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Abstract: This paper presents an integrated model for seismic events detection in Colombia using
machine learning techniques. Machine learning is used to identify P-wave windows in historic
records and hence detect seismic events. The proposed model has five modules that group the basic
detection system procedures: the seeking, gathering, and storage seismic data module, the reading of
seismic records module, the analysis of seismological stations module, the sample selection module,
and the classification process module. An explanation of each module is given in conjunction with
practical recommendations for its implementation. The resulting model allows understanding the
integration of the phases required for the design and development of an offline seismic event
detection system.
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1. Introduction

Earthquakes have been one major concern to societies around the world. Earthquakes are a
consequence of earth tectonics, which cause intercontinental plate drifts. Deformation energy is stored
along the plates. Once one or more fault lines exhaust their elastic deformation capacity, rupture
occurs and the stored energy is released as seismic waves, propagating along with the earth’s crust.
Depending on the amount of energy released and the depth of rupture, seismic waves can hit civil
infrastructure, causing major impacts. Such events as in Sumatra (Indonesia, 2004), Haiti (2010),
and Tohoku (Japan, 2011) are proof of how devastating can earthquakes be over human infrastructure
and society as well. In Colombia, the Armenia earthquake (1999, Mw 6.2) is referenced as the worst
seismic event for the country, which forced the government to call for an updating of the existing
design and construction code. The resulting document was introduced into the Colombian legislation,
making it a mandatory practice among civil infrastructure designers and constructors [1,2].

Earthquake engineering is a branch of engineering born to reduce the effects of earth seismicity.
The approaches that earthquake engineering take can be seen from two perspectives: a study of the
seismic phenomena and a study of the structural response after the seismic event. Research in earthquake
engineering has increased in depth as new materials and computational power have been conceived.
Simple techniques for the characterization of earthquake events can be used intensively in an attempt
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to formulate methodologies that provide people with a time frame to evacuate civil infrastructure
during significant seismic events. However, current methodologies involving computational power
deal with limitations in storage capacity (storage of seismic traces and raw data), processing capabilities
(multichannel seismic acquisition), and lack of compatibility and integration of software resources,
adding difficulties for the implementation of a successful seismic event detection technique [3-5].

Few academic research groups in Colombia, including the Colombian Geological Service, dedicate
their efforts to boost techniques and methodologies focused on the seismic phenomena. Most of the
research efforts aim toward a better understanding of both site seismic and structural responses, while
some research has been carried on the understanding of local seismicity. Countries such as Mexico
and Chile, both with similar seismic characteristics as Colombia, dedicate their research efforts to
improve cities” structural resilience and to improve the social response during seismic events as well.
The proposal of this research paper is a system model for offline seismic event detection in Colombia,
where a set of integrated modules for reading and processing historical seismic raw data deals with
the reduction of the computational costs for the successful detection of seismic events.

This article structures the proposal of a machine learning-based model for the detection of seismic
events as follows: (a) problem statement (seismology and seismic data recording), (b) earthquake
detection methodologies (traditional vs. current approaches), (c) seismic detection model proposal
(model architecture and modules description), and (d) article conclusions.

2. Problem Statement

Countries over the Pacific coast of Southern America have a long history of catastrophic earthquake
events. According to the US Geological Survey, five of the top 20 largest earthquake events occurred
since the earlier 1900s, including the largest, have occurred along the fault line traced by the borders
of the Nazca Plate that subducts below the South American Plate [6]. The tectonic environment in
Colombia can be described by its two main fault zones: (a) Romeral zone (intraplate seismic zone that
runs from north to south of the country’s Pacific coast with an approximate length of 1200 km) and
(b) the frontal fault of Eastern Cordillera (fault system that divides the Colombian Andean territory
from its eastern great plains, most likely a southern border of the Caribbean Plate) [7]. One local seismic
zone on the Colombian northeast of great activity is the Bucaramanga Seismic Nest, where at least
eight events with a magnitude Mw > 4.7 occur each year [8].

Typical geological and seismic observation services such as SGC in Colombia provide seismic
analysis in a two-stage fashion: first, by acquiring and storing seismic records (which can include
up to three spatial components of accelerations, velocities, and ground displacements) and second,
by performing seismic event recognition by looking for particular seismic characteristics within
the stored data. Then, the geological service within a short time frame reports the occurrence of a
seismic event, which is usually information that commonly contains the event magnitude and its
approximate geolocation. [9-11]. This two-step procedure is complex, since it involves algorithms to
read, synchronize, and process seismic data information. Geological services usually rely on black-box
software that performs these tasks, closing the door to monitor sub-stages and therefore not letting the
user integrate alternative algorithms that could eventually improve and/or fit specific site characteristics
to the seismic data analysis sub-stage [12,13].

To establish methods for the detection and analysis of seismic events, the disposition of a set of
historical seismic records that can be stored, read, and processed is essential to develop an accurate
detection of future events (classic approach of learning from data). However, it is difficult to find a
seismic dataset that fits the requirements for later processing stages, and when retrieved, the seismic
files are not easy to interpret, as they include specific seismic parameters contained in legible formats
that only specialized software such as SEISAN and SeisComP can process [14,15].

Moreover, several factors make an integral analysis of these Colombian historical records unfeasible:
(a) limitations on the storage capacity, (b) limitations on the compatibility between current software
resources, (c) limitations on the processing power required, (d) use of techniques that are not integrated
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within the detection models, and (e) low flexibility of the existing tools for modifications and adequations
of storage and processing algorithms [16,17].

Furthermore, the online detection of coming earthquakes can be done by picking the seismic
phases manually or by establishing a fixed-threshold approach; these techniques are statistically
earthquake-proven for significant earthquakes and signals with low sampling rates and few numbers
of components, given a higher signal-to-noise ratio. When high samples rates are considered from
multiple three-dimensional seismological stations, the phases may be picked differently, introducing
bias into the detection [18].

In this sense, a system model for offline seismic event detection for the Colombian region is
proposed, which allows the identification of patterns and dynamics in historical records, using machine
learning techniques.

The following sections present a theoretical basis and the description of the model for seismic
event detection.

3. Earthquake Detection Methodologies

Seismic detection algorithms are used by public and/or private services dedicated to monitor
and study seismic activity. Several agencies dedicate efforts to maintain an updated database of
information that can help scientists and engineers analyze any activity that could represent a hazard to
the infrastructure and population, including volcanic and seismic activities [19]. Data collected include
ground motion records (accelerations, velocities, and/or displacements), which are used by detection
algorithms as input data.

Several approaches have been conceived to perform seismic events detection. In the seismic
signal, amplitude, shape, power, or several other time-domain characteristics can be used to formulate
a detection procedure [19,20], depending on the desired purpose of the outcome. In practical terms,
seismic signals are identified by monitoring isolated ground vibrations, which under changes in
amplitude, frequency content, or motion direction indicate the arrival of seismic waves [20]. Current
developments on earthquake signals monitoring aim to provide faster and more reliable detection
algorithms for warning systems [21].

3.1. Traditional Approaches

Detection algorithms for earthquake detection assume that seismic signals correspond to ground
vibrations isolated from human activity. Only stationary background noise is registered prior to
earthquake waves’ arrival. To automate the process of identifying the arrival of earthquake waves,
specialized detection algorithms are required. These algorithms deal with the task of effectively
discriminating background noise from seismic events, to avoid the recording of unnecessary data or
the loss of actual seismic signals. Then, detection algorithms require having a high rate of positive
event identification, which is easily achieved when strong motions occur (e.g., triggers such as signal’s
threshold can discriminate noise from strong seismic signals). However, if a seismic event is detected
far from the causative fault, a decrease in the signal’s amplitude can be expected, making it harder for
the algorithm to perform a positive event detection.

The simplest approach for an earthquake detection system is a front detection system, which
consists of the direct monitoring of a given seismic source. Monitoring the signal’s amplitude allows a
central managing system to perform pre-defined tasks such as shutting down the power on certain areas
or generating alerts of populated areas far enough from the strong ground motion epicenter. Mexico’s
earthquake monitoring system (SASMEX) implements front detection for this purpose. The front
detection approach requires the analysis of most of the seismic signal to validate the trigger, dismissing
valuable time that can be used to alert a wider area in case of a strong ground motion event. To deal
with this, further approaches attempt to wider the alert time window by analyzing a shorter segment
of the seismic signal, requiring more elaborated metrics that can be positively correlated to a significant
earthquake event. Some of those metrics include the average noise level, predominant signal period,
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or cumulative energy [22]. However, these algorithms have a high rate of false alarms when dealing
with weak-motion earthquake events [23]. Detection triggers are also specialized to work with
frequency-domain data. In this case, signal energy metrics are used as thresholds (e.g., average power).
Transform methods such as Fourier or Walsh and signal filtering have been used to provide faster
and more reliable detection algorithms [5]. Time-frequency domain techniques such as the wavelet
transform have been used to track the initiation of ground motion [24,25]. A technique found more
reliable and widely used is based on the short-time average through the long-time average ratio
(STA/LTA). The technique is based on the fact that when seismic events occur, the current signal average
(STA) is different from the long-term signal average (LTA) where no events occurred [5,26].

Figure 1 shows the implementation of the STA/LTA algorithm over a strong-motion record.
The seismic record (top figure) shows the arrival of P-waves in the interval 5-10 s. P-waves
(P for primary) travel across the earth’s mantle in tension—compression mode. Rocks have their
highest stiffness (force to deformation ratio) for compression forces, and thus, compression waves can
travel the fastest across the earth’s mantle, arriving at the surface prior to secondary waves. After 10s,
the seismogram on the top figure shows the strongest acceleration recorded by the seismic station for
the event. Secondary and surface waves arrive at the seismic station seconds later than P-waves. Cities
with poor seismic resilient infrastructure usually take the highest toll on human and economic losses
when they experiment strong ground accelerations.
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Figure 1. Short-time average through the long-time average ratio (STA/LTA) algorithm.

Figure 1 (middle) shows the STA and LTA parameters. It can be seen that the short-time average is
useful to indicate the arrival of the seismic event as it suddenly arises from a very low value (assumed
to be noise). The long-time average is less sensitive to the arrival of the seismic signal but keeps track
of the signal’s duration. The STA/LTA ratio (Figure 1, bottom) points out the location of the seismic
event’s start point, which is one of the most important features required by any detection methodology.

The STA/LTA algorithm has shown to be very effective due to its simplicity [5,27,28], but it
requires the optimization of user-defined parameters to obtain a high rate of positive-event detection.
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Parameters such as the sampling rate, detection threshold, or even, pre-event and post-event parameters
are required to achieve a desired positive detection with the algorithm.

3.2. Current Approaches

Actual developments of detection algorithms take advantage of current technological advances
that allow the capture, processing, and storage of data with high resolution. A large amount of available
data today is used for advanced and still rarely used techniques: local similarity (quantifies consistency
of data between neighboring stations) [29], probability (parameters such as distance to the seismogenic
zone or signal phases are treated as random variables with an associated probability) [30], data
mining (establishes a fingerprint of seismic waves for later comparison) [31], neural networks (neural
network-based algorithms are trained to identify several characteristics of seismic waveforms) [19],
and social sensing (based on trending hashtags or key words on social media, algorithms can trigger
responses on alert systems) [32-34]. These approaches are all computational powerful and help identify
waveforms on large historic seismic arrays that were not processed so far or that could have been
processed by techniques with less accuracy. The cost of these techniques is the computational time.
In terms of computational efficiency, the STA/LTA concept [26,35] arises as a traditional and yet highly
efficient parameter for earthquake detection.

4. Seismic Detection Model Proposal

This research paper proposes the model presented in Figure 2—a set of modules in which seismic
signals can be processed—from the seismic data collection to the detection mechanism expressed in
the classification process module. The applicability of the model is directly related to the selection
of the geographical zone whose seismicity is to be studied—in this case, the northeastern region of
Colombian. The size of the study area, the rate of occurrence of events, and the homogeneity of the
subsoil are some of the variables that directly influence the number of observations to be analyzed
and the performance of each of the modules, which is why a careful selection of the region of interest
must be first carried out. Applicability of the model on a different geographical region would require
historic seismic arrays specific to the location.

Analysis of e
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Figure 2. Model for offline seismic event detection.

The modules are described below as follows: Seismic data seeking and gathering, Reading
and interpretation of the seismic data, Analysis of seismological stations, Sample selection,
and Classification process.

4.1. Seismic Data Seeking and Gathering

To analyze seismic signals by algorithmic means, it is necessary to have a set of records that can
be manipulated. In this first step, a download of the historical seismic records is made, filtering by the
chosen region. A set of seismological records of each station is obtained.

Depending on the region of interest, it is possible to obtain seismological records through
web services, such as the United States Geological Survey (USGS), the European-Mediterranean
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Seismological Centre (EMSC), the National Earthquake Information Center (NEIC), the National
Institute of Seismology, Volcanology, Meteorology, and Hydrology of Guatemala (INSIVUMEH),
the Mexican National Seismological Service (SSN), the National Seismological Center of Chile (CSN),
or the Colombian National Seismological Network (RSNC by its Spanish acronym), among others.
These web services allow downloading data of seismic events one by one, although it is usually
necessary to provide searching filters, generally concerning magnitudes, depths, and dates.

The seismic records are usually of public access, so it is possible to request the set of desired
data directly to the seismology agency responsible for its storage. Another easier way to do this
data-gathering process is to use automated interaction web tools to download the requested files,
such as the creation of web snippets using the web-scraping technique, which allows interacting
with the web resources of the web service. This technique is usually legally authorized by the RSNC
and other services, since all the information downloaded is public access and no intromission for
non-authorized domains or web resources is made. Although the scraping procedure is legally accepted,
it is recommended to inform the geological services about this practice when executed.

The technological infrastructure needed to download and to store seismic files depends on the
volume of data to be processed. In Colombia, the RSNC gathers the seismic records into two categories:

e  Trace files (Waveforms), which contain the seismic samples taken by all seismological stations
available around the region of interest.

e  Parameter files (Sfiles), which provide detailed information about the seismic events, such as the
longitude and latitude of the epicenter and the P-wave and the S-wave arrival times, among others.

The seismic traces recorded in the Waveform files are usually a large size because they record
non-event samples that occur before and after the seismic event picking. Their content is dependent on
the duration of the recorded earthquake. Each trace file can have a storage size from approximately
5 MB if it corresponds to a microseism that has been registered by one or few seismological stations,
or a specific seismic event registered by a couple of stations, and up to approximately 120 MB, if it is
registered by most seismological stations with a duration close to five to ten minutes. The RSNC
registers up to 10,000 seismic events per year, with an average of 60 MB of storage per seismic record.

The seismic records may not be stored completely. The storage of all the records allows faster
access for later processing stages; however, as has already been shown, the computational load applied
to the data storage is high. On the other hand, storing portions of data that are processed and then
erasing the unrequired portions, or processing the records one by one so that the results are stored
and the records are erased are two recommended procedures to save storage space. Nevertheless,
if the data are processed one by one, any subsequent processes to be done or corrections to previous
processes will force to access the data sources again, which will hinder processing.

4.2. Reading and Interpretation of the Seismic Records

Once the seismic records are obtained, it is necessary to understand the format in which the data
are presented, to establish the mechanisms by which they will be read. After reading the data, a sample
selection is proposed, which depends on the characteristics found, and a set of memory instances that
represent the trace files and read parameters is obtained as an output.

Among the most common international formats for the Sfiles [36] are HYPO71, HYPOINVERSE,
and Nordic formats. The most used international formats for Waveform files are SEED, miniSEED,
and SimpleASCII [37]. There are comprehensive seismological analysis tools capable of reading a
wide range of formats of these two types of files, such as SEISAN and SeisComP. It is also possible
to read the files through native programming languages or using libraries linked to these languages,
such as SEISPP for C++ [38], Obspy for Python [39], or the open-source tools made available by the
USGS for Java [40].

The implementation of specific architectures for reading multiple seismic records is of utmost
importance. It is vital to analyze the computational capacity in terms of volatile memory, mainly
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by considering the techniques exposed and the data stored during the seeking and gathering of
seismic records. Therefore, a sub-module can be incorporated for balancing the computational load,
which includes techniques for transforming volatile information into non-volatile (hard disk storage),
as well as considering parallel processing mechanisms to facilitate the processing of large sets of
seismic records.

Additionally, it is pertinent to include file selection algorithms that can discard repeated files
or easily identifiable irregularities in both parameter files and trace files to prevent their storage.
This process is called data wrangling, in which a data-cleaning procedure is required. Among the
irregularities found in the seismic records from the RSNC are inconsistencies in the format, absence of
trace files that correspond to existing parameter files, lack of start and end times of the event in the
records, as well as non-existent P-wave and S-wave arrival times in some of the records recorded by
the seismological stations. A key process to clean the seismic data from the RSNC is shown in Figure 3.

Seismic records
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Recoerd of the start and
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Existence of waveform
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Figure 3. Seismic data cleaning process for RSNC files.

The data cleaning process is executed from three approaches: (1) the validation of the sought
and gathered files, (2) the validation of the seismic samples in these files, and (3) the validation of the
stations that register these samples.

In the first stage of this cleaning process in the file validation approach, it is checked that
the sfile and waveform files can be read correctly for processing. First, if the files cannot be read,
the inconvenience may be the source of the data. Secondly, it is verified that there are no repeated
files, because the complexity of processing grows and there is no compensation to the investigation for
processing the same data more than once. Third, it is verified that the general sfiles data files have a
correct record of the corresponding waveform file. If in any of these stages there are inconsistencies, it is
recommended that the file(s) are discarded, as they may create a bias in the general seismic analysis.

In the second stage of the cleaning process that focuses on the validation of the samples, it is
convenient to check first if there is a record of the start and end time of the events that is homogeneous
between each sfile and waveform files, secondly, that the P-waves have been recorded in both files.

Finally, in the third stage of the cleaning process, changes in the seismological station sensors,
their relocation, or periods in which they have stopped operating must be considered. This permits the
definition of a time interval in which the analysis will be executed, with the certainty that the dynamics
of the waves will not be altered by external changes that do not concern the merely seismological field.

4.3. Analysis of Seismological Stations

Once the historical seismic archives are read, an analysis of the seismological stations that have
recorded the events of interest is carried out, so that those that best represent the events and allow
a reduction of the computational load in the processing of the data can be selected. The selected
seismological stations are obtained as an output of this process.
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Each seismic station provides a specific recording pattern that is dependent on several factors:

e  The distance from the hypocenter and the epicenter (hypocenter and epicenter distances) to the
geographic position of the station defines the amount of attenuation of the seismic wave.

e  The geomorphology to which the seismic waves are exposed on the way to the station defines the
propagation pattern and the attenuation of the seismic waves.

e  The natural and artificial noise sources demean the seismic records due to the loss of quality
regarding the content associated with seismic information, adding sources of information that
concern other events that are not from a seismic nature.

e  The technical parameters of the stations such as measurement channels, signal-to-noise ratio,
analog-to-digital conversion, sampling rates, sensitivity, and dynamic range define how the
seismic event is perceived from an analog source to a digital environment.

Then, these factors influence the composition and patterns of the traces that are transmitted to the
monitoring site and stored for further offline processing. Each Colombian station records the seismic
events individually by considering the named factors. The more stations that detect the event, the more
data that can be transmitted, processed, and stored.

When a microseism occurs, usually few stations record it, since it can be a noise event due to a
local disturbance on the surface or a seismic event of very low magnitude and/or considerable depth.
In this case, the amount of data that contains useful information is not extensive and can be analyzed
quickly and stored without major physical space costs.

However, when there are long-term, shallow, or large-scale seismic events that are perceived in
various regions, the computational capacity for analysis and storage is high. Therefore, selecting a set
of stations to analyze the traces that are recorded allows the dimensionality reduction of the data and
reduction of the computational load.

Defining the stations to be studied is a process that requires a strong seismological criterion;
however, the use of algorithms for statistical analysis facilitates the discernment between station
selection criteria. For example, using libraries for the geographical mapping of stations and seismic
epicenters, clustering and sampling the data exposed in the parameter files, among other procedures,
allow contrasting the information stored and decide about the stations that best represent the
events analyzed.

Figure 4 proposes a general procedure for the selection of the seismological stations used to
identify the presence of seismic events in the Colombian monitored signals.

Set of stations around
the desired region

Mapping of geographical location of >
stations and seismic events inthe | Setof gec-referenced

seismic events

desired region and its surroundings » Seismic dataset
_ Number of seismic recorded by
Seismic events per station and Shatiions selected stations
dataset .| Number of earthquakes by station epicenter | selection >

and epicenter

Average epicentral
Calculation of the average distance per station
epicentral distance per station

Y

Figure 4. Seismological station selection process.

At first sight, it is necessary to identify the geo-referenced position of the stations, so that there
is a spatial perspective of their distribution. Depending on the area under monitoring, the stations
of interest will be those closer to this area. This is because the dynamics of local earthquakes are
more marked and detectable than the dynamics of regional earthquakes and teleseisms, which have
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attenuated and difficult to model features. It is recommended that more than two stations be selected,
as events that have a non-seismic nature can be detected as such if only the activity is monitored in one
or two stations.

In the second stage, it becomes clear to calculate the identification rate of seismic events labeled by
each station, according to the monitoring region. This supports the selection of the stations concerning
their geo-referenced position, as it is an indicator of the proximity of the stations to the epicenters
(epicentral distance) and the signal attenuation index when arriving at the stations.

The stations with the highest identification rate of seismic events must be checked against their
epicentral distance. A good relationship for the choice, as the third stage in this process, is to select the
stations that have identified the most earthquakes, with a short epicentral distance. It is advisable to
include the processing capacity as a third attribute in the selection process, since an additional station
can signify the processing of 210,000 additional samples, on average.

4.4. Sample Selection

The sample selection process can be carried out in parallel to the station analysis process, since
these two processes are independent of each other. There are several factors to consider when selecting
a Colombian seismic event sample, as it was shown in Section 4.2:

e Inconsistencies in the file formats: There are different formats in which a seismic file can be
structured, as SEED and miniSEED. During the processing and storage stages, the data are
susceptible to be modified or lost, since there are multiple sources of information. Sometimes,
these modifications alter the file formats, making them inconsistent. The files that present
inconsistencies in the format and cannot be read correctly must be discarded.

e  Absence of trace files that correspond to SEED and SAC existing parameter files: As part of the
data storage process, the seismic information extracted from the seismic events (Sfiles) and the
seismic samples (Waveforms) are recorded in separate files, as described in previous sections.
Some of them are stored as part of the dataset without being associated. In this way, cases in
which seismic information is recorded and samples were lost and vice versa can be found. Those
files where the description data do not correspond to the seismic traces must be discarded.

e Lack of start and end times and/or inexistence of P-wave and S-wave arrival times in the events
recorded: when a seismic event is recorded, some variables are measured, among which are the
start time and end time of the event and the P-wave and S-wave arrival times. These values are
very important to train classification algorithms, as some specific samples can be extracted from
the seismograms, knowing when the earthquake began and when it finished. Unfortunately, some
files can be well stored but lacking one or more of these four key parameters. In this case, it should
be analyzed whether it is possible to determine the start or end date of the event by processing the
seismic traces. If this is not possible, the files must be discarded.

It is also important to consider the structural changes of the stations, such as changes in the
sampling frequency, sensors, digitizers, and number of spatial components, among others. These
variations, although some of them are subtle, represent substantial alterations in the seismic patterns
that might not be detected, since the detecting algorithms learn from specific patterns shown in the
learning stages.

The inconsistencies in the files may be a consequence of the wrong acquisition, processing,
and storage processes that are sometimes attributable to the algorithms that execute those processes
for the seismology entities of each region or country.

In Colombia, between 20% and 30% on average of the selected files within the initial population
of seismic events are propense to be discarded due to these inconsistencies, although some regions
that are affected by very strong seismic events have accurate and well-stored files [41]. Other less
frequent irregularities that may occur are (a) recording of the seismic data from stations that are
inactive, (b) recording of the seismic data from components that the seismological station does not have
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(e.g., the registration of three components for stations with monoaxial sensors), (c) recording seismic
traces with a different sampling frequency from that described in the sensor datasheet, (d) recording of
the seismic traces with different sampling frequencies among the components from the same station,
either by components or by events, (e) the annotation of the P-wave in the traces is outside the
measurement period of the seismic events, and (f) recording of all relevant seismic attributes described
of the seismic signals with a magnitude of zero.

4.5. Classification Process

The analysis of seismological stations and sample selection processes provide the input datasets
to the classification process, regarding seismological stations and seismic record datasets, respectively.
With these inputs, the classification process implements supervised learning strategies using the
selected seismological stations to detect the seismic event. The outputs of the classification process
are (a) the average performance metrics of the classification approach and (b) the classification model,
which is trained and validated, as described in Figure 5. The performance metrics are related to the
ability of the classifier to differentiate between a seismic event and a non-seismic event, i.e., a binary
classification, and the classification model corresponds to the implementation of the classifier, and it is
able to classify new signals and provide the event detection output.

Stations Detection model
e : il »
Pre-processing » Model definition
—_— - »
Seismic Detection metrics
dataset

Figure 5. Block diagram of the classification process.

The identification and classification of seismic events can be done using different techniques,
as described in Section 3. For instance, the phase picking of seismic waves is widely used for real-time
monitoring, detection, and localization with the P-wave picking is the main method for detection in early
warning systems. Several algorithms for P-wave picking have been proposed in the time-domain [42],
whereas the STA/LTA and its variations are the most implemented algorithm in observation and
detection networks [43]. In Colombia, the SeisComP3 software is currently used by the RSNC for
the acquisition of seismic data from stations located throughout the national territory. With the
STA/LTA-based AutoPick module, the P-wave is detected by a SeisComP3 implementation [44,45].

Traditional approaches such as STA/LTA are suitable options for the classification algorithm.
Nevertheless, these approaches have limitations regarding their adaptability to the behavior of seismic
waves [5,46,47]. As [48] state, the automatic picking of seismic waves can remove the ambiguity derived
from the lack of synchronization between channels and signals proceeding from the seismological
stations. Furthermore, [48-50] have shown that STA/LTA and cross-correlation approaches have a high
rate of Types I and II errors (namely false negative and false positive) due to excessive noise that cannot
be removed from the source and very low-frequency components that might not be enhanced. These
factors can be handled accurately (as far as possible) using machine learning techniques.

Considering that the dynamic behavior of seismic signals recorded by sensors is subject to many
factors that influence the signal, as denoted in Section 4.2, machine learning algorithms represent an
appropriate alternative for the development of classification models, since they enable the abstraction
of attributes associated with the signals, based on the modeling of large training datasets. Machine
learning algorithms rely on the quantity and quality of data and, as described in Sections 3.2 and 4.1,
current seismological services can provide huge amounts of data that can be processed to obtain
datasets to classify seismic records such as the ones provided as output in the Sample Selection process.

As [51] state, machine learning algorithms are particularly well-used in seismology due to their
facility to model complex relationships of a wide range of variables. Since the majority of tasks in
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this context are normally targeting classification problems, machine learning drives a well-structured
solution, since it can build a predictive environment in which a model is trained over sample data
and tested over unseen data, guaranteeing the generalization of the solution against the data and the
context. Sometimes, this procedure can be harmful if there is not enough data to proceed with the
training procedure or when the representative descriptors (features or covariates) are almost the same
as the number of samples. In these cases, additional machine learning approaches can be implemented,
such as feature selection using forward or backward procedures [52].

With the selection of a machine learning algorithm as the classification algorithm, the classification
process can be configured with a set of subprocesses depending on the specific machine learning
algorithm requirements, which may be feature-based or time-series-based. The proposed set of
subprocesses for the classification process is shown in the subprocesses diagram of Figure 6.
The sequence of subprocesses can fulfill the classification capabilities for attribute-based or time
series machine learning algorithms.

Pre-processing Model definition
. Hyperparameter tuning
Signals . oo i
re-sampling » P-wave picking
T i Hyperparameters . Training and
selection validation
Signals Signals :
normalization synchronization
T l v
Signals Windows _ Dataset Testing
filtering extraction > splitting
A
—
Seismic dataset slicing
A\ y
Stations Seismic events Detection Detection
dataset dataset model metrics

Figure 6. Classification process.

To set up the subprocesses, it is necessary to determine the number of classification models desired
to represent the dynamics perceived by the stations. A single classification model might represent the
events linking all the stations throughout a centralized fusion, or multiple classification models might
correspond to each station separately throughout decentralized functions (such as the ones proposed
by bagging techniques). In the case of decentralized fusion, each station has its classification model;
hence, the Pre-processing and the Model definition stages need to be done separately for each selected
station. The results provided by the per-station models can be composed into a combined result in the
Testing subprocess using logical functions or more complex integration functions, producing a single
classification model based on individual station analysis.

When the selected stations and the Seismic events dataset enter the classification process, the first
subprocess that manipulates the datasets is the Seismic dataset slicing subprocess. This subprocess
oversees linking the events to the selected stations and splits the Seismic events dataset into datasets
per station if a decentralized schema is going to be used. In the Pre-processing stage, six subprocesses
oversee formatting the dataset into a scheme ready to be used as input for a learning algorithm in the
Model definition stage. Each subprocess in the Pre-processing stage is applied to every component that
the signal may contain.

After the Seismic dataset slicing, the seismic signals associated with each event in the dataset are
filtered in the Signals filtering subprocess. This subprocess considers the influence of noise sources that
affect the seismic signals. The considered noise sources are the soil vibrations produced by natural
causes and the instrumental noise associated with the measurement equipment hardware [41]. The filter
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choice is crucial for the classification model performance, since the quality of the signal depends
largely on the quality of the filter; therefore, the ability of the learning algorithm to generalize P-wave
dynamics relies on the filter. It is recommended to make a frequency analysis to obtain the frequency
components of the signals and the noise. The suggested frequency band is between 1 and 12 Hz [53],
and different filter techniques can be applied to this subprocess [54].

When the Signals filtering subprocess is performed successfully, the dataset is relocated to the
Signals normalization subprocess, whose objective is to standardize the scale of the signals to the
[-1, 1] interval according to the minimum and maximum value of each signal and remove the direct
current component that is commonly added by the instrumentation. Then, the normalized signals are
re-sampled in the Signals re-sampling subprocess. The definition of a common sampling rate for the
signals is necessary due to the variety of the sampling rates that the signals may have, which are the
outcome of diverse sampling properties that the acquisition devices and the digitalization algorithms
present in the seismological stations.

The seismic signals associated with each record are commonly signals that contain information
before the arrival of the P-wave and after the arrival of the S wave. To focus on the P-wave dynamics, in
the P-wave picking subprocess, the identification of the time where the P-wave arrived is performed. This
picking time annotation is commonly found in the Sfiles. Then, in the Signal synchronization subprocess,
the picking time obtained in the P-wave picking is used to determine the exact sample where the P-wave
arrived, relying on the defined sampling rate used in the Signals re-sampling subprocess, and a standard
amount of samples is selected for a homogeneous duration time for each signal component. Therefore,
all the signals representing an event start at the same time according to their P-wave time and end at
the same time depending on the selected duration time.

The last Pre-processing subprocess is the Windows extraction subprocess whose purpose is to extract
segments from the signals where the P-wave dynamics are contained and segments where there is
no P-wave. The window length in samples is subject to the P-wave picking time and the window
duration. A 2-s window is a recommended length [55]. It is necessary to obtain non-P-wave windows
as well, since the classification algorithm learns to distinguish between the attributes of a P-wave
and the attributes of a non-P-wave signal. Therefore, it is recommended to have the same number of
windows concerning P-waves and non-P-waves to avoid class imbalance issues. With the Window
extraction subprocess, the dataset of filtered, re-sampled, and synchronized signals associated with the
events turns into a windows dataset with two classes, P-wave and non-P-wave, which is a common
approach for the binary classification of seismic events.

With the window dataset, it is possible to generate a feature dataset that is commonly used by
some feature-oriented machine learning techniques. A feature is a description of a record; the seismic
events can be statistically described in terms of time, frequency, and non-linearity, among others.
The features selection has a huge impact on the classification model’s metrics, since they define how
the classification algorithm perceives the seismic events. Each event is represented by a set of features
in a matrix, and each feature acts as an input to the classification algorithm.

The Pre-processing stage differs from feature-based learning algorithms and time-series learning
algorithms. The Signals filtering, Signals re-sampling, and Signals normalization subprocesses may be
skipped depending on the time series technique, and some extra processes must be carried out, such
as checks for stationarity, correlation, and autocorrelation. It is necessary to indicate the location of
the P-wave in the signals (P-wave picking) to synchronize the signal’s arrival and duration throughout
the dataset (Signals synchronization) and to determine the characteristics of the moving window
(Window extraction).

The input dataset for a feature-based technique is a set of single values that describes the original
P-waves and non-P-waves in the seismic signals. Among the most commonly used machine learning
feature-based algorithms applied to P-wave detection are Hidden Markov Models [56], Bayesian
Networks [57], Support Vector Machines [58-60], Logistic Regression [53,61,62] and Artificial Neural
Networks (ANN) [41,53,63—67]. Conversely, the input dataset for a time-series technique is a set of



Future Internet 2020, 12, 231 13 of 17

signals split into P-wave signals and non-P-wave signals. Among the most used time-series forecasting
techniques (TTF) for P-wave detection are Autoregressive Integrated Moving Average (ARIMA) [68],
Seasonal ARIMA (SARIMA) [69], and ARIMA with Exogenous Regressors (ARIMAX) [70]. Some
time-series forecasting recent methods used for P-wave detection include Pure Linear Neural Networks
(PLNN) [71] and Polynomial Neural Networks (PNN) [72].

By following the suggested set of subprocesses and using a machine learning algorithm as the
ones previously described, the classification process outputs a classification model and a set of metrics
associated with that classification model. The produced model is suitable for performing the offline
detection of seismic signals through the identification of P-waves. The mentioned metrics indicate
the performance of the classification algorithm with the best set of hyperparameters scored on the
test set records. The classification model, as denoted in the graph of the resulting classification model
(Figure 7), can be interpreted as a system with testing preprocessed signals as the input to a function
that contains the resultant algorithm responsible for the event detection. The output of this algorithm
is a value that indicates whether the input signal contains a P-wave or not, in case of being a binary
classification process.

Testing seismic ' Detection
records " Detection result

Model

Figure 7. Classification model.

The classification model is the result of the System Model for Offline detection. It is recommended
to generate several classification models by testing different approaches. In this sense, depending
on the performance of the classification model reflected on the metrics, a change in the selection of
classification process parameters, such as the filter type and length of the window, among others,
may be considered to improve the classification performance. In the same way, other parameters that
belong to macro processes, such as the number of stations in the Analysis of seismological stations or
filtering the seismic records by magnitude range in Seismic data seeking and gathering, may have a
huge influence on the classification performance.

Some studies have been carried out using the proposed System Model to perform the identification
of P-waves in Colombia. In [41], a dataset of seismological records of events with epicenter in the
department of Santander, Colombia between 2010 and 2017 was selected in the Seismic data seeking
and gathering process. In the Reading and interpretation of the seismic records process, the records
were described in the Nordic format. Then, in the Analysis of seismological stations, four stations were
selected according to the epicenter distance. In the Sample Selection process, 20% of the downloaded
records gathered were discarded due to inconsistencies in seismic attributes. Finally, in the Classification
Process, the selected classification algorithm was logistic regression. The classification model was
composed of four logistic regressors, one per each station, and a decentralized voting function that
applied a logical function to the output of each regressor, to produce a binary output (P-wave or
not P-wave). The obtained classification model produced an accuracy of 98.26% for the detection
of the P-wave.

Similarly, in [41], the use of the System Model was applied to a dataset of events with an epicenter in
Santander, using four stations. In the binary classification process, the selected classification algorithm
was a feed-forward back-propagation Artificial Neural Network (ANN) after being cleaned and the
missing values handled appropriately. Unlike the voting function applied in [53], the classification
algorithm relied on the behavior associated with all the stations, which were analyzed as a group in a
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centralized function represented by the ANN. The degree of polarization, the ratio of vertical power to
total power, skewness, and kurtosis of the three-component seismic data for each station were used as
the selected features to feed the training process of the named ANN binary classifier. All the input
features were extracted from observations whose classes were balanced and equally distributed in the
datasets. With the described settings, the obtained classification model produces an accuracy of 99.24%
for the detection of the P-wave.

5. Conclusions

The proposed five modules of the seismic detection model facilitated the comprehension of the
integration of the phases of an offline detection system. A set of historical seismic records is first
downloaded and read (depending on the format of the data). The data can be filtered to make it easy
to process by the subsequent phases. A selection of seismological stations that recorded an event of
interest may allow the reduction of the computational load. This selection can be made based on the
distances, geomorphology, noise sources, and technical parameters of the stations. The identification of
a seismic event is a binary classification task, i.e., the presence/absence of a P-wave on the seismic signal.

The proposed model allows specifying detection and classification tasks for seismic events, which
is applicable to the Colombian region. However, it can be extrapolated to other regions, as the detailed
procedures are general enough to be applied in the local seismological networks that have monitoring
stations with data formats and equivalent measurements.
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