
future internet

Article

Graph-based Method for App Usage Prediction with
Attributed Heterogeneous Network Embedding

Yifei Zhou 1, Shaoyong Li 1,* and Yaping Liu 2,*
1 School of Computer Science and Engineering, Central South University, Changsha 410083, China;

zhouyifei@csu.edu.cn
2 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
* Correspondence: lishao378@sohu.com (S.L.); ypliu@gzhu.edu.cn (Y.L.)

Received: 12 February 2020; Accepted: 18 March 2020; Published: 20 March 2020
����������
�������

Abstract: Smartphones and applications have become widespread more and more. Thus, using the
hardware and software of users’ mobile phones, we can get a large amount of personal data, in which
a large part is about the user’s application usage patterns. By transforming and extracting these data,
we can get user preferences, and provide personalized services and improve the experience for users.
In a detailed way, studying application usage pattern benefits a variety of advantages such as precise
bandwidth allocation, App launch acceleration, etc. However, the first thing to achieve the above
advantages is to predict the next application accurately. In this paper, we propose AHNEAP, a novel
network embedding based framework for predicting the next App to be used by characterizing the
context information before one specific App being launched. AHNEAP transforms the historical
App usage records in physical spaces to a large attributed heterogeneous network which contains
three node types, three edges, and several attributes like App type, the day of the week. Then, the
representation learning process is conducted. Finally, the App usage prediction problem was defined
as a link prediction problem, realized by a simple neural network. Experiments on the LiveLab
project dataset demonstrate the effectiveness of our framework which outperforms the three baseline
methods for each tested user.
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1. Introduction

Mobile Apps have blossomed in popularity and ubiquity in the recent decade. According to
the statistic by buildfire (https://buildfire.com/app-statistics/), there are over 2.7 billion smartphone
users across the world and 90% of mobile time is spent on Apps. The Apple App Store has 2.2 million
Apps available for downloading and 2.8 million on the Google Play Store. With so many Apps out
there, lots of data about application usage patterns can be collected from smartphones in physical
spaces and user preferences can be extracted from these data to improve user experience. At the
same time, system support that can improve our daily App interaction experience is poised to be
widely beneficial. However, smartphone users install an average of 80–90 Apps per person on their
device under investigation and use not more than 30 Apps each month even including newly installed
Apps. Therefore, it has been widely studied which applications will be used and which do not need to
be used.

App usage prediction refers to the task of predicting the next App that will be used for a given
user and at a given time [1]. An accurate prediction can not only improve the user experience but
also can be used to optimize startup acceleration, energy consumption, bandwidth allocation, etc.
For instance, smartphones can pre-load the possible Apps into the memory for reducing the startup
time of Apps if we can predict the exact next App the user is the most likely to launch. The general
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approach is to transform the data of the physical world into the cyberspaces to build models. In recent
years, researchers have used various methods to build models for prediction with information collected
from mobile terminals and combined online and offline learning to improve prediction accuracy, such
as taking advantage of temporal information [2,3] or mining application usage patterns [4] to predict.
However, there is apparent diversity of application-related features on smart devices. Furthermore,
both the number of Apps users only use seldom even just once and the amount of data containing
user portrait, temporal information, location information, mobile phone brand, and other related
information are growing. Machine learning methods like LSTM (Long Short-Term Memory) do not
perform very well in this complex context.

Many previous studies have tackled the App prediction problem by means of network embedding,
which can better mine the relationship between different types of applications and other information
like time, location, etc. Tan et al. [5] put forward extracting features and relationships from user-App
bipartite. This bipartite not only describes the correlation between user and App but also expresses
conjunctions of Apps used by a typical user or users who used the same application. However,
limited information was exploited in the method because there is no contextual information. Previous
endeavors have revealed that place and temporal information or the latest used App all benefit App
prediction [6]. Chen et al. [7] proposed one method named CAP, which constructs one network
representing App usage records and contains different types of nodes and edges with all users’ records.
Then, build users’ profiles for users’ personalized predictions. However, CAP does not use attributed
information, so it is not friendly with the prediction of new nodes.

This paper proposes a framework named AHNEAP based on attributed network embedding for
predicting the next App to be used for each user, by characterizing the context information before
one specific App being launched. At present, we use data of the single user for experiments about
our framework, but AHNEAP is also suitable for training multi-user data and predicting. Thus,
data of each user will be uploaded to the cloud firstly. Then, our proposed framework transforms the
historical App usage records in physical spaces to a large attributed heterogeneous network and the
representation learning process is conducted, which can reduce the number of feature dimensions
while making full use of various information to mine potential features. Eventually, the App usage
prediction is formulated as a link prediction problem based on a Neural Network. More concretely,
our main contributions in this paper to App usage prediction are three-pronged:

• First, we introduce network embedding to App prediction problem. By converting application,
location, and temporal information into different types of nodes in a heterogeneous network
and mapping related attribute information into the same potential space, we can capture the
relationship between Apps and time or location or the previous App.

• Second, we propose a novel App usage prediction framework named AHNEAP based on
representation learning on the attributed heterogeneous network. The framework contains three
major components: data pre-processing, representation learning, and link prediction. The data
pre-processing generates an attributed heterogeneous network from historical App usage records.
Then, representation learning produces universal embedding features for elements related to
the App usage e.g., App name and timestamp. Finally, the link prediction process completes
the fusion of embedding of the time, location, and the previous application obtained from the
previous step firstly, then constructs a neural network to decide the importance of the three types
to predict the most likely used App within a certain period of time.

• Finally, we conduct extensive experiment evaluations with the LiveLab App usage dataset,
and demonstrate and analyze the prediction performance about the top-k candidate applications.
Experiments show that AHNEAP outperforms the baseline methods: Most Frequently Used
(MFU), Most Recently Used (MRU), and traditional Bayes.

The rest of the paper is organized as follows: Section 2 provides a coarse introduction of related
work. Section 3 shows our graph-based App usage prediction framework. In Section 4, extensive
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experiments to evaluate the performance of the new model are conducted and analyzed. Finally,
we summarize and conclude this paper in Section 5.

2. Related Work

In this section, we will give a brief introduction of the existing works related to this paper,
including research on analysis of App usage prediction and the guide to network embedding.

2.1. App Usage Prediction

There have been many prior research works about predicting smartphone App usage, most of
which are based on contextual information. An early representative type of methods are based on
probabilistic graphical model, such as CPD (conditional probability distribution) model [8], Markov
model [9,10], and Bayesian Network [6,11,12]. Given the dependency of consecutive Apps and their
immediate previous Apps in the App usage sequence, it is often assumed that Markovian property
stands. For instance, Zou et al. [10] proposed using Markovian models to learn the App usage
sequences, and these models included first and second-order Markov models, along with a weighted
linear combination of these two models. Considering more than one type of context like time and
location and so on, some works take advantage of Bayesian Network to describe the relationship
between the App running and these contexts. Baeza et al. [11] propose an effective personalized
classification method to solve the App prediction that takes full advantage of human-engineered
features and automatically derived features. In [12], Shin et al. developed a dynamic home screen App
(dynamic home) on Android and adopted a Naive Bayes classification model to predict App usage
behaviors by considering possible sensors in a smart phone.

In general, context-based recommendation technology requires the fusion of multi-party
information, and the fusion process of heterogeneous data from multiple sources is complicated.
Therefore, there are studies to directly design algorithms based on the context information of the
application to predict the next application to be launched. Parate et al. [13] applied the text compression
algorithm named PPM to handling with the application startup sequence, and proposed the M
algorithm. Rahnamoun et al. [14] establish an online learning mechanism based on the transition
probability between applications, predict the applications to be used and cache them in advance to
reduce startup time and save equipment resource consumption. Chen et al. [7] propose a heterogeneous
graph embedding algorithm to map the context information and calculate each App’s probability to
be used.

In addition, with the development of Neural Networks in recent years, some works began to
adopt this method. Xu et al. [15] proposed a LSTM based multi-label classification model for App
usage prediction, which explores the temporal-sequence dependency and contextual information as
features for prediction. Xu et al. [16] revealed that the similarity of users’ preferences is related to the
similarity in their App usage context patterns. Thus, they propose a neural network that models both
a user’s preference over apps and the user’s app usage context pattern to learn the embeddings of
both users and Apps and then predicts a user’s preference for a given App.

In addition, methods based on frequent sequence pattern mining are also used in some works for
App usage prediction [17,18]. In [5], the authors construct the User-App Bipartite network based on
the network footprint data and propose the App Usage prediction method based on link prediction.
However, the prediction period was set to one day, which is far from practical, and the deep learning
based on representation learning was also not involved.

2.2. Network Embedding

Network embedding [19], or network representation learning, is a method to project nodes in
a network to a low dimensional continuous space while preserving network structure and inherent
properties. Works in the network embedding mainly consist of two categories, graph embedding
(GE) and graph neural network (GNN). Representative works for GE include DeepWalk [20],
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which generates a corpus on graphs by random walk and then trains a skip-gram model on the corpus.
Node2vec [21] designs a biased random walk procedure to efficiently explore diverse neighborhoods.
NetMF [22] is a unified matrix factorization framework for theoretically understanding and
improving DeepWalk and LINE. For popular works in GNN, GCN [23] integrated neighbors’ feature
representations into the node feature representation using convolutional operations. GraphSAGE [24]
provides an inductive approach to combine structural information with node features. It learns
functional representations instead of direct embeddings for each node, which helps it work inductively
on unobserved nodes during training.

Due to the ubiquitous network in the real world, network embedding has been paid more and
more attention in recent years and used to represent all areas of information. David et al. formalize
the question of new interactions among its members in a social network as the network embedding
problem, and developed approaches to link prediction based on measures for analyzing the proximity
of nodes in a network [25]. Lin et al. proposed an augmented relation embedding to map the image
space into a semantic manifold, transforming learning a semantic manifold into solving a constrained
optimization problem [26]. A Social Network Embedding algorithm achieved the prediction of friend
relation and citation relation by extracting the feature representation of a network node through the
fusion of node ID and attribute vector [27]. BIGCLAM is proposed as a covering of the community
discovery algorithm for the detection of overlapping societies, which generates a probability of each
edge in the network model [28].

There has also been lots of effort to devote to the study of recommendation. Zhao et al.
proposed to use the k-partite adoption graph to characterize various kinds of information in
recommendation tasks for addressing recommendation tasks by utilizing the network representation
learning techniques [29]. Previous work proposed a new product graph embedding model, which
used the network representation learning technology to capture the sequential impact of products by
converting historical purchase records into product diagrams [30]. A new collaborative user network
embedding method is proposed to extract implicit and reliable social information from user feedback
such as ratings or purchases, which transforms feedback into a user-item bipartite graph [31].

From this perspective of network embedding, we can transform App, time, location information
into attributed nodes when predicting the next App in the next hour, and construct a graph using
these nodes. In the graph, a link represents the relationship of adjacent nodes. For instance, if there
is a link between a time node and an App node, it indicates that the user used a certain App at the
time. In that way, our problem is actually turned into predicting whether the time node or other node
is connected to the App node in the future and sorting the possibilities of establishing a connection.
However, although a graph is constructed in the training process, we still utilize some new nodes like
new temporal nodes isolated from other vertices in the graph to predict actually. Methods based on
the random walk can describe the relationship between App nodes and time nodes or location nodes
separately, but they can’t solve the problem of new nodes while attributed network embedding can.
Because attributed network embedding aims to seek lower-dimensional representations of vector for
nodes in a network, such that the original network topological structure and node attribute proximity
can be preserved in such representations. Cen et al. revealed the problem of embedding learning for
the attributed multiplex heterogeneous network and proposed a unified framework to address this
problem of new nodes, which supports both transductive and inductive learning [32]. GATNE-I model
proposed in [32] solves the problem of the coupling of new nodes and existing nodes.

However, both random walk and attributed network embedding can’t solve the problem of
integration of various types of edges. Therefore, in this paper, we’ll adopt a GATNE-I model as our
network embedding method to develop our framework, and integrate the contextual information such
as time and location to study the relationship between different nodes on this basis.
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3. Graph-Based App Usage Prediction

App Prediction Problem is formally defined as follows: Given a list of installed Apps
appsu =

{
au

1 , au
2 , ..., au

n
}

by a user u on his/her phone and the user’s context C including spatiotemporal
information and smartphone’s state like battery level. The problem of App usage prediction is to
find an App au

i that has the largest probability of being used under C. Specifically, we aim to solve
the problem:

max
au

i

P(au
i |C, u), ∀i, 1 ≤ i ≤ n. (1)

Based on the above prediction mechanism, our prediction task will resolve around predicting
App usage of a typical user. To accurately predict App usage, it is crucial to be able to characterize the
features before the App being used by utilizing relevant usage records to the observer. We propose
AHNEAP, a framework based on network embedding which firstly transforms the historical App
usage records into a large attributed heterogeneous network to obtain every node’s embedding,
and then trains a neural network to integrate various types of context. Figure 1 illustrates the proposed
framework, which contains three major components: data pre-processing, representation learning,
and link prediction.
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Figure 1. Network embedding based framework for App usage prediction.

3.1. Data Pre-Processing

The aim of data pre-processing is to generate an attributed multiplex heterogeneous network
from historical App usage records. An attributed multiplex heterogeneous network is a network
G = (V, E, A) associated with a node type mapping function φ : V → O and an edge type mapping
function ψ : E → R, where O and R represent the set of all node types and the set of all edge types,
respectively, satisfying |O|+ |R| > 2 [32]. Each node v ∈ V belongs to a particular node type and is
associated with some types of feature vectors. A = {xi|vi ∈ V} is the set of node features for all nodes
with attributes, where xi is the associated node feature of node vi. Each edge is categorized into a
specific edge type.

In our scenario of App usage, typical usage records include basic information like an anonymous
user ID, a connected cellular base station ID which we regard as location information, a timestamp,
and applications with their names and categories. For a typical user, there are three node types in the
heterogeneous network: time, location, and application. Node pairs are divided into three different
groups: “usedTime” relationship between time and App, “usedLocation” relationship between location
and App, “precede” relationship between the previous App and App. Every type of relationship can be
regarded as one subgraph. Obviously, “time” and “App” nodes have intrinsically different properties
and shall not be treated equally. Moreover, different interactions between node pairs imply different
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levels of features and should be treated differently. Otherwise, the system cannot precisely capture the
user’s behavioral patterns and preferences and would be insufficient for practical use. In addition,
the time node and App node also take some useful attributes.

Figure 2 shows an example of a part of an attributed heterogeneous network extracted from the
historical App usage records. It should be noted that the day of week, day of month, and one period of
one-day interval of day, and so on when using Apps are treated as attributes of time nodes if they are
not be used to represent time nodes. For example, from 12:00 a.m. to 6:00 a.m., the value of interval of
day is 1. The App type and price are attributes of the App nodes. Finally, we choose just cellular base
station information to represent locations temporarily.

There will be a more detailed description of the dataset in Section 4.1.

Time

Stamp App

Location

Dow: day of week

Dom: day of month

App

Precede
usedTime

usedTime

Genre: type of App

Price: cost of App

Genre: type of App

Price: cost of App

usedLocation: cell tower

Figure 2. An example attributed heterogeneous network for App usage prediction.

3.2. Representation Learning

The application prediction issue is related to future factors such as time and location, which will
generate new temporal nodes constantly. Therefore, we use the GATNE-I model proposed in [32] to
capture both topological structures from different types of node, edge, and attributed information on
the large attributed heterogeneous network for the representation learning. This model can handle
nodes that are not seen during training that is suitable for App usage prediction because the future
time is definitely new nodes never seen before.

In the GATNE-I model, the overall embedding of a certain node vi on each edge type r is:

vi,r = hz(xi) + αr MT
r Uiai,r + βrDT

z xi. (2)

xi is defined as an attribute vector of the node vi and hz(xi) is a transformation function, whose role is
to add its own characteristics to the final result and its base embedding for node vi. ai,r is computed
according to the self-attention mechanism [33] as the coefficients of a linear combination of vectors.
Dz is a feature transformation matrix on vi’s corresponding node type z, designed for the purpose of
new nodes isolated from all nodes in the existing graph. Ui is defined as a matrix, which integrates
three types of edges’ embedding of one node respectively in three sub-graphs so that every node’s
embedding in different sub-graphs can be calculated for each edge type during the model training
process. The embedding of the three edges of each node is represented by the mean value of the
attributes of a certain number of neighbor nodes corresponding to the three graphs.

In this paper, there are three types of edges: application and time, application and location,
application and the previous application, where we use edges separately in “usedTime” sub-graph,
“usedLocation” sub-graph, “precede” sub-graph to express three types of relationships. ui,t, ui,l , ui,p
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express edge embedding of one node respectively in “usedTime” sub-graph, “usedLocation” sub-graph,
“precede” sub-graph, and we use the mean of a fixed number of neighbors’ embedding to represent
edge embedding of one node in one type of sub-graph. In the future, the integration of all neighbor
embedding or the multi-hop neighbor embedding can be used as one part of the embedding of the
nodes for the propose of comparison. Thus, in Equation (2), Ui = (ui,t, ui,l , ui,p).

Taking “usedTime” sub-graph as an example, due to only a connection between application and
time, there is no link between application nodes or time nodes themself. Thus, the k-th level edge
embedding u(k)

i,t ∈ Rs, (1 ≤ k ≤ K) of time node vi in the “usedTime” sub-graph is aggregated from
neighbors’ edge embeddings as:

u(k)
i,t = σ(W(k) ·mean({u(k−1)

j,t , ∀vj ∈ Ni,t})), (3)

where Ni,t is the neighbors of time node vi in the “usedTime” sub-graph and neighbors are application
nodes. Attributes of time nodes reflect all applications used in a specific time. Similarly, the neighbors
of App node in the “usedTime” sub-graph are application nodes. Attributes of App nodes reflect all
the execution time of one application. Then, we define vi,t, vi,l , vi,p as embedding of time, location and
the previous App nodes in the i− th record. Through network embedding, three types of embedding
of node vi can be obtained:

• vi,t = {v1
i,t, v2

i,t, ..., vn
i,t}, in “usedTime” sub-graph

• vi,l = {v1
i,l , v2

i,l , ..., vn
i,l}, in “usedLocation” sub-graph

• vi,p = {v1
i,p, v2

i,p, ..., vn
i,p}, in “precede” sub-graph

where vn
i,t represents the n− th element in the vector vi,t, and vn

i,l , vn
i,p do so. However, it was noted

that each type of embedding vector can only be used in the corresponding sub-graph, even though
there are three embeddings generated with one node finally. For instance, for temporal nodes, only
embedding in “usedTime” sub-graph is working, while embedding in “usedLocation” or “precede”
sub-graph is invalid. However, it is different for App nodes. Every App node will have three effective
embeddings because the other three types of the node are involved in App nodes.

3.3. Link Prediction

Through the GATNE-I model, we transform App usage records into a latent space to construct
a network and obtain embedding of each node with representation learning. We will calculate the
similarities of embedding vectors of two nodes using Adjusted Cosine Similarity so that we can infer
whether there is a linking between two nodes. If two vectors have a high degree of similarity, then the
probability that they will be connected in the future is high. As an example, given a spatial context l
for a specific user u, linking between l and a means u used a at the location l and not-linking means
the user has not used this App in the past. If a new location l′ is given and is similar to l, there is a
certain possibility that user u will use a at l′. In other words, there may be a linking between l′ and a.
Here, the App prediction problem is reformulated as link prediction problem in the complex network,
that is, linking or not between two nodes.

There are three types of sub-graphs in the new latent space, which contain the relationship
between application and time or location or the previous App respectively if only the GATNE-I model
is used. On this basis, we can predict the next application in the light of information about time
or location or the previous App, but just only one relationship can be made use of per prediction.
Nevertheless, there are some works revealing that information about time or location or user profile
like the phone in silent mode [6] all have an impact on the next App prediction in the future duration.
Hence, for the sake of improvement of accuracy, we need to integrate all the three types of information
and decide the importance of three types in the process of fusion.

Above all, one record r includes four nodes: time, location, the previous App, and the current
App. Through representation learning in Section 3.2, vr,t, vr,l , vr,p can be obtained, which indicate
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embedding of time node, location node, and the previous App node in the r− th record. In AHNEAP,
we adopt a neural network with a single hidden layer to handle integration. In the hidden layer,
we choose the sigmoid function as the activation function. We concatenate the three embeddings of
time, location, and the previous App nodes together for each record as input:

vr = (vr,t, vr,l , vr,p) (4)

where r is a serial number indicating a certain record. Then, take the one-hot value of each application
as the output. In that way, the probabilities of all application installed at the context vr,t, vr,l and
vr,p are:

qr = W(2) · sigmoid(vr ·W(1) + b1) + b2 (5)

where qr is a probability vector of all applications calculated in the r − th case, W(1) and W(2) are
transformation matrices corresponding to layers in the neural network. In addition, we definite pi
as the actual observed distribution, which actually is the one-hot value corresponding to the App
user used.

Before minimizing the distance between the probability distributions and really observed
distributions, we define the loss function to calculate divergence:

H = −
n

∑
j=1

pj
rlog(qj

r) (6)

where n is the number of applications installed, pj
r is the probability of the j− th application from real

distributions, and qj
r is from the result of the output layer.

The above processes are comprised of representation learning and neural network.
The embedding captures both topological structures of App usage interaction from different types of
nodes and attributed information, and the neural network integrates all types of relationships. Based
on the probability ranking of different App nodes, we can speculate several Apps, one of which will
be launched in the future.

4. Experimental Evaluation

This section presents an experimental evaluation of the performance of the proposed network
embedding based prediction approach based on comprehensive experiments on the App usage dataset
of the LiveLab project [34].

4.1. Evaluation Setup

4.1.1. Dataset

LiveLab (http://livelab.recg.rice.edu/traces.html) dataset is generated by a number of iPhone
3GS users including 24 Rice University students from February 2010 to February 2011 and 10 Houston
Community College students from September 2010 to February 2011. The dataset consists of several
SQL files, which describe applications run by users, periodic output from the modem regarding the
cellular base station the phone is connected to, phone calls made or received by users, charging state
of the phone so on.

In our experiments, we choose two traces: App usage trace which records applications run by
users and corresponding launching time, cellular base station trace which records the cell tower id that
the phone is connected and time the event occurred. For each user, we extract three types of nodes,
time, location and application, and links between application and time or location or the previous App,
respectively, from this information.

In the pre-processing, we first remove all the cellphone’s basic Apps including SpringBoard
(Desktop), com.apple.mobileSMS (Short Messaging Service) and com.apple.mobilephone (Phone Call).

http://livelab.recg.rice.edu/traces.html
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These three basic applications take up more than 900,000 of the total 1.3 million usage records. Then,
we selected five users with the maximum usage records: A07, A04, A12, B04, B02, each of which
has more than 15,000 records. Next, the attributed heterogeneous networks were constructed for
each user at two temporal scales as time nodes: hour of day and interval of day. Each day was divided
into four intervals, denoted by 1 (from 12:00 a.m. to 5:59 a.m.), 2 (from 6:00 a.m. to 11:59 a.m.),
3 (from 12:00 p.m. to 5:59 p.m.), and 4 (from 6:00 p.m. to 11:59 p.m.). As attributes of time nodes,
day of month, day of week, and interval of day all participate in training. We will perform a comparison
experiment for the two scales. Then, for each user, we sort the application usage records by ascending
order of time respectively for the sake of finding the previous App. Finally, we extract cellular base
station information as the location nodes. Because the cellular base station is recorded separately
from application usage information, we select the cellular information during five minutes before the
application start and five minutes after the end of the application for every App usage record and
decide to select the result that is closest to the middle time of the application. At present, the one-hot
value of each cellular base station is the attribute corresponding to each location node.

In this paper, we do not highlight how to select attributes as nodes’ features and how to set
parameters in our experiment, which is the future work. We mainly compare AHNEAP with baselines.

4.1.2. Performance Metrics

We use the Accuracy to evaluate the effect of the proposed network embedding framework.
In addition, we also use F1 score that combines Precision and Recall to evaluate the overall performance
of AHNEAP since we consider both Precision and Recall are important for any prediction mechanism.
The two measurements Precision and Recall are adopted for measuring the proportion of actual
positive samples in the positive examples calculated by AHNEAP, and the proportion of positive
samples determined by our framework AHNEAP in all examples:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 =
2× Precision× Recall

Precision + Recall
, (10)

where TP, TN, FP and FN represent TruePositive, TrueNegative, FalsePositive, and FalseNegative,
respectively.

In this section, we mainly measure the accuracy of various methods and AHNEAP, and all
evaluations calculate the hit ratio of Apps corresponding to the top − k scores. As long as the
score of real used App is within the predicted top − k scores, we count it as one hit. Then,
Accuracy@k [7] indicates the accuracy when predicting the k− th candidate applications. We mostly
choose Accuracy@4 for comparison.

4.2. Comparison Methods

Regarding the problem of App prediction about the LiveLab dataset, there are not many related
experiments. Liu et al. [35] mainly use data to study user application usage patterns, such as frequency
of application usage, without focusing on App prediction. The main research point of the article [4] is
the order about application startup. Lu et al. [36] use a tree to describe the relationship between App
and time and space, while AHNEAP uses an attributed multiplex heterogeneous network. Previous
work generated nine candidate applications when predicting, which is not necessary for the purpose
of loading the application in advance [37]. Therefore, we choose some basic baselines based on some
methods [6,10,12,17]. Shin et al. [12] and Eric et al. [17] adopt MFU and MRU, and Ke Huang et al. [6]
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adopt the Bayes network at the same time. In order to illustrate the advantages of AHNEAP, we will
compare with the following commonly used baselines:

• Most Frequently Used (MFU): The MFU method counts the users’ history of mobile App usage
and selects the most frequently used ones.

• Most Recently Used (MRU): The MRU method counts the users’ history of mobile App usage
and selects the most recently used ones.

• Bayes Network Model [6]: In the traditional Bayes model, the input feature is a tuple
( fl , fh, fd, fp, fu) or ( fl , fi, fd, fp, fu) fl : the location when using Apps, fh: the hour of day when
using Apps, fi: the interval of day when using Apps, fd: the day of day when using Apps, fp:
the latest used App, fu: a flag whether the battery is being charged when using Apps as user
profile extracted from the historical records. This model is improved based on the traditional
Bayes model with LivaLab dataset.

• Graph Embedding (GE): We’ll predict the next application through only one of the time, location,
and the previous application, purely using the GATNE-I model. In this method, we calculate the
similarity of three types of relationships according to Adjusted Cosine Similarity separately and
calculate the accuracy. Then, we choose the maximum as the final rate of each application.

4.3. Performance Analysis

Performance of GE. Figure 3 shows the comparison of prediction accuracy for the GATNE-I
model alone, where we use the interval of day scale as time node. We regarded the maximum accuracy
during all epochs as the result. The evaluation calculates Accuracy@4 respectively in three types
of sub-graphs. The figure shows accuracy when predicting four candidate Apps with five users.
According to the above experiments of five users, we can preliminarily infer that the influence of
various factors on the prediction is related to the user’s usage habits, and each user is more or less
different from others. Take B02 as an example first. As Figure 3 shows, obviously time and the
latest App have more impact on prediction than location. The accuracy of B02 is finally stabilized at
about 70% with “usedTime” type, while about 60% with “precede” type. Although accuracy with
“usedLocation” type is on the rise, the rate is just 33%, far from 70%. Furthermore, the magnitude of
the upward tendency is slow.
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Figure 3. The comparison of prediction Accuracy@4 for the GATNE-I model alone, GE: App and time,
App and location, App and the previous App at interval of day scale.

In general, using time information to predict Apps is better than location information or previous
Apps with user B04 and B02; however, results of users A07, A04, and A12 are different.

Performance of our framework. We’ll perform the Mean method as contrast experiments, which
is based on the GATNE-I model. The Mean method firstly gets the similarity of each App node and
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time node, location node, and the latest App node, respectively, from three sub-graphs. Then, calculate
the mean of three similarities with the same App as the final score of each application, and find the
top-k application based on the similarity ranking. Figure 4 shows the Accuracy@4 of five users with
the Mean method and AHNEAP. As the figure shows, there is higher accuracy using AHNEAP than
the Mean method, which achieves the highest 80% for user B02 and improves by highest about 20% for
user A07. Therefore, according to all our experiments of five users, we can preliminary infer that this
conclusion is universal that AHNEAP outperforms the Mean.
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Figure 4. The comparison of prediction Accuracy@4 for the Mean and our framework AHNEAP with
five users at interval of day scale.

Seen from all the whole process of the Mean method and our framework AHNEAP in Figure 5,
there is only slight undulation about accuracy during all epochs in AHNEAP while the mean is not.
In other words, we can achieve a stable state through fewer epochs using AHNEAP than the mean
method, further consuming fewer resources. Thus, both in terms of accuracy and resources, we still
choose the neural network to fit our context. Otherwise, the mean is difficult to choose the proportion
of three types of parameters, but we might as well directly train the weight matrix.
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Figure 5. Prediction accuracy of B02 in all epochs.

Performance of comparison of interval and hour scale. Figure 6 shows that taking interval of
day as time nodes are almost better than hour of day with five users except A12 when predicting top-4
candidate applications overall. However, it just achieves the highest about 2% for user A12 at hour of
day temporal scale than at interval of day temporal scale. For users A07, A04, and B04, the accuracy is
improved only by less than 1%. However, the accuracy increases by about 7% for user B02 at the scale
of interval of day. According to the above experiments of five users, we indicate that the two temporal
scales have roughly the same impact although there are little deviations for each user. In addition,
fewer node pairs are needing to be trained when transforming interval information to time node
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because there are fewer time nodes generated in the training process. However, from the aspect of
effectiveness for a given period, the interval of day scale is not as effective as the hour of day. Which scale
to choose for prediction depends on your focus.

Performance of comparison of our framework AHNEAP and baselines. Figure 7 shows the
comparison of prediction accuracy for AHNEAP and baselines: MFU, MRU, Bayes, Graph Embedding
(GE), and our network embedding based framework (AHNEAP) for the selected five users at two
temporal scales separately. For baselines and our framework AHNEAP, the prediction accuracy
varies with different users. However, the experimental results show that our framework AHNEAP
outperforms other strategies significantly almost in any situation at the two temporal scales. It achieves
highest about 80% for user B02 at interval of day temporal scale and 74% for user B04 at interval of day
temporal scale.
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Figure 6. The comparison of two types of time patterns with prediction Accuracy@4 of five users:
interval of day, hour of day.
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Figure 7. The comparison of prediction Accuracy@4 for the five models: MFU, MRU, traditional Bayes
(Bayes), Graph Embedding (GE), and our network embedding based framework(AHNEAP) for the
five users, respectively, at interval of day and hour of day temporal scale.

However, at hour of day scale, the prediction accuracy is not higher than all the four baselines
with user B02. Above all, we analyze Figure 8, which describes application usage record statistics
about B02. There are 14,565 application usage records of B02 and 56 applications installed. Seen from
the first sub-graph, there are four Apps most frequently used. In addition, records about the top 10
most frequently used applications occupy about 91% of all records. Regardless of MFU or Bayes,
the prediction accuracy is calculated based on the probability of the application usage in a certain
context. About 91% of records are related to the top 10 applications, so that it is possible that MFU
or Bayes can produce a higher rate than our framework AHNEAP. However, benchmarks are not
friendly for newly installed apps while AHNEAP can increase possibility through the similarity
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between applications, which is calculated by their features. Therefore, our framework AHNEAP is
very adaptable in various situations. Even though, in the case of B02, AHNEAP is only slightly worse
than the baselines.

Details of Accuracy@3–5: There is more detailed information about our experiments. Table 1
shows the Accuracy and F1 scores for each user under the two temporal scales when predicting three,
four, and five candidates, leading to three observations.
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Figure 8. The figure shows the statistical distribution of application usage with user B02.

Table 1. Performance details of the proposed method with top-3 prediction candidates.

Interval Hour

User Top- ACCURACY F1 Score ACCURACY F1 Score

A04
3 0.67 0.78 0.68 0.79
4 0.73 0.83 0.72 0.82
5 0.78 0.86 0.77 0.85

A07
3 0.64 0.75 0.62 0.74
4 0.72 0.82 0.70 0.81
5 0.76 0.85 0.75 0.84

A12
3 0.60 0.72 0.63 0.75
4 0.67 0.78 0.70 0.81
5 0.71 0.81 0.75 0.84

B02
3 0.73 0.84 0.66 0.77
4 0.80 0.87 0.73 0.82
5 0.85 0.91 0.79 0.87

B04
3 0.69 0.79 0.66 0.77
4 0.75 0.84 0.74 0.83
5 0.80 0.88 0.77 0.86

To sum up, firstly the prediction accuracy of the method is on the increase with the k value
increasing. This finding is easy to understand that, with the k value increasing, the denominator of
the ratio stays the same. However, the numerator (hit counts) can only keep the same or increasing.
Second, the prediction accuracy and F1 score have no inevitable correlation with the input training size
according to each user’s statistic in Table 2. Thus, even if it is increased when the amount of training
data exceeds a certain limit, the accuracy will not be greatly improved. Third, performance under
interval of day temporal scale is usually better than that of hour of day temporal scale. The results for user
A12 are the only exception. However, from the aspect of effectiveness for a given period, the interval of
day scale is not as effective as the hour of day.
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Table 2. Statistics of the network dataset for experiments.

Hour Interval

Train Test Train Test

User #nodes #edges #node Pairs #nodes #edges #node Pairs

A07 3822 28861 482 1278 24178 414
A04 4062 22570 370 1247 17813 307
A12 4048 28347 480 1423 24441 418
B04 3925 25540 432 1369 20716 359
B02 3478 24103 405 1251 19981 344

5. Discussion

This paper presents a network embedding based framework, AHNEAP, which leverages large
scale digital App usage records to reveal the underlying patterns, and formulates the App usage
prediction as a link prediction problem. Extensive empirical experiments with data from the LiveLab
project demonstrated the effectiveness of our framework AHNEAP by comparing it mainly with Most
Recently Used model and Bayes model.

We plan to conduct our future work in the following several aspects. First, we can use all the
data records to implement embedding representation of heterogeneous networks with attributes and
use users’ historical records to obtain the neural network model for personalized prediction, but not
focusing on a specific user. Second, there is a lot of information in the dataset that is not used in
this paper. For example, this is too monotonous taking the one-hot value of cellular base station as
attributes of location nodes. Attributes of time nodes do. We can consider how to use WiFi information
and cellular signals to express a location in more detail on the basis of obtaining a more efficient data
set. Third, in all experiments, we did not pay attention to the adjustment of the model parameters.
We should design some experiments to observe the influence of parameters. Finally, we need to try
more combinations of different scales of time granular when training models and making predictions.
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