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Abstract: Deep learning (DL) models have emerged in recent years as the state-of-the-art technique
across numerous machine learning application domains. In particular, image processing-related tasks
have seen a significant improvement in terms of performance due to increased availability of large
datasets and extensive growth of computing power. In this paper we investigate the problem of group
activity recognition in office environments using a multimodal deep learning approach, by fusing
audio and visual data from video. Group activity recognition is a complex classification task, given
that it extends beyond identifying the activities of individuals, by focusing on the combinations
of activities and the interactions between them. The proposed fusion network was trained based
on the audio–visual stream from the AMI Corpus dataset. The procedure consists of two steps.
First, we extract a joint audio–visual feature representation for activity recognition, and second,
we account for the temporal dependencies in the video in order to complete the classification task.
We provide a comprehensive set of experimental results showing that our proposed multimodal deep
network architecture outperforms previous approaches, which have been designed for unimodal
analysis, on the aforementioned AMI dataset.

Keywords: multimodal learning; deep learning; activity recognition

1. Introduction

Activity recognition is nowadays an active research topic, with ramifications over numerous
application domains. To name a couple, activity recognition plays an important role in providing
personalized support for healthcare monitoring systems [1] and assisted living for elderly care [2].
Additionally, as energy management is regarded the highest operational expenditure in commercial
and residential buildings [3], several activity-based solutions have already been proposed to optimize
the use of energy in smart home and building environments, by providing the adequate level of
automation through dedicated services (e.g., [4]).

Advances in this area are primarily fostered by the ever-increasing number of sensing devices
that are permeating our surrounding environment. At the same time, activity recognition is attracting
evermore attention from the field of machine learning which is rapidly expanding, oftentimes as a
result of new and specific problem definitions driven by practical applications. In this regard, we put
forward in this work a deep learning-based approach, which can model and account for different
input modalities by fusing the data in order to perform activity recognition in the context of office
environments. Our empirical results were validated based on the AMI Corpus dataset [5], which
has been put forward by a European consortium that is developing meeting browsing technology
(see illustration in Figures 1 and 2). In particular, the multimodal approach introduced in this paper
was designed to integrate the audio–visual cues in order to distinguish among several typically
occurring activity classes. The workplace environment is undergoing considerable transformations
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aimed towards fostering agile and flexible work, by means of enabling the environment to adapt and
contextualize the experience to the needs and preferences of its users. This can range from controlling
things such as heating, lighting, and ventilation in order to increase user satisfaction (e.g., [6]), to more
complex scenarios, wherein a dynamic set of devices, with their functionalities and services, cooperate
temporarily to achieve a user’s goal (e.g., [7]). It is therefore paramount to provide mechanisms that
can lead to improved performance in activity recognition tasks, which can then, in turn, communicate
this information to various computational decision nodes in the environment with the goal of assisting
office users or maintenance personal with their daily activities.

(a) Corner camera angle (b) Overhead camera angle
Figure 1. Images showing different camera angles from the AMI Corpus dataset.

The rest of the paper is organized as follows. In Section 2 we introduce the relevant background
and related work. Section 3 introduces the proposed model design for activity recognition in smart
office environments. Section 4 presents the evaluation results and discusses the performance of our
approach against previous work on the AMI dataset. The paper concludes in Section 5.

2. Background

2.1. Activity Recognition in Smart Buildings

The majority of related work in the area of activity recognition for office space and building
environments has largely been focused so far on occupant presence detection. Inferring this information
alone has been shown to have a great impact in terms of optimizing the energy consumption based on
adapting the heating, cooling, and ventilation systems in response to occupancy data. For instance,
in [8] the authors deployed a sensor network, consisting of plug meters for measuring appliance
energy consumption, light sensors, and PIR sensors that were triggered by human motion. A Gaussian
mixture model with 97% accuracy was used for the task of determining whether a user was present
in the office or not. Based on this result the authors concluded that 35.5% potential savings could be
achieved by simply turning off the appliances and lightning when the office was empty. Similarly,
in [4] the authors proposed a mechanism based on detecting activity patterns in smart meeting rooms,
coupled with a scheduling algorithm designed to coordinate the heat supply accordingly. Other
solutions, instead of resorting to sensor deployments in the environment, proposed capturing data
from the user’s smartphone device in order to recognize different activities. A notable examples is
reported in [9], wherein the authors collected accelerometer data for determining floor localization
within a building without any prior knowledge about the premise. Alternatively, in this work we
are concerned with processing audio–visual data streams from office environments for group activity
recognition. Group activity recognition is a complex classification task, given that it extends beyond
identifying the activities of individuals, by focusing on the combinations of activities and interactions
between them. Thus, we hypothesized that the audio and visual modalities are a suitable choice for
this task.
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Presentation Empty/No-activity Meeting
Figure 2. Examples from the AMI Corpus dataset for each of the three classes under consideration.

2.2. Deep Learning for Activity Recognition

The advent of deep learning models has seen neural networks being successfully applied across
many classification problems, with implications especially in the area of image processing and
analysis. Since its emergence in 2009, it has consistently replaced state-of-the-art approaches to
machine learning and largely overcome the problem of hand-crafted feature extraction that dominated
the field precedently.

In [10] the authors propose a framework that couples skeleton data extracted from RBG video
and a deep bidirectional-LSTM model for activity recognition. The limited information in this instance
is the lack of depth information, as opposed to RGB-D video, which includes depth data. However,
acquiring depth information is costly and requires special equipment. The authors propose a set of
techniques meant to augment the RGB dataset, such as dynamic frame dropout and gradient injection,
which eventually was shown to outperform the state-of-the-art RGB-D video stream solutions and
can therefore be widely deployed using ordinary cameras. Although it provides several valuable
augmentation techniques, this work only dealt with video data.

In [11] the authors explore different approaches in multi-sound classification and propose a
stacked classifier based on recent advancements in deep learning. The proposed approach can robustly
classify sound categories among mixed acoustic signals, without the need for prior knowledge about
the numbers and signatures of sounds in the mixed signals. The performance achieved was around
60% in terms of the F1-score, depending on the number of mixed sounds. The proposed model was
trained based on a synthesized sound effect dataset, which is a clear limitation in contrast to real-world
data which tends to present rather different acoustic signatures. As can be observed in Figure 3, the
spectogram representation of the audio signal can be difficult to interpret, and even situations where a
room is empty may exhibit background noise, which could hinder the classification. The deep learning
model proposed here is only designed to address audio data streams.

Presentation Empty/No-activity Meeting
Figure 3. Mel audio spectogram corresponding to the activities in Figure 2.

2.3. Multimodal Learning

Our work belongs to the class of multimodal methods, wherein models are built to process
and relate information from multiple sensing modalities. There are several multimodal architectures
specifically designed for the task of activity recognition. Depending on the structure according to
which the unimodal approaches are integrated (such as the ones outlined in Section 2.2), these can
be classified into three main categories: data fusion, feature fusion, and decision fusion. In the case of
audio–visual classifiers, as it pertains to our work, data fusion is rarely an option due to the fact that
the raw image and audio data are incompatible.

In [12] the authors were concerned with integrating heterogeneous and distributed sensors in
a dynamic manner, thereby introducing the concept of dynamic intelligent virtual sensors (DIVS) in
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order to support the creation of services designed to tackle complex problems based on reasoning
about various types of data. Moreover, they presented an application of DIVS in the context of
activity monitoring using sensors in a smart building environment. However, the authors focused on
decision-level fusion techniques, while assuming that local processing units performed the low-level
processing (e.g., image recognition), and then those classification decisions were further synthesized
to obtain a final decision. The multi-stream neural network architecture introduced in [13] belongs
to the same class of decision-level fusion models. Spatial and temporal streams are constructed for
each modality. The fusion method then aggregates the classification decisions from each stream by
determining the corresponding fusion weights for generating the final scores of each class. In addition,
relations between classes are used in the classification process.

Feature-level fusion is applied in [14] by combining audio–visual features with multi-kernel learning
and multi-kernel boosting. After extracting specific features for each modality, the proposed framework
performs adaptive fusion by selecting and weighting the features and kernels jointly. This work tackles
the problem of egocentric activity recognition, which consists of analyzing first-person videos, wherein
the world is seen from the perspective of the actor whose actions need to be recognized. A similar
example of egocentric activity recognition is introduced in [15]. In contrast, the work presented in this
paper, though also resorting to feature-level fusion, focuses on group activity recognition that involves
multiple actors. A common practice concerning feature-level fusion for video data is to compute temporal
aggregation for each individual modality before features are fused. For instance, temporal segment
networks [16] are capable of modeling a long-range temporal structure over an entire video, by dividing
the video into several segments and then fusing them based on a segmental consensus function for
each modality. Lastly, classifications from all modalities are fused to produce the final classification.
Alternatively, as will be evident in Section 3.3, in this work we first performed audio–visual feature
fusion, which was followed by temporal aggregation, thereby reducing the size of the network.

Most similarly to our work, in [17], the authors investigated deep learning architectures for the
task of activity recognition based on the AMI dataset. Three activity classes were used: presentation,
meeting, and empty, as depicted in Figure 2. In addition, the paper provides insights with regard to the
benefits of applying transfer learning in solving activity recognition problems. Further, the authors
demonstrate that high performance can be preserved even when the model is deployed to a real-word
laboratory environment. In this paper we build upon the previous work in [17]. However, we are
introducing here a multimodal approach based on residual learning that allows one to fuse audio and
visual data from video, which goes beyond the unimodal method in [17].

3. Deep Multimodal Architecture

In the following section we provide the details of the problem domain and our proposed
approach for activity recognition in office environments and present the structure of the multimodal
deep network.

The area of activity recognition in office environments is rather complex as a computer vision
classification problem. In contrast to the problem of object recognition, wherein the goal is to identify
distinct objects in images, activity recognition from video data requires scene understanding over a
certain time horizon, wherein subjects are moving and interacting. For instance, in order to distinguish
between a presentation and a meeting, it is not enough to identify the activities of individual users;
one must also identify the combinations of activities and interactions between them. Moreover, the
presence and detection of certain objects in the scene can inform and help with discerning between
different activities. Using a whiteboard, for example, would provided different clues regarding the
ongoing activity, as opposed to working on a laptop.

The proposed procedure for activity recognition essentially consists of two steps. First, we need
to extract a joint audio–visual feature representation suitable for activity recognition. To this end,
our deep network is composed of two streams. On the one hand, a visual model is used for processing
the visual cues, and on the other hand, an audio model is responsible for processing the audio signal.
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Second, a fusion network combines the visual and audio extracted features. To this end, we use
an LSTM network [18] to model the spatio-temporal evolution of the feature representation over
time in order to perform the classification on video segments. For understanding the behavior and
interactions of objects and persons in the scene, it is key to model the spatio-temporal progression of
the audio–visual data.

3.1. Visual Network

Due to computational considerations, the input to the network consisted of a video feed of size
144× 144, downsampled from the original higher resolution of 720× 576 provided by the AMI dataset.
The video signals were stored on the disk using DivX AVI codec 5.2.1. The encoding bit rate was
23,000 Kbps, with a maximum interval of 25 frames between two consecutive MPEG keyframes, in
order to reduce redundant information. In contrast to the previous work in [17], the basis of our visual
model is represented by a deep residual network (ResNet [19]). Residual learning has emerged as a
way to combat the problem of vanishing or exploding gradients in deep networks with more than
30 hidden layers, by stacking building blocks that introduce so-called residual connections of the form:

y = F (x, {W}) + h(x) (1)

where x and y represent the input and output; h(x) stands for the identity mapping or a linear
projection to match the dimension of F , which is the residual function to be learned. In comparison
with other popular network architectures, such as All-CNN [20], DenseNet [21], FractalNet [22], and
Highway Network [23], ResNet typically achieves state-of-the-art or similar results, while using fewer
parameters, on typical image processing and classification tasks [21]. In particular, we mainly use
ResNet-50, which consists of 5 main bottlenecks, each including a convolution and a residual block.
Each convolution block has 3 convolution layers. The same is the case for each residual block. Overall,
the ResNet-50 has over 23 million trainable parameters.

3.2. Audio Network

The audio signal available in the AMI dataset was downsampled from 48 kHz to 16 kHz (which
corresponds to a 96,000-dimensional vector), and made available in a standardized format as WAV
files for each meeting. In addition, the audio signal was smoothed out with a low-pass filter and
an automatic energy threshold was applied to distinguish between speech or silence. Now, in order
to convert the one dimensional audio signal into a viable input for our model, we extracted Mel
spectograms from the audio files (see Figure 3). Specifically, the FFT was configured with a time
span of 25 ms and a window hop of 10 ms, and was computed over each frame of the original
time-domain signal. The result was mapped to 64 Mel bins and the frequencies that were cut off
were in the [175, 7500] Hz range. Then, in order to stabilize the spectogram, we took the logarithm.
The resulting log Mel spectogram further used for feature extraction had a 144 ×144 size. Similarly to
the visual model presented in the previous section, we applied deep residual learning for processing
the spectograms.

3.3. Temporal Audio–Visual Fusion Model

The segmented video sequences used in training were decoupled into synchronized audio
and visual data X = {xai , xvi , yi}i=1,k, where xai and xvi represent the audio and video examples
respectively, and the corresponding activity class is denoted by yi. Let Γ denote the ResNet-based
feature extractor that maps the input to a D-dimensional feature vector, such that f = Γ(x; θ), where
the parameters of this mapping are given by the vector θ. It follows that the audio network can then
be denoted by Γa(xa; θa) = f a, and the visual network as Γv(xv; θv) = f v. During the first phase
of the training procedure we resort to separately training the audio (Γa) and visual (Γv) models in
order to learn more discriminative audio and visual feature representations, by minimizing the label
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prediction loss on each network individually. Both the audio and visual networks extract, respectively,
D = 1024-dimensional feature vectors.

In the second phase, we discard the softmax layer in Γa and Γv and introduce an LSTM-based
fusion network. The higher-layer representations that are extracted from both the audio and visual
streams provide structural information that is further fused by the LSTM to model the spatio-temporal
evolution over time. At the same time, this step ensures that contextual information can be captured
from the data. Specifically, we use two uni-directional LSTM layers with 128 cells each to sequentially
learn based on the joint audio–visual feature representation. While this step is being performed, i.e.,
while the LSTM layers are being trained, the audio and visual networks keep their parameters fixed.
This is achieved by optimizing with backprop the following minimization problem:

min
θF

K

∑
i=1

L(ΓF([Γv(xvi ; θv), Γa(xai ); θa]; θF)), yi) (2)

Here, ΓF and θF represent the fusion network and the corresponding network parameters, while
L denotes the softmax log loss function, which is calculated by:

L(Γ, y) = −
m

∑
j=1

yjlog(yΓ
j ) (3)

where m is the total number of classes to be recognized, the ground truth class label for the j-th
example is yj, and yΓ

j denotes the j-th output of the softmax layer of the Γ network. In addition, for
regularization of the network, given the large number of parameters, we adopted the droput method
with p = 0.5 and batch normalization. During training we used small mini-batches of size 32 due to
hardware limitations, as the system was implemented on the Google Colab platform.

4. Empirical Results

In this section we describe the experimental setup for our analysis and report results based on
our deep learning approach for the task of activity recognition in smart office environments, which
were equipped with some form of audio–visual monitoring system. As previously emphasized, for
this study we employed the AMI dataset, which we briefly describe in the following section. For all
experiments we considered a 80/20 ratio between training and validation data and used the ResNet-50
architecture as the base model, when not specified otherwise. The specifics of the audio–visual data
are described in Sections 3.1 and 3.2 as inputs for the respective networks. The AMI Corpus NITE
XML Toolkit (http://groups.inf.ed.ac.uk/nxt/) was used to extract the labels for each video. In order
to evaluate the efficiency of our approach, besides the loss function introduced in Equation (3), for an
easier interpretability we also report the following metrics:

• Classification accuracy, which is the ratio of correct predictions to the total number of input samples:

Acc =
∑xi∈Xtext 1{ f (xi) = yi}

|Xtext|
(4)

• F1-score, which is a measure of both the precision of the classifier and its robustness, defined as
the harmonic mean between precision and recall:

F1 = 2 ∗ (Recall ∗ Precision)/(Recall + Precision) (5)

In the following, we describe a comprehensive empirical study, whereby we first investigated the
classification task in the context of each separate modality, exploring our approach against several DL
base models and different model complexities. Second, we analyzed the results on multimodal data
and evaluated the advantages of transfer learning in this context.

http://groups.inf.ed.ac.uk/nxt/
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4.1. Dataset

The AMI Corpus is a European-funded project that aims to improve the effectiveness of meetings
by making it possible to analyze recordings of meetings in order to suggest technologies that can
improve the overall experience. The AMI dataset consists of 100 h of meeting recordings, which are
organized into 10–60 min long synchronized video and audio sequences. These sequences took place
in an office environment where the participants were not always the same people; however, there were
always four people present, each given one of four different roles. The meetings are annotated with
different labels, which for the purpose of our experiments, were categorized to correspond to one of
following three classes: presentation, meeting, or empty (see Figure 2). The videos used in this work
were those wherein the camera angle captured the entire room, namely, the overhead view (top view
from above) and corner view (camera positioned at the top or a corner), as depicted in Figure 1, which
correspond to the Edinburgh and Idiap scenario meetings. Audio data were obtained from far-field
microphones and room-view video cameras. The meetings were recorded in English using three
different rooms with different acoustic properties, and included mostly non-native speakers. Special
hardware was used to provide synchronization for the audio and visual data. The recordings used a
range of signals synchronized to a common timeline. The AMI dataset was also used for investigating
applications such as speaker role labeling (e.g., [24]) and meeting summarization (e.g., [25]).

4.2. Unimodal Results Analysis

In order to gain a better understanding of the added value obtained via the deep residual learning
approach the first set of experiments focused on results that can be attained by treating each modality
individually.

4.2.1. Visual Modality

As a starting point we set out to investigate the effects of different camera angles relatively on
the activities occurring. In Figures 4 and 5 we plotted the model’s accuracy and loss respectively over
the course of training. It is interesting to note that regardless of the camera’s positioning and field
of view, both the overhead and the corner camera achieved a high accuracy; however, the learning
curve slope for the overhead camera is slightly steeper than in the case of the corner camera. That is,
while the overhead camera achieved 99% accuracy after about 200 epochs, the corner one got to 98% in
roughly 250 epochs. In addition, when activity recognition was performed based on video streams
from both camera angles, the resulting accuracy was also 99%. Thus, it appears that the overhead
camera provided the best field of view for addressing activity recognition in an office setup, while
the corner angle did not provide any performance increase. Importantly, in contrast to the previous
work [17] on the AMI dataset, our residual learning-based approach outperformed by a margin of 5%.

(a) (b) (c)
Figure 4. Model accuracy based on the visual data from (a) the corner camera, (b) the overhead camera,
and (c) the corner and overhead camera angles combined.
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(a) (b) (c)
Figure 5. Model loss based on the visual data from (a) the corner camera, (b) the overhead camera, and
(c) the corner and overhead camera angles combined.

Given that the two classes presentation and meeting clearly display a level of similarity much higher
compared to the empty class, which may impact the overall results, we also conducted a separate
experiment wherein the classification task was strictly limited to distinguishing between presentation
and meeting. The accuracy remained the same; Figure 6 presents the confusion matrix, which indicates
that the model is more likely to misclassify a meeting as presentation than vice-versa.

Figure 6. Confusion matrix for the corner and overhead camera angles combined.

We set out to investigate the performance for the activity classification task based solely on the
audio feed. Namely, in Figure 7 we compare several deep learning architectures that showed promising
results in [17] on the AMI dataset, against the residual learning approach. Noticeably, as well as in the
case of visual data, residual learning outperformed both the VGG-16 [26] and the Inception V3 [27]
models, by extracting features that made it easier for the model to classify the audio data correctly.
Moreover, the differences in the F1-score are considerably larger, as can be seen in Table 1. At the same
time, it is important to point out that audio-based activity recognition did not perform anywhere close
to the accuracy attained when using visual data, which is consistent with similar findings reported for
activity recognition tasks [16,28]. Additionally, we mentioned that the results reported here have been
obtained based on a transfer learning approach, which is further detailed in Section 4.2.3.
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(a) (b) (c)
Figure 7. Model accuracy for each of the three base models on the audio data set: (a) VGG-16,
(b) Inception V3, and (c) ResNet-50.

Table 1. F1-score results of activity recognition for different modalities.

Visual Spatial Features Audio Spatial Features Audio Spatial Features Spatio-Temporal Features

Corner 98% VGG-16 50% ResNet-50 78% Audio features 59%

Overhead 99% Inception V3 66% ResNet-101 69% Visual features 100%

Combined 99% ResNet-50 78% ResNet-152 66% Fused features 100%

4.2.2. Deeper Networks

Given the results obtained on the audio dataset, we further investigated the extent to which
performance can benefit from deeper architectures. To this end, in Figure 8 we present the accuracy
achieved when the base feature extractor model had 50, 101, or 152 hidden layers respectively. It is
interesting to remark that although the expected result should have been to obtain a higher accuracy,
as the complexity of the model was increased, that was not actually the case. In fact, it is clear from
Figure 8 that deeper networks tend to overfit the data, leading to lower accuracy on the validation set.
However, one possible explanation is that this situation occurred due to the size of the dataset, and
some performance gain could still be achieved, provided we increase the size of the training set.

(a) (b) (c)
Figure 8. Model accuracy for different base models: (a) ResNet-50, (b) ResNet-101, and (c) ResNet-152.

4.2.3. Transfer Learning

Finally, for the audio dataset we provide a comparative analysis between the following two
instances. On the one hand, we evaluate the performance of the model when the network weights
were randomly initialized, and on the other hand, we compare it against the results in Section 4.2.4,
where we have adopted a transfer learning approach by means of using weights that were pre-trained
on the ImageNet dataset [29], which is a typical benchmark for solving image recognition problems.
This transfer learning approach enables us to use a large-scale dataset, such as ImageNet, as a feature
extractor for low-level structures that occur in most images. After initializing the network with
the pre-trained weights, the model was further fine-tuned for the activity recognition classification
task under consideration, instead of learning it from scratch. As depicted in Figure 9, we can see a
significant drop in accuracy for the ResNet-50 base model, which only managed to reach 56% accuracy,
in contrast to the 78% that was attained when transfer learning was applied (see Figure 7c). Hence, this
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is a strong indication of the fact that transfer learning can boost performance for the task of activity
recognition, even on the audio dataset.

Figure 9. Model accuracy with random weight initialization.

4.2.4. Audio Modality

4.3. Temporal Multimodal Results Analysis

Now that we have explored the limitations of the unimodal approaches based on spatial
features only, we focus on the proposed multimodal architecture, which also incorporates temporal
features. As already explained in Section 3.3, we appended the network architecture by stacking two
LSTM layers that also have the role of fusing the spatio-temporal features extracted from the two
respective networks.

For completeness of results we also provide in Figure 10 the performances of the audio and
visual models separately, when temporal features were considered. In terms of the audio model,
the performance appears to remain relatively low even as temporal features are being incorporated.
However, it is interesting to observe that both the visual model and the multimodal one, which fuses
the audio and visual streams, managed to achieve 100% accuracy on the AMI dataset. Moreover,
this was attained in less than 20 epochs of training, as opposed to the results in Section 4.2, which
converged after 200 epochs.

(a) (b) (c)
Figure 10. Model accuracy including spatio-temporal features (a) only audio, (b) only video, and
(c) both audio and video combined.

4.4. Discussion

As opposed to previous work on the AMI dataset, in this paper we were particularly interested to
analyze the extent to which audio data could be utilized for activity classification. Although audio
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monitoring may raise even greater privacy concerns than visual data, it has the advantage of being less
dependent on the environment in the same way that video is. That is, the generated audio spectograms
are not affected by the different camera angles, nor by people behaving temporarily in a way that does
not fit with the annotated label, or other varying conditions such as camera occlusions and lighting.
Both camera angles share the same audio feed, so in this regard, using audio seems to be more beneficial
compared to video. Nevertheless, audio also has its drawbacks, such as that the same audio pattern
could potentially be recorded for entirely different visual behaviors, which could in fact reflect different
activities. With those considerations in mind, we have introduced here a multimodal approach that
can benefit from the complementary information encoded by both of these two modalities. As a result,
the model was shown to achieve 100% accuracy for the specific classification task. Moreover, we have
shown that by adopting residual learning we can further improve on the unimodal results in [17] by a
considerable margin, and the particular choice for the number of hidden layers in the network impacts
performance significantly.

Finally, using the ImageNet weights instead of randomly initializing the base models provides an
advantage regarding the amount of time needed to train the model. The base models are quite large
with a lot of parameters, and randomly initializing the weights of the base model would take a lot of
resources in order to optimize the weights for extracting the features. As can be observed from the
results, by applying a transfer learning method we have largely improved performance. This becomes
especially important in situations wherein the training set is of limited size.

5. Conclusions and Future Work

In this paper we propose a multimodal approach that operates on audio–visual data streams
to perform activity recognition related to office environments. To train the model, we employ a
two-step procedure. First, we apply a transfer learning method to initialize and fine-tune the audio
and visual deep residual networks. Second, the LSTM-based fusion network is trained to extract a joint
audio–visual feature representation, for considering contextual information in the data. The model
was evaluated based on the AMI dataset, which consists of 100 h of synchronized video and audio
sequences from meeting recordings. Empirical results show that our model achieves significantly better
performance in comparison to previous models using the AMI dataset. As future work, we would
like to evaluate our approach on a larger number of activities, with a broader range of behavioral and
movement patterns, over a longer period of time. This could be achieved by either collecting more
data in order to expand the AMI dataset, or by repurposing already existing video databases (such as
relevant video sequences from YouTube) for our objective.
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