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Abstract: Fog computing is an emerging and evolving technology, which bridges the cloud with the
network edges, allowing computing to work in a decentralized manner. As such, it introduces a
number of complex issues to the research community and the industry alike. Both of them have to
deal with many open challenges including architecture standardization, resource management and
placement, service management, Quality of Service (QoS), communication, participation, to name
a few. In this work, we provide a comprehensive literature review along two axes—modeling with
an emphasis in the proposed fog computing architectures and simulation which investigates the
simulation tools which can be used to develop and evaluate novel fog-related ideas.

Keywords: fog computing; modeling; simulatiom tools; cost

1. Introduction

Fog computing is a new architecture which bridges the cloud and the Internet-of-Things (IoT)
world, acting as a a layer between them in order to provide services directly to the network edge. As per
Reference [1], fog computing is as “a scenario where a huge number of heterogeneous (wireless and sometimes
autonomous) ubiquitous and decentralized devices communicate and potentially cooperate among them and with
the network to perform storage and processing tasks without the intervention of third-parties. These tasks can be
for supporting basic network functions or new services and applications that run in a sandboxed environment”.
It provides a promising approach for processing the huge data volume produced and consumed by
applications, machines and their users. Complex processing and distributed computing is placed on
clouds and devices around us, respectively [2]. Fog is an alternative technology to the cloud aiming to
meet user requirements for SCALE [3]—Security, Cognition, Agility, Latency, Efficiency.

Nowadays, IoT devices are used for storing, processing, collecting and exchanging data that
are generated in huge volumes from emerging applications. IoT interacts with applications that are
time-sensitive and have demands for location-aware, high-speed data processing and low energy
consumption [4], while having to handle the large scale of produced data. However, in most cases IoT
devices do not have the capabilities to perform all these tasks, so instead they rely on cloud computing
facilities [5].

The choice to move data and computation from the edges to the cloud can become inefficient
and costly while posing security issues related to privacy. Moreover, the centralized nature of
cloud, the location dependency in terms of distance, and the cost of services provided by the
cloud are important shortcomings of the cloud-IoT integration [5]. Fog computing comes to
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overcome these limitations. It works complementary to cloud computing and improves on it in
terms of latency reduction, bandwidth savings, mobility support, geographically distributed and
decentralized deployment, heterogeneity, interoperability, data security and privacy protection,
and energy consumption [6,7]. These factors affect the cost and the performance of communication,
computation and storage. In order to reduce traffic load and latency the fog architecture tries to process
data or to provide services closer to end devices.

Traditionally IoT applications which exploit cloud computing facilities need to deal with
heterogeneity, high latency, and large scale issues. In contrast, fog computing establishes a decentralized
framework and shifts parts of applications, management, and data analytics to the network edge.
However, moving computation from cloud centers closer to network edges requires decisions on
where to place data and applications within the cloud-to-end-point continuum and how to address the
issues of heterogeneity, geographic distribution, low latency, low power, low bandwidth, security and
privacy in cost-effective manner.

Researchers and practitioners in the fog computing area have to deal with the system complexity
arising from the large number of participating objects and their interactions, different technologies and
disparate applications. In order to overcome these issues, they typically employ models and simulation
tools to approximate the actual fog system. A model is a representation of a real or a planned system
or part of it, in an ideal form. It is used to gain understanding of the system under study, to interpret
the various phenomena and the interactions among the components, to make predictions about the
behavior of the whole system or some of its subsystems, and finally to act on them. Simulation
frameworks provide solutions in cases where mathematical modeling techniques are difficult or
impossible to apply due to the scale, complexity and heterogeneity of a fog computing system [8].
Simulation is a way to mimic the operation of real systems, with the freedom to modify the inputs,
and to model a number of characteristics, analyze existing systems or support the design of new
systems and helps to identify and balance the cost [9]. It should be, thus, apparent that modeling and
simulation are appropriate tools to study and analyze how fog computing and its applications are
deployed and act in the intermediate layer between the cloud and the network edges.

There are several surveys on fog computing and related issues. They cover fog computing
platforms [10]; they analyze challenges, architectures and open issues [2,4,6,11,12]; they summarize
emerging computing paradigms to drive the shift from the centralized cloud computing to distributed
edge computing [13]; they focus on resource management [14–16], or applications [17]. Other relevant
surveys examine various aspect of modeling and simulation in the fog environment. Svorobej et al. [8]
investigate simulation challenges in fog and edge computing environments. Markus and Kertesz [18]
consider fog models and the quality of simulators from a software viewpoint. Ashouri et al. [19]
assess the quality of simulators. Abreu et al. [20] provide a conceptual review of cloud/fog simulation
tools. We note the relation of fog computing to other technologies such as edge computing and mobile
edge computing. Edge computing also extends the cloud but in a limited manner, focusing on the IoT
devices end, while mobile edge computing provides cloud computing services close to mobile users.
While facing similar issues to fog computing, these technologies are distinct [4,6,13]. As such, they are
out of the scope of this work. We focus on models and on the most recent fog computing simulators.
In contrast to previous works, for the first time we consider the cost parameter and its significance in
fog computing deployments.

In this work, we present a comprehensive survey of modeling techniques and simulation tools for
fog computing and investigate how to reduce the system cost in terms of network, application and
management/configuration requirements. More specifically, our contributions are:

• We identify the major research aspects in the area and how modeling and simulation helps
towards their solution.

• We provide an extensive overview of state-of-the-art fog computing simulation tools, pinpointing
their distinct characteristics and the way they address several critical issues such as latency, energy
consumption, and so forth.
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• We underline the limitations of existing tools and highlight open issues and research trends
• We highlight various quantities that can be used as metrics or system parameters when considering

the cost dimension

The rest of the paper is organized as follows. Section 2 serves as an overview of the basic notions
and concepts of fog computing. In Section 3 we identify fog computing challenges for the study of
which, modeling and simulation can play an important role. Sections 4 and 5 focus on modeling
techniques and simulation tools, respectively, for fog computing systems. Finally, Section 6 concludes
this work.

2. Basic Concepts

Since 2009, Satyanarayanan et al. [21] have supported that cloud computing suffers from large
scale and increasing latency, and have pointed out the need for new technologies. Among the newer
developments, fog computing is a groundbreaking technology that bolsters and extends the cloud.
The term “fog computing” was initially introduced by Cisco, in 2012, as a “cloud-to-thing continuum” [1].
It is defined in different ways, which encompass the cooperation of a huge number of distributed
devices and the placement of storage, computational and networking services at the edges, the network
or the cloud [2]. Fog computing is not a standalone paradigm, it is located between the cloud and the
network edges, supporting virtualization and the cooperation of end devices. It arose as a result of the
efforts of academia and industry in order to provide low latency, high scalability while reducing costs
and energy. It is considered as a promising technology, capable of handling extraordinary amounts of
data that are generated by IoT devices. The features of fog computing include heterogeneity support,
geographical distribution, location awareness, ultra-low latency, support of real time and large-scale
applications, and virtualization [4].

Fog Computing Architecture

There is no standard architecture for fog computing, and research works often rely on different
architectures. Figure 1 shows a high-level overview of the fog computing structure. In the most
common scenario, it consists of three key layers: cloud, fog and end devices:

• End devices layer: This ground layer represents the end devices such as sensors, actuators or
things, mobile smartphones and tables, smart meters, aircrafts and smart vehicles, desktops PCs,
laptop computers accompanied with applications [2,22,23]. End devices may be considered as
human-operated resources [23] and they provide a range of computing capabilities. All these
elements form a communication network, and their data are transmitted to the cloud through the
fog layer.

• Fog layer: It is the layer above the end devices layer. According to Reference [2], any device
which is able to process, store and connect to the network can be considered as a fog processing
devices. In this sense, some devices can be considered as both IoT and fog devices, smartphones
begin a characteristic example. The fog layer is a collection of processing devices, gateways,
and networked devices (routers and switches) that are deployed between network edges and
clouds. Fog resources are interconnected and used to deliver a number of services to users such
as computing, storage and network services. Fog devices are shaping a distributed system that
offers services for a certain set of end devices in a specific location and handle data which are
transmitted by such devices [24].

• Cloud layer: Physical data center nodes are placed in the cloud layer. Each node has CPU(s),
main memory and network bandwidth and is used to satisfy user requests for resources. Control
strategies allow the management and scheduling of cloud resources according to their load
demands [22]. Clouds are connected to Wide Area Networks (WANs) and provide economic
benefits, elastic services, data-intensive analysis for end-users [13], quality of the offered services
and high degree of fault tolerance [25]. However, clouds suffer from high latency and bounded
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capacity due to current WAN connections. Moreover, as cloud computing works in a centralized
manner, it is incapable of supporting context-aware computing for IoT applications [13].

Figure 1. Fog computing technical architecture.

3. Modeling and Simulation Challenges

Fog computing emerges as a modern and competitive environment in a number of different areas:
smart cities, intelligent transportation systems, smart healthcare, public safety, smart grid, industry
4.0, smart home and smart building are only some of the domains where applications have been
developed and supported by a variety of fog computing technologies [10]. Often, these technologies
and applications have a significant impact on daily peoples lives. However, not all of them have
reached a satisfactory level of maturity and require more consideration. Existing approaches try to
answer emerging questions, to solve a problem or make a decision in a specific field [17] mainly using
modeling and simulation. Today, there are several simulation tools for fog computing environments
with different mechanisms and characteristics. Before we investigate how they fulfill their purpose,
we discuss the current challenges in fog computing that lead to new specialized and novel techniques.
These innovations can be evaluated, tested and have their cost estimated by employing proper
simulation tools.

It is a non-trivial task to design fog computing simulators meeting the needs for generality,
scalability, efficiency, mobility support and low-latency. One of the hardest problems in this process
is to determine the constituent parts of the simulator. Every decision is related to the actual cost
of implementation and operation of the fog computing scheme and its components—infrastructure,
computing, and supported applications. Next, we identify several deployment challenges.

3.1. Fog Computing Infrastructure

The fog infrastructure consists of a set of devices with no computational capabilities (e.g., sensors)
and a set of resources offering compute power, storage capacity, and so forth (fog nodes, cloud
servers) that are interconnected, forming a complex system [15]. There is a large diversity in the
characteristics of all these devices. They may concern, among other things, the CPU power, RAM size,
disk capacity, bandwidth, latency, and so forth. From a functional point of view, the infrastructure
could be organized in layers, and is generally modeled as a connected graph where the vertices denote
the set of devices/resources, and the edges indicate the links. Simulators should at least support the
most common resource types and their characteristics: storage, compute and communication.

3.1.1. Storage

One of the main functions of fog computing is the provision of storage resources which are
closer to the end devices than cloud storage. The storage requirements come from a large number
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of end devices, which may be distributed in a vast geographical area, used by different users while
running their applications. Many types of storage can be used in fog nodes in order to provide
the reliability and data integrity required by the fog system [26]. The user needs, the application
requirements or restrictions and the cost determine the type and capacity of storage, while a key issue
is the placement of storage resources. In 5G wireless networks, proactive caching and distributed
storage based on the integration of each user’s personal storage space [6] have been proposed as
storage technologies which can expand the service capabilities. Sharma et al. [27] propose a fog
architecture that supports blockchain storage; blockchain technology introduces an efficient, scalable
and secure way to manage resources.

According to Reference [16], the fog nodes may have limited storage capacity and, consequently,
the cloud data centers can be used for compute and storage functions. In general, both of them could
work in a complementary manner. In this scenario, a number of issues arise: where to place data (since
data locality is an important factor for fast and efficient computing), how to deal with the huge amount
of data transfer requests, how to manage storage resources or how to cope with the heterogeneity
coming from the various devices and applications. Suitable modeling and simulation are necessary
in order to test any conceived solutions, observing the degree to which their behavior satisfies the
actual needs.

3.1.2. Computation

Any device with computing capabilities could be used for compute. Generally speaking,
any device in the fog layer which has computational power and any server on the cloud can act as
a compute device. Based on them, fog computing systems provide new computational opportunities
and more efficient services.

Compute devices provide services for storing, processing and analyzing data [28]. They could
act as servers, coordinators or controllers depending on the given application and its requirements.
They may also discover, monitor and manage other devices and their requests. In a real implementation
compute devices need to be purchased, connected and configured, while in a simulation environment,
they need to have specific features, such as management and mobility capabilities. It is desirable
to deploy a fog system with various types of computing devices and predefined QoS levels,
which enhances the performance metrics in a cost-effective manner. Here two different kinds of
cost must be considered—the purchase cost and the operating cost. Notice that since compute can be
placed on both fog and cloud nodes, the operating costs may also include latency, network congestion,
and energy consumption, which are related to possible data transfers among compute nodes [29].

3.1.3. Communication

As mentioned above, a fog computing system cooperates with the cloud layer and the end-devices
layer. It works in a distributed manner and connects geographically distributed devices—mainly
end-devices—with fog nodes and clouds. It usually exploits existing access and metro network
infrastructure [4] in order to provide data transfer facilities. The communication channels can be wired
or wireless, supported by different networking technologies (e.g., WLAN for wireless and part of
IP networks for wired). Wired connections can be found between fog nodes and cloud data centers
or among fog nodes, while wireless connections are typically used to connect end devices and fog
nodes [6]. It is common for fog devices to maintain three different connection types [30]:

• For communication between fog and mobile users
• For communication between cloud and fog
• For communication between fogs

For each connection type, the links may be heterogeneous, may have different capacities and may
utilize different technologies. In the first connection type, basic fog elements such as fog servers provide
a local infrastructure where communication services take place between fog and end-users. The fog
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layer is connected with end-devices using technologies such as WiFi, Bluetooth and NFC [14]. Here,
a key feature is the prediction of the specific location of mobile users, which can then be used to handle
localized issues and provide specialized services. Regarding the second connection type, fog and cloud
communications are mostly based on IP core networks. In some cases, they exploit software-defined
networking (SDN) technologies [6,27], disassociating the traffic routing task from the data forwarding
process. Finally, the communication between fog nodes could take place in a centralized or distributed
manner. The centralized approach utilizes SDN facilities, while distributed solutions take place through
the traditional routing process using wired or wireless transmission. More recent approaches propose
the use of Network Function Virtualization (NFV) for communication [6]. NVF utilizes virtualization
technology to provide networking fully independent of hardware.

Throughput, average round trip time, average response time and transmission delay are among
the issues that concern researchers [12]. Fog systems have to undergo additional investigation and
evaluation to extract cost and performance trends. Modeling and simulation are flexible, scalable and
low-cost tools to evaluate the performance of these systems, for every communication type.

3.2. Fog Computing Key Technologies

Fog nodes and end-devices make use of a wide variety of distributed computing technologies.
These technologies are used to serve users’ processing requests in an autonomous and independent
manner, while virtualization technology is capable of providing scalable processing environments.
Computing takes place on edge devices, intermediate nodes or in cloud data centers depending on
the current needs and the the availability of the resources. This process gives rise to the challenging
problem of resource management. Ghobaei-Arani et al. [16] classify resource management approaches
in the following six categories:

• Application placement
• Resource scheduling
• Task offloading
• Load balancing
• Resource allocation
• Resource provisioning

The research community working on these issues and considering open perspectives and future
research directions, set different evaluation factors and typically utilize simulators as evaluation tools.
They try to improve resource management mechanisms and focus on minimizing key aspects of cost
(e.g., execution cost, system cost, authentication cost) which are discussed in Section 3.4.

3.3. Fog Computing Applications

A broad range of applications, with low latency requirements, time sensitivity, and demands
for accessibility or efficiency from mobile users fit well to the fog computing paradigm [6,7].
These applications come from several domains—health care, smart environments, augmented reality,
Intelligent Transportation Systems (ITS), public safety, Smart Grid, Industry 4.0 [6,10,25,31]. The need
for models and simulators capable of performing actual experiments is quite clear in this area.
Generally speaking, simulation tools should provide facilities for [25]—physical or virtual resources,
network infrastructure, control mechanisms and data management in order to support the simulation
of different types of applications. The decoupling of the applications from the hardware simplifies
the development of mobile crowdsensing applications [32]. Syed et al. [7] raise the multi-tenancy
issue, that is the ability to support the execution multiple applications in fog computing environments,
by sharing the available resources [7].
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3.4. Cost Considerations

Fog computing is a complex environment, where services are provided to users, and users execute
their applications. The acquisition of services or resources depends on the participating nodes and their
roles as providers or users and always involves the notion of cost. Various aspects of fog computing
costs have been considered and cost-aware schemes have been proposed for resource allocation [33],
simulations tools [34,35], or modeling tools [36,37]. Battula et al. [33] propose a cost model for fog
computing environments which concerns both devices and applications. It is calculated per device
or application and summarizes different types of cost and various cost parameters. It is expressed as
a function of:

• Communication cost: this cost is proportional to the number and size of messages received.
• Processing cost: this cost is related to user requirements for local or virtual execution. In the first

case, it depends on the total number of executed tasks. In the second case, it depends on the
number of required virtual resources and their time usage (CPU hours).

• Cloud-network cost: this is included if there are interactions with clouds. It concerns cloud
integration pricing and data roundtrip times.

• Migration cost: it is the cost for migrating tasks from a fog node to another and is proportional to
the total execution time of migrated tasks. This cost is paid by the fog node who was in charge of
executing the tasks before the migration.

• Storage cost: it is calculated as a function of the storage size, the storage duration and the
encryption cost.

• Power cost: this accounts for the battery costs of all sensors that are utilized during an
application execution.

• Software cost: it is calculated according to the per-month pricing policy for each used commercial
software product.

• Sensors cost: this expresses the cost per sensor request, summed over all served requests.
• Operational cost: this sums up the fog device, the sensor and the network operational cost.

The above cost model general enough, has many advantages and can fit in other fog computing
settings with some modifications (for example, power cost may be also attributed to fog and/or cloud
devices). Ideally, it could be embedded in simulations tools. Examples of cost metrics listed in Table 1.
As Brogi et al. [38] state, the inclusion of cost models in simulators may give a significant boost to the
deployment of eligible fog computing applications.

Table 1. The notion of cost in fog computing systems.

Cost Type Works Examples

Communication cost [27,29,37,39] No. of message, message size, throughput, transmission
cost, network cost.

Processing cost [25,27,29,32,35,37,40–45]

Computing cost, system response time
CPU-memory-bandwidth utilization, failures
per-connection, job loss probability, response time
processing -service delay resource churn.

Cloud-network cost [22,25,32,34,35,37,39,44,45] Bandwidth, latency, propagation and transmission delays,
round-trip-times routing costs.

Migration cost - -

Storage cost [45] Storage cost.

Power cost [25,35,36,41,46] Energy consumption

Software cost [36,47,48] Price cost, billing cost.

Sensors cost - -

Operational cost [39,45,46,49–51]
Maintenance costs, operating expenses operational
cost, reconfiguration, acquisition, power delivery,
evacuating heat.
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4. Modeling Fog Computing Systems

In this section, we present and compare typical proposed models for fog computing systems.
The role of a model is two-fold; first to understand the real system under study and then to extract
an applicable simulation model [52]. In the existing literature, several fog models have been used
in lieu of real systems in order to evaluate or understand how those systems work. Models involve
components that represent the different parts or states of the real system and the relationships between
them which define the behavior of the fog system.

For fog computing systems the key components include the infrastructure (i.e., the devices and
the network), the platform (encompassing resources, services and their management) and applications
(which execute in the fog and have certain requirements) according to Reference [2]. Mahmud et al. [11]
identify three essential dimensions involved in fog computing—system structural, services and security,
while Svorobej et al. [8] distinguish four key factors relative to fog and edge computing modeling
and simulation—infrastructure, resource management, mobility and scalability. Among the proposed
approaches, only a few [33,38] focus on cost modeling. Both efforts seek to quantify the cost of
developing IoT applications and the resource-allocation paradigm in fog computing environments.
A fog model could be a static representation of the distributed system, or a dynamic one; it may include
facilities for data-processing, resource management, networking, and storage services [53]. However,
it is important for the research and industrial community to evaluate all those models in terms of costs.

Several types of models have been proposed to study fog system behavior or to evaluate its
operation. We can classify them into two broad categories—mathematical and conceptual models.
A mathematical model uses mathematical expressions, symbols and language to describe a system,
while a conceptual model represents the system as a composition of components.

We can further distinguish mathematical models in:

• Analytical models: An analytical model uses mathematical symbols and expressions in order
to describe the system evolution. Such models exploit probability theory, algebraic methods
and other mathematical tools and techniques to solve a defined problem, sometimes resulting
in closed-form solutions. Commonly they have relatively few parameters so as to keep the
problem tractable and this can reduce their accuracy. In most cases they lead to rather simplistic
representations, not well suited for representing highly complex systems [54].

Although not strictly analytical, numeric computer-based simulations can be considered
in this category. Numeric simulation usually involve dividing a system into many small
subsystems, model each subsystem using analytical models and test the overall system using
computers. These models are relatively simple but can be useful for reproducing the behavior of
complex systems.

Analytical models have been used to model the system load [54], the IoT service delay [44],
and other performance metrics in fog computing. Numeric computer-based simulations have
been used to test resource allocation or caching schemes [55,56].

• Petri Nets models: Petri Nets use a graphical representation of the system under study,
in combination with a mathematical formalism to model, analyze, and verify system components
and their activities/interactions, and have enjoyed wide applicability [57]. In [48] Petri Nets used
for the decomposition of distributed edge systems into several components. Cheng et al. [58]
utilize Petri Nets to discover the learning process in IoT edges. Merlino et al [32] adopt Petri Nets
to model and evaluate mobile crowdsensing services. Ni et al. [47] investigate the resource
allocation problem in fog computing and propose a solution based on priced timed Petri Nets.
The user autonomously chooses the part of resources that satisfy her needs, out of all the available
preallocated resources. The scheme considers monetary and time costs.

• Markov Chains and other models: A Markov chain is a random process characterized by the
memoryless property: future system states depend only on the present state and not on events that
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occurred in the past [45]. Markov chains allow identifying stimulating characteristics of complex
systems, compacting potentially large mathematical models into a more concise representation,
which can be quite helpful when studying the dynamics of these systems. There are a few
works which adopt Markov chain models for fog computing systems. Haneefa et al. [59] model
the fog architecture using Markov chains and they compare the performance of hierarchical
and flat architecture variants in terms of computational power and completion time of a task.
In Reference [39], Markov decision processes, an extension to Markov chains, were used to
optimize the operational cost in the computation migration problem. Markov decision processes
are also used in Reference [45] to optimize offloading in mobile fog computing, that is, the transfer
of computational tasks from mobile devices to fog servers.

Sarkar et al. [22] construct a theoretical model using a mathematical formulation to parametrize
individual components of fog computing systems. The authors consider how to reduce the cost in
terms of service latency and energy consumption.

Regarding the second broad category, a conceptual model is an abstraction of a real system and it
considers the systems as a collection of components which interact in various ways. Each component
represents a class of devices or services in the real system, and is characterized by specific behaviors.
Iorga et al. [31] propose a conceptual model to introduce an architectural structure for constructing,
enhancing or expanding fog computing. A fog system is considered as a layered model consisting of fog
nodes (physical or virtual) which interact and communicate with cloud and end-devices. This model
aims to support the deployment of applications and services. Osanaiye et al. [60] design a conceptual
migration framework. They use it for migration of virtual machines in order to minimize the downtime
and the migration time.

Table 2 summarizes the literature with respect to the modeling approach used. For every work,
we include information about the actual problem studied by the authors, the targeted cost metrics and
the simulation tool which was used to evaluate the models (if any).

Table 2. Comparison of modeling tools (N/A: not applicable).

Work Problem Studied Cost Metrics Simulation Tool

Analytical Models

[61] Sources of latency in health care applications
Communication latency,
computation latency, and
network latency

iFogSim [35]

[36]
Reduction of energy consumption and
billing cost in audio/visual recognition and
retrieval environment

Billing cost,
energy consumption N/A

[37] Optimal distribution of processing load among
the fog and the cloud

Transmission cost,
processing cost per unit time,
response time

Java Modeling Tool

[4,44] Quality of service (QoS) in IoT networks
Service delay, propagation
and transmission delays,
processing delay

N/A

[42] Allocation of fog computing resources under SLA
and QoS constraints

CPU utilization, system
response time, system loss rate,
system throughput, number
of messages

Java Modeling Tools

[40] Modeling a typical healthcare monitoring system Computing cost, response time Java Modeling Tools

[41] Data management in mobile
crowdsensing environments energy consumption N/A

[49] Management system design for NFV customers
and service providers

Capital expenditures (CAPEX)
and operating expenses (OPEX) N/A
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Table 2. Cont.

Work Problem Studied Cost Metrics Simulation Tool

Petri Nets Models

[47] Resource allocation Price and time cost N/A

[48] System decomposition into
distributed components Price and time cost N/A

[58] System for learning process models in IoT edges Time for discovering and
delivering the process model N/A

[32] Deployment Mobile Crowd Sensing application
into a sensing Cloud.

Number of participating
entities (contributors), rate of
contributor arrival/departure

Emulation
(Genymotion)

Markov Chain Models

[46] Energy consumption in wireless sensor networks Maintenance costs,
energy consumption Ansys Software

[39] Services migration from the edge to the cloud
Operational cost, transmission
cost, routing costs,
reconfiguration cost

N/A

[43] System performance optimization via optimal
management of energy storage system. Monetary cost, job losses N/A

[45] Offloading process optimization Processing and storage costs Cloudsim

Other Models

[22] Fog computing performance for IoT applications. latency, energy consumption Custom

5. Simulation Tools

Simulators shed light on existing or prototype systems by imitating their operation. Simulators
are used to study the system behavior and understand the factors that affect system performance as it
evolves over time. Before applying new technologies to real systems it is salutary to test them using
simulation tools. Fog computing trends as the latest extension of cloud computing. Although there
is a wide range of simulation tools for cloud computing, they cannot be used as-is for studies in
the field of fog computing; they have thus been adapted to meet the new needs. At the same time,
novel simulation tools have been proposed and developed, specifically for the fog. In this section, we
survey all such tools that are used in the fog computing area.

The Edge-Fog cloud simulator [23] is implemented in Python. It is composed of two layers:
(i) the outer layer which includes the edge devices and (ii) the inner layer which consist of fog
devices. All those devices are connected and form a distributed system. The authors also implement
the Least Processing Cost First (LPCF) algorithm, which is used to assign tasks to available nodes.
The assignment aims to reduce the processing time and network costs.

Gupta et al. [35] extend the CloudSim simulator [62] by adding new functionalities and developing
a simulation toolkit for fog computing, called iFogSim. iFogSim is one of the most popular tools that can
be used to model and simulate IoT and fog environments. It is written in Java and employs the JSON
file format to represent physical topologies. iFogSim supports the simulation of entities and services.
The communication is based on message passing. It is an event-based simulator that can be used to
simulate applications in IoT and fog environments. It provides an environment capable of evaluating
resource management policies based on different metrics, such as energy consumption, operational
costs, and network congestion. The architecture of iFogSim provides physical, logical and management
components. Physical components included fog devices, actuators, and sensors. Logical components
represent processing modules and their interaction as a directed graph. User can draw physical
elements, define their characteristics and build their topology using a user-friendly GUI. Alternatively,
the user can define topologies programmatically using Java APIs. A management component assists
in application placement, scheduling and monitoring. Despite its popularity, iFogSim has a few
shortcomings: (i) the Java-based implementation introduces version compatibility issues while not
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supporting basic network parameters [63], (ii) it focuses primarily on resource management, ignoring
other important fog computing facets (e.g., mobility, infrastructure, cost) (iii) it supports only tree-like
topologies (iv) it does not consider QoS requirements [64].

Brogi et al. [64] propose a model for fog computing which consists of QoS profiles,
fog infrastructures, IoT applications and eligible deployments. This model is supported by a simulation
tool named FogTorch. The simulator is written in Java and allows developers to customize the fog
infrastructure (in terms of CPU cores, RAM and storage per node, to define QoS policies related to
latency and bandwidth, and to specify the application requirements. FogTorch does not provide
a cost model. FogTorchΠ [65] is an extension of FogTorch, capable of determining deployments of
IoT applications over fog computing systems. FogTorchΠ inherits parameters related to hardware,
software, QoS from FogTorch and provides facilities to define QoS for communication links. To simulate
the behaviors of communication links, it exploits Monte-Carlo methods which are used to generate
sampling probability distributions. FogTorchΠ provides metrics to estimate and compare resource
consumption and QoS accuracy.

FogNetSim++ [63] is a simulation framework capable of handling fog networks and devices. It is
based on OMNeT++ [66], an open source component-based C++ simulation library and framework,
widely used in academia. FogNetSim++ is an event-driven simulator and its main objective is to
provide a static or dynamic environment that supports sensors, fog nodes, distributed data centers,
and a broker node. The role of the latter is to manage the other devices and their requests. FogNetSim++
supports the execution of resource scheduling algorithms while it also provides an energy model and
different pricing models. The pricing model applies to network, storage and compute components for
network, storage, compute and other tasks. The simulator provides users with detailed configuration
options. It also provides modules for the creation of the network environment, and the users may
incorporate their own extensions. The authors claim that FogNetSim++ is scalable in terms of average
execution time, CPU and memory usage.

Tychalas and Karatza proposed Parallel Discrete Event Simulation (PDES) for fog computing,
implemented in C [67]. In a predefined cloud/fog system, authors consider how to reduce costs for
each incoming task by combining of all available computational resources and bringing all involved
computing resources closer to users. The tool focuses on task scheduling algorithms.

The work in Reference [68] proposes Yet Another Fog Simulator (YAFS) that enables Cloud/fog
simulations. Python was used for the development of YAFS is Python while is also supports the
JSON format for input files that describe customized scenarios. The YAFS architecture consists
of the following components: application, selection, placement, population, topology, and core.
During simulation the selection, placement, and population processes have the responsibility of
resource management and their interactions are dynamic. Topologies use graph-based representations
and are imported from JSON files which can be generated from other tools (such as CAIDA and
BRITE). Applications remain the same as in iFogSim, and consist of a set of modules, which provide
services and exchange messages. Following a distributed data flow model, authors use a directed
acyclic graph to represent them, where nodes are modules that act and edges are the exchanged data
among modules.

FogDirMine [69] is a Python-based simulation tool that aims to model the beahavior of the CISCO
FogDirector, which is a tool for managing IoT applications on fog systems. Although FogDirMine
refers to the availability of resources and QoS, there is no reference to costs. FogDirSim [70] is deployed
to support also the CISCO FogDirector. It is built in Python and composed of independent REST
services. The objective of FogDirSim is to compare different management policies for applications and
infrastructure, considering energy consumption, uptime, and resource usage.

FogBus [71] is a framework for building fog environments. It is developed using RESTful
technologies and a combination of scripting and programming languages. FogBus supports a wide
range of infrastructure devices, application execution and interactions among nodes. It provides
authentication and encryption facilities implementing blockchain. The FogBus framework includes
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hardware components (fog nodes, IoT devices, fog gateway nodes, cloud data centers) software
components (grouped in broker, repository, and computing services) and network components
(topology, security, scalability, and fault tolerance). This simulator combines a large number of
elements and services and evaluates their performance in terms of energy, latency, network and
CPU usage.

ModFogSim [5] is an extension of iFogSim which requires significant effort to model user mobility
and migration strategies. ModFogSim adds mobility and migration features as well as wireless
connections to iFogSim. These additional features are implemented with the help of a Coordinate class
(which maps devices to a Cartesian plane), an AppDevice class (acting as an access point, handling
connections and disconnections), a number of Mobile classes (for devices, sensors and actuators)
a number of Mirgation classes to support migration in the simulation. The authors used a lab-based
testbed to evaluate their simulator. They conclude that the results demonstrate the usability of their
tool. In terms of cost, it inherits the iFogSim metrics, improvements on the latency metric.

FogWorkFlowSim [72] presents a different approach to fog computing simulation. It is written
in Java and provides a user-friendly GUI to evaluate resource and task management strategies.
The simulation process is done in simple steps: (a) setup of the fog computing environment, where the
user defines and parametrizes devices for each of the three layers, (b) setting a workflow application,
where the user chooses from available workflows or creates her own, (c) configuration, which defines
the computational strategies, the scheduling algorithms, and the performance metrics and (d) results,
where simulation outcomes can be visualizes and exported. FogWorkFlowSim evaluates system
performance with respect to three different quantities: time, energy and processing cost.

Finally, there is the class of custom simulator tools built for specific uses. They are based on
simulators that target other areas, with some simplifications and modifications. Abbas et al. [73]
developed a real client-side environment and collected benchmark values. Then they exploited an
OPNET-based network simulator [74] to evaluate their proposed Fog Security Service mechanism
considering the overall processing time as the performance metrics. The authors of Reference [75]
use a PeerSim simulator in order to evaluate their proposed fog-caching peer-to-peer architecture in
terms of success rate and latency. Hong et al. [76] consider communication costs for their Mobile Fog
programming model (a communication API that allows applications to use fog resources) and use
OMNeT++ [66] to conduct simulations.

Table 3 summarizes the available simulation tools. The first column refers to the year of the latest
release of simulator. The third column refers to the technologies used for implementing the simulators.
In the metrics column we list the metrics reported by each simulator and in the following we highlight
the the main targets/objectives of each simulator. The citations column is an indication of the number
of works that use each simulator; it is obtained from the citations the corresponding original article
has received according to Google Scholar as of April 2020. Based on this data, iFogSim seems to be
the most popular tool among researchers, who use it or extent it. The majority of the simulators are
implemented to support a specific facet or problem of fog computing. For example, Edge-Fog, iFogSim,
FogWorkFlowSim, MyiFogSim focus on the resource management problem. FogNetSim, on the other
hand, is a general purpose simulator and can be used to simulate large scale fog networks. All of them
provide metrics or statistics, while only a few of them (Edge-Fog, FogTorchPi, iFoSim and FogNetSim)
provide cost models. The lack of cost models is an issue that should receive considerable attention in
future works.
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Table 3. Simulator tools for fog computing.

Year Simulator Implementation
Technologies Metrics Objective Citations

2016 Edge-Fog [23] Python

Distribute task
processing on
the participating
cloud resources

73

2017 FogTorch [64] Java

QoS, reliability of links
and nodes, power
consumption, security,
monetary costs

Find eligible
deployments of
an application over
a fog infrastructure

173

2017 FogTorchΠ [65] Extension of
FogTorch

Resource utilization
and QoS accuracy

Same as FogTorch
and many QoS
profile according to
a probability distribution

51

2017 iFogSim [35] Extension of CloudSim,
Java, JSON

Energy consumption,
network congestion,
and operational costs

Performance of resource
management policies 509

2017 MyiFogSim [34] Extension of iFogSim Latency Resource allocation 38

2018 FogDirSim [70] RESTful API, Python

Performce in terms
of uptime, energy
consumption,
resource usage

Compare application
management and
infrastructure
management policies

4

2018 FogNetSim++ [63] based on OMNeT++
Energy module,
scheduling algorithms,
pricing model

General simulation of
fog environments 25

2019 FogWorkFlowSim [72] Java
Performance
(time, energy and
processing cost

Evaluate resource
and task
management strategies

2019 OPNET [73] Visual studio, based
on OPNET Processing time

Cope with the
massive amount
of confidential and
security-sensitive data

3

2019 YAFS [68] Python, JSON

Energy models,
network utilization,
response time,
network delay

Analyze the design
and deployment of
applications

7

2019 FogDirMime [69] Python Support
FogDirector [77] 9

2019 Fogbus [71]
Latency, energy,
network and CPU
usage

27

2020 MobFogSim [5] Extends iFogSim Same as iFogSim
Evaluate application
behaviour and
performance

0

5.1. Discussion

In Table 4 we try to draw a technical comparison of the simulators, based on their capabilities.
As can be seen, the existing simulators provide only partial coverage of the requirements for simulation
in fog computing. Almost all of them support different devices or other equipment to build the fog
system (column “Infrastructure”), but they differ in terms of the attributes they support, or in terms of
their connections. For example, FogNetSim++ provides a flexible network model and YAFS supports
a multitude of network topologies, but Edge-Fog provides only tree topologies. Also, most of them
include a resource management module to support application execution. Some are distinguished for
a unique feature. For example, FogWorkFlowSim is an easy to use simulator, as it provides a web API
for online execution. FogBus introduces a tool to analyze Sleep Apnea. Although it is not practical
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to build a specific simulation tools for each specific application area, we are lacking tools that enable
generic application simulation.

Next we underline the main limitations of fog computing simulation tools. These limitations also
represent challenging issues for possible future work.

• Efficiency: An indicative measure for simulation efficiency is lacking; this could be the execution
time, the CPU utilization, the memory consumption, and so forth, but there are only few and
limited works witch study this issues. An experimental comparison [20] shows that iFogSim has
some scalability issues and has higher memory demands than YAFS.

• Cost modeling: As mentioned previously the presence of a cost model is quite limited in simulators.
The cost is a way to quantify how the various parameters affect the operation of a fog computing
system and it can be an indispensable tool for operators, developers or users in this area.

• Network infrastructure/configuration: In most cases, network models are limited and not suited
for experiments aimed at evaluating the network entities and network connections. specifically,
they do not usually provide the possibility to define the physical topology, the link characteristics,
or the capabilities of networked devices.

• Security consideration: Security and privacy protection are among the key technologies of fog
computing systems [6]. A wide range of issues including identity management, resource
access control, encryption, decryption, authentication and authorization and malicious attacks
need to be dealt with. Simulation tools could be particularly helpful, but they currently
lack such functionality. The only exception is FogBus which provides an authentication and
encryption mechanism.

• Applications integration: A key question for researchers and developers is related to the needs
and requirements of an application to be executed in a fog computing environment. As already
mentioned, current tools lack the functionality to simulate most aspects of an application and
its activities.

• Extendibility: Fog computing is a new paradigm and researchers strive to propose solutions
(architectures, applications, models) that have to deal with heterogeneity, mobility, security,
scalability, and other related issues. The ability to use a simulator that would allow them to
easily integrate a new idea rather than build it from scratch would be very useful. Unfortunately,
only a few of the existing simulators (namely FogNetSim++, iFogSim and YAFS) provide some
hooks for such functionality.

We have also identified some non-technical albeit equally important limitations of contemporary
fog simulation tools:

• Documentation quality: In general, there do not exist sufficient documentation materials and
detailed tutorials. Typically, there only exist some basic documents related to installation and
running the simulator; even this information is missing in a good percentage of the available
simulations tools. IFogSim maintains a social media presence with instructional videos, but it
comes mainly from the user community, not from the creators themselves.

• Learning curve: There is not a clear indication about the learning curve of each tool. For example
YAFS seems to have a smaller learning curve than iFogSim [20]. While the learning curve
also depends on the documentation quality/quantity, a systematic comparison among all tools
is lacking.

• Maintenance: Although the simulators have been developed relatively recently, some of them
seem to be already inactive, as they have not been updated for a quite a few months.
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Table 4. Comparison of simulation tools for fog computing according to their capabilities.

Simulator What It does What It does Not Infrastructure Communication
Network

Resource
Management Cost Model

Edge-Fog [23]

Generates a network of
resources, supports task
allocation, configuration
parameters

Supports various model
(network, energy),
network configuration

Edge, fog and data store
layer No Distributed task

processing Yes (partial)

FogTorch [64] QoS-aware deployment of IoT
applications Most features lacking Cloud, fog nodes and

things No

FogTorchΠ [65]
Extends FogTorch. Estimates
monthly cost of QoS-aware
deployment of IoT applications

Energy consumption,
security constraints,
mobility

Similar to FogTorch
Latency,
bandwidth
(limited)

Resource
consumption (RAM
and storage)

Yes

iFogSim [35]
Comparison of Resource
management techniques, import
topologies, calculates cost

Mobility, failure modeling Sensors, actuators, fog
devices and data centers

Network links,
delay, network
usage (limited),
topology (tree)

Resource
and power
consumption,
allocation policies

Yes (partial)

MyiFogSim [34]
Extends iFogSim to support
virtual machine migration
policies for mobile users

Failure modeling, network
configuration

Sensors, actuators,
devices, and data centers

Similar to
iFogSim Similar to iFogSim Similar to iFogSim

FogDirSim [70]
Manage the entire life-cycle
of IoT applications for CISCO
FogDirector

Most features lacking No

FogNetSim++ [63]

Provides built-in modules
(sensors, mobile devices, fog
nodes, broker), supports
communication protocols,
applications

VM migration, other
cost types, real-network
properties (packet loss,
congestion, or channel
collision)

Mobile devices, fog nodes,
broker nodes, sensors and
base stations

Network
links, delay,
handovers,
bandwidth,
topology (graph)

Resource
consumption
(RAM, CPU),
scheduling policy

Yes

FogWorkFlow- Sim [72] Modeling and simulation of
workflow scheduling, web API Most features lacking Cloud, fog nodes, end

devices N/A
Offloading and
scheduling
strategies

No

YAFS [68]
Resource allocation analysis,
billing management, network
design, and so on.

Network configuration,
energy consumption, cost

Cloud, fog, sensors and
actuators

Bandwidth and
link propagation,
topology (graph)

Allocation and
orchestration
algorithm

No

FogDirMime [69] Fog application management
with CISCO FogDirector

Focuses on the simulation
of a specific application Cloud and fog nodes No

Fogbus [71]
Focuses on application
simulation, security features,
supports multi-applications

Network configuration,
energy consumption

IoT devices, fog nodes,
and cloud data centers Limited

Sleep Apnea
analysis, security
considerations

No

MobFogSim [5] Extends iFogSim adding
mobility and migration facilities

Network configuration,
importing topologies

Mobile sensors, actuators,
broker, and data centers

Similar to
iFogSim Similar to iFogSim Similar to iFogSim
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We summarize the above non-technical characteristics in Table 5, where we also note the
availability of a Graphical User Interface (GUI). All simulation tools are free, open-source, and available
through open repositories. In the column “Actively developed” we consider the simulator as active if
there exist commits during the last 18 months.

Table 5. Other information on the simulation tools for fog computing.

Simulator GUI Documen-
Tation

Actively
Developed Licence Available at

Edge-Fog [23] No No No GNU https://github.com/nitinder-
mohan/EdgeFogSimulator

FogTorch [64] No No No MIT https://github.com/di-unipi-
socc/FogTorch

FogTorchΠ [65] No No Yes MIT https://github.com/di-unipi-
socc/FogTorchPI

iFogSim Yes Yes No N/A https://github.com/Cloudslab/
iFogSim

MyiFogSim [35] Same as
iFogSim No No N/A https://github.com/

marciocomp/myifogsim

FogDirSim [70] Yes Yes Yes MIT https://github.com/di-unipi-
socc/FogDirSim

FogNetSim++ [63] Yes Little Yes GNU https://github.com/rtqayyum/
fognetsimpp

FogWorkFlowSim [72] Yes plus
web API Little Yes N/A

https://github.com/CCIS-
AHU/, http://47.74.84.61/
FogWorkFlowSim

YAFS [68] Yes Yes Yes MIT https://github.com/acsicuib/
YAFS

FogDirMime [69] No No Yes Apache
2.0

https://github.com/di-unipi-
socc/FogDirMime

Fogbus Yes Yes Yes GNU https://github.com/Cloudslab/
FogBus

MobFogSim [71] Same as
iFogSim Yes Yes GNU https://github.com/diogomg/

MobFogSim

6. Conclusions and Future Directions

Fog computing is an evolving technology, and researchers strive to find solutions for emerging
challenges related to its architecture and the management of its infrastructure, communication and
resources. Their pursuit should be supported by models and simulation tools. In this work, we discuss
modeling and simulation efforts and present the most recent approaches in the literature. Moreover,
we consider cost as one more dimension that has to be considered, not only by the research community
but the industry, too. While several cost metrics were detailed, it is a fact that only a few simulation
tools incorporate them into their feature lists and functionalities. The cost issue is still in its infancy
and needs further consideration. It is our hope that this work can help towards this end.

As discussed in Section 5.1, except the cost parameter, current simulators have also other
limitations. Fog computing is an active research area with real-world implementations. It thus
imperative to make improvements to existing tools, to add new features or even create new simulators
that will meet the needs for infrastructure, network, and resource management modeling. The latter
is important if we take into account that some of the simulators are adapted from previous cloud
simulation frameworks.

As a final open issue and possible research direction, we consider the systematic comparison of
available simulation tools. First, this could entail an evaluation of the potential and the applicability
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https://github.com/di-unipi-socc/FogDirSim
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of each tool for specific problems (such as resource availability, energy consumption, security and
privacy, mobility, network access and scalability). Secondly, it could focus on the efficiency of each
simulator, based on certain metrics (e.g., simulation time, memory consumption) by having all of them
simulate similar systems. This is certainly a challenge, since no tool is able to simulate all possible
system configurations; they rather aim at certain problems and provide specific and limited solutions.
Finally, such a study could evaluate the accuracy of the tools by comparing the simulation results with
actual measurements from a real world implementation.
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