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Abstract: Many deepfake-image forensic detectors have been proposed and improved due to the
development of synthetic techniques. However, recent studies show that most of these detectors
are not immune to adversarial example attacks. Therefore, understanding the impact of adversarial
examples on their performance is an important step towards improving deepfake-image detectors.
This study developed an anti-forensics case study of two popular general deepfake detectors based
on their accuracy and generalization. Herein, we propose the Poisson noise DeepFool (PNDF), an
improved iterative adversarial examples generation method. This method can simply and effectively
attack forensics detectors by adding perturbations to images in different directions. Our attacks can
reduce its AUC from 0.9999 to 0.0331, and the detection accuracy of deepfake images from 0.9997 to
0.0731. Compared with state-of-the-art studies, our work provides an important defense direction
for future research on deepfake-image detectors, by focusing on the generalization performance of
detectors and their resistance to adversarial example attacks.

Keywords: adversarial examples; deepfake; general detectors; Poisson noise

1. Introduction

As a result of the advent of image and video synthesis technology, it is easy to generate
high-confidence fake images and videos. Usually, a “deepfake” refers to people or objects
generated by artificial intelligence that look realistic but do not exist in the real world. The
most ordinary patterns of a deepfake are the manipulation and generation of human face
images. For example, there is the DeepFake method of face replacement in video [1] and the
realistic generative adversarial network (GAN) artificial synthesis method [2]. Generally,
deepfakes can be divided into four categories [3,4]: reenactment, replacement, editing and
synthesis. Reenactment [5] utilizes the source identity Xs to drive the target identity Xt,
making Xt behave the same as Xs. Reenactment technology allows the attacker to use
the fake identity to control things they say or do, such as defamation, dissemination of
misinformation. Replacement [6] refers to replacing the target identity Xt with the content
of the source identity Xs, so that the target identity Xt becomes the source identity Xs.
The attackers may replace the victim’s face with the body of a pornographic actress to
insult, slander, or blackmail the victim. Editing technology [7] adds, changes, or deletes the
attributes of the target identity; for example, changing the target object’s clothes, beard,
age, weight, appearance, and even race and skin color. Synthesis [4] refers to a DeepFake
character created without a target identity as the basis. The danger is that attackers can
create and add characters online for fraud and other illegal activities.

Deepfakes are implemented mainly by using a convolution neural network structure
(CNN), encoder-decoder network structure (ED), generative adversarial network (GAN) [8],
or image-to-image translation network (CycleGAN) [9]. Most of these are based on CNNs
to generate deepfake images and then synthesize fake videos. Therefore, the detection of
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deepfakes can start with the detection of fake images generated by CNNs. It is relatively
simple to detect whether an image is real or fake. However, some methods may have poor
generalization when testing on new datasets because their effects are closely related to the
dataset used in image generation training. As a result, finding a general image-forensics
detector is essential for the detection of deepfakes.

The current research on general detectors mainly aims to find the common features
of the CNN network structure and the fingerprints of CNN-generated images [10,11].
Luca et al. [12] proposed a method to extract fingerprints from images generated by
deepfakes. They used the Expectation-Maximization algorithm to extract and detect
fingerprints that represent convolution traces left in the process of generating images by
GAN. Some studies have also shown that the up-sampling and down-sampling operations
of neural networks readily leave fingerprints, such as checkerboard artifacts produced by
deconvolution layers [13]. Zhang et al. [14] proposed a method called AutoGAN, which can
simulate the artifacts produced by the common pipeline shared by several popular GANs,
and tested it on CycleGAN and StarGAN. They found that the up-sampling components
included in common GANs may cause artifacts, which appear as a copy of the spectrum
in the frequency domain. They innovatively used the image spectrum as the input of
the classifier instead of the image pixels. This method reached the highest level at the
time, even if the target GAN model was not seen during the training process. However,
Wang et al. [15] found that not only GANs but other CNNs also observed periodic patterns
in the spectrogram when generating images. They proposed a “general” detector for CNN-
generated fake images. They demonstrated that with careful pre- and post-processing
and data augmentation, a standard classifier trained on ProGAN, an unconditional CNN
generator, can be generalized surprisingly well to unseen architectures, datasets, and
training methods.

Correspondingly, there are many anti-forensics measures. For example, adversarial
example generation methods have been used to modify fake images to attack deepfake
detectors. Szegedy et al. [16] found that, in many cases, the deep neural network model will
misjudge the input samples after adding a slight perturbation. Later, Gandhi et al. [16,17]
used adversarial examples to enhance deepfake images to achieve the purpose of deceiving
the VGG16 and Resnet18 detectors. Neekhara et al. [18] proposed using an adversarial
example (iterative gradient sign method) to reversely modify the fake videos to bypass the
detector. They tested it on the XceptionNet and MesoNet classifiers to evaluate the Deep-
Fake detector for fake videos. Moreover, some researchers [19] directly used generative
adversarial networks to generate adversarial examples from benign input images. This
method can produce perturbations that can better align with the underlying edges and
shapes in the input, making it look more natural.

Several related studies [20] show that neural networks are vulnerable to adversarial
example attacks. Herein, we conduct a simple adversarial example attack against the
“general” detector proposed by Wang et al. [15]. Our method can enhance the deception
ability of the images generated by CNNs on the general detector. We use the general
detector’s network structure to construct a new classifier, which is used in the Poisson
noise DeepFool (PNDF). By adding perturbations in different directions, PNDF can easily
generate adversarial examples. Finally, we input the adversarial examples to the detector
and observe the classification accuracy. PNDF can also generate an approximate minimum
perturbation, which can be used to evaluate the robustness of the classifier. To prove that
our method is not limited to only one forensic classifier, we attack another general detector
for GANs proposed by Zhang et al. [14].

In summary, the major contributions of this study are described as follows:
This is the first work proposing a novel approach, Poisson noise DeepFool (PNDF),

which can promote the images to be perturbed in different directions by adding Poisson
noise during the update.

By adding perturbations to the deepfake images using PNDF in reverse, we find that
general detectors are not adversarially robust.
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Through comprehensive experiments on eleven datasets, we demonstrate the pro-
posed approach can effectively and simply attack both the accuracy and generalization of
the detector.

The remainder of this paper is organized as follows. In Section 2, the existing works
using adversarial examples to attack deepfake detectors are discussed. In Section 3, the
attacked detectors and attack technology (PNDF) are introduced in detail. We show the
specific experimental details and experimental results in Section 4. Section 5 serves as our
discussion and conclusion.

2. Related Work

We introduce several classic adversarial examples generation methods and show
several related works of using adversarial examples to attack the deepfake detectors in
this section.

2.1. Adversarial Examples Generation Method

The adversarial example generation methods are divided into white-box attacks and
black-box attacks. To better understand adversarial examples, we introduce a typical
white-box attack method (FSFM) and a black-box attack method (Universal Adversarial
Perturbations) in detail.

FSGM: Goodfellow et al. [21] proposed an effective calculation method to generate
adversarial perturbations, termed the “Fast Gradient Sign Method” (FGSM). This method
is gradient-based. In the white-box environment, the derivative of the model to the input
is found first. Then the sign function is used to obtain its specific gradient direction and
multiplied by a step size ε to obtain the perturbation. Finally, the perturbation is added to
the original input to obtain the FGSM example. The FGSM attack is expressed as follows:

x′ = x + ε·sign(∇x J(x, y)) (1)

where x′ is the adversarial example, x is the original image, and ε·sign(∇x J(x, y)) is the
added perturbation. The added perturbation can increase the loss so that the model is
classified incorrectly and the attack is successful.

Universal Adversarial Perturbations: Since FGSM, etc. can only calculate the pertur-
bation of a single image, Moosavi-Dezfooli et al. [22] proposed a universal perturbation
method that can be used for arbitrary images to fool neural networks with high probability.
This universal perturbation can cause most images to be misclassified after adding the
noise; that is, to perturb a new data point, a universal perturbation is only needed to
be added to the image (i.e., there is no need to solve the optimization problem/gradient
calculation). The objective function is as follows:

k̂(x + v) 6= k̂(x) f or most x ∼ µ

‖ v ‖p≤ ε (2)

p
x

(
k̂(x + v) 6= k̂(x)

)
≥ 1− δ

where µ is the image distribution, v is the universal perturbation. P represents the p-norm,
ε controls the size of the perturbation v, and δ is used to measure the expected interference
rate of v on all samples.

2.2. Adversarial Examples Attacks on Deepfake Detectors

Gandhi et al. [16] used FGSM and C&W methods to generate perturbations under
white-box attack and black-box attack settings, respectively. They used the “Few-Shot Face
Translation GAN” to create 5000 fake images to test the VGG16 and Resnet18 classifiers. In
the black-box case, the accuracy of both classifiers was decreased significantly, and in the
white-box case, the accuracy of both classifiers was equal to or close to 0.
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Because Gandhi et al. [17] only attacked image classifiers, and did not extend their
work to videos, Neekhara et al. [18] proposed using adversarial examples (iterative gradient
sign method) to evaluate the DeepFake (mainly face images) detector for fake videos. They
proposed using the existing DeepFake generation method to reversely modify the fake video
synthesis to bypass the detector, and tested it on the XceptionNet and MesoNet classifiers.

There are various techniques for generating fake images and videos, and various
detectors. However, Neekhara et al. [18] only attacked DeepFake detectors, rather than
all forensic detectors, which was a limitation. Carlini et al. [23] proposed five attack case
studies for a new classifier for adversarial attacks aiming at the vulnerability of deepfake
forensic classifiers. They attacked the two forensic classifiers under the premise of without
network parameters (black-box) and accessible network parameters (white-box). Their
white-box attacks reduced the area under the ROC curve (AUC) from 0.95 to below 0.1.
Even when the classifier’s parameters could not be directly accessed, the black-box attacks
still reduced the AUC to below 0.22. However, they considered the attack effect as a whole
and randomly selected 10,000 images for modification, and did not carefully study every
generative model. The attack methods they chose were relatively high in intensity and were
not accurate enough to assess the robustness of the detector. Furthermore, they attacked a
general detector, but did not analyze it from the perspective of generalization.

3. Materials and Methods
3.1. Attacked Detector

In our work, the main attacked detector is the “general” detector proposed by
Wang et al. [15] for CNN deepfake generation models. The main components of the
detector are as follows:

1. ProGAN’s real images and its generated fake images were used to train a binary
classifier with a Resnet50 network structure. The size of the training set is 720,000 images.
To extend a single dataset’s training results to other datasets, the team used a data aug-
mentation method. All images were first flipped left and right, and then Gaussian blur,
JPEG compression, and Blur + JPEG were used to process the image. Data augmentation
and data diversity improve the generalization ability of the model and the robustness
of classification.

2. Fake images generated by ProGAN and the other ten CNN-based image generation
models (StyleGAN, Big-GAN, CycleGAN, StarGAN, GauGAN, DeepFakes, cascaded
refinement networks (CRN), implicit maximum likelihood estimation (IMLE), second-order
attention super-resolution (SAN), seeing-in-the-dark (SITD)) were used to test classification
accuracy and generalization. The real images and fake images generated by each generative
model are shown in Figure 1.
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Additionally, the same method was used to attack the detector proposed by
Zhang et al. [14]. The classifier for GANs takes a similar learning-based approach to
that of Wang et al. [15], but the generalized model types are not as extensive as the latter.
This detector is different from the previous typical method [24,25] of collecting a large
number of GAN-generated images from one or more pretrained GAN models, and then
training a binary classifier to design real and fake GAN image classifiers. Here, we em-
phasize that they noted the fingerprint information generated by the up-sampling module.
They also used signal processing-related techniques so that their classifier input was a
spectrum, rather than image pixels.

3.2. Adversarial Examples Attack

Due to deep neural networks’ vulnerability to adversarial examples, adding perturba-
tion to the input images can easily cause the classifier to misclassify. A small perturbation
is added to an original image by adversarial example generation technology, which is
enough to change its label. However, it is difficult for the naked eye to distinguish the
new sample from the original image. We aimed to generate the minimum perturbations
required to simply and effectively change the classification labels. Therefore, we used
Poisson noise DeepFool (PNDF) to attack general detectors. This t is proposed for the
directionality of DeepFool. Poisson noise is added in the updating process to disturb the
samples in different directions. Due to its accurate estimation of the perturbations, PNDF
also provides an index to evaluate the robustness of the classifier.

3.3. PNDF for Binary Classifier

Usually, for a given classifier, we define a minimum perturbation r sufficient to change
the original classification label l as follows:

∆(x; l)min
r
‖ r ‖2

subject to l(x + r) 6= l(x) (3)

where x is an image and l(x) is the estimated label; further, we call ∆(x; l) the robustness
of l at point x. Moosavi-Dezfooli et al. [26] proposed the computation of a minimal norm
adversarial perturbation for a given image in an iterative manner called DeepFool. They
assumed the original image is located in the region defined by the decision boundary,
and a small vector is added each iteration. Until the image label changes, these vectors
are accumulated to obtain the final perturbation. Specifically, assume l(x) = sign(f(x)),
where f is an arbitrary scalar value image classification function, f : Rn → R. Firstly, we
analyze the case where f is a linear classifier f (x) =

{
wTx + b

}
, and then generalize it to a

general binary classifier. DeepFool can generate perturbations for binary classifiers and
multi-classifiers. Because a multi-class classifier can be regarded as a collection of binary
classifiers, and the goal of this work is to attack the binary classifiers, here we only discuss
the algorithm of binary classifiers.

When f is linear, it is easy to find the robustness of f at point x0, r∗(x) is equal to
the distance from x to the boundary hyperplane F =

{
x : wTx + b = 0

}
(Figure 2). At

this time, the minimal perturbation that changes the classification result of the classifier is
the orthogonal projection of x0 onto the hyperplane F . Assuming now that f is a general
binary differentiable classifier, we adopt an iterative procedure to estimate the robustness
∆(x0; f ).

However, DeepFool only considers the projection from the sample point to the hyper-
plane and ignores the perturbations’ directionality. Moreover, the minimum perturbation
is the orthogonal projection from the point to the hyperplane, which is a small probability
event. It is difficult to ensure that every perturbation is just the orthogonal projection.
Poisson noise is very small and obeys the regular Poisson distribution. In addition, because
of its signal dependence and good performance in improving the signal-to-noise ratio, it
can ensure better image quality when increasing noise to obtain directional perturbations.
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Therefore, considering the perturbations’ directionality and generality, we add Poisson
noise in the iterative update perturbation. When we update r∗(x), we draw a circle with
x0 as the center and r∗(x) as the radius. In this case, the hyperplane F is the tangent of
the circle, and it forms a right triangle with the quarter circle, as shown in Figure 2. The
coverage area of the smallest perturbation in the shadow part is defined as rs. Obviously,
because both x0 and F are fixed, rs is only related to r∗(x).
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rs is calculated as follows:

rs =

(
x0 − y0−b

wT

)(
wTx0 + b− y0

)
2

− πr2
∗(x0)

4
(4)

We add Poisson noise to properly increase r∗(x) and decrease rs to obtain the pertur-
bation in different directions. The calculation formula of r∗(x) is updated as follows:

r∗(x) = P(x0,l(x0)
)

(
argmin

r
‖ r ‖2

)
(5)

where P(·) means to add Poisson noise at the sample point x0 with label l(x0). The Poisson
noise DeepFool (PNDF) algorithm for binary classifiers is summarized in Algorithm 1. The
algorithm is simple in theory and easy to implement.

Algorithm 1 Poisson noise DeepFool (PNDF) for binary classifiers

Input: Image x, classifier f
Output: Perturbation r

1: Initialize x0 ← x, i← 0
2: While sign( f (xi)) = sign( f (x0)) do
3: ri ← P(x0,l(x0))

(
− f (xi)
‖∆ f (xi)‖2

2
∆ f (xi)

)
,

4: xi+1 ← xi + ri ,
5: i← i + 1 ,
6: end while
7: return r = ∑i ri

In this work, perturbations are generated by PNDF to reverse modify the images to
deceive the classifier. Moreover, we use the original DeepFool to reverse modify ProGAN’s



Future Internet 2021, 13, 288 7 of 14

dataset, which is our baseline. In PNDF, the perturbation r is iteratively added to image
x until the predicted label of the image x + r changes from fake to real or from real to
fake. We add perturbations to both fake images and to real images. However, the reverse
modification of the real images requires greater perturbations, as found by Carlini et al. [23],
and we also observe from the experimental results that modifying about 1% of the pixels
can ensure 50% of fake images are classified as real, whereas misclassifying 50% of real
images as fake requires modifying about 6% of the pixels (Figure 3). Therefore, we pay
close attention to the change in the fake image detection accuracy (f-ac). Figure 4 is a
schematic diagram of reverse modifying the image to deceive the detector. The network
structure and parameters of “Classifier” are extracted from “Detector”.
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Figure 4. Schematic diagram of modifying the image reversely to deceive the detector. On the
left is the process of using PNDF to iteratively add a perturbation r to the original image. Poisson
noise is added when r is updated to obtain the perturbation in different directions. When the label
obtained by the classifier changes, the perturbed image is outputted as the detector’s input to make
the detector’s judgment result opposite to the original image.

4. Experiment and Discussion
4.1. Datasets and Models

We evaluated our proposed attack algorithm on the general detectors proposed by
Wang et al. [15] and Zhang et al. [14]. The datasets used in our attack were eleven test
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sets which were divided into four categories: various GAN networks, Perceptual loss,
Low-level vision, and DeepFake. The image source of each generative model and the
number of real and fake images they contain are listed in Table 1.

Table 1. Generation Models Datasets.

Category Models Fake Images Real Images Image Source

Conditional GANs
CycleGAN 1321 1321 Style/object transfer
StarGAN 1999 1999 Celebes
GauGAN 5000 5000 COCO

Unconditional GANs
ProGAN 4000 4000 LSUN

StyleGAN 5991 5991 LSUN
Bagan 2000 2000 ImageNet

Low-level vision
SITD 180 180 Raw camera

SAN 219 219 Standard SR
benchmark

Perceptual loss CRN 6382 6382 GTA
IMLE 6382 6382 GTA

DeepFakes FaceForensics++ 2700 2700 Videos of faces

GANs We used the latest unconditional GANs trained on the LSUN or ImageNet
dataset: ProGAN [27], StyleGAN [2], and BigGAN [28]. ProGAN and StyleGAN train
different networks for each category. BigGAN has a single-block class conditional structure,
which is trained on a very large batch scale and uses a self-attention layer. We also used
three image-to-image translation method conditional GANs: GauGAN [29], CycleGAN [9],
and StarGAN [30].

Low-level vision: Seeing-in-the-dark (SITD) [31] uses a high-resolution fully convo-
lutional network. It approximates the long-exposure photography from short-exposure
raw camera input in low-light conditions. We also tested a state-of-the-art super resolution
model, the Second Order Attention Network (SAN) [32].

Perceptual loss: We tested no the confrontation training process which directly opti-
mized the generation model of perceptual loss: cascaded refinement networks (CRN) [33]
and implicit maximum likelihood estimation (IMLE) [34].

DeepFakes: Face replacement images are provided in FaceForensics++ [35]. The
model uses an auto-encoder to generate a face and then uses a post-processing step of
mixing the generated image with the real content Poisson image.

4.2. Attack Settings

Our attack was implemented with Python 3.6 based on Pytorch. GeForce GTX 1080Ti
GPU and CUDA 9.2 were used for training acceleration. When adding perturbations to
the images of each test set for reverse modification, the network structure of the detector
and parameters must first be extracted. When using PNDF to add perturbation in differ-
ent directions, the image’s original label is first given by the classifier. According to the
PNDF calculation perturbation formula, the perturbations are added to generate adver-
sarial examples as the classifier inputs, and the processing is iterated until the classifier
result changes.

To quantify the attack of the adversarial example on the detector, the f-ac, AUC
(AUC is defined as the area under the ROC curve that compares the false positive rate
to the true positive rate and must be less than 1; the ROC curve is the receiver operating
characteristic curve, drawn with the true positive rate as ordinate), and AP before and after
adding perturbation are recorded. The f-ac is the fake images’ accuracy, which refers to
the attacked detector’s detection accuracy only for fake images. Average precision (AP),
an important index of object recognition, is precision averaged across all values of recall
between 0 and 1. Equations (6)–(9) are the formulas for calculating f-ac, recall, precision
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and average precision, where TP = True Positive, FP = False Positive, TN = True Negative,
FN = False Negative, P refers to precision, and r refers to recall.

f− ac =
TN

TN + FN
(6)

recall =
TP

TP + FN
(7)

precision =
TP

TP + FP
(8)

AP =
∫ 1

0
P(r)dr (9)

AP and AUC were calculated after modifying real and fake images to evaluate the
detector’s robustness for detecting real and fake images. These indicators were calculated
by the built-in functions of Pytorch.

4.3. Attack Results

To illustrate our contribution, we conducted many experiments, and here show the ex-
periment results from the accuracy and generalization of the “general” detector. Moreover,
to prove that our method is not limited to only one deepfake image detector, we also attack
the detector proposed by Zhang et al. [14].

4.3.1. Attack Accuracy of the “General” Detector

Given that the detector is trained on the fake images generated by ProGAN and its
corresponding real images, the detection of fake images generated by ProGAN should
achieve a high accuracy. The comparison of the classifier’s accuracy before and after
perturbations are added by DeepFool and PNDF is listed in Table 2. We find that the
attack intensity of PNDF with perturbation in different directions is stronger than that of
DeepFool. Further, we measured the amount of added noise by calculating the percentage
of modified pixels. The results show that the percentage of modified pixels of all images
with perturbation is less than 10%. The detector’s accuracy for original fake images
generated by ProGAN is close to 1, and both AP and AUC reach 0.9999; that is, the
performance of the detector is ideal when no perturbation is added. When using PNDF
to add perturbation to the images, the f-ac is reduced from 0.9997 to 0.0731, and the AUC
is reduced from 0.9999 to 0.0331. Because the recognition accuracy of the classifier is not
equal to 100%, when the fake images are reverse modified, the fake images’ labels after
modification may be still fake; that is, the sum of the accuracy before and after modification
is not equal to 1.

Table 2. Accuracy comparison of ProGAN.

f-ac AP AUC

unperturbed 0.9997 0.9999 0.9999
Perturbed by DF 0.0923 0.3356 0.0430

Perturbed by PNDF 0.0731 0.3212 0.0331

4.3.2. Attack Generalization of the “General” Detector

The detector’s generalization means that the detector trained on a certain training
set can distinguish fake images, directly or under minor adjustment, regardless of the
architecture or datasets. Wang et al. [15] demonstrated that with careful pre- and post-
processing and data augmentation, a standard image classifier trained on only one specific
CNN generator (ProGAN) can be generalized surprisingly well to unseen architectures,
datasets, and training methods. Due to its superiority based on our test results, PNDF was
used directly to add perturbations to the datasets of the ten other CNN generation models
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(StyleGAN, Big-GAN, CycleGAN, StarGAN, GauGAN, DeepFakes, cascaded refinement
networks (CRN), implicit maximum likelihood estimation (IMLE), second-order attention
super-resolution (SAN), seeing-in-the-dark (SITD)) and the changes in the accuracy of
the detector’s fake image detection were recorded. In this process, the structure and
parameters of the detector network are not changed, and we observe the extent to which
its generalization ability is affected by the adversarial examples.

The generalization performance comparison before and after adding perturbations
by PNDF is exhibited in Table 3. Before adding perturbations, most of the classification
indicators (AUC and AP) of the ten generation models were above 0.9, and the f-ac of
CRN and IMLE reach 0.99; that is, the generalization effect of the detector on the detection
of original fake images is ideal. Our attack method is relatively effective in terms of
the generalization performance, which is distinctly demonstrated by the comparison of
indicators before and after addition with perturbations. The f-ac is reduced to below
0.1 (CRN’s f-ac is equal to 0.0007) and the AP is around 0.3. The AUC’s value is reduced
from 0.95 to below 0.05. DeepFake’s AUC even drops to 0 (bold in the table), which means
that the classifier is completely invalid. Figure 5 clearly shows the changes in the three
evaluation indicators before and after adding perturbations in the form of a histogram. The
detection effect of the detector on the original fake images of SAN is very poor, and the f-ac
is close to 0. Thus, the abnormal change in SAN after reverse modifying the fake images
can be explained. Additionally, we find that AP and AUC are positively correlated, so their
values can better reflect the changes in the accuracy of the detector.

Table 3. Generalization comparison of the detector before and after adding perturbation by PNDF.

Models f-ac AP AUC

Unperturbed Perturbed Unperturbed Perturbed Unperturbed Perturbed

CRN 0.9987 0.0007 0.9823 0.3135 0.9877 0.0394
IMLE 0.9976 0.0393 0.9840 0.3069 0.9884 0.0024
SITD 0.8666 0.0611 0.9723 0.3068 0.9756 0.0156

StarGAN 0.8129 0.0065 0.9400 0.3126 0.9780 0.0417
CycleGAN 0.7887 0.0832 0.9246 0.3346 0.9384 0.0799
StyleGAN 0.7426 0.1330 0.9959 0.3100 0.9958 0.0354
GauGAN 0.6480 0.0180 0.8948 0.3077 0.9206 0.0130
BigGAN 0.4690 0.0465 0.8450 0.3087 0.8819 0.0160

DeepFake 0.0685 0.0111 0.8902 0.3063 0.8844 0.0000
SAN 0.0182 0.5844 0.7046 0.3400 0.7185 0.1049

4.3.3. Attack of Zhang et al.

Zhang et al. [14] used a Resnet34 pre-trained by ImageNet as the basic network, and
regarded the GAN detection task as a simple binary classification problem. They trained
different classifiers for comparison:

Img: Trained with real images and fake images generated by CycleGAN.
A-Img: Trained with real image and fake image generated by AutoGAN.
Spec: The training data was the same as that of Img, but the classifier was trained

with the spectrum input.
A-Spec: The training data was the same as that of A-Img, but the classifier was trained

with the spectrum input.
The classifier trained based on fake images generated by the proposed AutoGAN

(A-Spec) can achieve the best generalization effect. It achieved accuracy of 0.972 for the
detection of CycleGAN. Therefore, to test our method on this detector, we applied the
similar attack to this classifier (AutoGAN) for CycleGAN. We found that our method can
also reduce its accuracy to almost 0 (0.052).
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5. Conclusions

As a result of the rapid development of malicious deepfake technology, the detection
of deepfake images has become a major security issue. Although many detectors have
been proposed and improved, some related research shows that they are still vulnerable
to adversarial example attacks. In this paper, we propose a method using Poisson noise
DeepFool to reverse modify the image to deceive detectors, which can also evaluate the
robustness of the detectors. To verify our proposed method’s effectiveness, we attacked
two popular general detectors proposed by Wang et al. [15] and Zhang et al. [14]. For the
former, we assessed the accuracy and generalization. After reverse modifying the images
generated by ProGAN, the AUC was reduced from 0.9999 to 0.0331. This shows that our
attack has a significant impact on the accuracy of the classifier. When we modified the
datasets of ten other generation models, the best experimental result was the reduction in
the AUC to 0 (DeepFake). For the remaining CNN generation models [36], the classification
AUC dropped below 0.05, indicating the classifier failed. For the detector trained by
Zhang et al. [14] on AutoGAN, the detection accuracy of CycleGAN decreased from 0.972
to almost 0.

This work proves mainly that general detectors can be deceived by a simple adversarial
example generation method with small perturbations. The experimental results also show
that deepfake-image anti-forensics using adversarial example attacks is effective. Although
our attack method is successful, we used a white-box attack method, which requires access
to the network structure and parameters. Therefore, one of our future works will aim
to achieve the attack effect of this article using black-box attack methods, such as the
One-Pixel attack. Moreover, we will continue to study attacks on adversarial detectors or
mitigation technologies to help improve the performance of general detectors.
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