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Abstract: We study the Bitcoin and Ether price series under a financial perspective. Specifically, we
use two econometric models to perform a two-layer analysis to study the correlation and prediction
of Bitcoin and Ether price series with traditional assets. In the first part of this study, we model the
probability of positive returns via a Bayesian logistic model. Even though the fitting performance of
the logistic model is poor, we find that traditional assets can explain some of the variability of the
price returns. Along with the fact that standard models fail to capture the statistic and econometric
attributes—such as extreme variability and heteroskedasticity—of cryptocurrencies, this motivates
us to apply a novel Non-Homogeneous Hidden Markov model to these series. In particular, we
model Bitcoin and Ether prices via the non-homogeneous Pólya-Gamma Hidden Markov (NHPG)
model, since it has been shown that it outperforms its counterparts in conventional financial data.
The transition probabilities of the underlying hidden process are modeled via a logistic link whereas
the observed series follow a mixture of normal regressions conditionally on the hidden process.
Our results show that the NHPG algorithm has good in-sample performance and captures the
heteroskedasticity of both series. It identifies frequent changes between the two states of the
underlying Markov process. In what constitutes the most important implication of our study,
we show that there exist linear correlations between the covariates and the ETH and BTC series.
However, only the ETH series are affected non-linearly by a subset of the accounted covariates.
Finally, we conclude that the large number of significant predictors along with the weak degree
of predictability performance of the algorithm back up earlier findings that cryptocurrencies are
unlike any other financial assets and predicting the cryptocurrency price series is still a challenging
task. These findings can be useful to investors, policy makers, traders for portfolio allocation, risk
management and trading strategies.

Keywords: cryptocurrencies; bitcoin; ethereum; bayesian modeling; logistic regression;
non-homogeneous hidden markov models; variables selection; forecasting

JEL Classification: C11; C52; C53; E42; O39

1. Introduction

What are cryptocurrencies? How do they compare to traditional financial instruments? Are
they like traditional money, like commodities, a hybrid of the former or an utterly new type of
asset that merit their own definition and understanding? Early research, mainly focusing on Bitcoin
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(henceforth BTC), provides mixed insights. While the creation of new BTCs resembles the mining
process of gold—or precious metals in general—its attributes clearly differentiate it from conventional
commodities [1]. The claim that BTC is fundamentally different from valuable metals like gold is also
backed by Klein et al. [2] due to its shortage in stable hedging capabilities. Along with [3], Cheah
and Fry [1] also argue that standard economic theories cannot explain BTC price formation and using
data up to 2015, they provide evidence that BTC lacks the qualities necessary to be qualified as money.
However, using GARCH models, Dyhrberg [4] demonstrates that BTC has similarities to both gold
and the US dollar (USD) and somewhat surprisingly that it may be ideal for risk-averse investors.
Also, while the BTC is useful to diversify financial portfolios—due to the negative correlation to the US
implied volatility index (VIX)—it otherwise has limited safe-haven properties [5–7]. Using data from a
longer period (between 2010 and 2017), Demir et al. [8] conclude the opposite, namely that BTC may
indeed serve as a hedging tool, due to its relationship to the Economic Policy Uncertainty Index (EUI).

The fact that cryptocurrencies are different from any other asset in the financial market is further
supported by [9–11]. High volatility, speculative forces and large dependence on social sentiment
at least during its earlier stages—as measured by social media and Internet data (Google trends,
Wikipedia searches and Twitter posts)—are qualified by many as some of the main determinants of
BTC prices [12,13]. Yet, a large amount of price variability remains unaccounted for. Moreover, the
proliferation of cryptocurrencies other than BTC that are supported by different technologies, i.e.,
variations of the standard Proof-of-Work distributed consensus of the BTC blockchain, e.g., [14], calls
for a more comprehensive research approach. Despite the high documented correlation in the price of
the various cryptocurrencies, it is highly debated whether this trend will also continue into future or
not [15,16].

In the present paper, we make an effort towards understanding the correlation between a set of
traditional assets and cryptocurrencies. We adopt an economic/financial perspective and use a set
of 14 financial and economic predictors comprising main exchange rates (4 variables), equity indices
(4 variables), commodity future prices (oil and gold) and economic uncertainty indicators (2 variables)
along with 2 quasi-economic and 2 cryptocurrency specific variables: the hash rate which captures the
amount of investment on mining equipment and hence accounts for the economic size of the network
and the average block size which implicitly measures the amount of transactions and hence the activity
in the respective cryptocurrency. All the variables and the applied transformations are summarized in
Table 1. Also, we report the correlations between the explanatory variables in Table 2.

Earlier studies highlight the scarcity of results on cryptocurrencies other than BTC and underline
the need for a better understanding of the entire cryptocurrency ecosystem and its properties (statistical
and economic), see e.g., [11,17]. Studies that go beyond the BTC prices and confirm via various financial
models the importance of using diverse cryptocurrencies—rather than a single one—in portfolio
optimization include but are not limited to [18] and [15]. In view of the above, in the present study, apart
from Bitcoin (BTC), we also focus on Ether (ETH), the native coin of the Ethereum blockchain [14,19],
and currently the second largest cryptocurrency in terms of market capitalization [20]. Unlike the
BTC blockchain, the Ethereum blockchain has been launched eponymously and is governed, or more
aptly researched and developed, by the Ethereum Foundation [21], a non-profit organization-based
in Switzerland. The architecture of the Ethereum ecosystem has far-reaching implications on its
long-term development and sustainability that clearly differentiate it from BTC. Supporting smart
contract execution—execution of code snippets that go beyond the simple monetary transactions
of BTC—Ethereum has scheduled a transition from the currently computationally heavy Proof of
Work (introduced by BTC and followed by most cryptocurrencies) to the computationally efficient
alternative of Proof of Stake, which saves on energy resources and provides a scalable infrastructure
while retaining the same security guarantees as Proof of Work. Without going further into the technical
details, the main motivation to study ETH that stems from these considerations is the following.
Given the different technological advancements that are promised by Ethereum, will ETH become
independent from BTC and follow its own path as a cryptocurrency or are after all the values of all



Future Internet 2020, 12, 59 3 of 19

cryptocurrencies inevitably tied, as they are up to now [16]? Keeping in mind that ETH—i.e., the native
coin—is only one of the main applications of the ETH blockchain—and the blockchain technology in
general—it should also be noted that price movements of ETH may not necessarily align in the future
with technological advancements in the Ethereum blockchain.

From a methodological perspective, we perform a two-layer Bayesian analysis. First, we transform
the cryptocurrency series into a binary series and apply a logistic regression model on the transformed
series. Specifically, if the current price return, i.e., Yt −Yt−1, exceeds a predefined threshold then we
assign the value 1 and 0 otherwise. Then, we investigate whether the logistic regression model—which
is widely used by applied statisticians and econometricians for analyzing binary data, see [22] and
references therein—with a specific covariate set is an appropriate model for estimating the probability
of observing the value 1 in these binary series. We use the methodology of Polson et al. [23] to make
inference on the model’s parameters with an additional reversible jump step to allow for model
uncertainty, cf. Section 2.1. Secondly, we model the log-price series data using a novel Hidden Markov
(regime switching) model, namely the non-homogeneous Pólya Gamma Hidden Markov model
(NHPG) of [24], cf. Section 2.2. Hidden Markov models introduce time-variation in the parameters
through an underlying unobserved discrete process. In brief, at any given time t, the observed log-price
data point depends on a latent (hidden) state. Hence, conditionally on the hidden states, the parameters
of the data generating process vary and thus allowing for a flexible data representation. In our setting,
the underlying process follows a binomial process with exogenous variables. It has been shown that
the NHPG model outperforms similar models in forecasting conventional financial data, cf. [25]. Also,
it uses Bayesian Model Averaging (BMA) approach for inference which has been shown to possess
desirable properties for forecasting applications [26–29].

With all these in mind, the questions we aim to address are the following:

Q1. Does the underlying information from fiat currencies, commodities, stock indices and blockchain
specific variables explain/predict the probability of positive returns?

Q2. Do the same variables have explanatory/predictive power on both the BTC and ETH
cryptocurrencies?

Q3. Do the same explanatory variables affect the BTC price series both on the long and short run?

We use daily data (for both the response and the explanatory variables) between 2017 and 2019.
For question Q3, we compare the BTC data of the whole 2014–2019 period to the 2017–2019 period
(also used in Q1–Q2). As in most of the recent studies, we exclude the period up to 2014 which exhibits
markedly different characteristics.

The findings of our experiments can be summarized as follows. The logistic model is not suitable
to model the probabilities of positive daily returns of BTC and ETH. However, changing the magnitude
of returns, we observe that (a) the logistic model has improved performance (b) the statistical significant
covariates in the logistic regression model change and (c) the in-sample (fitting) results are different
for the BTC and ETH series.

Considering the second experiment, we find that the NHPG model identifies periods of different
volatility and accounts well for the heteroskedacity of all three price series (BTC short and long periods
and ETH). Graphically, this is illustrated in later figures. The hidden states—which may be described
as periods of high and low volatility—are not persistent, i.e., the transitions between the two states
are frequent. Based on the same figures, the in-sample performance of the NHPG algorithm is good.
However, the set of included predictors—predictors with posterior probability of inclusion above
0.5—is large, which implies that each predictor explains only a small fraction of the volatility of the
series. Concerning specific predictors, the exclusion of some of the fiat currency exchange rates for the
ETH series suggests a (still) more geographically restricted interest for the currency in comparison
to BTC. It is also worth mentioning that the cryptocurrency specific variables, hash rate and average
block size are not significant for modeling the BTC and ETH price series. This may indicate a more
mature and stabilizing mining network that is less responsive to price expectations, sentiment or
extreme speculation.
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Finally, as shown in the last figure, the mean posterior out-of-sample predictions, although better
for ETH than for BTC, are in general not good as they frequently even miss the direction of movement
of the series. However, this is a common outcome in exchange rates [30,31]. In sum, our results
confirm that the Hidden Markov approach is promising in the understanding of cryptocurrencies price
formation and back earlier findings that cryptocurrencies are unlike any existing financial asset and
hence that their understanding requires novel tools and ideas.

In the related literature, the first layer of our methodology, i.e., the logistic regression model,
falls into the binary regression models literature. They have only been applied in the cryptocurrency
context, by [32] to forecast the daily price direction of BTC, by [33] to study the price co-explosivity
in leading cryptocurrencies and by [34] to study the herding behavior of BTC. As far as the second
layer of our methodology, the present NHPG model falls into the Markov-switching literature that
is the benchmark for predicting exchange rates, see [35] and [36,37] and explaining financial time
series, see [38] and references therein. This class of models, account for the non-stationarities and
non-linearities of the time series. Although standard in financial applications ([38]), Hidden Markov
models have been applied in the cryptocurrency context by [39] as Markov-switching GARCH models
to model the volatility dynamics of BTC, by [40], as a state-space model for representing the BTC price
series, by [18] as multivariate state state-space models in forecasting cryptocurrencies, as homogeneous
Hidden Markov, i.e., hidden Markov models with constant transition probabilities, by [41,42], and in
the understanding of price bubbles by [43]. Also, [44], study the BTC and ETH prices under structural
break setting while [45] study the cryptocurrency returns and volatility under stochastic volatility
model with discontinuous jumps. The use of the NHPG model in explaining and predicting the BTC
and ETH price series is also supported by the findings of various articles. For example the authors
of [46,47] and [8], demonstrate the non-stationarity of the BTC index and volume and underline the
importance of modeling non-linearity in Bitcoin prediction models. This is further elaborated by
Beckmann and Schüssler [26] who suggest that model selection and the use of averaging criteria
are necessary to avoid poor forecasting results. Following the similar reasoning, Phillip et al. [11]
posit that standard models are inadequate to capture the extreme variability of cryptocurrencies and
argue in favor of more composite approaches. In an important finding, Ciaian et al. [3] show that the
Bitcoin price series exhibits structural breaks and identifies periods of data (prior to 2013 and between
2013 and 2015) of markedly different variance and other econometric characteristics. Their findings
further suggest that significant price predictors may vary over time. Pichl and Kaizoji [48] use data
from various time periods to demonstrate, among other results, that the BTC price series exhibits
heteroskedasticity.

Finally, the present paper falls into the strand of literature that studies the explanatory and
predictive power of traditional financial and economic indices on the cryptocurrency price series.
To name a few, Refs. [4,49] analyze the relationship between BTC, gold and USD, Ref. [50] study the
predictive power of a large set of exogenous variables, such as commodities, volatility indices, stock
indices. Subsets of the studied indices are studied under various settings, see e.g., [7,18,40,47,48,51–53].

All in all, our aim is to contribute to the literature that studies the modeling and prediction of
cryptocurrencies, using a novel Bayesian elaborate econometric model and to try to gain understanding
in the statistical, econometric and financial properties of existing cryptocurrencies.

The rest of the paper is structured as follows. In Section 2, we describe the two econometric
models of this study: the logistic regression model is described analytically in Section 2.1 and the
NHPG model and simulation scheme is described in Section 2.2. The empirical study is presented
in Section 3. In detail, the data set that we used is described in Section 3.1, the results regarding
the logistic model are presented in Section 3.2 and lastly, the results regarding the NHPG model are
presented in Section 3.3. We conclude the paper with a discussion of the limitations of the present
model and directions for future work in Section 4.

This paper considerably extends its earlier conference version. Concerning the applied
methodology, we provide a rigorous description of the logistic regression model for studying the



Future Internet 2020, 12, 59 5 of 19

probabilities of positive returns (Section 2.1) and of the NHPG model (Section 2.2). In addition, we
have updated the data set—BTC and ETH series—and the covariate set. Specifically, in the covariate
set, (Table 1), we have included the Russel 2000 index, excluded the autoregressive terms and applied
different transformations on the variables. More importantly, concerning the results, this paper
includes the novel analysis of the logistic model (Section 3.2) and based on the new covariate set, it
offers more enriched outcomes and more comprehensive insight from the analysis of the NHPG model
(Section 3.3).

2. Methodology

2.1. The Logistic Regression Model

Let Yt be the ETH or the BTC price series with realization yt. Also, consider a set of r− 1 available
predictors {Xt}with realization xt = (1, x1t, . . . , xr−1t) at time t. The explanatory variables (predictors)
{Xt} that are used in the present analysis are described in Table 1. We transform the cryptocurrency
price series as a binary series, i.e., a series that takes the values 1 or 0, as follows. Let

Ut,α = I {Yt −Yt−1 ≥ α} , (1)

where I denotes the indicator function that takes the value 1 if Yt −Yt−1 ≥ α and 0 otherwise and α is a
predefined threshold. Intuitively, we study the connection of the predictors {X}with the probability of
having positive daily returns {Yt −Yt−1 ≤ α}. We perform our analysis for various positive thresholds,
α ∈ {0, 1, . . . , 5%}.

We treat the binary series Ut,α as a Bernoulli(pt) variable. From the class of the generalized linear
models, we use a logit link to model the probabilities (pt). The standard logistic regression model is
defined as

Ut,α ∼ Bernoulli(pt), (2)

pt = g−1 (ηt) .

with ηt = xtβ, β the logistic regression coefficients and g(z) = log z
1−z the logit link function. Then,

the probabilities are modeled as,

log
pt

1− pt
= xtβ⇔ pt =

exp (xtβ)

1 + exp (xtβ)
. (3)

We use the recently proposed latent variable scheme, namely the Pólya-Gamma data augmentation
method of [23] which has significantly improved results.

The authors introduce of [23] proved that binomial likelihoods—or Bernoulli
likelihoods—parametrized by log odds can be represented as mixtures of Gaussian distributions with
respect to the Pólya-Gamma distribution. Their main result is that letting p(ω) be the density of a
Pólya-Gamma latent variable ω, with ω ∼ PG(b, 0), for b > 0, the following identity holds for all
a ∈ R,

exp (ψ)a

(1 + exp (ψ))b = 2−b exp (kψ)
∫ ∞

0
exp

(
−ωψ2/2

)
p (ω) dω, (4)

with k = a− b/2. Furthermore, the conditional distribution of ω | ψ is also Pólya-Gamma, PG(b, ψ).
When ψ = xβ, the previous identity gives rise to a conditionally conjugate augmentation scheme

for Bernoulli likelihoods of logistic parameters. The likelihood is given by

L (β) =
N

∏
t=1

{
exp (xtβ)

1 + exp (xtβ)

}ut
{

1
1 + exp (xtβ)

}1−ut

=
N

∏
t=1

exp (xtβ)
ut

1 + exp (xtβ)
. (5)
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Using the result of [23] with kt = ut− 1/2 and setting Ω = diag{ω1, . . . , ωT}, the augmented likelihood
is proportional to

L (β, ω) ∝
T

∏
t=1

1
2

exp (ktxtβ)
∫ ∞

0
exp

{
−ωt,s (xtβ)

2 /2
}

p(ωt)dωt. (6)

Assuming as prior distributions ω ∼ PG(1, 0) and β ∼ N
(
mβ0 , Vβ0

)
, simulation from the posterior

distributions can be done iteratively in two steps:

ωt | ut ∼ PG (1, xtβ) , t = 1, . . . , T (7)

β | U, Ω ∼ N
(
mβ, Vβ

)
,

where Vβ =
(

X′ΩX + V−1
β0

)−1
and mβ = Vβ

(
X′k + V−1

β0
mβ0

)
, and k = (u1 − 1/2, . . . , uT − 1/2).

To account for model uncertainty, on the predictor set, we perform a reversible jump step withing
the augmented Pólya-Gamma data augmentation scheme, as proposed in [24]

2.1.1. Evaluation Metrics

For each iteration, we kept an in-sample replication of the binary series and compared it with the
actual binary series Ut. Using a 1-0 loss function, we measure the accuracy of the logistic regression
model—by means of the average number of misestimated data values per iteration—in representing
the studied series. We report the results of this study in Section 3.2.

2.2. The Non-Homogeneous Polya-Gamma Hidden Markov Model

Given a time horizon T ≥ 0 and discrete observation times t = 1, 2, . . . , T, we consider an
observed random process {Yt}t≤T and a hidden underlying process {Zt}t≤T . The hidden process {Zt}
is assumed to be a two-state non-homogeneous discrete-time Markov chain, s = 1, 2, that determines
the states of the observed process. In our setting, the observed process is either the BTC or the ETH
logarithmic prices series. The description of the hidden states is not pre-determined and is subject to
the interpretation of the results.

Let yt and zt be the realizations of the random processes {Yt} and {Zt}, respectively. We assume
that at time t, t = 1, . . . , T, yt depends on the current state zt and not on the previous states. Consider
also the set of predictors {Xt} of Section 2.1. A subset of the predictors X(1)

t ⊆ {Xt} of length r1 − 1

affects the cryptocurrency linearly. In addition, a subset X(2)
t ⊆ {Xt} of length r2− 1 is used to describe

the dynamics of the time-varying transition probabilities, i.e., the probabilities of moving from hidden
state s = 1 to the hidden state s = 2 and vice versa. Thus, we allow the predictors to affect the series
{Yt} linearly and non-linearly. Given the above, the cryptocurrency price series {Yt} can be modeled as

Yt | Zt = s ∼ N (x(1)t−1Bs, σ2
s ), s = 1, 2, (8)

where Bs = (b0s, b1s, . . . , br1−1s)
′ are the regression coefficients and N (µ, σ2) denotes the normal

distribution with mean µ and variance σ2. The dependence of the observed process on the unobserved
states, allows the model to capture the non-stationarities, non-linearities and the changes in the
volatility, i.e., heteroskedasticity of the cryptocurrency series.

The dynamics of the unobserved process {Zt} can be described by the time-varying
(non-homogeneous) transition probabilities, which depend on the predictors X(2)

t and are given
by the following relationship

P(Zt+1 = j | Zt = i) = p(t)ij =
exp(x(2)t βij)

∑2
j=1 exp(x(2)t βij)

, i, j = 1, 2, (9)
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where βij = (β0,ij, β1,ij, . . . , βr2−1,ij)
′ is the vector of the logistic regression coefficients to be estimated.

Please note that for identifiability reasons, we adopt the convention of setting, for each row of the
transition matrix, one of the βij to be a vector of zeros. Without loss of generality, we set βij = β ji = 0
for i, j = 1, 2, i 6= j. Hence, for βi := βii, i = 1, 2, the probabilities can be written in a simpler form

p(t)ii =
exp(x(2)t βi)

1 + exp(x(2)t βi)
and p(t)ij = 1− p(t)ii , i, j = 1, 2, i 6= j. (10)

Summing up, the unknown quantities of the NHPG are
{

θs =
(

Bs, σ2
s
)

, βs, s = 1, 2
}

, i.e., the
parameters in the mean predictive regression equation and the parameters in the logistic regression
equation for the transition probabilities of the unobserved process {Zt}, t = 1, ..., T. We follow the
Bayesian methodology of [24], for joint inference on model specification, model parameters and
predictions. Specifically, the authors in [24] use conditional conjugate analysis for the parameters in
the mean predictive regression equation, i.e.

σ2
s ∼ IG(p, q), Bs |, σ2

s ∼ N (L0, σ2
s V0), s = 1, 2, (11)

where IG denotes the Inverted-Gamma distribution. The conditional and the marginal posterior
distributions for the state specific parameters σs and Bs,

σ2
s ∼ IG

(
p +

ns

2
, q +

1
2

(
L′0sV

−1
0s L0s + Y′sYs − L′sV

−1
s Ls

))
, (12)

Bs | σ2
s , zT , yT ∼ N

(
Ls, σ2

s Vs

)
, (13)

with Vs =
(

V−1
0s + X(1)′

s X(1)
s

)−1
, Ls = Vs

(
V−1

0s L0s + X(1)′
s Ys

)
. To make inference about the logistic

regression coefficients, the authors model the probabilities of staying at the same state for two
consecutive time periods, i.e., pt

ss. They define, for t = 1 . . . , T − 1, the quantity Z̃s
t+1 =

I [Zt+1 = Zt = s] with the sum ∑t Z̃s
t+1, be the number of times that the chain was at state s for

two consecutive time periods. Then,

p
(

Z̃s
t+1 = 1 | x(2)t

)
= pt

ss =
exp

(
x(2)t βs

)
1 + exp

(
x(2)t βs

) ⇔ logit
(

p(t)ss

)
= x(2)t βs, s = 1, 2, (14)

and inference for the probabilities falls to the case of the logistic model of Section 2.1
Finally, for every dataset we kept L out-of-sample observations and compare the estimated

forecasts using the NHPG model. Given model M, the predictive distribution of yT+L , L ≤ 1 is

fp

(
yT+L | yT+L−1

)
=
∫

f
(

yT+L | yT+L−1,zT+L−1, M, βM, θM

)
π
(

βM, θM | yT+L−1
)

dβMdθM, (15)

where f
(
yT+1 | yT , zT , βM, θM

)
= ∑2

s=1 P (ZT+1 = s | ZT = zT) fs (yT+1) .
All in all, the MCMC sampling scheme is constructed with recursive updates of (i) the latent

variables zT given the current value of the model parameters by using the scaled Forward–Backward
algorithm (Scott [54]) (ii) the logistic regression coefficients by adopting the auxiliary variables method
of Polson et al. [23] given the sequence of states zT , (iii) the mean regression coefficients conditional
on zT by using the Gibbs sampling algorithm (iv) the covariate set using a couple of reversible jump
steps and (v) the predictive distributions given the parameters and hidden states. The MCMC steps
are detailed in Algorithm 1.
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Algorithm 1 MCMC Sampling Scheme for Inference on Model Specification and Parameters

1: % After each procedure the parameters and model space are updated conditionally on the previous quantities

2: procedure SCALED FORWARD–BACKWARD(
(
θ, yt))

3: %Simulation of a realization of the hidden states zt
4: for t = 1, . . . , T and i = 1, 2 do
5: πt (i | θ)← αt(s)

∑2
j=1 αt(j)

= P
(
zt = i | θ, yt) (.) Simulation of the scaled forward probabilities

6: for t = T, T − 1, . . . , 1 do
7: zt ← P (zt | zt+1) =

pizt+1
πt(i|θ)

∑m
j=1 pjzt+1

πt(j|θ) (.)Backwards simulation of zt

8: procedure MEAN_REGRES_PARAM(βs, σs, s = 1, 2)
9: %Simulation of the mean regression parameters

10: for s = 1, 2 do (.)Conjugate analysis with Gibbs sampler
11: β | σ2 ∼ fB, σ2 ∼ IG (.) fB ≡ Normal and fσ ≡ Inverse-Gamma

12: procedure LOG_REGRES_COEF((βs, ωs))
13: %Simulation of the logistic regression coefficients
14: for s = 1, 2 do (.)Pólya-Gamma data augmentation scheme
15: augment the model space with ωs (.)Conjugate analysis on the augmented space
16: sample from βs ∼ fβs |ω
17: and ωs | βs ∼ PG (.)Posteriors fβs |ω ≡ Normal and PG ≡ Pólya-Gamma

18: procedure DOUBLE_REV_JUMP(X(1), X(2))
19: %Variable selection with double reversible jump step
20: for i = 1, 2 do %Propose to add/remove a covariate

21: add: choose Xcandidate from X ∩ X(i)c
(.)Calculate acceptance probability α

22: if α < rand(0, 1) then X(i) ← X(i) ∪ Xcan

23: remove: choose Xcandidate from X(i) (.)Calculate acceptance probability α

24: if α < rand(0, 1) then X(i) ← X(i) ∩ Xcanc

25: procedure PREDICT

26: % Make L-steps-ahead predictions
27: for t = T + 1, . . . , T + L do
28: ŷt ∼ f with f

(
yT+1 | yT , zT , βM, θM

)
= ∑2

s=1 P (ZT+1 = s | ZT = zT) fs (yT+1) .

3. The Empirical Application

3.1. The Data

We assess the explanatory power of 12 financial/economic and 2 cryptocurrency specific variables,
outlined in Table 1, on the BTC and ETH series, through two different experimental exercises: (a) the
logistic regression model and (b) NHPG model. We analyze the daily BTC and ETH price series for the
period ranging from 1/1/2017 to 16/11/2019. Missing data due to the non-business days are filled
with the last available value. For the first exercise, we transform the price series into binary series
using the transformation {Yt −Yt−1 ≥ α}.
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Table 1. List of explanatory variables along with the applied transformations and the online resources.
The Hash Rate (HR) and Average Block Size (AVS) have been retrieved [55] for Bitcoin and from [56]
for Ether.

Explanatory Variables

Description Symbol Transformation Retrieved from

US dollars to Euros exchange rate USD/EUR Normalized investing.com
US dollars to GBP exchange rate USD/GBP Normalized investing.com
US dollars to Japanese Yen exchange rate USD/JPY Normalized investing.com
US dollars to Chinese Yuan exchange rate USD/CNY Normalized investing.com

Russel 2000 index R2000 Normalized finance.yahoo.com
Standard & Poor’s 500 index SP500 Normalized finance.yahoo.com
NASDAQ Composite index NASDAQ Normalized finance.yahoo.com

Dow Jones Industrial Average DOW Normalized finance.yahoo.com
Crude Oil Futures price OIL Normalized finance.yahoo.com
Price of Gold GOLD Normalized finance.yahoo.com

CBOE Volatility index VIX Normalized finance.yahoo.com
Equity market Economic Uncertainty index EUI None fred.stlouisfed.org

Hash Rate HR Percentage of change quandl.com/etherscan.io
Average Block Size AVS Percentage of change quandl.com/etherscan.io

The aim of this experiment is to model/explain the probability of a positive return. We repeat
the experiment for different magnitudes (α) of returns, i.e., gains more than 0%, 1%, . . . , 5%. For the
second exercise, we use the logarithm of the price series of the two aforementioned cryptocurrencies.
Additionally to the previous data sets, we apply the NHPG methodology in a larger BTC log-price series
(for the period ranging from 1/1/2014 until 16/11/2019). The closing BTC prices were downloaded
from [20] and the ETH prices were downloaded from [56].

Table 2. Correlation matrix of the explanatory variables.

Variables USD/EUR USD/GBP USD/JPY USD/CNY R2000 SP500 NASDAQ DOW OIL GOLD VIX EUI HR AVS

USD/EUR 1.0 0.63 0.6 0.54 0.16 0.25 0.26 0.2 −0.82 −0.33 0.08 0.13 0.01 −0.02
USD/GBP 0.63 1.0 0.92 −0.07 0.66 0.73 0.73 0.71 −0.56 −0.18 −0.09 0.18 −0.01 −0.02
USD/JPY 0.6 0.92 1.0 −0.09 0.55 0.66 0.65 0.64 −0.54 −0.31 −0.03 0.23 0.00 −0.01
USD/CNY 0.54 −0.07 −0.08 1.0 −0.06 −0.08 −0.06 −0.1 −0.42 −0.21 0.12 −0.05 0.00 −0.02
R2000 0.16 0.66 0.55 −0.06 1.0 0.95 0.95 0.95 −0.08 −0.07 −0.23 0.03 −0.02 −0.01
SP500 0.25 0.73 0.66 −0.08 0.95 1.0 1.0 0.95 −0.25 −0.19 −0.11 0.12 −0.02 −0.02
NASDAQ 0.26 0.73 0.65 −0.06 0.95 0.95 1.0 0.99 −0.25 −0.18 −0.07 0.13 −0.02 −0.01
DOW 0.2 0.71 0.64 −0.1 0.95 1.0 0.99 1.0 −0.2 −0.16 −0.09 0.12 −0.02 −0.02
OIL −0.82 −0.56 −0.54 −0.42 −0.08 −0.25 −0.25 −0.2 1.0 0.6 −0.21 −0.18 −0.00 0.00
GOLD −0.33 −0.18 −0.31 −0.21 −0.07 −0.19 −0.18 −0.16 0.6 1.0 −0.12 −0.09 −0.00 0.00
VIX 0.08 −0.09 −0.03 0.12 −0.23 −0.11 −0.07 −0.09 −0.21 −0.12 1.0 0.39 0.02 0.00
EUI 0.13 0.18 0.23 −0.05 0.03 0.12 0.13 0.12 −0.18 −0.09 0.39 1.0 −0.02 −0.01
HR 0.01 −0.01 0.00 0.00 −0.02 −0.02 −0.02 −0.02 0.00 −0.01 0.02 −0.02 1.0 −0.18
AVS −0.02 −0.02 −0.01 −0.02 −0.01 −0.02 −0.01 −0.02 0.02 0.01 0.00 −0.01 −0.18 1.0

3.2. Results: The Logistic Regression Model

We report the in-sample performance for the logistic regression model in Table 3 for every
threshold and for both cryptocurrencies. Even though the in-sample performance—based on the large
number of incorrect point estimates of the series—is poor, we see that when the threshold α increases,
the in-sample performance is improved.

https://www.investing.com/
https://www.investing.com/
https://www.investing.com/
https://www.investing.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://fred.stlouisfed.org
https://www.quandl.com/
https://etherscan.io
https://www.quandl.com/
https://etherscan.io
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Table 3. Mean incorrect estimations out of the total T = 1017 observations, per iteration of the
BTC and ETH binary series. Increasing the magnitude of minimum returns the average number of
misestimations decreases. This shows that the covariate set has explanatory power on defining the
probability of larger returns. In parenthesis we report the error rate.

Mean Incorrect Estimations Per Iteration

Thresholds

Coin α = 0% α = 1% α = 2% α = 3% α = 4% α = 5%

BTC 501 (0.49%) 485 (48%) 399 (39%) 314 (31%) 234 (23%) 174 (17%)

ETH 504 (0.49%) 428(42%) 472 (46%) 413 (40.7%) 331(32.7%) 259 (25.5%)

To be more precise, we find that for α = 0% the covariate set has no explanatory power on the Ut,α

since the probability of incorrect estimations is almost 50% for both coins. However, for α = 5% the
probability of incorrect estimations drops to 17% for the binary BTC series and to 25.5% for the binary
ETH series. This result is an indication that the accounted covariate set, which includes fiat currencies,
stock indices and commodities can be used to explain/predict the possibility of larger positive returns.
A visualization of the best in-sample performance for the Ut,5 series for BTC and ETH is in Figures 1
and 2.

Figure 1. Realization of the binary BTC series with α = 5% using the logistic regression model. The blue
circles represent the realized series whereas the red dots are the actual data points.
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Figure 2. Realization of the binary ETH series with α = 5% using the logistic regression model.
The blue circles represent the realized series whereas the red dots are the actual data points.

In Tables 4 and 5, we report the posterior probabilities of inclusion πk, k = 1, . . . , K of the K
explanatory variables for the studied logistic models for the BTC and ETH binary series, respectively.
For both coins, we observe that the studied covariated set does not affect nor predict the probability of
positive return, i.e., Yt −Yt−1 ≥ 0.

Table 4. Posterior probabilities of inclusion of the explanatory variables for the binary BTC series for
the period ranging from 1/2016 to 11/2019 The probabilities of the variables that are included in the
median probability model, i.e., the variables with probability of inclusion above 0.5, are highlighted
with bold.

Posterior Probabilities of Inclusion

Predictors Return’s magnitude

α = 0% α = 1% α = 2% α = 3% α = 4% α = 5%

USD/EUR 0 0 0 0 1.00 0.65

USD/GBP 0 0 0 0 0 0

USD/JPY 0 0 0 0 0 0

USD/CNY 0 0.01 0 0 0 0.02

R2000 0 0.01 0.02 1.00 1.00 0.72

SP500 0 0. 3 0.02 0 0.01 0.02

NASDAQ 0 0.03 0.07 0 0 0

DOW 0 0.08 0.03 0 0 0

OIL 0 0.07 0.77 0 0.01 0.01

GOLD 0 0.11 0.80 0.01 0.02 0.07

VIX 0 0 0 0.3 0 0

EUI 0 0 0 0 0 0

HR 0 0 0 0 0 0

AVS 0 0 0 0 0.01 0.15
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Table 5. Posterior probabilities of inclusion of the explanatory variables for the binary ETH series for
the period ranging from 1/2016 to 11/2019 The probabilities of the variables that are included in the
median probability model, i.e., the variables with probability of inclusion above 0.5, are highlighted
with bold.

Posterior Probabilities of Inclusion

Predictors α = 0% α = 1% α = 2% α = 3% α = 4% α = 5%

USD/EUR 0.01 0 0.11 0.01 0.18 0.55

USD/GBP 0.04 0.02 0 0.01 0.01 0.14

USD/JPY 0.01 0 0.01 0 0.03 0.03

USD/CNY 0.03 0.05 0.02 0.01 0.16 0.47

R2000 0.03 0.05 0.01 0.01 0.03 0.07

SP500 0.22 0.78 0.37 0.28 0.36 0.60

NASDAQ 0.30 0.53 0.71 0.92 0.89 0.97

DOW 0 0.02 0.45 0.09 0.24 0.37

OIL 0 0.08 0.02 0 0.03 0.11

GOLD 0.07 0.13 0 0 0.01 0.32

VIX 0.01 0.01 0.58 0.80 0.55 0.83

EUI 0 0 0 0 0 0

HR 0 0 0 0 0 0.07

AVS 0 0.03 0.07 0.01 0.19 0.94

However, if we change the magnitude of return (α), we find that there is a correlation between
the covariate set and the probabilities of observing Yt − Yt−1 ≥ α, α = {1, 2, 3, 4, 5%}. We find that
the sets including the covariates that affect the binary BTC and ETH series—covariates with posterior
probability of inclusion above 0.5—are different. Also, we observe that even though the binary ETH
series is correlated with more covariates than the covariates of the binary BTC series, the logistic model
has worse performance in explaining the studied series (as seen in Table 3).

The results of this experiment imply that the accounted covariate set has some explanatory power
on the series but a more elaborated and more complicated model, such as the NHPG model, needs to
be considered.

3.3. Results: The NHPG Model

In this section, we present the results of the NHPG model using the logarithmic ETH and BTC
price series. Figures 3–5 plot the log ETH, log BTC and extended log BTC datasets (blue line) along
with the estimated in-sample time series (gray line). This shows graphically the good in-sample
performance of the NHPG model to replicate the log BTC and log ETH series. Shaded bars indicate
the time periods that the underlying hidden process is in state 1. The states alternate between 1 and 2
rather frequently, confirming previous studies on the heteroskedasticity of the series, see e.g., [11], and
on the existence of structural breaks and regime switches, see e.g., [39,44].
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Figure 3. Logarithmic ETH price series (blue line) and in-sample estimated logarithmic ETH price
series for the period 6/2016–5/2019 (gray dotted line). Shaded bars mark times with hidden state 1
(smoothed probability above 0.5). The model accounts for the heteroskedasticity of the series.

Figure 4. Logarithmic BTC prices series (blue line) and in-sample estimated logarithmic BTC price
series for the period 6/2016–5/2019 (gray dotted line). Shaded bars mark times with hidden state 1
(smoothed probability above 0.5).
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Figure 5. Logarithmic BTC prices series (blue line) and in-sample estimated logarithmic BTC price
series for the period 5/2013–5/2019 (gray dotted line). Shaded bars mark times with hidden state
1 (smoothed probability above 0.5). The change of the sample sizes has a significant impact on the
distribution of the unobserved process.

However, the out-of-sample performance of the NHPG is poor. Figure 6, shows the posterior
mean (gray lines), of the 30 empirical predictive distributions, along with the actual out-of sample log
prices of ETH, BTC (blue line). The mean posterior out-of-sample predictions are in general not good,
as they frequently miss the direction of movement of the series.

(a) ETH (b) BTC
Figure 6. Mean posterior out-of-sample predictions (gray line) for L = 30 days both for the (a) ETH and
(b) BTC log-transformed price series (blue line). While the predictions for ETH are better than those
for BTC, both are not satisfactory as they frequently miss the direction of price movement. The BTC
predictions are essentially the same for both the 2016–2019 and 2013–2019 data sets (the second not
shown here).

Even worse, when we examine the posterior prediction intervals with boundaries the 2.5% and
97.5% quantiles of the empirical predictive densities—instead of the mean point forecasts—we find,
for some cases, that they do not include the actual out-of-sample values. Hence, we confirm the
claim of previous studies that financial and economic variables do not accurately predict the price
fluctuation of cryptocurrencies. The good in-sample and poor out-of-sample performance of the
two-state Non-Homogeneous Hidden Markov models is also observed in the exchange rate literature,
see for example [30,31].

In Table 6, we report the posterior probabilities of inclusion of the explanatory variables for the
mean equation—first number—and the logistic regression—second number in every cell. Variables
with posterior probability of inclusion above 0.5 in either the mean equation or the transition
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probabilities are marked with bold. These variables make up the median probability model (MPM).
Although the BTC and ETH are correlated [15], the variables that affect the series (by means of the
MPM) are not the same. The MPM of ETH consists of 7 covariates: the USD/EUR, USD/GBP and
USD/CNY exchange rates, Russel 2000, S&P 500, Dow Jones, NASDAQ indices. The MPM of BTC
additionally contains the USD/JPY exchange rate and VIX. This difference on the exchange rates
indicates that ETH is more geographically restricted. Moreover, the hash rate (HR) and Average
Block size is insignificant for both cryptocurrencies. Regarding the extended BTC dataset, we find
that Gold and Crude Oil future prices are also significant. Furthermore, it is worth mentioning
that all the effects are linear in BTC series and hence the transition probabilities of hidden states
are homogeneous (constant through time). This is in difference with ETH price series where S&P
500 and USD/GBP affects the series also non-linearly. The inclusion of these two variables in the
transition probabilities equation results to the non-constant transition probabilities and consequently
indicates that the Non-Homogeneous Hidden Markov model is promising in the understanding of
cryptocurrencies price formation. The non-constant transition probabilities along with the fact that
there exist other variables with non-negligible posterior probabilities of inclusion (above 0.3), imply
that the are other drives that drive changes in the underlying process that go beyond the financial
aspects that have been considered in the present setting. Finally, we observe that even though the
number of statistical important variables is large, for both coins, the forecasting performance of this
model is very modest. This is an indication that non-traditional financial and economic variables need
to be considered.

Table 6. Posterior probabilities of inclusion of the explanatory variables. The first value in each cell is
the posterior probability of inclusion in the mean equation and the second the probability of inclusion
in the transition probabilities of the underlying Markov process. The probabilities of the variables that
are included in the median probability model, i.e., variables with probability above 0.5 in either the
mean equation or the logistic regression equation are highlighted with bold.

Posterior Probabilities of Inclusion

Data Sets

Predictors BTC BTC ETH

Sample period 1/2014-11/2019 1/2017-11/2019 1/2017-11/2019

USD/EUR 1.00 0 1.00 0 1.00 0.12

USD/GBP 1.00 0 1.00 0.01 0.97 0.54

USD/JPY 1.00 0 1.00 0 0 0.06

USD/CNY 1.00 0 1.00 0 1.00 0.11

R2000 1.00 0.06 1.00 0.01 1.00 0.26

SP500 1.00 0.08 1.00 0 1.00 0.63

VIX 1.00 0.07 0.70 0.08 0 0.12

DOW 1.00 0.06 0.90 0.01 1.00 0.32

NASDAQ 1.00 0.06 1.00 0.01 1.00 0.34

GOLD 1.00 0.02 0.32 0.05 0 0.45

CO 1.00 0.01 0.24 0.01 0.00 0.08

EUI 0 0.01 0 0.01 0 0

HR 0 0.02 0 0 0 0.01

AVS 0 0.02 0 0 0 0

To sum up, even though we observe a large number of statistical significant explanatory variables,
the insufficient forecasting performance of the NHPG model confirms that the cryptocurrencies are
still decoupled from the mainstream financial and economic assets [57].



Future Internet 2020, 12, 59 16 of 19

4. Concluding Remarks

We applied a logistic regression model with a predefined covariate set to model the probabilities
of observing daily returns exceeding a predefined threshold for the Bitcoin (BTC) and Ether (ETH)
series. We show empirically that the logistic model has weak fitting performance. However, we find
that changing the magnitude of positive returns, improves the fitting performance of the logistic
regression model. This result motivated us to incorporate the logistic regression model into a more
complex model. Therefore, we applied a specific instance of the Non-Homogeneous Hidden Markov
models to the logarithm of BTC and ETH price series.

We used the non-homogeneous Pólya-Gamma Hidden Markov Model (NHPG) of [24]. Focusing
on a data set of financial/economic predictors, we studied general properties of the cryptocurrency
price series. While the NHPG algorithm exhibited good in-sample performance, it revealed that
changes in the underlying two-state Markov process are frequent, thus indicating that the states are
not persistent, contributing to the already high heteroskedasticity of both the Bitcoin and the Ether
data series. Notably, both cryptocurrency specific variables were not found significant for BTC and
ETH. Significance of exchange rates revealed a more geographically restricted interest for ETH than
for BTC.

From a modeling point of view, the median probability model included too many covariates, thus,
indicating data with high variability and confirming that financial and economic variables—even if
cryptocurrency specific—are not enough to explain the formation of cryptocurrency prices. Along with
the poor out-of-sample predictions, these findings show that even algorithms with good performance
on conventional financial data do not capture all aspects of cryptocurrencies. In the main takeaway of
this study, these results back earlier findings that cryptocurrencies are unlike any other financial asset
and that the understanding of their properties requires not only the combination of more sophisticated
models but also the inception of novel ideas and tools.

While the current study offers a novel perspective on the hidden states—and hence on the
underlying forces—that drive cryptocurrency markets, it also suggests that the analysis of their price
formation requires more elaborate tools. Recent advances in deep neural networks provide methods to
identify hidden layers that approximate complex non-linear relationships. Specifically, by exploring
electronic high-frequency data of supply, demand and prices in financial markets, Deep Learning
models can uncover universal price formation mechanisms, [58]. This approach seems particularly
promising for cryptocurrency markets. Along these lines, the current model may prompt a more
extensive application of the rich Hidden Markov theory and analytical toolbox on cryptocurrency
markets.

All in all, the investigation of the exogenous variables that affect or drive the cryptocurrency
market can be useful to investors, policy makers, traders for portfolio allocation, risk management and
trading strategies.
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