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Abstract: The current global crisis caused by COVID-19 almost halted normal life in most parts of the
world. Due to the long development cycle for new drugs, drug repositioning becomes an effective
method of screening drugs for COVID-19. To find suitable drugs for COVID-19, we add COVID-19-
related information into our medical knowledge graph and utilize a knowledge-graph-based drug
repositioning method to screen potential therapeutic drugs for COVID-19. Specific steps are as
follows. Firstly, the information about COVID-19 is collected from the latest published literature, and
gene targets of COVID-19 are added to the knowledge graph. Then, the information of COVID-19 of
the knowledge graph is extracted and a drug–disease interaction prediction model based on Graph
Convolutional Network with Attention (Att-GCN) is established. Att-GCN is used to extract features
from the knowledge graph and the prediction matrix reconstructed through matrix operation. We
evaluate the model by predicting drugs for both ordinary diseases and COVID-19. The model can
achieve area under curve (AUC) of 0.954 and area under the precise recall area curve (AUPR) of 0.851
for ordinary diseases. On the drug repositioning experiment for COVID-19, five drugs predicted by
the models have proved effective in clinical treatment. The experimental results confirm that the
model can predict drug–disease interaction effectively for both normal diseases and COVID-19.

Keywords: COVID-19; drug–disease interaction prediction; knowledge graph; graph convolu-
tional network

1. Introduction

Coronavirus disease 2019 (COVID-19) has been listed as an international public health
emergency by WHO [1], and on March 11, it was defined as a global “pandemic”. As of
December 16, more than 20.58 million people were infected worldwide. As the number of
COVID-19 patients is dramatically increasing worldwide, treatment in intensive care units
(ICUs) has also become a major challenge [2]. Under the current circumstance of the absence
of specific vaccines and medicines against COVID-19, it is urgent to discover effective ther-
apies, especially drugs, to treat COVID-19. Considering that it usually takes 10–15 years to
develop a new drug, probably the best strategy for the treatment of COVID-19 is drug repo-
sitioning. Drug repositioning, also known as “new use of old drugs” and “re-examination
of old drugs”, refers to the discovery of new indications or new uses for drugs already
on the market, including repositioning, repurposed, and repurposed drugs that are in the
clinical research stage or approved for marketing evaluation, reorientation of treatment
direction, etc. Under normal circumstances, it takes 10-15 years for new drug development
from the determination of the idea to the drug market, and there are uncertainties such
as safety and pharmacokinetics so that R&D costs and risks of drug development are
significant. However, since drugs used for drug repositioning studies usually have passed

Future Internet 2021, 13, 13. https://doi.org/10.3390/fi13010013 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0830-3906
https://doi.org/10.3390/fi13010013
https://doi.org/10.3390/fi13010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13010013
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/13/1/13?type=check_update&version=1


Future Internet 2021, 13, 13 2 of 10

several stages of clinical trials or are already on the market, their risks are lower compared
with strategies such as developing from scratch and obtaining patent licenses. In addition,
compared with obtaining patent licenses and restructuring strategies, it has the advantages
of a short time to market and a greater possibility of discovering differences in drug effects,
so higher returns are expected. Therefore, drug repositioning is one of the strategies with
the best risk/benefit ratio among currently known drug development strategies.

As many drugs treat disease by acting on related targets, most drug repositioning
research studies predict new drug–disease interaction (DDI) by discovering new drug–
target interaction (DTI). However, for a new disease, because the corresponding target of
the disease has not been fully discovered, if drug repositioning is achieved only through the
discovery of new DTI, the results may be limited. In addition, the existing data of known
drugs and related information, such as proteins and genes, are huge, so it is particularly
important to use appropriate databases and preliminary screening of data when redirecting
drugs to an emerging disease. Wearable devices and internet medical service platforms
generate a large number of high-dimensional medical data. Traditional machine learning
methods cannot be used to process high-dimensional medical data from different sources.
Deep learning methods are widely used in feature extraction [3] and disease prediction [4]
for medical data. In the drug redirection problem, the drug and target naturally form
a graph structure, and the most used deep learning model is the Graph Convolutional
Network (GCN).

In order to find drug candidates against COVID-19, we construct a knowledge graph
(KG) for COVID-19 and propose a new model called Graph Convolutional Network with
Attentional mechanism for Drug–Disease Interaction (Att-GCN-DDI) to predict potential
therapeutic drugs for COVID-19. We first collect information about COVID-19 in the latest
published literature and add the gene targets of COVID-19 to our drug KG. Then, we screen
the nodes and relationships associated with COVID-19 to build the KG. Borrowing the
idea from Neo-DTI [5] and DTI-NET [6], the Att-GCN-DDI model first employs GCN with
attentional mechanism to extract features from KG and then performs matrix factorization
for DDI prediction. The tests on two scenarios in DDI prediction have demonstrated
that Att-GCN-DDI can significantly outperform several baseline prediction methods. Att-
GCN-DDI also has good performance on the DDI prediction against COVID-19. Five drug
candidates predicted by Att-GCN-DDI have proved effective in the clinical treatment.

The main contributions of our work lie in:

(1) We gather and add the target of COVID-19 to our KG. Then, we select the related
knowledge to construct a KG for COVID-19, which is applied to find the potential
therapeutic drugs against COVID-19.

(2) We propose a GCN-based model for drug repositioning on KG. The model can learn
the topology around the disease effectively, which is utilized to predict new drugs for
the disease.

(3) We evaluate our method by predicting drugs for both ordinary diseases and COVID-19.
Att-GCN-DDI finds five effective drugs against COVID-19, which have been proved
in clinical treatment and outperforms five other baseline models in the drug reposi-
tioning for ordinary diseases. The experimental results confirm the strong predictive
power of Att-GCN-DDI.

2. Related Work

The most important step in drug repositioning is to find novel drug–disease or drug–
target interactions. In order to achieve this goal, various methods have been developed,
including computational approaches, biological experimental approaches, and mixed
approaches [7]. In recent years, researchers mainly use computational methods to realize
drug repositioning because biological experimental methods cost a lot of money and
time [8]. Now the most widely used computing methods include the following four
categories: network-based methods, knowledge graph embedding-based method, text
mining methods and biological feature-based methods [9].
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Text mining methods extract useful information from known literature to find the
novel interactions between drugs and diseases. “MAM” [10], “PharmGKB” [11] and
“Chem2bio2rdf” [12] are all based on semantic similarity to measure the relationship
between drug and diseases. Recently, researchers began to use machine learning methods
to achieve this goal. Fu et al. [13] proposed a semantic similarity framework using random
forest (RF) and support vector machine (SVM) methods. However, the diversity of language
expression and the contradictory information found in the literature limit the performance
of the text mining method [14].

The biological feature-based method realizes drug repositioning by using machine
learning approaches to extract the biological feature of drugs and targets [15]. These
methods usually include two key parts: feature extraction and relationship prediction.
“SimBoost” [16] trains a gradient-enhanced machine model to learn the similarity between
drugs and proteins to understand their binding affinity. “NRLMF” [17] uses the similarity
between drugs and proteins to simulate the probability of drug–target interaction through
logical matrix decomposition [18]. These methods improve the accuracy of DTI prediction
to a certain extent. However, these methods do not take drug–drug or protein–protein
interactions into account [9].

The method based on the knowledge graph embedding (KGE) maps the entities and
relationships in the knowledge graph to a low-dimensional continuous vector space, which
can retain the inherent characteristics of the knowledge graph and alleviate the feature
sparse problem that may be faced in the application of the knowledge graph. The training
process is divided into multiple stages. First, the KGE model uses random noise to initialize
the embedding vector. Then, the loss error is calculated by the score function, and training is
performed. GrEDeL [19] uses TransE to learn the embedding vector based on a biomedical
knowledge graph by exploiting the relations extracted from biomedical abstracts. Then,
the Long Short-Term Memory (LSTM) Networks model is trained to discover candidate
drugs for diseases of interest from biomedical literature. TriModel [20] is an extension of
DistMultand and ComplEx models, using three embedding vectors to represent each entity
and relationship. These methods have high requirements on the quality of knowledge
graphs and are suitable for finding new associations between drugs and targets that have
been fully studied; however, they are not suitable for drug repositioning for emerging
diseases due to incomplete disease-related information in the knowledge graph.

In recent years, the network-based method has been widely used. This method mainly
includes three steps: network construction, feature extraction and relationship predic-
tion [9]. The network-based method calculates the similarity between drugs and targets
based on the network topology, and the purpose of this method is to predict unknown
interactions based on known interactions [21]. The basic principle is that drugs tend to
combine with similar targets or diseases. DDR [22] constructed drug–drug interaction
network and protein–protein interaction network based on the similarity between proteins
and drugs [18]. They then used the RF method to predict the combination of drugs and pro-
teins. DTI-NET [6], MSCMF(Multiple Similarities Collaborative Matrix Factorization) [23]
and HNM(Heterogeneous Network Model) [24] can further improve the accuracy of DTI
prediction by integrating information from heterogeneous data sources and improving the
relationship prediction method. Neo-DTI [5] uses a new feature extraction scheme based
on DTI-NET [6] to enhance the accuracy. However, the existing research on network-based
method is limited to the prediction of drug–target interactions, so, the mining of heteroge-
neous network is not thorough enough. In addition, there is still a lot of data loss in the
process of feature extraction.

3. Data Acquisition and Processing
3.1. The Drug KG

We adopted the drug KG that was built in our previous study, which integrated six
pharmaceutical knowledge bases: DrugBank [25], KEGG DRUG [26], TTD [27], DID [28],
PharmGKB [29] and SIDER [30]. We first analyze the original data in the knowledge
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base to extract the triples, and then insert the data according to the graphical data model
integration data triples to obtain the knowledge graph [31]. The KG contains five types
of entities, including drugs, genes, diseases, channels, side effects, and nine relationships
among them. The data schema of our drug KG is shown in Figure 1.
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3.2. Acquisition of COVID-19 Information

Nowadays, drugs against COVID-19 are divided into two categories according to
their targets (genes) [32]. The first is to act on the immune cells of the human body to
enhance the immune function of human. The second is acting on the COVID-19 itself,
binding receptors, and the enzymes needed for its replication. Through gathering the
information of COVID-19, we have screened out four targets (genes) of COVID-19 with
clear function and high reliability. They are RNA dependent RNA polymer (RdRp) [32],
ACE2 [32], pp1ab [33], human immunity virus type 1 protection (pol) [34]. Therefore, we
link the COVID-19 entity to KG through four drug–gene interactions: COVID-19-RdRp,
COVID-19-ACE2, COVID-19-pp1ab and COVID-19-pol.

3.3. Construction of the KG for COVID-19

Our drug KG contains more than 100,000 entities and more than 670,000 relationships.
It is extremely difficult to perform a computation consuming model GCN on such a large-
scale KG. In addition, the information of the drugs and proteins that are not related to
COVID-19 in the KG will also interfere with drug repositioning. To reduce the calculation
amount and improve the accuracy of the DDI prediction, we need to construct a KG for
COVID-19 by extracting the related knowledge from the drug KG.

In our drug KG, if a drug can treat a disease, there is usually a path with a distance
less than 4 between them beside the direct connection. The path between them contains
the information of why the drug can treat the disease. In addition, Att-GCN-DDI predicts
DDIs through the similarity of topological structure, and diseases with similar topological
structure are usually connected by the path with distance less than 4, such as disease–drug–
disease, disease–gene–disease and disease–gene–gene–disease.

Therefore, in this paper, we focus on the COVID-19 node, and select the drugs and
disease nodes whose shortest path distance from the COVID-19 node is less than 4. After
that, we use these drugs and disease nodes as the initial data to supplement the related
gene, side effect and pathway nodes. Finally, the drug–disease drug–gene, gene–pathway,
drug–drug, drug–side effect, gene–gene, and disease–gene relationships among nodes
were supplemented too. Tables 1 and 2 show the number of entities and relationship of the
KG for COVID-19.

Table 1. The number of entities of each type in the KG for COVID-19.

Entity Type Drug Disease Gene Side Effect Pathway

Number 1470 752 1741 274 53
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Table 2. The number of relations of each type in the KG for COVID-19.

Relation
Type

Drug–
Disease Drug–Gene Gene–

Pathway Drug–Drug Drug–Side
Effect Gene–Gene Disease–

Gene

Number 1659 1898 62 921 1432 263 877

4. Method

We designed a model called Att-GCN-DDI to discover unknown DDIs based on the
drug KG. The workflow of Att-GCN-DDI is shown in Figure 2. Att-GCN-DDI mainly
includes three main steps: (a) node embedding based on Att-GCN; (b) topology-preserving
learning of the node embedding; (c) reconstruction of DDI matrix. Through step (a), the
topological features of each node in the KG are extracted into an F-dimension vector,
and the feature vectors of all drugs and diseases constitute the drug feature matrix and
disease feature matrix, respectively (where X is the drug feature matrix, where each row
represents the feature vector of a drug, and Y is the disease feature matrix, where each
row represents the feature vector of a disease). Through step (b), we attempt to find an
optimal projection from the drug space to the protein space by supervised learning so
that the mapped drug feature vectors geometrically approach the diseases of their known
interactions. The projection matrix Z is supervised by known drug-disease interactions
and learns to minimize the difference between the known interaction matrix P and XZYT.
Then, Att-GCN-DDI performs matrix operations on the projection matrix Z and feature
matrix by step (c), and finally reconstructs DDIs matrix. Then, we can get the novel DDIs
based on the reconstructed DDI matrix.
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Next, we will introduce the mathematical formulations of these three main steps.
The given KG is defined as an undirected graph G = (V, E) V = {v1, v2, . . . , vn} is the

set of nodes and E = {e1, e2, . . . , em} is the set of edges; where m is the number of nodes,
n is the number of edges and E ∈ V×V. The adjacency matrix A is usually represented
in binary, 1 means that there is a connection between nodes, 0 means that there is no
connection between nodes.

The key step of topological feature extraction using Att-GCN is to construct the
Laplace matrix, and in our model, the Laplacian matrix should be:

L = D − A = In − D−
1
2 AD−

1
2 (1)
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where In is an identity matrix and D is the inverse degree matrix [9].
Finally, the topological feature of each node in the heterogeneous network can be

extracted using the following formula:

M = ReLu(D−
1
2 AD−

1
2 X) (2)

where M is a feature vector of the input entity, and X is the characteristic of each node itself.
The extracted features are used to form a drug feature matrix Fdrug and a disease

feature matrix Fdisease in which each row represents a drug or disease feature vector M.
Then, we use supervised learning to find the most appropriate projection matrix Z. The
learning objectives are as follows:

min
w
‖P − FdrugZwFdisease

T‖2
+ λ‖w‖

1
(3)

where P is the known DDI matrix. Note that the same matrix construction method is also
used in [1,2] to solve the problem of relationship prediction. In order to achieve quick
convergence, we use λ‖w‖

1
as the regularizer.

Then, we introduced the attention mechanism to assign weights to the feature matrix.
The calculation formula of attention is as follows:

Softmax(QFdrug
T)Fdrug (4)

where Q is the embedding representation of drug features.
After the supervised learning of the projection matrix, the process of reconstructing

the DDI matrix is as follows:

Fddi_reconstruct = FdrugZFT
disease (5)

5. Experiments

Our model is tested on two experiments. First, we employ the Att-GCN-DDI model
to predict drug candidates for COVID-19 and conduct a case study based on predicted
drugs. Then we compare Att-GCN-DDI with 5 baseline models on the drug repositioning
experiment for ordinary diseases.

5.1. DDI Prediction for COVID-19
5.1.1. Results

In the experiment, we used the Att-GCN-DDI model to predict drug candidates
against COVID-19. Here, we take COVID-19 KG as the input. Since the KG does not
include the interactions between COVID-19 and drugs, we can use all known DDIs as the
training set to train our model and finally reconstruct the prediction matrix.

Then, we extracted the predictive scores for COVID-19 and all drugs from the recon-
structed matrix and ranked the drugs by the scores. The score here reflects the strength
of the underlying interaction between a specific drug and COVID-19. Here, we extracted
the top 30 drugs as drug candidates against COVID-19. They are Efavirenz, Lamivudine,
Stavudine, Abacavir, Nevirapine, Tipranavir, Roquinimex, Zalcitabine, Delavirdine, Emtric-
itabine, Didanosine, Tenofovir, Lopinavir, Amprenavir, Zidovudine, Saquinavir, Darunavir,
Ritonavir, Atazanavir, Indinavir, Moexipril, Rilpivirine, Cefroxadine, Brecanavir, Lisinopril,
Ribavirin, Pentanal, Alfaxalone, 5-[(5-fluoro-3-methyl-1H-indazol-4-yl)oxy]benzene-1,3-
dicarbonitrile, SPP1148.

After analysis and search, 5 drugs among them have been clinically proven to be viable
for COVID-19 treatment. Their information is shown in Table 3. These results indicate that
the drug candidates against COVID-19 predicted by Att-GCN-DDI are basically reliable.



Future Internet 2021, 13, 13 7 of 10

Table 3. Clinically proven drugs in our drug candidates.

DrugBank Id Drug Name Source of Clinical Feasibility

DB00300 Tenofovir Published medical literature [35]
DB01601 Lopinavir Experimental drugs for COVID-19 in DrugBank [34]
DB01264 Darunavir Experimental drugs for COVID-19 in DrugBank [34]
DB00503 Ritonavir Published Treatment Protocol in China [36]
DB00811 Ribavirin Published Treatment Protocol in China [36]

5.1.2. Case Study

We analyzed the path between COVID-19 and our drug candidates in the KG to
understand why these drugs are more likely to treat COVID-19 than others. The path can
be divided into two types. The first is to directly connect COVID-19 through genes. In
this case, we can think of drugs acting on COVID-19 related genes to treat COVID-19. The
second is to link diseases directly without genes. Take drug Tipranavir as an example.
The paths between this drug and COVID-19 in KG are shown in Figure 3. It can be found
that although this drug does not directly act on COVID-19-related genes, drugs related to
Tipranavir directly act on COVID-19-related genes, ACE2 and pol, respectively. Therefore,
we believe that this drug is indeed more likely to have a therapeutic relationship with
COVID-19 than other drugs.
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5.2. DDI Prediction for Other Diseases

At present, only a small number of medicines have proven to have a therapeutic effect
on COVID-19. Therefore, only performing DDI experiments on COVID-19 cannot fully
verify the effectiveness of the Att-GCN-DDI model Therefore, we also test our model on
DDI prediction for other diseases.

The DDI prediction is a binary classification problem, in which known DDIs are
considered as positive examples and unknown DDIs are considered as negative examples.
In the experiment, we used COVID-19 KG and first ran a 10-fold cross-validation test on all
positive examples and a set of randomly sampled negative examples, which were 10 times
as many as positive samples. This scenario basically mimicked the practical situation
of drug repositioning [5]. For each fold, 90% of randomly chosen positive and negative
examples were used as the training set, and the remaining 10% of positive and negative
examples were regarded as the test set.

We then compared the performance of Att-GCN-DDI with GCN-DDI, Neo-DTI [5],
DTI-NET [6] and HNM [24] in predicting DDIs. GCN-DDI indicates that the GCN model
in our framework does not use attention mechanism. The area under the precise recall area
curve (AUPR) and the area under receiver operating characteristic curve (AUROC) were
used to evaluate the predictive performance of all prediction methods. The evaluation
results are shown in Figure 4. The results show that Att-GCN-DDI is superior to other
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methods in AUROC and AUPR. Att-GCN-DDI adopts the Att-GCN model to extract
features by node embedding, so the extracted features can better retain the topology
structure of nodes. This makes the prediction more accurate.
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Next, we tested Att-GCN-DDI in another scenario by including all positive and
negative examples in the 10-fold cross-validation procedure. The evaluation results are
shown in Figure 5. We find that the performance of Att-GCN-DDI in this scenario is also
superior to other methods. However, the AUPR of GCN-DDI is very close to GCN-DDI.
The main reason for this situation is that with the expansion of data volume, the demand
of the model for accurate topology feature extraction decreases. Therefore, compared with
other methods, the application of GCN for feature extraction has no obvious advantages.
From Figures 4 and 5, we can see that the Att-GCN-DDI using attention mechanism
performs obviously better than GCN-DDI in two scenarios. This is because the attention
mechanism can flexibly capture the relationship between global information and local
information. This is very important for extracting feature information of topology structure
in the knowledge graph.
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6. Discussion

This paper collects COVID-19 information and inserts it into the existing medical
KG to build a KG of COVID-19. Based on the KG, the GCN-based drug repositioning
model is used to predict potential therapeutic drugs for COVID-19. We conduct drug
repositioning experiments on COVID-19 and other diseases, respectively. Our model
ultimately identified 30 potential drugs for COVID-19 treatment, of which five have proven
to be effective clinically. On the DDI prediction experiments for other diseases, our model
outperforms other baseline methods. Our work provides help for the preliminary screening
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of drugs in the face of new diseases and helps medical staff to screen out potential drugs for
new diseases in the shortest time. However, our research also has some shortcomings. For
example, the GCN model can effectively learn the structural information and the relation
between nodes in the knowledge map, but it cannot learn the representation of the relation,
let alone the directivity of the relation. Therefore, in the future, we will learn from the
structure of GraphSAGE and the GAT(Graph Attention Network) model to improve the
ability of our model in relation representation.
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20. Mohamed, S.K.; Nováček, V.; Nounu, A. Discovering Protein Drug Targets Using Knowledge Graph Embeddings. Bioinformatics
2019, 36, 603–610. [CrossRef]

21. Pei, J.; Yin, N.; Ma, X.; Lai, L. Systems Biology Brings New Dimensions for Structure-Based Drug Design. J. Am. Chem. Soc. 2014,
136, 11556–11565. [CrossRef] [PubMed]

22. Olayan, R.S.; Ashoor, H.; Bajic, V.B. DDR: Efficient computational method to predict drug–target interactions using graph mining
and machine learning approaches. Bioinformatics 2018, 34, 1164–1173. [CrossRef]

23. Zheng, X.; Ding, H.; Mamitsuka, H.; Zhu, S. Collaborative matrix factorization with multiple similarities for predicting drug-target
interactions. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Chicago, IL, USA, 11–14 August 2013; ACM Inc.: New York, NY, USA, 2013; pp. 1025–1033. [CrossRef]

24. Wang, W.; Yang, S.; Zhang, X.; Li, J. Drug repositioning by integrating target information through a heterogeneous network
model. Bioinformatics 2014, 30, 2923–2930. [CrossRef] [PubMed]

25. Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacoge-
nomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [CrossRef] [PubMed]

26. Yang, H.; Qin, C.; Li, Y.H.; Tao, L.; Zhou, J.; Yu, C.Y.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y.Z. Therapeutic target database update 2016:
Enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2016, 44, D1069–D1074.
[CrossRef]

27. Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.;
et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [CrossRef]

28. Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; et al. Drugbank
4.0: Shedding new light on drug metabolism. Nucleic Acids Res. 2014, 42, D1091–D1097. [CrossRef]

29. Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016, 44, D1075–D1079.
[CrossRef]

30. Sharp, M.E. Toward a comprehensive drug ontology: Extraction of drug-indication relations from diverse information sources.
J. Biomed Semant. 2017, 8, 2. [CrossRef]

31. Zhu, Y.; Che, C.; Jin, B.; Zhang, N.; Su, C.; Wang, F. Knowledge-driven drug repurposing using a comprehensive drug knowledge
graph. Health Inform. J. 2020. [CrossRef]

32. Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets
for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [CrossRef]
[PubMed]

33. Liu, Q.; Wang, X. Strategies for the development of drugs targeting novel coronavirus 2019-nCoV. Acta Pharm. Sin. B 2020, 55,
181–188. [CrossRef]

34. COVID-19 Dashboard|DrugBank Online. Available online: https://www.drugbank.ca/\protect\unhbox\voidb@x\
hbox{COVID-19} (accessed on 14 November 2020).

35. Zhang, C.; Chen, S.; Zhang, J.; Guo, Y. Analysis of chemical drugs applied for clinical trial for the treatment of COVID-19.
Acta Pharm. Sin. B 2020, 55, 355–365. [CrossRef]

36. Wei, P. Iagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin. Med. J. 2020, 133, 1087–1095.
[CrossRef]

http://doi.org/10.1093/bioinformatics/bts670
http://doi.org/10.1109/ACCESS.2018.2886311
http://doi.org/10.1093/bioinformatics/btz600
http://doi.org/10.1021/ja504810z
http://www.ncbi.nlm.nih.gov/pubmed/25061983
http://doi.org/10.1093/bioinformatics/btx731
http://doi.org/10.1145/2487575.2487670
http://doi.org/10.1093/bioinformatics/btu403
http://www.ncbi.nlm.nih.gov/pubmed/24974205
http://doi.org/10.1038/clpt.2012.96
http://www.ncbi.nlm.nih.gov/pubmed/22992668
http://doi.org/10.1093/nar/gkv1230
http://doi.org/10.1093/nar/gkm882
http://doi.org/10.1093/nar/gkt1068
http://doi.org/10.1093/nar/gkv1075
http://doi.org/10.1186/s13326-016-0110-0
http://doi.org/10.1177/1460458220937101
http://doi.org/10.1016/j.apsb.2020.02.008
http://www.ncbi.nlm.nih.gov/pubmed/32292689
http://doi.org/10.16438/j.0513-4870.2020-0106
https://www.drugbank.ca/\protect \unhbox \voidb@x \hbox {COVID-19}
https://www.drugbank.ca/\protect \unhbox \voidb@x \hbox {COVID-19}
http://doi.org/10.16438/j.0513-4870.2020-0151
http://doi.org/10.1097/cm9.0000000000000819

	Introduction 
	Related Work 
	Data Acquisition and Processing 
	The Drug KG 
	Acquisition of COVID-19 Information 
	Construction of the KG for COVID-19 

	Method 
	Experiments 
	DDI Prediction for COVID-19 
	Results 
	Case Study 

	DDI Prediction for Other Diseases 

	Discussion 
	References

