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Abstract: Knowledge base question answering (KBQA) aims to analyze the semantics of natural
language questions and return accurate answers from the knowledge base (KB). More and more
studies have applied knowledge bases to question answering systems, and when using a KB to answer
a natural language question, there are some words that imply the tense (e.g., original and previous)
and play a limiting role in questions. However, most existing methods for KBQA cannot model a
question with implicit temporal constraints. In this work, we propose a model based on a bidirectional
attentive memory network, which obtains the temporal information in the question through attention
mechanisms and external knowledge. Specifically, we encode the external knowledge as vectors,
and use additive attention between the question and external knowledge to obtain the temporal
information, then further enhance the question vector to increase the accuracy. On the WebQuestions
benchmark, our method not only performs better with the overall data, but also has excellent
performance regarding questions with implicit temporal constraints, which are separate from the
overall data. As we use attention mechanisms, our method also offers better interpretability.

Keywords: knowledge base question answering; attention mechanism; external knowledge

1. Introduction

A knowledge base (KB) [1] stores a lot of information, which is complex and structured; they
describe things (or entities) and their relationships. KB offers a more readable knowledge network for
a machine and provides a more natural way to obtain abundant underlying knowledge. Freebase [2] is
one such knowledge base that describes and organizes more than 3 billion facts in a consistent ontology.
In fact, KB is usually represented as triples [3], such as, (subject, relation, object), where the subject and
object represent entities, and the relation describes the semantic relations between subject and object.
These triples are often referred to as facts and can be used for answering questions. For example, the
triple (Donald Trump, President, America) can be used to answer the question “Who is the president
of America”. KB is increasingly used for building question answering systems [4,5].

Knowledge base question answering (KBQA) aims to analyze the semantics of natural language
questions and return accurate answer from the knowledge base. At present, the methods proposed to
tackle the KBQA task can be roughly categorized into two groups: semantic parsing (SP) methods and
information retrieval (IR) methods. SP-based methods [6] aim to transform natural language problems
into logical expressions through semantic analysis, then they are transformed into a query language
such as SPARQL to retrieve the knowledge base and obtain the answer [7]. Although many SP-based
methods can achieve good results in the limited domain, many important components in these works,
such as vocabularies and rulesets in Combinatory categorial grammar (CCG) [8], are written manually.
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Traditional semantic parses [9] require labeled training data and are limited to narrow domains with
a small number of logical predicates, but manually labeling data is time-consuming and laborious.
Recent studies handle these limitations through the construction of hand-crafted rules or features [6,10],
schema matching [11], and using weak supervision from external resources [12].

SP-based methods are still based on symbolic logic and lack flexibility. When analyzing question
semantics, it will be affected by the semantic differences between symbols. IR-based methods directly
retrieve answers from the KB in light of the information conveyed in the questions. These IR-based
methods can adapt better to large and complex KBs, as they do not need hand-made rules. In recent
years, with the rapid development of deep learning technology, deep learning is used more and more
in KBQA. On the basis of IR-based approaches, many embedding-based methods [13,14] have been
proposed and have shown promising results. Compared with the traditional KBQA methods based on
symbols, the KBQA method based on representation learning [14] is more robust, and it has gradually
exceeded the traditional method in effect. These methods adopt various ways to encode questions
and KB subgraphs into a common embedding space, then directly match them in that space, finally
typically trained in an end-to-end manner.

Although the above methods have shown good results, they are not satisfactory in some specific
problems, such as questions with implicit temporal constraints. In order to solve this problem, we
introduce external knowledge on the basis of Bidirectional Attentive Memory Networks (BAMnet) [15],
called Temporal Attention Networks (TAnet), that captures the implicit temporal information in
question. We use a novel bidirectional attentive mechanism to obtain the temporal information in
question in the light of external knowledge. In the experiments, we prove that our method not only
shows better results in the original datasets, but also in the data with implicit temporal constraints.

We summarize the contributions of this paper as follows: (1) we introduce external knowledge to
solve the questions with implicit temporal constraints; (2) due to the attention mechanism, it offers
good interpretability; (3) on the WebQuestions benchmark, our method performs better, and, on the
questions with implicit temporal constraints, performs excellently.

The rest of this paper is organized as follows. After introducing related works in Section 2, we
describe our proposed methods in Section 3, and then we show our experimental results in Section 4.
Finally, we summarize our work and future work in Section 5.

2. Related Work

Generally, the solutions of KBQA can be divided into IR-based methods and SP-based methods.
SP-based methods aim to transform natural language problems into logical expressions through
semantic analysis, such as simple λ −DCS [16], query graphs [17], or executable queries, such as
SPARQL [5]. Then the logical forms are executed by the corresponding technique and find the answers
from the knowledge base. More recently, neural sequence-to-sequence models have been applied
to semantic parsing with promising results [18,19], these methods eschew the need for extensive
feature engineering.

Some studies have focused on approaches based on weak supervision from either external
resources [20], schema matching [11], or using hand-crafted rules and features [6]. A series of studies
has been explored to generate semantic query graphs from nature language questions, such as searching
partial logical forms via an agenda-based strategy [21], exploiting rich syntactic information in nature
language questions [22], using coarse alignment between phrases and predicates [23], or pushing
down the disambiguation step into the query evaluation stage [24]. Notably, some SP-based methods
try to exploit IR-based techniques [25] by computing the similarity between two sequences as features,
utilizing a neural network-based answer type prediction model, or training end-to-end neural symbolic
machine via REINFORCE [26]. However, most SP-based methods more or less rely on handcrafted
rules or features, which limit their flexibility.

The general process of IR-based methods directly retrieves answers from the KB in light of the
information conveyed in the questions [4,27]. Their main difference is how to select the correct answers
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from the candidate set. Yao and Van Durme [28] used rules to extract question features from the
dependency parse of questions and used relations and properties in the retrieved topic graph as
knowledge base features. Then, the production of these two kinds of features was fed into a logistic
regression model to classify the question’s candidate answers into correct/wrong.

In contrast, we do not use rules, dependency parse results, or hand-crafted features for question
understanding. Recently, embedding-based methods for KBQA are becoming more and more popular,
Bordes et al. [29] first applied an embedding-based approach for KBQA, afterwards Bordes et al. [30]
proposed the idea of subgraph embedding, which encodes more information (e.g., answer path and
context) about the candidate answers. In a follow-up work [30], memory networks [31] were used to
store candidate answers and could be accessed iteratively to mimic multi-hop reasoning. Different
from the above methods that mainly use a bag-of-words (BOW) representation to encode questions
and KB resources, Dong et al. [32] and Hao et al. [14] applied more advanced network modules (e.g.,
convolutional neural networks (CNNs) and long short-term memory networks) to encode questions.
Das et al. [33] proposed Hybrid methods, which achieve improved results by leveraging additional
knowledge sources, such as free text.

With the development of the attention mechanism [34], bidirectional attention was first proposed
applied in machine reading comprehension [35,36] and was then then applied to KBQA. Most
embedding-based approaches encode questions and answers independently. Hao et al. [15] proposed a
cross-attention mechanism to encode questions according to various candidate answer aspects. Chen,
Y et al. [17] goes one step further by modeling the bidirectional interactions between questions and a
KB. This work not only modeled the interactions between questions and a KB but also introduced
external knowledge to handle questions with implicit temporal constraints through an attention
mechanism. As these previous works cannot handle questions with implicit temporal constraints
without rules, dependency parse results, or hand-crafted features, therefore we focus on capturing the
interactions between external knowledge and questions. We use deep learning (attention mechanism)
to handle questions with implicit temporal constraints without rules, dependency parse results, or
hand-crafted features.

Another line of related work is applying deep learning techniques for the question answering task.
Grefenstette et al. [37] proposed a deep architecture to learn a semantic parser from annotated logic
forms of questions. Iyyer et al. [38] introduced dependency-tree recursive neural networks for the quiz
bowl game, which asked players to answer an entity for a given paragraph. Yu et al. [39] proposed
a bigram model based on convolutional neural networks to select answer sentences from text data.
The model learned a similarity function between questions and answer sentences. Yih et al. [40] used
convolutional neural networks to answer single-relation questions on REVERB [41]. However, the
system worked on relation-entity triples instead of more structured knowledge bases. We can utilize
richer information (such as entity types) in structured knowledge bases.

Based on these works [42,43], we introduce external knowledge using attention mechanism to
acquire temporal information on knowledge and questions, then further enhance the question vector
through information to increase the accuracy of the question answer.

3. Model

On the basis of BAMnet, we propose a method to solve the implicit temporal constraints in the
natural language question. The model is shown in Figure 1.
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Figure 1. Model overview.

3.1. Input Module

Formally, an input question P = p1, p2, . . . , pm was denoted as a word embedding Pm by using a
word embedding layer. Then, we encoded the question as LQ with a bidirectional LSTM [44] (long
short-term memory), where LQ is the sequence of hidden states (i.e., the concatenation of forward and
backward hidden states) generated from the BiLSTM.

3.2. Memory Module

We used a key-value memory network to store all candidate answers
{
A j

}|A|
j=1

(the closest to main

entity and h-hops entity), which were encoded as answer types (entity type in KB), path (sequence
of relations from a candidate answer to a topic entity in KB) and context (surrounding entities of a
candidate in KB). Using

[
Mkt; Mvt

]
,
[
Mkp; Mvp

]
,
[
Mkc; Mvc

]
to represent the key-value pair of answer

type, path, and context, respectively.

3.3. Temporal Attention Module

The temporal information implied in a question is very important for answering the question.
In order to solve questions with temporal (e.g., tense) constraints, we proposed a temporal attention
module to focus on temporal constraints of a question in Figure 2, which used an attention mechanism
to obtain temporal information related to the external knowledge and question, and the external
knowledge mentioned earlier are common tense words (such as original, previous, and former). We
first used a bidirectional LSTM to encode the pre-processed tense related words qT as qt:

→

h
t

i = LSTM
(
→

h
t

i−1, qT
)

←

h
t

i = LSTM
(
←

h
t

i+1, qT
)

qt =

[
→

h
t

i ;
←

h
t

i

] (1)

where the parameters of the LSTM are from those of input layer LSTM and qt, which is fa orward and
backward hidden state vector combination of LSTM.
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Then, we used an additive attention to gain the most relevant temporal information about
the question. Putting qt and LQ as inputs into the additive attention to obtained implicit temporal
information, and in questions at:

aT = tanh(WtLQ + WTqt + bT)

at = so f tmax(σ(WtaT + bt))
(2)

where σ is the element-wise sigmoid function; WT and WT′ are the weight matrices corresponding to
the question vector LQ and tense vector qt; Wt is the weight matrix corresponding to their non-linear
combination; bT and bt are the bias vectors.

We have gained temporal information at in view of the question. Then, we integrated the temporal
information into the question vector:

LQt = LQ + at. (3)

By now, we have obtained temporal-aware question vector LQt, as it contains implicit temporal in light
of the question.

3.4. Bidirectional Attention Module

The bidirectional attention module aims at catching the connection between the question and
knowledge base. As not all components in a question are useful, we focused on the important parts of
a question in light of the KB in Figure 3.

We used self-attention for whole new question vector about temporal LQt to obtain a question
vector qs:

qs = BiLSTM
([

LQt(aq)T, LQt
]

aq = so f tmax(Lq)

Lq =
(
LQt

)T
LQt

(4)

where softmax is used in last dimension of Lq. Then, we put Mkt, Mkp, Mkc, and qs as inputs into
additive attention to obtain KB summary:

my = ay
·Mvy

ay = so f tmax
(
tanh

(
W1qs + W2Mky

)
W3

) (5)

where y ∈
{
t, p, c

}
, W1, W2 and W3 are trainable weights, and Mv is the value of the memory network.
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Figure 3. The question in light of the knowledge base (KB). Mul: Vector multiplication.

So far, we already have a KB summary in light of the question. Then, we concatenated my as m.
We multiply LQt and m, in order to obtain an attention matrix AQK, which is a connection between the
question and KB. We used max pooling on AQK to obtain the best connection aQK between the question
and KB. Finally, we applied a softmax aQK over to obtain ã, which is the importance of the question
about the KB.

After finding the vector, which is the question regarding the KB, we continued to obtain a vector
that is the KB for the question. First, we obtained a dot-product between LQt and Mk (concatenation of
Mkt, Mkp, and Mkc) to find a connection of the question and the KB attention matrix Aqm. We used max
pooling on the last dimension of Aqm and normalized it to obtain the attention matrix Ax, which is
the importance of the answer aspect for the candidate answer. Then, we continued to compute the
question-aware KB representations M̃k and M̃v as follows:

M̃v =
3∑

i=1
Mv

i

M̃k = AxMk

Ax = so f tmax
(
max

j

{
Aqm

j

}
j=1

)
AqmLQt

(
MK

)T

. (6)

Then, we enhanced the question and KB representation. We used max pooling on the last
dimension of Aqm and normalized it to obtain an attention matrix Ay, which is the question for the KB
attention matrix. Finally, we used Ay, the importance of the question about KB ã, the KB summary, and
Mv, the tense vector at that we obtained before to find an enhanced question representation q̃:

q̃ = ã̃LQt

L̃Qt = LQt + ã ·
(
AyM̃v

)
+ at

Ay = so f tmax(max
i

{
Aqm

i

}
i=−1

)

. (7)
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Similarly, we enhanced the KB representation M̂k that included the question information:

M̂k = M̃k + âm
·

((
Ãqm

)T
L̃qt

)
âm = Ayã
Ãqm = so f tmax(Aqm)

. (8)

3.5. Generalization Module

We used a one-hop attention process before answering. First, we used an attention mechanism to
obtain the most relevant information from the memory. Then we renewed the question vector via a
GRU (gate recurrent unit) [45]. Finally, we used a residual layer and batch normalization (BN), which
can help the model performance in practice. Thus, we have:

q̂ = BN(q̃ + q)
q = GRU(q̃, m)

m = a · M̃v

a = AttGRU
add

(̃
q, M̂k

) (9)

3.6. Answer Module

Given the question representation q̂ and candidate answer representation
{
A j

}|A|
j=1

, which is{
M̂k

j

}|A|
j=1

, we computed the matching score S
(
q̂, M̂k

j

)
between every pair

(
Q, A j

)
as S(q, a) = qT

· a, and

ranked their scores to obtain the candidate answers.

4. Results

4.1. Experimental Datasets

Our experiments were based on the WebQuestions dataset [46], which contains 3,778 training
examples and 2,032 test examples. We further split the training data into a training set and validation
set, where the training set contained 2298 examples and the validation set contained 755 examples.
The validation data is randomly selected from the initial sample. The knowledge base is Freebase
KB, which consists of general facts organized as subject–property–object triples. In order to prove the
validity of the temporal attention module, we extracted part questions (about 11% of the WebQuestion
dataset) and included implicit temporal (e.g., what did James K. Polk do before he was president?) to
test what we call t-data. According to some tense related words in the question, we extracted these
questions from the test data.

Following Berant et al. [23], macro F1 scores are reported on the WebQuestions test set, where
macro F1 scores mean calculate F1 scores through the accuracy and recall rate of each question, and
then calculate the average value of F1 scores over all questions. The reason for doing this is that the
training and test sets are processed in batches.

4.2. Experimental Parameters

When answering the question, not all entities and relations in Freebase will be used, so we only
extracted entities and relations that existed in the dataset. The vocabulary size of words is v = 100,
797. There are 1712 entity types and 4996 relation types in the dataset. In particular, the entity may
have multiple representations in Freebase, so we only used the entity that is in question. If the entity is
boolean values or numbers, we used “bool” and “nums” as their types.

During the training time, we extracted a 2-hop entity, which is close to the topic entity as candidate
answers. The memory network size is Mmax=96. We used a pre-trained Glove vector to initialize word
embedding with a size wv=300. The relation embedding size re and hidden size h were 128. The word
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embedding layer, question encoder side, tense words encoder and the answer encoder side in dropout
rates were 0.3, 0.3, 0.3, and 0.2. The batch size was 32. In the training process, we used the Adam
optimizer [47] to train the model. Initially we set the learning rate as 0.001, then reduced ten times if
the performance of the model was not improved in the consecutive epoch. We stopped training if there
was no promotion for 20 consecutive times on the verification set.

4.3. Results and Analysis

4.3.1. Results

We show the main results of different KBQA method in Table 1.

Table 1. Results on the WebQuestions test set.

Methods (Baseline) Macro F1

SP-based
Yavuz et al. [20] 0.516

Bao et al. [48] 0.524
Yih et al. [19] 0.525

IR-based
Hao et al. [15] 0.429

Xu et al. [4] 0.471
BAMnet and our method

BAMnet 0.557
Our method 0.563

Here, the topic entity is known. Compared to the previous KBQA method (SP-based and IR-based),
our method achieved better results with an F1 score of 0.563. We can see that our method is superior to
previous state-of-the-art IR-based methods and still remains competitive with SP-based methods, with
the effectiveness of bidirectional interaction between question and KB.

It is important to note that compared with the state-of-the-art SP-based methods [19,48], after the
introduction of external knowledge, the performance of the method is better than that of SP-based
methods and beyond BAMnet. We selected the methods that have performed better in recent years
for comparison. For example, Yih et al. [17] used a lot of manual rules to deal with questions with
constraints and aggregations, and Bao et al. [48] directly added detected constraint nodes to query
graphs to deal with questions with constraints. Yavuz et al. [30] and Bao et al. [48] trained their models
on external question answering (Q&A) datasets to obtain extra supervision.

For a fairer comparison, we only show their results without training on external datasets. Although
our method also introduces external knowledge, our method is to use deep learning to let the model
learn autonomously instead of adding artificial rules. Additionally, the knowledge we introduce is
simply words related to tenses, not data sets. Our method uses a deep learning method to handle
information and has better interpretability for questions with implicit temporal constraints. Compared
to IR-based methods, our method has better performance in WebQuestions. By comparison, our
method is sequence to sequence, does not use any rules, and compared to the same sequence to
sequence BAMnet, our model can better model questions with implicit temporal constraints. Not only
does our model perform better in WebQuestions, but also in the t-data. This fully proves that it is
effective to acquire the interactive information between questions and external knowledge through an
attention mechanism. The results demonstrate that our method is valid.

4.3.2. Ablation Study

To study the effect of temporal attention module, we conducted ablation analysis under a known
topic entity. As shown in Table 2, we can see that temporal attention module is essential to the
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performance. Not only does it contribute to the overall model performance but also it performs better
on the temporal data we split, suggesting that the introduction of external knowledge is valid.

Table 2. Ablation results on the WebQuestions test set.

Model Macro F1

Full Model 0.563
w/o Temporal attention module 0.556

4.3.3. Qualitative Analysis

We visualized the attention matrix at and checked it whether obtains temporal information
in questions. Figure 4 reveals the attention heatmap generated from a test question “who is the
current Ohio state senator?”. We can see that the attention matrix successfully obtained the temporal
information (current) from the question, so we can further strengthen the question vector through the
extracted information. In other words, in the question “who is the current ohio state senator?”, the
word “current” implied temporal information. In the attention matrix, value of the word “current”
is the highest, thus there is temporal information in the question, so we can strengthen the question
vector in this way.

Future Internet 2020, 12, 45 10 of 14 

 

“current” is the highest, thus there is temporal information in the question, so we can strengthen the 

question vector in this way. 

 

Figure 4. Attention heatmap generated by the temporal attention module. 

In order to further prove that the introduction of external knowledge is effective, we reveal the 

predicted answer of our method and BAMnet from the t-data in Table 3. We divided the predicted 

answers into two categories, which are answer right and answer rank up. Answer right is where the 

predicted answers are the correct answer but not predicted in other methods, answer rank up is 

where the predicted answer becomes first place but includes other wrong answers. In the first type, 

without the temporal attention module, the model cannot capture the information of before, last, and 

now in the question, so generates the wrong answer, and our method obtains the right answer as the  

model finds the temporal information through the temporal attention module, it is important that 

there is no other wrong answer. In the second type, although it includes the correct answer, the model 

is without the temporal attention module, resulting in the generation of candidate answers, thus, the 

score of the correct answer is lower than other answers. However, when the model has a temporal 

attention module, the score of the correct answer is higher than other answers and ranks first. As we 

can see, compared with other methods without temporal attention module, our method predicts 

more valid answers and has better performance accuracy. 

Table 3. Predicted answers of the full model and model w/o the temporal attention module. Where 

T-att is the temporal attention module. 

Category Questions Model w/o T-att Full Model 
Correct 

Answer 

answer 

right 

What did James K Polk 

do before he was 

president? 

Governor of 

Tennessee,$$ 

…$$ 

United States 

Representative 

Lawyer Lawyer 

Who did Cliff Lee play 

for last year? 
Cleveland Indians 

Philadelphia 

Phillies 

Philadelphia 

Phillies 

Where does Michelle 

Pfeiffer live now? 
Santa Ana Orange County 

Orange 

County 

answer 

rank up 

Who was the original 

voice of Meg Griffin on 

family guy? 

Mila Kunis, Lacey 

Chabert 

Lacey Chabert, 

Mila Kunis 
Lacey Chabert 
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In order to further prove that the introduction of external knowledge is effective, we reveal the
predicted answer of our method and BAMnet from the t-data in Table 3. We divided the predicted
answers into two categories, which are answer right and answer rank up. Answer right is where the
predicted answers are the correct answer but not predicted in other methods, answer rank up is where
the predicted answer becomes first place but includes other wrong answers. In the first type, without
the temporal attention module, the model cannot capture the information of before, last, and now in
the question, so generates the wrong answer, and our method obtains the right answer as the model
finds the temporal information through the temporal attention module, it is important that there is no
other wrong answer. In the second type, although it includes the correct answer, the model is without
the temporal attention module, resulting in the generation of candidate answers, thus, the score of
the correct answer is lower than other answers. However, when the model has a temporal attention
module, the score of the correct answer is higher than other answers and ranks first. As we can see,
compared with other methods without temporal attention module, our method predicts more valid
answers and has better performance accuracy.
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Table 3. Predicted answers of the full model and model w/o the temporal attention module. Where
T-att is the temporal attention module.

Category Questions Model w/o T-att Full Model Correct Answer

answer right

What did James K Polk do before he
was president?

Governor of Tennessee,
. . .

United States Representative
Lawyer Lawyer

Who did Cliff Lee play for last year? Cleveland Indians Philadelphia
Phillies

Philadelphia
Phillies

Where does Michelle Pfeiffer live
now? Santa Ana Orange County Orange County

answer rank up

Who was the original voice of Meg
Griffin on family guy? Mila Kunis, Lacey Chabert Lacey Chabert,

Mila Kunis Lacey Chabert

Where was the first microsoft
headquarters located?

Washington, Albuquerque,
Redmond

Redmond,
Albuquerque Redmond

Who are the senators of New Jersey
now?

Frank Lautenberg,
. . .

Bob Menendez

Bob Menendez,
. . .

John Rutherfurd
Bob Menendez

5. Conclusions

In this paper, we present a novel method that obtains temporal information from questions
through introducing external knowledge for the purpose of KBQA. Specifically, we encoded external
knowledge into the embedding space, obtained temporal information between the question and
external knowledge through an attention mechanism, then strengthened the question vector to improve
the accuracy. The results show that our method successfully captured the temporal information, and
significantly outperformed previous IR-based methods, while remaining competitive with SP-based
methods and BAMnet. Qualitative analysis shows that our idea of introducing external knowledge is
effective. Although our method works for some questions with implicit temporal constraints, there are
some limitations, that is, too many answers will be generated for some complex questions, because
complex questions may contain some unknown information. Attention mechanisms have the defect of
over learning. In future work, we will explore more effective ways of modeling question with implicit
temporal constraints, at the same time, we will address the defects of the attention mechanism to
reduce the generation of wrong answers.
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