
future internet

Article

Development of User-Participatory Crowdsensing
System for Improved Privacy Preservation

Mihui Kim * and Junhyeok Yun

School of Computer Engineering & Applied Mathematics, Computer System Institute,
Hankyong National University, Anseong 17579, Korea; junhyeok2723@hknu.ac.kr
* Correspondence: mhkim@hknu.ac.kr; Tel.: +82-2-31-670-5167

Received: 25 February 2020; Accepted: 18 March 2020; Published: 20 March 2020
����������
�������

Abstract: Recently, crowdsensing, which can provide various sensing services using consumer
mobile devices, is attracting considerable attention. The success of these services depends on active
user participation and, thus, a proper incentive mechanism is essential. However, if the sensing
information provided by a user includes personal information, and an attacker compromises the
service provider, participation will be less active. Accordingly, personal information protection is an
important element in crowdsensing services. In this study, we resolve this problem by separating the
steps of sensing data processing and the reward payment process. An arbitrary node in a sensing
data processing pool consisting of user nodes is selected for sensing data processing, and only
the processing results are sent to the service provider server to reward the data providing node.
The proposed user-participatory crowdsensing system is implemented on the Kaa Internet of things
(IoT) platform to evaluate its performance and demonstrate its feasibility.

Keywords: crowdsensing; privacy preservation; user-participatory; separation of sensing processing

1. Introduction

Crowdsensing is a technique that uses sensing devices, such as smartphones and wearable
devices, to receive, process, and utilize sensing data from the public [1]. Unlike existing sensor
networks, it is advantageous in that sensing data can be collected from consumer devices, and this
implies a low initial investment cost. A crowdsensing service provider can reward data providers
with points, momentary goods, and information to induce the public to participate in providing
sensing data [2]. However, the payment of financial rewards requires proper identification of the data
provider and, thus, sensitive personal information, such as user location, may be exposed to an attacker
who compromises the service provider or its server. This may cause the user to adopt a negative
attitude toward providing sensing data and, consequently, the service may not operate properly.
Therefore, the protection of personal information in crowdsensing services should be considered a
necessity [3].

Crowdsensing is being studied and developed in a wide range of applications that require large
amounts of data, such as real-time saturation of public transportation (e.g., as buses and subways) [4],
vehicle flow information [5], and store operation hours. The provider of such a service, as a central
management entity, performs sensing data processing and pays rewards. Therefore, it can access and
store sensitive personal information, such as user location and identification information, which is
included in the sensing data. This information may be exposed to an attacker, even if the provider
is trusted.

In this paper, we propose a user-participatory crowdsensing system in which user nodes in a
data processing node pool participate in sensing data processing, which is assigned to randomly
selected data processing nodes, whereas the service provider server (SP) only performs reward data

Future Internet 2020, 12, 56; doi:10.3390/fi12030056 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-4896-7400
http://www.mdpi.com/1999-5903/12/3/56?type=check_update&version=1
http://dx.doi.org/10.3390/fi12030056
http://www.mdpi.com/journal/futureinternet

Future Internet 2020, 12, 56 2 of 19

management. That is, by separating personal and identification information included in the sensing
data, an attacker who compromises the SP cannot access this information. In addition, a large number
of nodes process the sensing data in a distributed manner, thereby minimizing the load on the SP.
To analyze the security and sensing performance of the proposed system, it was implemented on
the Kaa Internet of things (IoT) platform (an open-source IoT platform) [6], PostgreSQL (an SQL
database management system—DBMS) [7] optimized for structured data management, and MongoDB
(a NoSQL DBMS) [8] optimized for unstructured data management. The Kaa IoT platform is based
on Constrained Application Protocol (CoAP) [9], a lightweight message protocol, supports security
functions, such as 2048-bit key-based RSA (i.e., an asymmetric cryptography algorithm) encryption,
as well as 128-bit and 256-bit key-based AES encryption, and is suitable for secure implementation of
the proposed system. We use PostgreSQL to handle different types of sensing data and MongoDB to
handle formal data, such as user and reward data. Using different DBMSs depending on the data type
improves the data processing efficiency.

In Section 2, we discuss crowdsensing, lightweight messaging protocols, the Kaa IoT platform,
and related work. In Section 3, we present the architecture and process flow of the proposed system,
which is implemented in Section 4. In Section 5, we demonstrate the feasibility of the proposed system
by analyzing its security and sensing data processing performance. Section 6 concludes the paper.

2. Literature Review

In this section, we discuss crowdsensing, lightweight messaging protocols, the Kaa IoT platform,
and related work.

2.1. Crowdsensing

Figure 1 shows the general structure of a crowdsensing system. It consists of an SP and users [10].
The users can be distinguished into data requesters and data providers. (1.1)(1.2) A data requester
requests other users to provide sensing data through the SP. A data provider is a user who can provide
sensing data that meet the request of a data requester. (2) The data provider provides sensing data
and (3) receives a reward. The SP manages the sensing data requests and the sensing data received
from the data provider, transmits the sensing data to the data requester, and handles the reward data.
However, the structure in which the SP performs sensing data processing and handles reward data
poses a great risk of personal information exposure. In addition, if an attacker compromises only one
SP, the attacker can access sensitive personal information of all users.

Future Internet 2020, 12, x FOR PEER REVIEW 2 of 19

management. That is, by separating personal and identification information included in the sensing
data, an attacker who compromises the 𝑆𝑃 cannot access this information. In addition, a large
number of nodes process the sensing data in a distributed manner, thereby minimizing the load on
the 𝑆𝑃. To analyze the security and sensing performance of the proposed system, it was implemented
on the Kaa Internet of things (IoT) platform (an open-source IoT platform) [6], PostgreSQL (an SQL
database management system—DBMS) [7] optimized for structured data management, and
MongoDB (a NoSQL DBMS) [8] optimized for unstructured data management. The Kaa IoT platform
is based on Constrained Application Protocol (CoAP) [9], a lightweight message protocol, supports
security functions, such as 2048-bit key-based RSA (i.e., an asymmetric cryptography algorithm)
encryption, as well as 128-bit and 256-bit key-based AES encryption, and is suitable for secure
implementation of the proposed system. We use PostgreSQL to handle different types of sensing data
and MongoDB to handle formal data, such as user and reward data. Using different DBMSs
depending on the data type improves the data processing efficiency.

In Section 2, we discuss crowdsensing, lightweight messaging protocols, the Kaa IoT platform,
and related work. In Section 3, we present the architecture and process flow of the proposed system,
which is implemented in Section 4. In Section 5, we demonstrate the feasibility of the proposed system
by analyzing its security and sensing data processing performance. Section 6 concludes the paper.

2. Literature Review

In this section, we discuss crowdsensing, lightweight messaging protocols, the Kaa IoT platform,
and related work.

2.1. Crowdsensing

Figure 1 shows the general structure of a crowdsensing system. It consists of an 𝑆𝑃 and users
[10]. The users can be distinguished into data requesters and data providers. (1.1)(1.2) A data
requester requests other users to provide sensing data through the 𝑆𝑃. A data provider is a user who
can provide sensing data that meet the request of a data requester. (2) The data provider provides
sensing data and (3) receives a reward. The 𝑆𝑃 manages the sensing data requests and the sensing
data received from the data provider, transmits the sensing data to the data requester, and handles
the reward data. However, the structure in which the 𝑆𝑃 performs sensing data processing and
handles reward data poses a great risk of personal information exposure. In addition, if an attacker
compromises only one 𝑆𝑃, the attacker can access sensitive personal information of all users.

Figure 1. Structure of crowdsensing system.

In this paper, we propose a method for preventing personal information disclosure in
conventional crowdsensing systems by separating sensing data processing and reward data
management. The 𝑆𝑃 handles the reward data, whereas the processing of the sensing data is
delegated to a data processing node managed by a third user other than the data requester and the
data provider. This defines a new user type: a data processing node. Each data processing node
validates the sensing data and acts as an intermediary for transferring data to the data requester. As
a data processing node is randomly selected by the 𝑆𝑃, it is possible to prevent a malicious user from
obtaining personal information of a user participating in the pool of sensing data processing nodes.
The data processing node transmits, to the 𝑆𝑃, the information about the reward to be paid to the

Figure 1. Structure of crowdsensing system.

In this paper, we propose a method for preventing personal information disclosure in conventional
crowdsensing systems by separating sensing data processing and reward data management. The SP
handles the reward data, whereas the processing of the sensing data is delegated to a data processing
node managed by a third user other than the data requester and the data provider. This defines a new
user type: a data processing node. Each data processing node validates the sensing data and acts as
an intermediary for transferring data to the data requester. As a data processing node is randomly
selected by the SP, it is possible to prevent a malicious user from obtaining personal information of a

Future Internet 2020, 12, 56 3 of 19

user participating in the pool of sensing data processing nodes. The data processing node transmits,
to the SP, the information about the reward to be paid to the data provider after the validation of the
sensing data is completed. Then, the SP handles the reward data accordingly. Therefore, unlike in
conventional crowdsensing systems, the SP cannot access personal information included in the sensing
data. In addition, an attacker must attack the SP and all data processing nodes to obtain the personal
information of a specific user.

2.2. Lightweight Messaging Protocol

Owing to the widespread use of low-power and low-performance devices, including sensors,
wearable devices, and IoT sensor devices, systems based on lightweight messaging protocols were
extensively studied. These are characterized by small overhead and enable messages to be transmitted
to low-power and low-performance devices in low-bandwidth conditions [11,12]. Transmission Control
Protocol (TCP)-based Message Queuing Telemetry Transport (MQTT) [13] and User Datagram Protocol
(UDP)-based CoAP [9] are the most widely used.

MQTT is a TCP-based lightweight messaging protocol based on the publish/subscribe model.
The fixed header length of an MQTT message is two bytes, which is shorter than the fixed header
length of the TCP message (20 bytes) and the fixed header length of the UDP message (eight bytes),
thereby reducing the length of the entire message. However, the overhead in the handshake process is
not suitable for crowdsensing systems, which should establish connection and communicate repeatedly
with multiple devices.

CoAP is a UDP-based lightweight messaging protocol. The fixed header length of a CoAP
message is four bytes, which is longer than the two bytes of MQTT, but it can be expected to improve
performance compared with TCP and UDP. Unlike MQTT, which requires a central broker based
on the publish/subscribe model, CoAP allows inter-node communication without a central broker.
In addition, the connection establishment overhead is smaller than that of MQTT, which should
undergo a three-way handshake process based on TCP. This feature is suitable for crowdsensing
systems [14].

In this study, we apply CoAP to the communication between user applications and data
processing nodes in the proposed system so that the sensing data can be transmitted and received with
high efficiency.

2.3. Kaa IoT Platform

Kaa IoT is an open-source platform for constructing IoT sensor networks [6]. As it is based on
CoAP, it reduces communication overhead and supports security functions such as 2014-bit key-based
RSA encryption and 256-bit key-based Advanced Encryption Standard (AES) encryption.

Figure 2 shows the architecture of the Kaa IoT platform. It consists of sensor devices, Kaa clusters,
and an analytical system for sensing data acquisition. The sensing data are transmitted from a sensor
device to a Kaa node. The IoT network manager sets up the sensor device by inserting a Kaa Software
Development Kit (SDK) including a sensing data schema, information for the Kaa node to transmit
sensing data, and an encryption key for sensing data into the sensor device in advance. The Kaa node
stores and manages data received from the sensor device. A Kaa cluster is a cluster consisting of
several Kaa nodes. A Kaa cluster manages the nodes constituting the cluster, collects the sensing data
stored in each node, and transmits them to the analysis system. The analysis system generates and
utilizes information based on the received sensing data.

Future Internet 2020, 12, 56 4 of 19

Future Internet 2020, 12, x FOR PEER REVIEW 3 of 19

data provider after the validation of the sensing data is completed. Then, the 𝑆𝑃 handles the reward
data accordingly. Therefore, unlike in conventional crowdsensing systems, the 𝑆𝑃 cannot access
personal information included in the sensing data. In addition, an attacker must attack the 𝑆𝑃 and
all data processing nodes to obtain the personal information of a specific user.

2.2. Lightweight Messaging Protocol

Owing to the widespread use of low-power and low-performance devices, including sensors,
wearable devices, and IoT sensor devices, systems based on lightweight messaging protocols were
extensively studied. These are characterized by small overhead and enable messages to be
transmitted to low-power and low-performance devices in low-bandwidth conditions [11,12].
Transmission Control Protocol (TCP)-based Message Queuing Telemetry Transport (MQTT) [13] and
User Datagram Protocol (UDP)-based CoAP [9] are the most widely used.

MQTT is a TCP-based lightweight messaging protocol based on the publish/subscribe model.
The fixed header length of an MQTT message is two bytes, which is shorter than the fixed header
length of the TCP message (20 bytes) and the fixed header length of the UDP message (eight bytes),
thereby reducing the length of the entire message. However, the overhead in the handshake process
is not suitable for crowdsensing systems, which should establish connection and communicate
repeatedly with multiple devices.

CoAP is a UDP-based lightweight messaging protocol. The fixed header length of a CoAP
message is four bytes, which is longer than the two bytes of MQTT, but it can be expected to improve
performance compared with TCP and UDP. Unlike MQTT, which requires a central broker based on
the publish/subscribe model, CoAP allows inter-node communication without a central broker. In
addition, the connection establishment overhead is smaller than that of MQTT, which should
undergo a three-way handshake process based on TCP. This feature is suitable for crowdsensing
systems [14].

In this study, we apply CoAP to the communication between user applications and data
processing nodes in the proposed system so that the sensing data can be transmitted and received
with high efficiency.

2.3. Kaa IoT Platform

Kaa IoT is an open-source platform for constructing IoT sensor networks [6]. As it is based on
CoAP, it reduces communication overhead and supports security functions such as 2014-bit key-
based RSA encryption and 256-bit key-based Advanced Encryption Standard (AES) encryption.

Figure 2 shows the architecture of the Kaa IoT platform. It consists of sensor devices, Kaa
clusters, and an analytical system for sensing data acquisition. The sensing data are transmitted from
a sensor device to a Kaa node. The IoT network manager sets up the sensor device by inserting a Kaa
Software Development Kit (SDK) including a sensing data schema, information for the Kaa node to
transmit sensing data, and an encryption key for sensing data into the sensor device in advance. The
Kaa node stores and manages data received from the sensor device. A Kaa cluster is a cluster
consisting of several Kaa nodes. A Kaa cluster manages the nodes constituting the cluster, collects
the sensing data stored in each node, and transmits them to the analysis system. The analysis system
generates and utilizes information based on the received sensing data.

Figure 2. Kaa Internet of things (IoT) platform architecture.
Figure 2. Kaa Internet of things (IoT) platform architecture.

In this study, we use the Kaa IoT platform to implement the basic structure and communication
between data processing nodes and the SP. A data processing node corresponds to a sensor device
in the Kaa IoT architecture. The user application at a data processing node has a built-in Kaa SDK
that includes a reward data schema, the address of the SP, and so on, and it communicates with the
SP, which corresponds to a Kaa cluster and the analysis system in the Kaa IoT architecture. The SP
updates the user database by collecting the reward payment data transmitted by each data processing
node through the user application.

2.4. Related Work

The risk of personal information exposure in crowdsensing services discourages users
from providing sensing data. This prevents the crowdsensing service from operating properly.
Therefore, personal information protection is essential in crowdsensing services, and related research
should be based on the possible service types.

Table 1. Classification of crowdsensing services.

Classification Criteria
Classification

Vulnerability to Privacy Exposure Resistance to Privacy Exposure

Request assignment entity Centralized [15] Distributed [16]
Request assignment target Partial [17] Overall [18]
Participation willingness Push [19] Pull [20]

Data providing cycle Periodic [19] Participatory [15]
Data preprocessing Extensive [21] Non-extensive [22]

Data type Spatiotemporal [22] Non-spatiotemporal [23]

We classify crowdsensing services according to the classification criteria in Reference [24], and we
present threats and countermeasures against personal information disclosure in each type of service.
Table 1 shows the types of crowdsensing services according to various classification criteria. In terms
of the request assignment entity, the centralized type is a method in which a central service provider
assigns a request to users, and an attacker who compromises the service provider system can access
sensitive personal information such as real-time user location. The distributed type is a method via
which a user directly participates in a request allocation by a service provider. In contrast to the
centralized type, it is difficult for a specific management entity such as a service provider to access
sensitive personal information of a user. However, if a service provider or an attacker masquerades as
multiple users and participates in a request assignment, it can access sensitive personal information.

In terms of the request assignment target, the partial type is a method in which a request is
transmitted only to a user who can provide appropriate sensing data, considering the location and
status of the user. Thus, the service provider assigning the request should monitor user location
and status in real time. The overall type is a method in which a request is transmitted to all users
without considering their location or state, and the service provider does not check sensitive personal
information. However, the efficiency of the overall type is low because all requests should be sent to
all users.

Future Internet 2020, 12, 56 5 of 19

In terms of participation willingness, the push type requires that the service provider continuously
communicates with the user application so that a request is directly sent to the user application. In this
process, the service provider can find sensitive personal information such as real-time user location
or mobile phone status. The pull type is a method in which the user directly confirms the request
information disclosed by the SP. Therefore, as the SP and the user application need not communicate
continuously, the risk of exposure of personal information is relatively low compared with the push
type. All pull-type crowdsensing services are partial type.

In terms of the data providing cycle, the persistent type is a method in which sensing data are
periodically received without user interference, and the service provider can access real-time user
location and status information. The participation type is a method in which sensing data are provided
according to user intention when it is determined that the risk of personal information exposure is low
or when such an exposure does not become a serious problem.

Some crowdsensing services require extensive data preprocessing, as, for example, in the case
of parking lot pictures for smart parking systems [21]. If such preprocessing (e.g., removing the
license plate number) is not performed by the sensing data provider, there is a risk of privacy
exposure (e.g., by identifying the license plate number and revealing the location of the
user). However, services that do not require extensive data processing (e.g., environmental data,
such as temperature or vehicle CO2 emissions) [22] are less vulnerable to privacy exposure.
Moreover, crowdsensing services involving spatiotemporal data (e.g., vehicle trajectory) are vulnerable
in terms of location or trace privacy [22]. Closed crowdsensing services irrelevant to spatiotemporal
characteristics, such as industrial management [23], are resistant to privacy exposure.

In conclusion, distributed, overall, pull, participatory, non-extensive-preprocessing,
and non-spatiotemporal crowdsensing services are advantageous compared to centralized, partial,
push, periodic, extensive-preprocessing, and spatiotemporal services in terms of privacy protection.
It is more difficult for attackers to access sensitive personal information in distributed crowdsensing
services than in centralized because this information is processed by multiple users. The overall
crowdsensing service sends requests to all users instead of checking user location, status, and so
on; thus, it does not experience personal information exposure problems caused by user monitoring.
The pull crowdsensing service does not experience personal information exposure problems caused by
continuous communication because users check requests directly, and no continuous communication
with the service provider is required. In the participatory crowdsensing service, users provide sensing
data voluntarily. Thus, if personal information exposure occurs, users can respond immediately by,
for example, removing this information or discontinuing participation. We consider these architecture
and service types in the design of a crowdsensing system that is resistant to privacy exposure.

The authors in Reference [19] proposed a participatory crowdsensing system using smartphones.
The service provider transmits a request to all user applications, and users may respond to the request
of their choice. A user can reduce the risk of personal information exposure by providing only selected
sensing data to the service provider. However, the central service provider handles all stages of data
collection, including request allocation and data processing, so that the personal information of a
specific user can be inferred from the data provided by multiple users. In this paper, we propose
a system for reducing the risk of personal information exposure in participatory crowdsensing by
applying distributed crowdsensing in which users participate in data processing.

The authors in Reference [25] proposed a partial crowdsensing system for road condition
monitoring. The application continuously transmits user location information to the service provider.
To obtain road condition information at a certain location, the service provider sends a request only to
the user at that location; thus, this method is highly efficient. However, as the SP continuously collects
the location information of all users, the risk of personal information exposure is high. In the present
study, to reduce this in a partial crowdsensing system, we use a pull method whereby requests are
not allocated to users by the service provider, but rather a user application selects whether to display
a request.

Future Internet 2020, 12, 56 6 of 19

We propose a distributed crowdsensing system of pull, partial, and participation type that exhibits
relatively low personal information exposure risk, and we implement it using the Kaa IoT platform,
CoAP light messaging protocol, and MongoDB.

On the other hand, the proposed mechanism separates the sensing data processing from the reward
payment processing in order to preserve the privacy in the data processing by the service provider
in the crowdsensing system. Basically, mechanisms to prevent privacy leakage were studied [26,27].
AnonySense [26] is a privacy preservation mechanism through k-anonymity against the system
(i.e., it is difficult to link any report to a specific user within a set of k users based on the location or
timestamp) and l-anonymity against the applications (i.e., at least l reports are combined together
before the aggregate is revealed to the application). The L-diversity system [27] obfuscates data to
satisfy L-diversity, which means that a set of the same attribute value must have at least L sensitive
information to complement K-anonymity vulnerability. AnonySense assumes that mobile nodes trust
the registration authority (RA), and L-diversity also assumes the operation of a centralized system.
However, internal attack against RA in AnonySense or the centralized L-diversity system could collapse
the privacy preservation. Moreover, it is hard to design the reward management mechanism for the
crowdsensing system in the AnonySense and L-diversity system with k- anonymity, and the data
quality of both systems could go down due to the aggregation of l reports or the obfuscated data for
L-diversity.

Researches on privacy protection in crowdsensing environments were also performed using
various technologies [28–30]. The authors in Reference [28] utilized the fog computing technology and,
thus, tried to improve the efficiency of blocking privacy leakage by external attackers through fog nodes
installed by service provider. Fog nodes collect sensing data and perform data aggregation However,
the service provider system is still able to know the exact location of users, and the compromised
fog nodes enable the privacy exposure of sensing data. The authors in Reference [29] proposed a
crowdsensing system capable of protecting personal information by grouping users using blockchain
technology. They tried to secure user anonymity by assigning multiple users to one blockchain node.
However, due to the characteristics of the blockchain, there would be a delay in data transmission and
reward payment because the transaction speed is lower than that of a general network. The authors
in Reference [30] intended to provide anonymity by grouping participants in participant bidding to
protect personal information exposed from bids in auction-based crowdsensing systems. Similar to
the data processing nodes of our proposed mechanism, the selection of participants through group
bidding is passed to the third party and, thus, bid information is protected against the service provider.
However, since the third party is fixed and data collected by the service provider is still delivered to
the data user, there is a vulnerability to an internal attack on this part. The data processing load is
concentrated because the service provider performs data processing. Consequently, many mechanisms
were proposed to prevent the exposure of personal information by external attacks. There are not many
techniques considering the possibility that a service provider is malicious or compromised. In our
proposed mechanism, the service provider does not play any role other than the platform provider,
and an external attacker must steal a large number of data processing nodes in order to steal personal
information in our proposed system.

3. Proposed System

In this section, we present the structure of a user-participatory crowdsensing system that provides
privacy protection by separating sensing data processing and the payment of rewards.

3.1. Structure of Proposed System

Table 2 summarizes the relevant notations. Figure 3 shows the structure of the proposed
crowdsensing system. It consists of an SP, a pool of data processing nodes (P), and users (generically
denoted by u). Users may be owners of data requester (udr), data provider (udp), and data processing
nodes (uno). uno may have one or more data processing nodes. Each user u has its own asymmetric

Future Internet 2020, 12, 56 7 of 19

cryptographic key pair
(
Kpub(u), Kpri(u)

)
and uses the public key (Kpub(u)) as its identifier (ID).

The difference between the proposed system and existing systems is that the data processing module is
moved from the SP to data processing nodes (uno) (Figures 1 and 3). (1.2) The SP assigns a request to
a data processing node (pr), which (3) directly forwards the data received from data provider (udp)

to the data requester (udr). (4.2) The SP rewards the data provider (udp), (4.1) based on the relevant
information received from the data processing node.

Table 2. Table of notations.

Notation Description

P =
{
p1, p2, · · · , pr

}
Pool of data processing nodes

addr(pi) Address of i-th data processing node
udr, udp, uno Data requester, data provider, and owner of data processing node, respectively
D = {d1, d2, · · · , dn} Sensing data
enc(K, d), dec(K, d) Encrypted/decrypted data d with key K
i(u) Reward amount of user u’s incentive amount
Kpub(u), Kpri(u) User u’s public key (identifier (ID)) and private key of user u
Kses(p, u) Session key for sensing data transport between data processing node p and user u

Future Internet 2020, 12, x FOR PEER REVIEW 7 of 19

Table 2. Table of notations.

Notation Description 𝑃 ൌ ሼ𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝௥ሽ Pool of data processing nodes 𝑎𝑑𝑑𝑟(𝑝௜) Address of 𝑖-th data processing node 𝑢ௗ௥, 𝑢ௗ௣, 𝑢௡௢ Data requester, data provider, and owner of data processing node,
respectively 𝐷 ൌ ሼ𝑑ଵ, 𝑑ଶ, ⋯ , 𝑑௡ሽ Sensing data 𝑒𝑛𝑐(𝐾, 𝑑), 𝑑𝑒𝑐(𝐾, 𝑑) Encrypted/decrypted data 𝑑 with key 𝐾 𝑖(𝑢) Reward amount of user 𝑢’s incentive amount 𝐾௣௨௕(𝑢), 𝐾௣௥௜(𝑢) User 𝑢’s public key (identifier (ID)) and private key of user 𝑢 𝐾௦௘௦(𝑝, 𝑢) Session key for sensing data transport between data processing node 𝑝
and user 𝑢

Figure 3. Structure of proposed system.

The 𝑆𝑃 includes a request database, a data processing node database, a user database, a request
management module, and a reward data management module. The request database stores the data
requester ID 𝐾௣௨௕(𝑢), the request information for sensing data transmitted by the data requester, and
the address 𝑎𝑑𝑑𝑟(𝑝௜) of the data processing node to which the request is assigned. The data
processing node database stores the 𝑎𝑑𝑑𝑟(𝑝௜) and 𝐾௣௨௕(𝑢௡௢) of the corresponding data processing
node. The user database maps and manages the ID 𝐾௣௨௕(𝑢) of each user and the reward amount 𝑖(𝑢) . The request management module forwards the received requests to the appropriate data
providers and randomly assigns each request to a node of 𝑃. The reward data management module
updates the user database using the amount transmitted from the data processing node. The
provision request for sensing data includes the description of the requested data, data schema,
number of requests, and reward amount.

A pool of data processing nodes is a set of computing nodes owned by users who participate in
data processing. The data processing nodes perform sensing data processing for the assigned request.
Sensing data processing includes data validation, data aggregation, and transmission to a data
requester. The computing nodes that constitute the data processing node pool may vary depending
on user participation. The proposed system separates validation management in user identification
for the payment of rewards from sensing data processing and, thus, attackers compromising the 𝑆𝑃
can be prevented from obtaining sensitive personal information included in the sensing data (e.g.,
location information), together with user identification information. Each data processing node
includes a session key issuing module and a sensing data processing module. When the data provider

Figure 3. Structure of proposed system.

The SP includes a request database, a data processing node database, a user database, a request
management module, and a reward data management module. The request database stores the data
requester ID Kpub(u), the request information for sensing data transmitted by the data requester, and the
address addr(pi) of the data processing node to which the request is assigned. The data processing
node database stores the addr(pi) and Kpub(uno) of the corresponding data processing node. The user
database maps and manages the ID Kpub(u) of each user and the reward amount i(u). The request
management module forwards the received requests to the appropriate data providers and randomly
assigns each request to a node of P. The reward data management module updates the user database
using the amount transmitted from the data processing node. The provision request for sensing data
includes the description of the requested data, data schema, number of requests, and reward amount.

A pool of data processing nodes is a set of computing nodes owned by users who participate
in data processing. The data processing nodes perform sensing data processing for the assigned
request. Sensing data processing includes data validation, data aggregation, and transmission to a data
requester. The computing nodes that constitute the data processing node pool may vary depending
on user participation. The proposed system separates validation management in user identification

Future Internet 2020, 12, 56 8 of 19

for the payment of rewards from sensing data processing and, thus, attackers compromising the
SP can be prevented from obtaining sensitive personal information included in the sensing data
(e.g., location information), together with user identification information. Each data processing node
includes a session key issuing module and a sensing data processing module. When the data provider
requests participation of the sensing data provision, the session key-issuing module generates a session
key Kses

(
p, udp

)
to be used for sending and receiving the data, encrypts the session key using the ID

(Kpub
(
udp
)
) of the data provider, and transmits the session key to udp. The data provider decrypts the

encrypted session key using its own private key (Kpri
(
udp
)
), encrypts the sensing data using the session

key Kses
(
p, udp

)
, and transmits them to the data processing node. The sensing data processing module

decrypts the sensing data encrypted using the session key and checks whether they satisfy the data
schema defined by the data requester. If it is determined that the data are valid, they are encrypted
using the ID Kpub(udr) of the data requester and transmitted to the data requester; furthermore, the
reward payment data containing the data provider ID and the reward payment amount are transmitted
to the SP.

3.2. Process Flow of Proposed System

Figure 4 shows the overall process flow at SP and pr of the proposed system. It can be
divided into four processes: sensing data request, sensing data provision, sensing data processing,
and reward payment.

Future Internet 2020, 12, x FOR PEER REVIEW 8 of 19

requests participation of the sensing data provision, the session key-issuing module generates a
session key 𝐾௦௘௦൫𝑝, 𝑢ௗ௣൯ to be used for sending and receiving the data, encrypts the session key using
the ID (𝐾௣௨௕൫𝑢ௗ௣൯) of the data provider, and transmits the session key to 𝑢ௗ௣. The data provider
decrypts the encrypted session key using its own private key (𝐾௣௥௜൫𝑢ௗ௣൯), encrypts the sensing data
using the session key 𝐾௦௘௦൫𝑝, 𝑢ௗ௣൯, and transmits them to the data processing node. The sensing data
processing module decrypts the sensing data encrypted using the session key and checks whether
they satisfy the data schema defined by the data requester. If it is determined that the data are valid,
they are encrypted using the ID 𝐾௣௨௕(𝑢ௗ௥) of the data requester and transmitted to the data
requester; furthermore, the reward payment data containing the data provider ID and the reward
payment amount are transmitted to the 𝑆𝑃.

3.2. Process Flow of Proposed System

Figure 4 shows the overall process flow at 𝑆𝑃 and 𝑝௥ of the proposed system. It can be divided
into four processes: sensing data request, sensing data provision, sensing data processing, and
reward payment.

Figure 4. Process flows of proposed system.

3.2.1. Sensing Data Request

Figure 5 shows the process flow from the data requester sending the sensing data request to the 𝑆𝑃 until other users accessing the request. (1.1) The data requester sends the description and schema
of the required sensing data, the amount of reward for providing the data, and the data requester ID 𝐾௣௨௕(𝑢ௗ௥) to the 𝑆𝑃. (1.2) The 𝑆𝑃 stores the received request information in the request database
and randomly selects one of the data processing nodes that are processing the fewest requests, and it
allocates the request. Therefore, it is possible to allocate the requests evenly to all data processing
nodes and maximize the processing efficiency. (1.3) The 𝑆𝑃 sends the request information to the
assigned data processing node, which uses the data requester ID to transmit the encrypted data after
the sensing data are collected. (1.4) The 𝑆𝑃 discloses the request information and the address of the
allocated data processing node in the request database so that the user can access the request.

Start

(1.1) Receive sensing
data request from

(1.2) Assign the reqest
to

(1.3) Send the request to

(3.1) Receive reward
infomation

(3.2) Pay reward to

Start

(1.2) Receive a request

(2.1) Receive sensing
data from

(2.2) Send the sensing
data to

(3.1) Send reward
information to

Are the sensing
data valid?

Yes

Remove
the data

No

Figure 4. Process flows of proposed system.

3.2.1. Sensing Data Request

Figure 5 shows the process flow from the data requester sending the sensing data request to the
SP until other users accessing the request. (1.1) The data requester sends the description and schema
of the required sensing data, the amount of reward for providing the data, and the data requester
ID Kpub(udr) to the SP. (1.2) The SP stores the received request information in the request database
and randomly selects one of the data processing nodes that are processing the fewest requests, and it
allocates the request. Therefore, it is possible to allocate the requests evenly to all data processing nodes
and maximize the processing efficiency. (1.3) The SP sends the request information to the assigned
data processing node, which uses the data requester ID to transmit the encrypted data after the sensing
data are collected. (1.4) The SP discloses the request information and the address of the allocated data
processing node in the request database so that the user can access the request.

Future Internet 2020, 12, 56 9 of 19

Future Internet 2020, 12, x FOR PEER REVIEW 9 of 19

Figure 5. Flow of sensing data request.

By randomly assigning a sensing data provision request, an owner of a malicious data
processing node is less likely to be assigned a specific request and, therefore, sensitive personal
information included in the corresponding sensing data cannot be obtained.

3.2.2. Sensing Data Provision

Figure 6 shows the process flow of sensing data provision. (2.1) The data provider 𝑢ௗ௣ transmits
a data provision request including its ID 𝐾௣௨௕(𝑢ௗ௥) to the data processing node. (2.2) The data
processing node generates a session key 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯ , encrypts the session key using the data
provider ID 𝐾௣௨௕(𝑢ௗ௥), and sends it as 𝑒𝑛𝑐(𝐾௣௨௕(𝑢ௗ௥), 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯) to the data provider. (2.3) The
data provider decrypts the received cipher text to obtain the session key, encrypts the collected
sensing data 𝑑௜ with the session key, and sends it as 𝑒𝑛𝑐(𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯, 𝑑௜) to the data processing
node.

Figure 6. Flow of sensing data provision.

3.2.3. Sensing Data Processing and Reward Payment

Figure 7 shows the process flow in which the data processing node validates the sensing data,
provides them to the data requester, and sends the reward information for the data provider to the 𝑆𝑃. (3.1) The data processing node 𝑝௥ decrypts the sensing data transmitted by the data provider
using the session key 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯ and verifies whether the data requester satisfies the schema

Figure 5. Flow of sensing data request.

By randomly assigning a sensing data provision request, an owner of a malicious data processing
node is less likely to be assigned a specific request and, therefore, sensitive personal information
included in the corresponding sensing data cannot be obtained.

3.2.2. Sensing Data Provision

Figure 6 shows the process flow of sensing data provision. (2.1) The data provider udp transmits a
data provision request including its ID Kpub(udr) to the data processing node. (2.2) The data processing

node generates a session key Kses
(
pr, udp

)
, encrypts the session key using the data provider ID Kpub(udr),

and sends it as enc(Kpub(udr), Kses
(
pr, udp

)
) to the data provider. (2.3) The data provider decrypts the

received cipher text to obtain the session key, encrypts the collected sensing data di with the session
key, and sends it as enc(Kses

(
pr, udp

)
, di) to the data processing node.

Future Internet 2020, 12, x FOR PEER REVIEW 9 of 19

Figure 5. Flow of sensing data request.

By randomly assigning a sensing data provision request, an owner of a malicious data
processing node is less likely to be assigned a specific request and, therefore, sensitive personal
information included in the corresponding sensing data cannot be obtained.

3.2.2. Sensing Data Provision

Figure 6 shows the process flow of sensing data provision. (2.1) The data provider 𝑢ௗ௣ transmits
a data provision request including its ID 𝐾௣௨௕(𝑢ௗ௥) to the data processing node. (2.2) The data
processing node generates a session key 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯ , encrypts the session key using the data
provider ID 𝐾௣௨௕(𝑢ௗ௥), and sends it as 𝑒𝑛𝑐(𝐾௣௨௕(𝑢ௗ௥), 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯) to the data provider. (2.3) The
data provider decrypts the received cipher text to obtain the session key, encrypts the collected
sensing data 𝑑௜ with the session key, and sends it as 𝑒𝑛𝑐(𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯, 𝑑௜) to the data processing
node.

Figure 6. Flow of sensing data provision.

3.2.3. Sensing Data Processing and Reward Payment

Figure 7 shows the process flow in which the data processing node validates the sensing data,
provides them to the data requester, and sends the reward information for the data provider to the 𝑆𝑃. (3.1) The data processing node 𝑝௥ decrypts the sensing data transmitted by the data provider
using the session key 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯ and verifies whether the data requester satisfies the schema

Figure 6. Flow of sensing data provision.

3.2.3. Sensing Data Processing and Reward Payment

Figure 7 shows the process flow in which the data processing node validates the sensing data,
provides them to the data requester, and sends the reward information for the data provider to the SP.
(3.1) The data processing node pr decrypts the sensing data transmitted by the data provider using
the session key Kses

(
pr, udp

)
and verifies whether the data requester satisfies the schema specified by

Future Internet 2020, 12, 56 10 of 19

the data requester. (3.2) If it is determined that the sensing data are valid, the pr sends to the data
requester the sensing data encrypted with data requester ID, enc(Kpub

(
udp
)
, di). (3.3) pr removes the

session key Kses
(
pr, udp

)
. (4.1) pr forwards the reward data including the data provider ID Kpub

(
udp
)

to
the SP, which updates the reward data on the user database. (4.2) The SP finally pays the reward to
the data provider udp.

Future Internet 2020, 12, x FOR PEER REVIEW 10 of 19

specified by the data requester. (3.2) If it is determined that the sensing data are valid, the 𝑝௥ sends
to the data requester the sensing data encrypted with data requester ID, 𝑒𝑛𝑐(𝐾௣௨௕൫𝑢ௗ௣൯, 𝑑௜). (3.3) 𝑝௥ removes the session key 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯ . (4.1) 𝑝௥ forwards the reward data including the data
provider ID 𝐾௣௨௕൫𝑢ௗ௣൯ to the 𝑆𝑃, which updates the reward data on the user database. (4.2) The 𝑆𝑃
finally pays the reward to the data provider 𝑢ௗ௣.

Figure 7. Flow of sensing data processing and reward payment.

4. Implementation of Proposed System

We use the Kaa IoT platform, PostgreSQL, MongoDB, and CoAP to implement the proposed
system. Figure 8 shows the process flow between the components of the proposed system. The
participating entities are an 𝑆𝑃, data processing node, data provider, and data requester. Steps 1–4
are requests for providing sensing data. Steps 5–10 correspond to the sensing data provision process,
and Steps 11–16 correspond to the sensing data processing and reward payment process.

Figure 8. Sequence diagram of proposed system.

4.1. Service Provider Server

Figure 7. Flow of sensing data processing and reward payment.

4. Implementation of Proposed System

We use the Kaa IoT platform, PostgreSQL, MongoDB, and CoAP to implement the proposed system.
Figure 8 shows the process flow between the components of the proposed system. The participating
entities are an SP, data processing node, data provider, and data requester. Steps 1–4 are requests for
providing sensing data. Steps 5–10 correspond to the sensing data provision process, and Steps 11–16
correspond to the sensing data processing and reward payment process.

Future Internet 2020, 12, x FOR PEER REVIEW 10 of 19

specified by the data requester. (3.2) If it is determined that the sensing data are valid, the 𝑝௥ sends
to the data requester the sensing data encrypted with data requester ID, 𝑒𝑛𝑐(𝐾௣௨௕൫𝑢ௗ௣൯, 𝑑௜). (3.3) 𝑝௥ removes the session key 𝐾௦௘௦൫𝑝௥, 𝑢ௗ௣൯ . (4.1) 𝑝௥ forwards the reward data including the data
provider ID 𝐾௣௨௕൫𝑢ௗ௣൯ to the 𝑆𝑃, which updates the reward data on the user database. (4.2) The 𝑆𝑃
finally pays the reward to the data provider 𝑢ௗ௣.

Figure 7. Flow of sensing data processing and reward payment.

4. Implementation of Proposed System

We use the Kaa IoT platform, PostgreSQL, MongoDB, and CoAP to implement the proposed
system. Figure 8 shows the process flow between the components of the proposed system. The
participating entities are an 𝑆𝑃, data processing node, data provider, and data requester. Steps 1–4
are requests for providing sensing data. Steps 5–10 correspond to the sensing data provision process,
and Steps 11–16 correspond to the sensing data processing and reward payment process.

Figure 8. Sequence diagram of proposed system.

4.1. Service Provider Server

Figure 8. Sequence diagram of proposed system.

Future Internet 2020, 12, 56 11 of 19

4.1. Service Provider Server

The user database, request database, and data processing node pool database were constructed
using PostgreSQL. The schema of the user, request, and data processing node pool databases is shown
in Tables 3–5, respectively. Communication with the data processing nodes was implemented using
the Kaa IoT platform. The Kaa SDK for communication with the SP is included in the data processing
node registration process. The Kaa SDK contains connection information, encryption algorithms and
encryption keys, data schemas, and so on for communication with the SP. Reward payment data uses
MongoDB, the default endpoint data history database on the Kaa IoT platform. The reward payment
data sent by the data processing node are stored in MongoDB on the SP, and the reward management
module uses these data to update the user database and delete the applied reward data from MongoDB.

Table 3. Schema of user database.

Field Name Data Type Filed Content

user_id String User ID Kpub(u)
Reward Decimal Reward amount i(u).

Table 4. Schema of data processing node database.

Field Name Data Type Filed Content

user_no Unit Unique user number
owner_id String ID Kpub(uno) of the owner of the data processing node
node_addr Unit Data processing node address addr(pi)
req_count Unit Number of assigned requests

Table 5. Schema of request database.

Field Name Data Type Filed Content

req_no Unit Unique request number
requester_id String Data requester ID Kpub(u)
Description String Description for sensing data transmitted by the data requester

Amount Unit Amount of requested data
Schema String Schema for sensing data
Reward Decimal Requested reward
node_no Unit (foreign key) Assigned data processing node number

Initially, a user uses an application to generate an RSA-2048 asymmetric cryptographic key pair
and sends the public key to the SP for registration. Upon receiving the user registration request, the SP
adds data having a reward field value of 0 to the user database using the public key provided by the
user as user_id.

The owner of a data processing node sets up a computing node as a data processing node, and then
sends its ID and IP address to the SP to request data processing node registration. Upon receiving this
request, the SP provides a data processing node application including the Kaa SDK. Figure 9 shows
the interface for creating and issuing the Kaa SDK in the SP. The owner of the data processing node
installs the provided application on the computing node so that it can operate as a data processing
node. The detailed structure and process flow of the data processing node application are described
in Section 4.2. After verifying that the new data processing node is functioning properly, the SP
adds a req_count value of 0, with the ID of the owner of the data processing node as owner_id and
the data processing node IP address as node_addr, to the data processing node database. The user_no
field value for the new data processing node is set to the smallest value that does not overlap with
the user_no value of other data processing nodes. The SP periodically communicates with the data

Future Internet 2020, 12, 56 12 of 19

processing node and deletes it from the corresponding database if it is determined that the node does
not operate normally.

Future Internet 2020, 12, x FOR PEER REVIEW 12 of 19

communicates with the data processing node and deletes it from the corresponding database if it is
determined that the node does not operate normally.

Figure 9. Profile management interface of Kaa SDK.

The data requester sends the description of the requested sensing data, the requested quantity,
the data schema, the reward payment amount, and its own ID to the 𝑆𝑃, and requests the provision
of the sensing data. The 𝑆𝑃 adds the data requester ID as 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟_𝑖𝑑 , the description of the
requested data, the amount of the requested data, and the data schema to the request database. The 𝑟𝑒𝑞_𝑛𝑜 field value of a new request is set to the smallest value that does not overlap with the 𝑟𝑒𝑞_𝑛𝑜
value of other requests. One of the data processing nodes with the smallest 𝑟𝑒𝑞_𝑐𝑜𝑢𝑛𝑡 value is
randomly selected and assigned to the request, the 𝑢𝑠𝑒𝑟_𝑛𝑜 field value of the request is set to the 𝑢𝑠𝑒𝑟_𝑛𝑜 value of the allocated data processing node, and the 𝑟𝑒𝑞_𝑐𝑜𝑢𝑛𝑡 value of the data processing
node increases by one. The 𝑆𝑃 transmits the data schema to the data processing node assigned to the
request to be used for sensing data validation, and then deletes from the request database the request
for which the data processing node sends the completion signal.

4.2. Data Processing Node

The data processing node includes an application provided by the 𝑆𝑃. Figure 10 shows the
structure of such an application. It includes a participant management module, a data processing
module, the Kaa SDK, a participant database, and a sensing data management database.

Figure 10. Application structure of data processing node.

As shown in Figure 10, the session key management submodule in the participant management
module stores and manages the ID and the session key used by a participant to provide sensing data,
(i.e., data provider). The participant database for storing session keys is implemented in PostgreSQL.

Figure 9. Profile management interface of Kaa SDK.

The data requester sends the description of the requested sensing data, the requested quantity,
the data schema, the reward payment amount, and its own ID to the SP, and requests the provision of
the sensing data. The SP adds the data requester ID as requester_id, the description of the requested
data, the amount of the requested data, and the data schema to the request database. The req_no field
value of a new request is set to the smallest value that does not overlap with the req_no value of other
requests. One of the data processing nodes with the smallest req_count value is randomly selected and
assigned to the request, the user_no field value of the request is set to the user_no value of the allocated
data processing node, and the req_count value of the data processing node increases by one. The SP
transmits the data schema to the data processing node assigned to the request to be used for sensing
data validation, and then deletes from the request database the request for which the data processing
node sends the completion signal.

4.2. Data Processing Node

The data processing node includes an application provided by the SP. Figure 10 shows the
structure of such an application. It includes a participant management module, a data processing
module, the Kaa SDK, a participant database, and a sensing data management database.

Future Internet 2020, 12, x FOR PEER REVIEW 12 of 19

communicates with the data processing node and deletes it from the corresponding database if it is
determined that the node does not operate normally.

Figure 9. Profile management interface of Kaa SDK.

The data requester sends the description of the requested sensing data, the requested quantity,
the data schema, the reward payment amount, and its own ID to the 𝑆𝑃, and requests the provision
of the sensing data. The 𝑆𝑃 adds the data requester ID as 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟_𝑖𝑑 , the description of the
requested data, the amount of the requested data, and the data schema to the request database. The 𝑟𝑒𝑞_𝑛𝑜 field value of a new request is set to the smallest value that does not overlap with the 𝑟𝑒𝑞_𝑛𝑜
value of other requests. One of the data processing nodes with the smallest 𝑟𝑒𝑞_𝑐𝑜𝑢𝑛𝑡 value is
randomly selected and assigned to the request, the 𝑢𝑠𝑒𝑟_𝑛𝑜 field value of the request is set to the 𝑢𝑠𝑒𝑟_𝑛𝑜 value of the allocated data processing node, and the 𝑟𝑒𝑞_𝑐𝑜𝑢𝑛𝑡 value of the data processing
node increases by one. The 𝑆𝑃 transmits the data schema to the data processing node assigned to the
request to be used for sensing data validation, and then deletes from the request database the request
for which the data processing node sends the completion signal.

4.2. Data Processing Node

The data processing node includes an application provided by the 𝑆𝑃. Figure 10 shows the
structure of such an application. It includes a participant management module, a data processing
module, the Kaa SDK, a participant database, and a sensing data management database.

Figure 10. Application structure of data processing node.

As shown in Figure 10, the session key management submodule in the participant management
module stores and manages the ID and the session key used by a participant to provide sensing data,
(i.e., data provider). The participant database for storing session keys is implemented in PostgreSQL.

Figure 10. Application structure of data processing node.

As shown in Figure 10, the session key management submodule in the participant management
module stores and manages the ID and the session key used by a participant to provide sensing data,

Future Internet 2020, 12, 56 13 of 19

(i.e., data provider). The participant database for storing session keys is implemented in PostgreSQL.
The schema of the participant database is shown in Table 6. When the data provider sends a join request
to a data processing node, the node generates a session key and stores it in the participant database
along with the data provider ID. (1) The session key management submodule securely transfers the
session key encrypted with this public to the data provider. (2) When providing the sensing data,
the data provider encrypts the data with a session key.

Table 6. Schema of participant database. ID—identifier.

Field Name Data Type Filed Content

provider_id String ID of user participating as data provider
sess_key String Session key used by the data provider

The data processing module consists of a schema-based data validation submodule and a data
aggregation submodule. The former receives the sensing data from the data provider using the CoAP
protocol. The encrypted sensing data is decrypted using the session key stored in the participant
database. The data validation submodule checks whether the sensing data satisfy the schema specified
by the data requester. If it is determined that the sensing data are valid, they are transferred to the
data aggregation submodule, which collects and appropriately processes them in the sensing data
management database. The databased is constructed using MongoDB, considering the characteristics
of the crowdsensing system, which can handle various types of sensing data. (3) The data aggregation
submodule transmits directly the encrypted sensing data with the ID of the data requester (udr)

(i.e., public key) to the data requester. (4) When the requested sensing data are received, the data
aggregation submodule sends the ID of the data provider and the reward payment amount to the
SP. Finally, the data aggregation submodule deletes all data related to the data provider including
the session key, and the reward data are from the sensing data management database. If the data
validation submodule determines that the sensing data are not valid, they are discarded.

Through this series of processes, the personal information included in the sensing data and the ID
of the data provider are not linked, and, at the time of providing the reward, the SP cannot know any
information other than the reward payment amount.

4.3. User Application

The user application is used by the data requester to send a request to the SP, or by the data
provider to retrieve the request and provide sensing data. It also generates and manages RSA-2048
asymmetric cryptographic key pairs required for participating in crowdsensing systems.

The data requester inputs the description, schema, and reward amount of the requested sensing
data through the user application, which transmits them with the data requester ID to the SP. The data
provider retrieves the sensing data provision request through the user application and provides the
sensing data. In this process, the user application requests a session key, encrypts and transmits sensing
data, and generates a CoAP message.

5. Performance Evaluation

5.1. Secruity Analysis

In this paper, we propose a distributed crowdsensing system with pull, partial, and participatory
characteristics. Instead of sending the sensing data provision request directly to the user, the service
provider announces the request and the address of the data processing node to which the request
is assigned so that the user can access the data processing node voluntarily. Therefore, the service
provider or an attacker cannot access real-time personal information of a specific user, and the user can
stop providing sensing data as soon as it is suspected that personal information was exposed or provide

Future Internet 2020, 12, 56 14 of 19

unnecessary personal information for sensing information as much as possible [21] (e.g., car number
deletion when providing photos in smart parking system).

The proposed system separates the reward data management nodes from the sensing data
processing node so that sensitive personal information included in the sensing data may not be exposed
to the service provider or an attacker who compromised the SP. Sensing data are encrypted and
transmitted using a session key shared between the data processing node and the data provider,
which transmits its ID together with the header of the sensing data. The data processing node decrypts
the sensing data to verify their validity, generates the reward payment data that maps the data provider
ID and the compensation amount, and transmits the compensation payment data to the SP. As soon
as the transmission is completed, the data processing node removes the header of the sensing data,
encrypts it with the data requester ID, and stores it in the database. Therefore, after the reward payment
data are transmitted to the SP, it is not possible to determine the identity of the provider of the specific
sensing data. To both obtain the sensing data and identify their provider, the data processing node
should be attacked between the decryption of the sensing data and the transmission of the reward
payment data. This is a particularly short time, and, as the decrypted sensing data are not stored in
the auxiliary memory, a long attack, such as memory reversal, should be carried out. Therefore, it is
difficult to attack the data processing node and obtain both the sensing data and the identification
information of the data provider within a short time.

In addition, the proposed system is advantageous in the case where personal data can be exposed
through multiple series of data analysis from a user (e.g., location trajectory privacy) by distributing
sensing data processing subjects to several data processing nodes instead of a central SP. In other
words, if one SP processes all the data, even if the user deletes the information that can expose personal
information and send it, there is a risk of exposure of secondary information (e.g., health exposure
following periodic hospital visits) by analyzing multiple data. However, since the proposed system is
randomly assigned to several nodes for data processing, the risk of personal information exposure by
multiple data analysis can be prevented.

The SP and a malicious data processing node may collaborate to allocate multiple sensing data
providing requests to a data processing node and obtain the sensing data and the identification
information of the data provider. However, in this case, it can be detected by the data
provider that a specific data processing node is assigned an unusually large number of requests.
Therefore, the data provider may refrain from providing the sensing data for the request processed by
the corresponding node.

In implementing the proposed system, the user database, request database, and data processing
node pool database were constructed using PostgreSQL. The security vulnerabilities of session key
management through PostgreSQL are the same as the normal PostgreSQL security vulnerabilities.
The session key is securely exchanged with the data processing node using RSA public key encryption
when the data provider participates in the operation. Therefore, there are two ways that an attacker
can steal the session key from the initial exchange or through the storage attack of the data processing
node. Since the safety of the RSA public key cryptography is already proven, a possible attack is
to threaten PostgreSQL within the data processing node. The attack can be prevented by applying
the solutions (e.g., PostgreSQL anomaly detector [31] and homogeneous encryption implementation
for Relational DBMSs such as PostgreSQL [32]) that are DB security solutions to compensate for the
security vulnerabilities of PostgreSQL DB. PostgreSQL also provides its own security solutions, such as
access control lists (ACLs) [33] and encryption [34], which can be used to improve the key management
security of our system.

To ensure the enhanced security of the proposed system, we measure the number of data processing
requests allocated to these nodes continuously as the number of malicious or compromised data
processing nodes increase, as shown in Figure 11. In this experiment, we perform an experiment to
allocate 100 data processing requests. In order for an attacker to obtain personal information from
advanced analysis (e.g., the movements or behavior patterns of a particular user), the attacker would

Future Internet 2020, 12, 56 15 of 19

have to steal the continuous record of the user (i.e., multiple series of sensing data). If the central
SP processes all the sensed data, the attacker can access all the sensed data simply by stealing the
authority of SP. However, in the proposed system, an attacker must take over all data processing
nodes in order to access all the sensing data. Even if an attacker successfully compromises 50% of the
total data processing nodes, the number of consecutive sensing data that an attacker can obtain is very
low (i.e., less than 10). It can be seen that an attacker must threaten at least 72% of the data processing
nodes in order to reliably steal 10 or more consecutive sensing data. Depending on the number of
data processing nodes that compose the system, the cost of threatening the data processing nodes
would vary, but the cost of attacking the data processing nodes, which account for 72% of the total,
is generally expected to be very high. In addition, unlike existing systems where service providers
may use malicious sensing data in a malicious way, a service provider in the proposed system acts as
a checker for the data processing nodes and, thus, post-processing after the problem occurs is also
possible. That is, if the information provided by the data processing node is incorrect, the service
provider can restrict the participation of the node.

Future Internet 2020, 12, x FOR PEER REVIEW 15 of 19

50% of the total data processing nodes, the number of consecutive sensing data that an attacker can
obtain is very low (i.e., less than 10). It can be seen that an attacker must threaten at least 72% of the
data processing nodes in order to reliably steal 10 or more consecutive sensing data. Depending on
the number of data processing nodes that compose the system, the cost of threatening the data
processing nodes would vary, but the cost of attacking the data processing nodes, which account for
72% of the total, is generally expected to be very high. In addition, unlike existing systems where
service providers may use malicious sensing data in a malicious way, a service provider in the
proposed system acts as a checker for the data processing nodes and, thus, post-processing after the
problem occurs is also possible. That is, if the information provided by the data processing node is
incorrect, the service provider can restrict the participation of the node.

Figure 11. Compromised processing nodes vs. number of consecutive works allocated to
compromised processing nodes.

5.2. Processing Performance

To demonstrate the sensing data processing efficiency of the proposed system, the request
processing time for the allocated sensing data was measured for varying number of data processing
nodes. The request processing time is the time required for completing all the sensing data processing
requests from the time when the first request is allocated and opened to the time when the sensing
data for the last request is transmitted to the data requester and the reward information is updated
(Steps 5–16 in Figure 8). The number of sensing data requests was set to 10, 50, and 100. Ten data
providers generated and sent random values as sensing data as soon as they received a new sensing
data request. The experiment was performed on the implemented system, as explained in Section 4,
and all nodes were connected with a network of virtual machines. The final results were obtained by
averaging the results of 10 independent runs of the same experiment.

In order to analyze the efficiency of distributed processing of data processing nodes, we compare
the proposed system with the method of performing all data processing in one 𝑆𝑃. The processing
method using the conventional approach is shown in Figure 12. This method is also implemented to
store sensing data, reward information, and user information using PostgreSQL, and the data
provider encrypts and transmits the publicly disclosed public key of 𝑆𝑃 instead of exchanging a
session key with the service provider. The Kaa framework used for data processing node
participation, sensing data transmission, and so on is not used in the central 𝑆𝑃 processing
experiment. The request processing time measured in the conventional method is the time required
for processing Steps 3–10 in Figure 12.

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Th
e

nu
m

be
r o

f c
on

se
cu

tiv
e

w
or

ks
 a

llo
ca

te
d

to

co
m

pr
om

ise
d

pr
oc

es
sin

g
no

de
s

The percentage of compromised processing nodes (%)

Percentage of Compromised processing nodes vs. Number of
consecutive works allocated to compromised processing nodes

Our system Centralized SP

Figure 11. Compromised processing nodes vs. number of consecutive works allocated to compromised
processing nodes.

5.2. Processing Performance

To demonstrate the sensing data processing efficiency of the proposed system, the request
processing time for the allocated sensing data was measured for varying number of data processing
nodes. The request processing time is the time required for completing all the sensing data processing
requests from the time when the first request is allocated and opened to the time when the sensing
data for the last request is transmitted to the data requester and the reward information is updated
(Steps 5–16 in Figure 8). The number of sensing data requests was set to 10, 50, and 100. Ten data
providers generated and sent random values as sensing data as soon as they received a new sensing
data request. The experiment was performed on the implemented system, as explained in Section 4,
and all nodes were connected with a network of virtual machines. The final results were obtained by
averaging the results of 10 independent runs of the same experiment.

In order to analyze the efficiency of distributed processing of data processing nodes, we compare
the proposed system with the method of performing all data processing in one SP. The processing
method using the conventional approach is shown in Figure 12. This method is also implemented to

Future Internet 2020, 12, 56 16 of 19

store sensing data, reward information, and user information using PostgreSQL, and the data provider
encrypts and transmits the publicly disclosed public key of SP instead of exchanging a session key with
the service provider. The Kaa framework used for data processing node participation, sensing data
transmission, and so on is not used in the central SP processing experiment. The request processing
time measured in the conventional method is the time required for processing Steps 3–10 in Figure 12.Future Internet 2020, 12, x FOR PEER REVIEW 16 of 19

Figure 12. Sequence diagram of traditional method of processing data at the service provider server

(𝑆𝑃).

Figure 13 shows the request processing time of proposed and traditional methods according to
the number of data processing nodes. When the central 𝑆𝑃 processes all the sensing data, it takes
519.858 seconds to process 100 requests, which is faster than the processing by one data processing
node which takes 534.985 seconds. This difference can be analyzed because the 𝑆𝑃 processes the
sensing data, unlike the case in which the data processing node processes the session key exchange
and reward information transfer. However, even if only one data processing node is added, the
processing speed of the proposed system that distributes and processes the sensing data is faster. In
particular, it can be seen that, as the number of data processing nodes increases, the request
processing time clearly decreases. The results demonstrate that the presence of a larger number of
data processing nodes in the proposed system implies better sensing data processing performance.
However, even if a data processing node is configured with a relatively small number of nodes, a
significant performance improvement can be expected. That is, distributed processing (i.e., the
involvement of several data processing nodes) can significantly reduce processing time. In addition,
the proposed system not only has superior security compared to the central 𝑆𝑃 processing method,
but also has an advantage in the processing efficiency of sensing data.

Figure 13. Number of data processing nodes vs. request processing time (only SP processes are
requested when the number of data processing nodes is 0).

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Re
qu

es
t p

ro
ce

ss
in

g
tim

e
(s

)

The number of data processing nodes in the proposed system

The number of data processing nodes vs. Request processing times

10 requests 50 requests 100 requests

Only SP

Figure 12. Sequence diagram of traditional method of processing data at the service provider server (SP).

Figure 13 shows the request processing time of proposed and traditional methods according to
the number of data processing nodes. When the central SP processes all the sensing data, it takes
519.858 s to process 100 requests, which is faster than the processing by one data processing node
which takes 534.985 s. This difference can be analyzed because the SP processes the sensing data,
unlike the case in which the data processing node processes the session key exchange and reward
information transfer. However, even if only one data processing node is added, the processing speed
of the proposed system that distributes and processes the sensing data is faster. In particular, it can
be seen that, as the number of data processing nodes increases, the request processing time clearly
decreases. The results demonstrate that the presence of a larger number of data processing nodes in
the proposed system implies better sensing data processing performance. However, even if a data
processing node is configured with a relatively small number of nodes, a significant performance
improvement can be expected. That is, distributed processing (i.e., the involvement of several data
processing nodes) can significantly reduce processing time. In addition, the proposed system not only
has superior security compared to the central SP processing method, but also has an advantage in the
processing efficiency of sensing data.

Table 7 shows the average time required to process one sensing datum. The participation request
and sensing data encryption/decryption time is less than 1 ms and does not affect the total time. Most of
the total time is required for session key sharing using asymmetric encryption, for encrypting the
sensing data with the requester ID, and for sending the data. Regardless of the total number of requests,
the case of a single data processing node involved the longest processing time, as it can be expected
that a single data processing node should perform all steps up to issuing a session key for all sensing
data and processing time-consuming sensing data. The case of 10 data processing nodes involved
the shortest total request processing time. As the number of data processing nodes exceeded five,
the request processing time decreased slowly. These results demonstrate that relatively high data
processing performance can be achieved with five or more data processing nodes.

Future Internet 2020, 12, 56 17 of 19

Future Internet 2020, 12, x FOR PEER REVIEW 16 of 19

Figure 12. Sequence diagram of traditional method of processing data at the service provider server

(𝑆𝑃).

Figure 13 shows the request processing time of proposed and traditional methods according to
the number of data processing nodes. When the central 𝑆𝑃 processes all the sensing data, it takes
519.858 seconds to process 100 requests, which is faster than the processing by one data processing
node which takes 534.985 seconds. This difference can be analyzed because the 𝑆𝑃 processes the
sensing data, unlike the case in which the data processing node processes the session key exchange
and reward information transfer. However, even if only one data processing node is added, the
processing speed of the proposed system that distributes and processes the sensing data is faster. In
particular, it can be seen that, as the number of data processing nodes increases, the request
processing time clearly decreases. The results demonstrate that the presence of a larger number of
data processing nodes in the proposed system implies better sensing data processing performance.
However, even if a data processing node is configured with a relatively small number of nodes, a
significant performance improvement can be expected. That is, distributed processing (i.e., the
involvement of several data processing nodes) can significantly reduce processing time. In addition,
the proposed system not only has superior security compared to the central 𝑆𝑃 processing method,
but also has an advantage in the processing efficiency of sensing data.

Figure 13. Number of data processing nodes vs. request processing time (only SP processes are
requested when the number of data processing nodes is 0).

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Re
qu

es
t p

ro
ce

ss
in

g
tim

e
(s

)

The number of data processing nodes in the proposed system

The number of data processing nodes vs. Request processing times

10 requests 50 requests 100 requests

Only SP

Figure 13. Number of data processing nodes vs. request processing time (only SP processes are
requested when the number of data processing nodes is 0).

Table 7. Average time required to provide sensing data.

Step Time (ms)

Establish connection and send participation request 0.2
Generate and send session key 27
Encrypt data with session key 0.5
Decrypt data with session key 0.5
Encrypt data with requester ID 25

Total 54.2

Accordingly, the crowdsensing service provider may increase the participation of a data processing
node by, for example, rewarding the node owner if insufficient processing capacity is expected
depending on the number of available data processing nodes.

6. Conclusions

In this paper, we proposed a method for separating reward payment and sensing data
processing nodes by delegating data processing to random data processing nodes. This distributed
processing method can prevent exposure of sensitive personal information included in sensing
data in a crowdsensing system, as well as increase the processing performance. In addition,
we demonstrated the feasibility of the proposed system by implementing it and analyzing its processing
and security performance.

Author Contributions: M.K. and J.Y. completed this work. M.K. organized the design and development of the
proposed system in this work and focused on writing the paper. J.Y. implemented and experimented the prototype
of the proposed system. M.K. guided this whole study as the corresponding author. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by a National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2018R1A2B6009620).

Conflicts of Interest: The authors declare no conflicts of interest.

Future Internet 2020, 12, 56 18 of 19

References

1. Burke, J.; Estrin, D.; Hansen, M.; Parker, A.; Ramanathan, N.; Reddy, S.; Srivastava, M.B. Participatory sensing.
In Proceedings of the World-Sensor-Web Workshop Collocated with ACM SenSys, Boulder, CO, USA,
31 October–3 November 2006.

2. Zhang, X.; Yang, Z.; Sun, W.; Liu, Y.; Tang, S.; Xing, K.; Mao, X. Incentives for Mobile Crowdsensing: A Survey.
IEEE Commun. Surv. Tutor. 2016, 18, 54–67. [CrossRef]

3. Vergara-Laurens, I.J.; Jaimes, L.G.; Labrador, M.A. Privacy-Preserving Mechanisms for Crowdsensing:
Survey and Research Challenges. IEEE Internet Things J. 2017, 4, 855–869. [CrossRef]

4. Farkas, K.; Feher, G.; Benczur, A.; Sidlo, C. Crowdsensing based public transport information service in
smart cities. IEEE Commun. Mag. 2015, 53, 158–165. [CrossRef]

5. Pan, B.; Zheng, Y.; Wilkie, D.; Shahabi, C. Crowdsensing of traffic anomalies based on human mobility
and social media. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems—SIGSPATIAL, Orlando, FL, USA, 5–8 November 2013; pp. 344–353.

6. Kaa IoT Platform. Available online: https://www.kaaproject.org/ (accessed on 18 February 2019).
7. Postgre SQL. Available online: https://www.postgresql.org/ (accessed on 18 February 2019).
8. Mongo DB. Available online: https://www.mongodb.com/ (accessed on 18 February 2019).
9. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). Available online:

https://tools.ietf.org/html/rfc7252 (accessed on 13 March 2020).
10. Ganti, R.; Ye, F.; Lei, H. Mobile crowdsensing: Current state and future challenges. IEEE Commun. Mag.

2011, 49, 32–39. [CrossRef]
11. Caro, N.D.; Colitti, W.; Steenhaut, K.; Mangino, G.; Reali, G. Comparison of two lightweight protocols for

smartphone-based sensing. In Proceedings of the 2013 IEEE 20th Symposium on Communications and
Vehicular Technology in the Benelux (SCVT), Namur, Belgium, 21 November 2013; pp. 1–6.

12. Tang, K.; Wang, Y.; Liu, H.; Sheng, Y.; Wang, X.; Wei, Z. Design and Implementation of Push Notification
System Based on the MQTT Protocol. In Proceedings of the 2013 International Conference on Information
Science and Computer Applications (ISCA 2013), Changsha, China, 8–9 November 2013.

13. Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A publish/subscribe protocol for Wireless Sensor
Networks. In Proceedings of the 3rd International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE ’08), Bangalore, India, 5–10 January 2008; pp. 791–798.

14. Thangavel, D.; Ma, X.; Valera, A.; Tan, H.-X.; Tan, C.K.-Y. Performance evaluation of MQTT and CoAP via a
common middleware. In Proceedings of the IEEE Ninth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), Singapore, 21–24 April 2014; pp. 1–6.

15. Hull, B.; Bychkovsky, V.; Zhang, Y.; Chen, K.; Goraczko, M.; Miu, A.; Shih, E.; Balakrishnan, H.; Madden, S.
A distributed mobile sensor computing system. In Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems, Boulder, CO, USA, 31 October–3 November 2006; pp. 125–138.

16. Tuncay, G.S.; Benincasa, G.; Helmy, A. Autonomous and distributed recruitment and data collection
framework for opportunistic sensing. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2013, 16, 50–53.
[CrossRef]

17. Eisenman, S.B.; Miluzzo, E.; Lane, N.D.; Peterson, R.A.; Ahn, G.S.; Campbell, A.T. Bikenet: A mobile sensing
system for cyclist experience mapping. ACM Trans. Sens. Netw. (TOSN) 2009, 6, 1–39. [CrossRef]

18. Ganti, R.K.; Jayachandran, P.; Abdelzaher, T.F.; Stankovic, J.A. Satire: A software architecture for smart
attire. In Proceedings of the 4th International Conference on Mobile Systems, Applications and Services,
Uppsala, Sweden, 19–22 June 2006; pp. 110–123.

19. Das, T.; Mohan, P.; Padmanabhan, V.N.; Ramjee, R.; Sharma, A. Prism: Platform for remote sensing using
smartphones. In Proceedings of the 8th ACM International Conference on Mobile Systems, Applications,
and Services (MobiSys), San Francisco, CA, USA, 15–18 June 2010; pp. 63–76.

20. Shin, M.; Cornelius, C.; Peebles, D.; Kapadia, A.; Kotz, D.; Triandopoulos, N. Anonysense: A system for
anonymous opportunistic sensing. J. Pervasive Mob. Comput. 2010, 7, 16–30. [CrossRef]

21. Yun, J.; Kim, M. Smart Parking System Using Mobile Crowdsensing: Focus on Removing Privacy Information.
In Proceedings of the Korea Information Processing Society Conference, Seoul, Korea, 11–12 May 2018;
pp. 32–35. [CrossRef]

http://dx.doi.org/10.1109/COMST.2015.2415528
http://dx.doi.org/10.1109/JIOT.2016.2594205
http://dx.doi.org/10.1109/MCOM.2015.7180523
https://www.kaaproject.org/
https://www.postgresql.org/
https://www.mongodb.com/
https://tools.ietf.org/html/rfc7252
http://dx.doi.org/10.1109/MCOM.2011.6069707
http://dx.doi.org/10.1145/2436196.2436219
http://dx.doi.org/10.1145/1653760.1653766
http://dx.doi.org/10.1016/j.pmcj.2010.04.001
http://dx.doi.org/10.3745/PKIPS.y2018m05a.32

Future Internet 2020, 12, 56 19 of 19

22. Silva, M.; Signoretti, G.; Oliveira, J.; Silva, I.; Costa, D.G. A Crowdsensing Platform for Monitoring of
Vehicular Emissions: A Smart City Perspective. Future Internet 2019, 11, 13. [CrossRef]

23. Pilloni, V. How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as
Pillars of Industry 4.0. Future Internet 2018, 10, 24. [CrossRef]

24. Pournajaf, L.; Garcia-Ulloa, D.A.; Xiong, L.; Sunderam, V. Participant Privacy in Mobile Crowdsensing Task
Management: A Survey of Methods and Challenges. ACM SIGMOD Rec. 2015, 44, 23–34. [CrossRef]

25. Eriksson, J.; Girod, L.; Hull, B.; Newton, R.; Madden, S.; Balakrishnan, H. The pothole patrol: Using a mobile
sensor network for road surface monitoring. In Proceedings of the 6th International Conference on Mobile
Systems, Applications, and Services—MobiSys, Breckenridge, CO, USA, 17–20 June 2008; pp. 29–39.

26. Kapadia, A.; Tri, N.; Cornelius, C.; Peebles, D.; Kotz, D. Anonysense: Opportunistic and privacy-preserving
context collection. In Proceedings of the 6th International Conference on Mobile Systems, Applications,
and Services (MobiSys), Breckenridge, CO, USA, 17–20 June 2008; pp. 280–297.

27. Machanavajjhala, A.; Kifer, D.; Gehrke, J.; Venkitasubramaniam, M. L-diversity: Privacy beyond k-anonymity.
ACM Trans. Knowl. Discov. Data TKDD 2017, 1, 3-es. [CrossRef]

28. Basudan, S.; Lin, X.; Sankaranarayanan, K. A privacy-preserving vehicular crowdsensing-based road surface
condition monitoring system using fog computing. IEEE Internet Things J. 2017, 4, 772–782. [CrossRef]

29. Wang, J.; Li, M.; He, Y.; Li, H.; Xiao, K.; Wang, C. A blockchain based privacy-preserving incentive mechanism
in crowdsensing applications. IEEE Access 2018, 6, 17545–17556. [CrossRef]

30. Li, T.; Jung, T.; Qiu, Z.; Li, H.; Cao, L.; Wang, Y. Scalable privacy-preserving participant selection for mobile
crowdsensing systems: Participant grouping and secure group bidding. IEEE Trans. Netw. Sci. Eng. 2018.
[CrossRef]

31. Shebaro, B.; Sallam, A.; Karma, A.; Bertino, E. PostgreSQL anomaly detector. In Proceedings of the 14th
Annual Information Security Symposium (CERIAS), West Lafayette, IN, USA, 3–4 April 2013.

32. Popa, R.A.; Zeldovich, N.; Balakrishnan, H. CryptDB: A Practical Encrypted Relational DBMS.
Available online: http://people.csail.mit.edu/nickolai/papers/raluca-cryptdb-tr.pdf (accessed on
19 March 2020).

33. Postgre SQL. Access Control. Available online: https://www.postgresql.org/docs/6.5/security13618.htm
(accessed on 10 March 2019).

34. Postgre SQL. Encryption Options. Available online: https://www.postgresql.org/docs/8.1/encryption-options.
html (accessed on 10 March 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/fi11010013
http://dx.doi.org/10.3390/fi10030024
http://dx.doi.org/10.1145/2935694.2935700
http://dx.doi.org/10.1145/1217299.1217302
http://dx.doi.org/10.1109/JIOT.2017.2666783
http://dx.doi.org/10.1109/ACCESS.2018.2805837
http://dx.doi.org/10.1109/TNSE.2018.2791948
http://people.csail.mit.edu/nickolai/papers/raluca-cryptdb-tr.pdf
https://www.postgresql.org/docs/6.5/security13618.htm
https://www.postgresql.org/docs/8.1/encryption-options.html
https://www.postgresql.org/docs/8.1/encryption-options.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Crowdsensing
	Lightweight Messaging Protocol
	Kaa IoT Platform
	Related Work

	Proposed System
	Structure of Proposed System
	Process Flow of Proposed System
	Sensing Data Request
	Sensing Data Provision
	Sensing Data Processing and Reward Payment

	Implementation of Proposed System
	Service Provider Server
	Data Processing Node
	User Application

	Performance Evaluation
	Secruity Analysis
	Processing Performance

	Conclusions
	References

