we consider Tr a hyperparameter
(to be detailed Section 5).

The agent G can choose from a set of policies ∏ ⊆ {x → A} to map each context
for a suitable item by employing two streaming models: Linear regression and stochastic
gradient distance (to be detailed in Section 5). The goal of using different polices is to
minimize the regret R between the expected reward of the best action a∗ and the expected
reward of selected action a. The regret is calculated by using the following equation:
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Rt(T) = E

[
T

∑
t=1

rt, a∗t

]
− E

[
T

∑
t=1

rt, at

]
(2)

Here, we adapt three categories of policies as the following:

• Randomized (AdaptiveGreedy), which focuses on taking the action that has the
highest reward.

• Active choices (AdaptiveGreedy), which is the same for AdaptiveGreedy but with
active parameter ! = None, which means actions will not be taken randomly.

• Upper confidence bound (LinUCB), which stores a square matrix, which has di-
mension equal to total numbers of features for the fitted model. Details about the
parameters for each policy of two streaming models: Linear regression and stochastic
gradient distance will be detailed in Section 5.

Figure 4. (1) The agent recommends a coffee machine to Aris, whereas she uses milk instead; then
the system waits for 15 s; (2) The feedback is received by the system as a reward, and it is calculated
accordingly as the coffee machine is the wrong item; and (3) two kinds of updating for the system: a
minor update is after receiving the reward and a major update after certain period around 24 h.

4. Dataset

We have to mention that our evaluation focused on the third stage of our system,
which is the conduction recommendation. This was evaluated on three public datastets:
PUCK [34], ARAS [38] and ADL [39].

4.1. PUCK Dataset

The PUCK dataset is a public dataset published in 2011. The PUCK dataset collected
from a Kyoto smart home testbed located in Washington State University in two-story
apartments with one living room, one dining area and one kitchen on the first floor as well
as one bathroom and three bedrooms on the second floor.

It combines three types of sensory data: (1) environmental sensors, including motion
sensors on ceilings, door, sensors on room entrances, kitchen cabinet doors, microwave,
and refrigerator doors, temperature sensors in rooms, power meter, burner sensor, water
usage sensors, and telephone usage sensors, (2) items sensors for usage monitoring, and
(3) two wearable sensors. Eight complex activities are defined: Sweep and Dust, DVD
Selection and Operation, Prepare Meal, Fill Medication Dispenser, Water Plants, Outfit
Selection, Write Birthday Card, and Converse on Phone. Activities are divided into ordered
steps, which can help detect whether the activity is completed correctly.
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Features Engineering

The PUCK dataset has four fields (date, time, sensor ID and sensor value). To adapt
the PUCK dataset for our system, the following steps were taken to process the PUCK
dataset by extracting the required features:

1. Combining the environmental data sensors (motion, items, power meter, burner,
water usage, door etc.) with the wearable sensors for each participant by matching
the time step among them.

2. Labelling complex activities for the whole dataset.
3. Extracting the start and the end of each activity as a session to define when the user

needs a prompt.
4. Selecting only the common sensors among all participants where the total measure-

ment counts and participants each greater than 25th percentiles.
5. Dividing the sensors into four groups to be processed: movement sensors, motion

sensors, count sensors and continuous values sensors and process each group as
follows:

(a) In movement sensors group, each measurement includes six values (X, Y, Z,
Yaw, Roll and Pitch). We extracted the following features: Mean (X, Y, Z,
YY, RR and PP), STD (X, Y, Z, YY, RR and PP) Correlations (X//Y//Z) and
(Yaw//Roll//Pitch), which leads to 36 features in total.

(b) For motions sensors group, if at least one trigger in a group is counted as
trigger for the group, count and then compute the fraction counts across the
groups. Based on the PUCK dataset, we have 11 groups (features) altogether.

(c) Count sensors, which have on, off measurements, such as (door, item, shake
and medicine container sensor), we count and compute the fraction counts of
each session (20 features).

(d) For the last group, we calculate the average for continuous value sensors, such
as electricity and temperature (three features).

6. After extracting the all features (70 features), we apply the previous groups process
for all the participant sessions.

Two methods are taken to overcome the item usage imbalance problem (i.e., only a
small number of items are frequently used): first, the outliers from the items are dropped.
This method is simple but very effective in improving the performance and secondly, the
sampling order random points in activity sessions to increase the prompt points, although
this does not help balance the item usages, such as dropping the outliers.

4.2. ARAS Dataset

The ARAS dataset consists of 2 h of two residents where they perform 27 daily living
activities: Going Out, Preparing Breakfast, Having Breakfast, Preparing Lunch, Having
Lunch, Preparing Dinner, Having Dinner, Washing Dishes, Having a Snack, Studying,
Having a Shower, Sleeping, Watching TV, Toileting, Napping, Brushing Teeth, Using the
Internet, Laundry, Shaving, Cleaning, Talking on the Phone, Listening to Music, Having
Conversation, Reading a Book, Having a Guest, Changing Clothes and Others.

The activity sensory data is collected from 20 binary sensors, including force sensitive
resistors (FSR), pressure mats, contact sensors, proximity sensors, sonar distance sensors,
photocells, temperature sensors and infrared (IR) receivers. Due to the differences between
house A and house B, every house has a different topology of the Wireless Ambient Sensor
Networks (WASN) where house A has two of the Personal Area Networks while house
B has only one. The sensory data is collected for full month for each house with the time
stamp of one second.

Features Engineering

The ARAS dataset consists of 22 columns where the first 20 columns represent sensors
and the last columns represent the activities labels of each resident. We added a new
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column for the time to facilitate the feature engineering. The ARAS dataset does not require
complex feature engineering process because it has binary values for the whole sensors.
For both houses, the activities that interact with items sensors are used for the experiments
and others are removed. Unlike the PUCK dataset, the ARAS dataset does not contain the
prompt points. Based on that, we added random prompt points for each activity (session),
and we consider them to be before the session is ended around the reward delay period Tr.

4.3. ADL Normal Dataset

The ADL Normal dataset represents a public dataset published in 2010. It was collected
from a Kyoto smart apartment testbed in Washington State University. The data contains
20 participants performing five complex activities that are defined as: making a phone call,
washing hands, cooking a meal and eating, taking medicine and cleaning. It is collected
per second and annotated using the activity number and number of each participant. The
ADL Normal combines only motion sensors, item sensors, burner sensors, phone usage
and water sensors.

Features Engineering

The same features engineering of the PUCK dataset is applied except that of the wear-
able sensors processing. We add random prompt points for each activity but considering
that these points should be before the session is ended, we follow the same process as for
the ARAS dataset.

5. Evaluation

First, the evaluation of the effectiveness of the CB approach in recommending the
correct item to a user in case the user’s current activity needs a prompt is carried out. All
the extracted features are utilized by the system as contexts to make a recommendation
of the correct item. One publicly available CB python package is selected for our experi-
ments. The package offers two types of models: full batch and streaming models. Due to
sample limitations of the datasets, the streaming models, namely SGDClassifier (SGD) and
LinearRegression (OLS), are focused on.

Both models are sensitive to hyper-parameters, such as beta_prior or smoothing.
Nevertheless, SGDClassifier offers stochastic matrices, while LinearRegression (OLS) has
matrices, which are closed to the solution, and it updates them incrementally. Details
about the parameters are given in Table 2. Figure 5 shows a set of policies used for each
model. For the PUCK Figure 5a and the ARAS (house A) (Figure 5b) datasets, the SGD
model—particularly the Softmax Explorer policy—is more robust, and it provides a better
cumulative mean reward of item recommendations.

On the other hand ARAS (house B) Figure 5c and ADL Figure 5d are more likely to
provide good results by LinUCB policy of OSL model. This plot confirms that both models
lead to a promising results based on each dataset from several policies being used. Table 3
shows the cumulative mean reward of our system by considering the three datasets.

The Reward Delay Period Tr, as earlier explained, helps in the determination of the
suitable time for an agent to receive the reward as a feedback of the recommended item.
Tuning Tr is important as decreasing it could indicate that the recommended item is not
used, while increasing Tr could confuse the agent—specifically when the user starts to
use other items before receiving the feedback about the recommended one. The results in
Figures 6–8 show how Tr can affect the performance.

The reward delay period with 5 s (see Figure 6) provides higher performance with
the three datasets compared with the reward delay period of 10 and 15 s as shown in
Figures 7 and 8, respectively. Policies are affected by the reward delay period; for instance,
softmax explorer of the SGD model has a good performance with 5 s among the datasets
but this performance starts to be reduced when the reward delay period is increased to
10 and 15 s. Table 4 summarises all cumulative mean rewards of our system among three
datasets using different reward delay periods.
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There are two reasons that make the reward delay period of our system vary from
dataset to another or from user to user in real time system. The first reason is that each
activity has specific items and each of these items existing in different place. For example,
preparing a cup of coffee activity includes the following items: a cup, sugar, milk and a
coffee machine. Thus, if the agent recommends milk and the fridge is too far from the user,
it will take some time to receive the correct response, while if the agent recommends a cup
and the user is standing near the cupboard, it will take less time to receive the response.

The other reason is that users have different behaviours in their response; some of
them respond immediately after they receive the recommended item, and others may take
a little bit longer. However, our system is targeted to Alzheimer’s patient where it should
expect a reward delay period with a long time compared with a healthy person. Here,
we treat Tr as a hyperparameter that can be adjusted based on each item; we will leave
this to our future work. In addition, it is observed that the system achieved the desired
result of not requiring any feedback from the user to receive the reward. Consequently, it is
calculated automatically after the Reward Delay Period. This feature is focused on because
our system deals Alzheimer’s patients who experience difficulty in holding a smartphone
and confirm their response for recommendations.

(a) (b)

(c) (d)

Figure 5. The comparison of models for each dataset. (a) PUCK; (b) ARAS (house A); (c) ARAS (house B); (d) ADL.
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Table 2. Tuning hyperparameters for the OSL model policies.

Policy Note
Hyberparameters

Beta_PRIOR Alpha Smoothing Decay Refit_BUFFER Active_CHOICE Decay_TYPE

LinUCB [30] LinUCB policy stores a square matrix , which has
dimension equal to total numbers of features for the

fitted model.

None 0.1 - - - - -

AdaptiveGreedy [40] It focuses on taking the action that has the highest
reward.

None - (1,2) 0.9997 - - percentile

AdaptiveGreedy(Active) It is the same for AdaptiveGreedy but with different
hyberparameters

((3./nchoices, 4), 2) None 0.9997 - weighted percentile

SoftmaxExplorer [40] It depends on softmax function to select the action None - (1,2) - 50 - -

ActiveExplorer [40] It depends on an active learning heuristic for taking
the action

((3./nchoices, 4), 2) - None - 50 - -
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Table 3. The cumulative mean reward of our system among three datasets.

Dataset
Policies

LinUCB
(OSL)

Adaptive Active Greedy
(OLS)

Adaptive Greedy
(OSL)

Softmax Explorer
(SGD)

Active Explorer
(SGD)

PUCK 0.68 0.64 0.63 0.79 0.65

ARAS
House (A) 0.80 0.81 0.77 0.85 0.69

ARAS
House (B) 0.92 0.91 0.91 0.90 0.75

ADL 0.99 0.99 0.99 0.97 0.83

(a) (b)

(c) (d)

Figure 6. The Reward Delay Periods Tr = 5 s. (a) PUCK; (b) ARAS (house A); (c) ARAS (house B); (d) ADL.
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(a) (b)

(c) (d)

Figure 7. The Reward Delay Periods Tr = 10 s. (a) PUCK; (b) ARAS(house A); (c) ARAS (house B); (d) ADL.

Table 4. The cumulative mean reward of our system among three datasets using different reward delay periods.

Dataset The Reward Delay Period
Policies

LinUCB
(OSL)

Adaptive Active Greedy
(OLS)

Adaptive Greedy
(OSL)

Softmax Explorer
(SGD)

Active Explorer
(SGD)

PUCK

5 s 0.68 0.64 0.63 0.79 0.65

10 s 0.74 0.55 0.65 0.75 0.60

15 s 0.62 0.52 0.48 0.70 0.58

ARA s
Hou se (A)

5 s 0.80 0.81 0.77 0.85 0.69

10 s 0.68 0.65 0.58 0.72 0.56

15 s 0.68 0.72 0.68 0.60 0.49

ARA s
Hou se (B)

5 s 0.92 0.91 0.91 0.90 0.75

10 s 0.76 0.76 0.78 0.79 0.66

15 s 0.71 0.65 0.76 0.74 0.61

ADL

5 s 0.99 0.99 0.99 0.97 0.83

10 s 0.99 0.99 0.99 0.98 0.83

15 s 0.95 0.95 0.95 0.90 0.78
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(a) (b)

(c) (d)

Figure 8. The Reward Delay Periods Tr = 15 s. (a) PUCK; (b) ARAS (house A); (c) ARAS (house B); (d) ADL.

6. Scope of Improvements Directions for RCS

Despite all the advantages of the proposed system, there are still aspects that need to
be considered in the future. Some of them are discussed below.

• The RCS with real life. As mentioned, our system was only tested on public datasets.
Dealing with real time data, our system should be capable of synchronization among
the three stages starting from the complex activity detection until the user receives
an item recommendation. We need to build our model for prompt detection that can
exactly define when the user needs a recommendation. Failure in this task makes the
system construct not beneficial recommendations that could affect the quality of the
system.

• RSC testbed. Building a testbed helped to evaluate our system in the real life. The
main issue with public datasets is missing required features. For example, the time
period of each activity as some activities rarely happen at night time, such as Aris
preparing a cup of coffee at midnight. Thus, if the system was feeding with the time
period of each activity, it will be expected to recommend going back to bed for Aris
and to mention the time to remind her.

• Trust-aware of the recommendations. Our system deals with sensitive and critical
data about the patient, a lack of integrity could harm the user’s life by suggesting



Future Internet 2021, 13, 305 17 of 19

incorrect items, such a recommending a medicine when the user has already taken it.
To ensure the safety of the recommendations, the data that feeds our system needs to
be protected.
The blockchain is planned as a potential step forward to address the integrity chal-
lenge. Our previous work [41] introduced a conceptual framework for data integrity
protection.

• Unexpected action. In some statuses, our system could face an issue when the user
uses two items at the same time, and there is only a short time period between them.
This case could make the agent receive wrong feedback about the recommended item,
which could affect the system update. For example, if the agent recommends turning
the coffee machine on, whereas the user brings the milk at the same moment and then
accepts the recommendation. After calculating the reward, it seems that is the milk is
the correct item not the coffee machine.

• Easy to handle. As we mentioned before, we targeted Alzheimer’s patient in the
mild stage; therefore, our system should consider that elderly people cannot hold a
phone to receive the recommendations. Consequently, designing a system that acts as
caregiver for the patients is important to meet the user’s expectations.

7. Conclusions

In this work, the feasibility of building a reminder recommendation system was
explored. The recommendation system was adapted for Alzheimer’s patients for when
they need a reminder. We took advantage of the contextual bandit approach to formulate
our problem and tackled two main issues: the dynamicity of human activity patterns
and recommending the correct item without needing explicit user feedback. Experiments
demonstrated the effectiveness of our recommender system. Some limitations observed
in our evaluation of the system include that our experiments are still not sufficiently
comprehensive because the datasets that we used did not meet our system’s requirements,
such as time labels, which are an important and critical type of context.

Only the PUCK dataset, which considers the wearable sensors as a source to detect
complex activity, was analysed; however, the other two datasets included items and
environment sensors. The number of samples and complex activities in each dataset were
also considered as limitations that affected our experimental results. In the future, we will
create our own test-bed to collect inclusive and adequate data for complex experiments
and test our framework in real-life scenarios.
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