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Abstract: As a result of their high mobility and reduced cost, Unmanned Aerial Vehicles (UAVs) have
been found to be a promising tool in wireless networks. A UAV can perform the role of a base station
as well as a mobile relay, connecting distant ground terminals. In this paper, we dispatch a UAV to a
disaster area to help relay information for victims. We involve a bandwidth efficient technique called
the Dual-Sampling (DS) method when planning the UAV flight trajectory, trying to maximize the data
transmission throughput. We propose an iterative algorithm for solving this problem. The victim
bandwidth scheduling and the UAV trajectory are alternately optimized in each iteration, meanwhile
a power balance mechanism is implemented in the algorithm to ensure the proper functioning of the
DS method. We compare the results of the DS-enabled scheme with two non-DS schemes, namely a
fair bandwidth allocation scheme and a bandwidth contention scheme. The DS scheme outperforms
the other two non-DS schemes regarding max-min average data rate among all the ground victims.
Furthermore, we derive the theoretical optimal performance of the DS scheme for a given scenario,
and find that the proposed approach can be regarded as a general method to solve this optimization
problem. We also observe that the optimal UAV trajectory for the DS scheme is quite different from
that of the non-DS bandwidth contention scheme.

Keywords: UAV flight trajectory; throughput; bandwidth scheduling

1. Introduction

Due to the advantages of high mobility and reduced cost, Unmanned Aerial Vehicles (UAVs) have
found promising applications in wireless communication systems [1,2], not only to support the existing
cellular networks in high-demand and overload situations, but also to provide wireless connectivity
in scenarios lacking infrastructure such as battlefields or disaster zones. Compared with terrestrial
communications, UAV-aided wireless systems are in general faster to deploy [3], more flexible to
reconfigure, and likely to have better communication channels as a results of Line-of-Sight (LoS) links.
The 5G cellular network is expected to support a peak data rate of 10Gb/s with only 1ms round-trip
latency, which is adequate for UAV communication applications [4]. Integrating UAVs into a cellular
network is regarded as a new paradigm [4]. The role that a UAV performs in a wireless communication
system typically follows either of two types—firstly, the UAV can be deployed as an aerial Base Station
(BS) for the ground terminals [5]; secondly, the UAV can be deployed as a mobile relay providing
wireless connectivity between distant ground terminals [6–8]. The relay often plays an important role
in wireless communications [9–11].

How to deploy a UAV in a wireless communication system is a popular research topic [12,13],
as it is related to energy consumption and data transmission performance. There are primarily two
categories of UAV deployment study, static deployment of the UAV [14–16] and the use of mobile
UAVs [17–20]. The efficient deployment of a UAV acting as a wireless BS providing coverage for
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ground terminals is analysed in References [14,15]. In Reference [16], the authors propose an intelligent
strategy that allows UAVs to perform tactical movements in a disaster scenario, combining the Jaccard
distance and artificial algorithms for maximizing the number of served victims. However, the analysis
is based on static deployment of the UAV. The authors of Reference [21] propose a simple but effective
dynamic trajectory control algorithm for UAVs. The proposal adjusts the centre coordinates and the
radius of UAVs’ trajectories in order to alleviate congestion. Nevertheless, the method is implemented
by a UAV control station, which introduces control signal overhead.

In regard to mobile UAV deployment, the UAV flight trajectory is planned considering the wireless
communication features. A UAV that acts as a mobile BS serving a group of ground terminals to
maximize the throughput is demonstrated in Reference [17]. The UAV flies in a cyclical pattern and
the ground terminals are located along a straight line, rather than a 2D plane. An energy-efficient data
collection problem in UAV-aided wireless sensor network is solved in Reference [18]. The authors
only consider one common transmission channel that all the sensors have to contend for using a time
division multiple access scheme. The resource allocation and trajectory design for energy-efficient
secure UAV communication system is studied in Reference [19]. The authors consider the ground
terminals to transmit data via separate sub-carriers so as to avoid interference. A joint trajectory and
communication design for UAV-enabled system is elaborated in Reference [20]. The data transmission
in these above-mentioned works are in orthogonal channels, either in different time slots or in different
transmission bands. However, bandwidth efficient techniques which allow different data signals to
be transmitted during the same time slot and radio band have not been considered in the UAV-aided
wireless communication systems.

In this paper, in order to improve the throughput of the system, a bandwidth efficient technique
named the Dual Sampling (DS) method [22] is employed in the data transmission procedure.
In Reference [23] DS is applied in stationary caching network to enhance the throughput. This time,
we focus on the usage of DS method in a mobile UAV network. With the DS method enabled, the UAV
is able to receive the information of different ground terminals simultaneously, rather than separating
the transmission of each ground terminal within sequential time slots or by using different radio bands.
Meanwhile, the UAV flight trajectory can be modified when the DS mechanism is enabled, which is
different from the trajectory derived in References [18,20]. It is shown in Reference [24] that the UAV
flight trajectory is closely related to the UAV’s propulsion energy. Hence different trajectories can
result in different consumption of propulsion energy for the UAV.

The contributions of this paper are listed as follows:

• Propose an iterative algorithm which alternately optimizes bandwidth scheduling and UAV flight
trajectory in each iteration, and a power balance method for supporting DS.

• Comparison of the system performance of a DS-enabled scheme and non-DS schemes in terms of
the optimal throughput, bandwidth scheduling and UAV trajectory.

• Comparison of the UAV propulsion energy consumption of a DS-enabled scheme and non-DS
schemes based on the derived optimal UAV trajectory.

In the next section, we present the system model.

2. System Model

The role of UAVs in the context of natural disaster management is identified in Reference [25].
The main applications of systems involving UAVs are classified according to the disaster management
phase, and a review of relevant research as well as the research challenges is provided in Reference [25].
In our paper, we consider a disaster scenario where a UAV is deployed within the affected area to relay
the data from N ground victims to a remote information centre for coordinating search and rescue
missions as the terrestrial infrastructure connecting the affected area and the information centre is
damaged, as illustrated in Figure 1. The location of the nth victim is denoted by cn ∈ R2×1. The UAV
is dispatched to collect data from the victims for a duration of T seconds. We assume that the UAV
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flies at a fixed altitude of H meters and we denote its maximum speed as Vmax in meters/second
(m/s). The initial and final locations of the UAV are assumed to be pre-determined, whose horizontal
coordinates are denoted as cI , cF ∈ R2×1, respectively. We assume that ||cF − cI || ≤ VmaxT such that
there exists at least one feasible trajectory for the UAV to follow.

Victims

UAV Information 
center

Disaster area

Figure 1. An Unmanned Aerial Vehicle (UAV)-aided wireless communication system in a disaster scenario.

In this paper, we aim to optimize the transmission throughput from ground victims to the UAV,
by jointly adjusting the wireless bandwidth scheduling and UAV trajectory. This is considered as a form
of trajectory and communication resource allocation co-design problem in Reference [4]. Such problems
can be first converted into more tractable forms with a finite number of optimization variables by
trajectory discretization [4,18,20], and then utilize the more general optimization framework with
Block Coordinate Descent (BCD) and Successive Convex Approximation (SCA) techniques to deal
with the non-convexity [4]. Two trajectory discretization techniques, the time discretization and
path discretization, are introduced in Reference [4], together with a comparison of them. Since time
discretization has the advantages of equal time slot length, linear state-space representation, and the
mission completion time T is assumed to be known. Therefore time discretization is considered here.

For convenience, T is equally divided into K time slots, such that T = Kδt, where δt denotes the
elemental slot length such that the UAV’s location is considered unchanged by the ground victims
during this time even at the maximum speed. Therefore, the UAV’s trajectory can be approximated by
the sequence {c[k], k ∈ {1, . . . , K, K + 1}}, where c[k] denotes the UAV’s location at time slot k. To be
specific, c[1], c[K + 1] corresponds to the initial and final locations of the UAV respectively, that is,
c[1] = cI , c[K + 1] = cF.

We compare the data transmission performance of the system when the DS method is enabled or
disabled. We assume the total bandwidth of the system and the transmission power of each victim
are the same. When DS is disabled, we consider two bandwidth allocation mechanisms. One is a
fair allocation scheme [19]. We assume N different sub-carriers with the same bandwidth W are
fairly allocated to the N victims to avoid interference during the period T. The other is a bandwidth
contention scheme [18,20]. We assume the overall bandwidth NW is occupied by one victim for data
transmission during each time slot.

When DS is enabled, due to the limitations of transmission synchronisation and processing
complexity, we assume during each time slot only transmissions from one pair of victims can be
supported. In order to ensure the proper functioning of the DS method, the signal level received by the
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UAV from the supported victims are kept the same [22]. Meanwhile, during each time slot, the non-DS
supported victims are allocated with bandwidth W each. The supported victims can both transmit
in the remaining bandwidth NW − (N − 2)W = 2W simultaneously [22]. Therefore, we denote the
bandwidth scheduling variable as an[k] = 2 if victim n is supported by DS at time slot k, and an[k] = 1
if victim n is not supported by DS, where k ∈ {1, . . . , K}.

The following statements relate to the DS enabled scheme. The distance between the UAV and
victim n ∈ {1, . . . , N} at time slot k ∈ {1, . . . , K} is given by

dn[k] =
√
||c[k]− cn||2 + H2. (1)

We use P to denote the transmission power of a victim. Furthermore, we assume that the channels
from the victims to the UAV are dominated by LoS links. Thus, the channel power gain between victim
n and the UAV in time slot k is given by

hn[k] =
β0

d2
n[k]

=
β0

||c[k]− cn||2 + H2 , (2)

where β0 represents the channel power gain at a reference distance of unit length. The maximum
achievable data rate in bits/s/Hz for victim n at time slot k with respect to the sub-carrier bandwidth
W is given by

Rn[k] = an[k] log2(1 +
Phn[k]

σ2 ), (3)

where σ2 is the power of the Additive White Gaussian Noise (AWGN). For the DS supported victims,
the transmission bandwidth is 2W. Since the noise power spectrum density is the same, the received
noise power at the UAV is twice as that for a non-DS supported victim. However, the UAV treats the
overlapping signal as the effective received signal [22], hence doubling the received signal power. As a
result, the received SNR at the UAV for a DS supported victim is same as that for a non-DS supported
victim.Thus, the average achievable data rate from victim n to the UAV is denoted as

Rn =
1
K

K

∑
k=1

Rn[k]. (4)

Note that, for each victim, RnδtK is the overall data throughput. As δt and K are constants,
thus the average achievable data rate Rn is equivalent to the overall throughput.

Additionally, in this problem, the bandwidth scheduling variables set is A = {an[k], ∀n, k},
and the UAV’s trajectory location variables set is C = {c[k], ∀k}.

3. Problem Formulation

For efficient transmission, whilst considering fairness among all the victims, we aim to maximize
the minimum average data rate relayed by the UAV among all N victims. That is

max
A,C

R, (5)

subject to
Rn ≥ R, ∀n (5a)

N

∑
n=1

an[k] ≤ N + 2, ∀k (5b)

an[k] ∈ {1, 2}, ∀n, k (5c)

Phi[k] = Phj[k], ∀k, (ai[k] = aj[k] = 2, i 6= j) (5d)

||c[k + 1]− c[k]|| ≤ Vmaxδt, ∀k ∈ {1, . . . , K} (5e)
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c[1] = cI , c[K + 1] = cF, (5f)

where R is the objective average data rate to be maximized. (5a) represents the minimum average
data rate among all the victims. (5b) assumes that one pair of victims can be supported by the DS
method during each time slot. (5c) considers that a victim can be either supported by the DS method
or not. (5d) means that for the DS method supported victims, their received signal power at the UAV
are kept the same [22]. (5e) means that the maximum traverse distance of the UAV is limited by its
maximum flying speed during each time slot. In addition, (5f) shows the pre-determined initial and
final locations of the UAV trajectory.

4. Proposed Solution

In this section, an iterative algorithm based on the general optimization framework mentioned
in Section 2 for solving the problem (5) subject to constraints (5a)–(5f) is discussed. The overall
problem is separated into two sub-problems based on BCD. To be specific, for a given UAV trajectory C,
we optimize the victim bandwidth scheduling A. On the other hand, for any given victim bandwidth
scheduling A, the UAV trajectory C is optimized with the help of SCA. Furthermore, to ensure the best
decoding performance of the DS method by the UAV, the received signal power from the paired victims
are the same, as stated in (5d). We call this the power balance and it is implemented to link the two
sub-problems. Finally, the overall algorithm is presented as a combination of the two sub-problems
and power balance.

4.1. Victim Bandwidth Scheduling Optimization

For any given UAV trajectory C, problem (5) is simplified as

max
A

R, (6)

subject to
Rn ≥ R, ∀n (6a)

N

∑
n=1

an[k] ≤ N + 2, ∀k (6b)

an[k] ∈ {1, 2}, ∀n, k (6c)

Sub-problem (6) is hard to solve as the optimization variable A involves integers. To solve this
sub-problem, we first relax the integer variable restriction in (6c), allowing for continuous variables,
which results in the following sub-problem

max
A

R, (7)

subject to
Rn ≥ R, ∀n (7a)

N

∑
n=1

an[k] ≤ N + 2, ∀k (7b)

1 ≤ an[k] ≤ 2, ∀n, k. (7c)

Such a relaxation in general suggests that the objective value of sub-problem (7) serves as an upper
bound for that of sub-problem (6). (7) is a standard linear programming problem, which can be solved
by the CVX toolbox [26] in MATLAB. Later in the description of the overall algorithm, we explain how
to construct a solution for problem (5) based on solving sub-problem (7).
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4.2. UAV Trajectory Optimization

For any given victim bandwidth scheduling A, problem (5) is simplified as

max
C

R, (8)

subject to
Rn ≥ R, ∀n (8a)

||c[k + 1]− c[k]|| ≤ Vmaxδt, ∀k ∈ {1, . . . , K} (8b)

c[1] = cI , c[K + 1] = cF, (8c)

The constraint (8a) is equivalent to the following expression

1
K

K

∑
k=1

an[k] log2(1 +
Pγ0

||c[k]− cn||2 + H2 ) ≥ R, ∀n,

where γ0 , β0
σ2 . Note that (8a) is a non-convex constraint regarding the UAV trajectory variable c[k].

To deal with it, the expression in (8a) is replaced by its lower bound at a given local point. We denote
the input UAV trajectory for sub-problem (7) as {c′[k], k ∈ {1, . . . , K, K + 1}}. Recalling that the
logarithmic function is lower bounded by its first order Taylor expansion, we can obtain the following
lower bound with the given local point c′[k] when treating ||c[k]− cn||2 as the variable

Rn[k] = an[k] log2(1 +
Pγ0

||c[k]− cn||2 + H2 )

≥ an[k]
[

An[k](||c[k]− cn||2 − ||c′[k]− cn||2) + Bn[k]
]

, Rlb
n [k],

(9)

where

An[k] =
−Pγ0 log2 e

(||c′[k]− cn||2 + H2)(||c′[k]− cn||2 + H2 + Pγ0)
(9a)

Bn[k] = log2(1 +
Pγ0

||c′[k]− cn||2 + H2 ), ∀n, k. (9b)

With the lower bound (9), sub-problem (8) is approximated as the following sub-problem

max
C

Rlb, (10)

subject to

Rlb
n =

1
K

K

∑
k=1

Rlb
n [k] ≥ Rlb, ∀n (10a)

||c[k + 1]− c[k]|| ≤ Vmaxδt, ∀k ∈ {1, . . . , K} (10b)

c[1] = cI , c[K + 1] = cF, (10c)

For (10a) the victim bandwidth scheduling variable an[k] is determined by solving the
sub-problem (7). Hence both (10a) and (10b) are convex quadratic constraints and (10c) is a linear
constraint. Therefore, sub-problem (10) is a convex quadratically constrained quadratic program which
can also be solved efficiently by the MATLAB CVX toolbox.
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4.3. Power Balance

A power balance mechanism is implemented to ensure the signal power received at the UAV
from the DS supported victims are the same during each time slot, as presented by (5d). Upon solving
sub-problem (7), the victim bandwidth scheduling variable is determined. As the transmission power
for the paired victims are both P, therefore when the UAV locates at a position where its distances
to the paired victims are same, the received power can be balanced. In order to obtain such UAV’s
position, the coefficients An[k] and Bn[k] in constraint (10a) should be pre-adjusted to be the same.
Power balance is the operation of coefficients pre-adjustments, which is implemented to connect
sub-problems (7) and (10).

4.4. Overall Algorithm

Based on the results of the two sub-problems (7) and (10), we construct an overall iterative
algorithm for problem (5). Specifically, during each iteration, the victim bandwidth scheduling A
and UAV flight trajectory C are alternately optimized, by solving each sub-problem (7) or (10) in turn
whilst maintaining the other variables unchanged. Moreover, the trajectory achieved in each iteration
is used as the input to the next iteration. The details of the algorithm are provided in Algorithm 1.
As stated, power balance is implemented to connect the two sub-problems. Furthermore, at the end of
the algorithm, we construct the optimal integer victim bandwidth scheduling from the continuous
values calculated by the iterative approach.

Algorithm 1 Iterative solution for problem (5)

1: Initialize the UAV trajectory, and denote it as C0.
2: Denote the iteration number variable as g, and let g = 0.
3: repeat

4: Solve sub-problem (7) for given Cg, and denote the optimal solution as Ag+1.
5: Execute power balance.
6: Solve sub-problem (10) for given Ag+1, Cg, and denote the optimal solution as Cg+1.
7: Update g = g + 1.
8: until The increase of the objective value is below a threshold th.
9: Treat the optimal solution Cg+1 for the last iteration as the optimal UAV trajectory.

10: Construct the optimal victim bandwidth scheduling based on the optimal solution Ag+1 for the

last iteration.

In the solution obtained by Algorithm 1, if the victim bandwidth scheduling variables an[k] are
all integer, then the obtained solution is a feasible solution of problem (5). Otherwise, for all the
non-integer an[k], the range for the value should be 1 < an[k] < 2. We denote the fractional part as
bn[k] = an[k]− 1. During each time slot δt, we can regard the expectation of the victim bandwidth
scheduling as an[k]. Thus, for a specific victim with given an[k], in the period of δtbn[k] the bandwidth
scheduling is configured as 2, and in the remaining period δt(1− bn[k]), the bandwidth scheduling
is configured as 1. Therefore, the integer victim bandwidth scheduling is constructed based on the
non-integer value. If the bandwidth is allocated explicitly, it permits an integer solution with zero
relaxation gap.

Next, we discuss the convergence of Algorithm 1 as follows. We first define the objective variable
R as a function of A and C, that is R = η(A, C). In step 4 of Algorithm 1, since the optimal solution of
sub-problem (7) is obtained for given Cg, we have

η(Ag, Cg) ≤ η(Ag+1, Cg). (11)
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Then for given Ag+1 and Cg in step 6 of Algorithm 1, it follows that

η(Ag+1, Cg) ≤ ηlb,g(Ag+1, Cg+1) (12a)

ηlb,g(Ag+1, Cg+1) ≤ η(Ag+1, Cg+1), (12b)

where (12a) holds since η(Ag+1, Cg) has the same objective value as ηlb,g(Ag+1, Cg) at the given
point Cg, and ηlb,g(Ag+1, Cg) ≤ ηlb,g(Ag+1, Cg+1) since at Step 6 of Algorithm 1 with given Ag+1,
sub-problem (10) is solved optimally with solution Cg+1. (12b) holds because for any iteration
g, ηlb,g(Ag, Cg) is always a lower bound of η(Ag, Cg) for any A and C. Based on (11), (12a) and
(12b), we obtain η(Ag, Cg) ≤ η(Ag+1, Cg+1), which means that the objective value of problem (5) is
non-decreasing after each iteration of Algorithm 1. As the objective value of problem (5) is upper
bounded by a finite value, Algorithm 1 is therefore convergent.

The proposed Algorithm 1 is based on the general state-of-the-art optimization framework
consisting of BCD and SCA, together with a novel mechanism, named power balance, to handle the
feasibility requirement of the DS method.

5. Numerical Results

In this paper, the main metric to assess the system is the average data rate among all the victims
which is expressed in units of bits/s/Hz. With a higher average data rate, more throughput can be
achieved for the victims. Additionally, the victim bandwidth scheduling and the UAV optimal flight
trajectory are also metrics for evaluating the system performance.

We consider a system with N = 4 victims that are located within an area of size 800× 800 m2 as
illustrated in Figure 2. The UAV is assumed to fly at a fixed altitude of H = 100 m. The receiver noise
power is assumed to be σ2 = −110 dBm. The channel power gain at the reference distance of unit
length is set to β0 = −50 dB. The transmit power for the victim is set to P = 0.1 W and the maximum
flight speed of the UAV is set to Vmax = 50 m/s [20]. The elemental time slot is set to be δt = 0.5 s [18].
The threshold to control the iteration of the solution algorithm is set as th = 10−2.
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Figure 2. A disaster scenario topology.

In this section, we compare the DS scheme with non-DS schemes comprising fair bandwidth
allocation and bandwidth contention mechanisms. It should be noted that the bandwidth contention
mechanism problem is solved by the BCD-SCA optimization framework. The fair bandwidth allocation
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mechanism problem is solved assuming fixed bandwidth scheduling. The DS scheme is solved by the
BCD-SCA optimization framework, together with the power balance technique.

We first list the optimal max-min average data rate for the different schemes for various total
period values T in Table 1. Figure 3 shows the optimal UAV flight trajectories for the different schemes
when T = 60 s. The DS method has the best performance in terms of average data rate, since the
bandwidth is multiplexed by a pair of victims in each time slot. The non-DS bandwidth contention
scheme has better throughput performance than the non-DS fair bandwidth allocation scheme as the
UAV flies to and hovers above each victim in the bandwidth contention scheme, which brings better
channel gain for data transmission.

Table 1. Comparison of optimal max-min average achievable data rate (bits/s/Hz).

T = 60 s T = 40 s T = 30 s T = 20 s

non-DS bandwidth contention scheme 10.40 9.99 9.63 9.12
non-DS fair bandwidth allocation scheme 9.80 9.78 9.76 9.71

DS method 14.65 14.64 14.62 14.58
DS method (theoretical analysis) 14.70 14.67 14.63 14.58
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Figure 3. Comparison of optimal max-min average data rate UAV trajectories for T = 60 s.

Furthermore, we analyse the theoretical optimal max-min average data rate for the DS scheme
under different T, as shown in the last row of Table 1. The theoretical values for the scenario shown in
Figure 2 are feasible to calculate. Within time T, the UAV should spend the most time supporting the
DS enabled victims, and spend the least time traversing from the initial position to the final position.
To be specific, the UAV should traverse at its maximum speed, and for the remaining time hover at two
positions, one is the midpoint of line segment victim1–victim2, and the other is the midpoint of line
segment victim3–victim4. By letting the UAV hover at the midpoint, it is able to maximize the received
signal power at the UAV for the paired DS enabled victims. From a comparison of the results, we can
see that the proposed solution is very close to the theoretical values, which shows the correctness and
feasibility of our proposed approach. In addition, the proposed technique can be treated as a general
method to solve the DS enabled UAV trajectory planning problem. Since the theoretical analysis is not
always easy to undertake, due to the complex network topology, the proposed approach provides a
practical way to get close to the ground true optimal value.

Figures 4 and 5 show the bandwidth schedule for each victim in the DS method and non-DS
bandwidth contention scheme, respectively. In the DS scheme, victim 1 and victim 2 are supported by the



Future Internet 2020, 12, 193 10 of 14

DS method first, then victim 3 and victim 4 are supported by the DS method. However, in the non-DS
bandwidth contention scheme, from victim 1 to victim 4, each of them occupies the bandwidth sequentially.
The bandwidth schedule configurations are delivered to the victims by the UAV via control signals.

Figure 6a shows the optimal trajectories for the non-DS bandwidth contention scheme for different
T values. As the period T decreases, the maximum distance that the UAV can traverse between the
initial and final positions decreases, thus the UAV flight trajectory eventually becomes unable to
reach every victim. However, the UAV tries to approach each victim as close as possible. Meanwhile,
the channel gain worsens as the distance between the UAV and victim is increasing, hence resulting in
a decrease of the optimal max-min average data rate.
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Figure 4. Dual Sampling (DS) method bandwidth schedule for T = 60 s.
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Figure 5. Non-DS method bandwidth contention schedule for T = 60 s.
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Figure 6. Non-DS schemes optimal UAV trajectory comparison.

Figure 6b shows the optimal trajectories for the non-DS fair bandwidth allocation scheme for
different T values. The optimal average data rate for the non-DS fair bandwidth allocation scheme
decreases slightly as the period T decreases. This is because that in the non-DS fair bandwidth
allocation scheme, the UAV flies along a trajectory where the distances from each victim to the UAV do
not vary much. The length of the resulting trajectory is covered by the maximum UAV traverse distance
under different T. Therefore the change of T slightly changes the optimal UAV flight trajectory.
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Figure 7 shows the optimal trajectories for the DS method for different T values. The change of
the period T only changes the optimal average data rate slightly. In the DS method, the UAV is likely to
fly at the positions that are the same distance to both of the DS supported paired victims, as discussed
in the theoretical analysis. The maximum UAV traverse distance under different T values can cope
with this kind of trajectory. Hence the change of T only slightly affects the UAV flying trajectory.
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Figure 7. DS method optimal trajectories comparison.

Next, we compare the propulsion energy consumed by the UAV for different schemes. As derived
in Reference [27], the propulsion power consumption for a rotary-wing UAV in a time slot can be
modelled as

P[k] =P0(1 +
3v[k]2

U2
tip

) + Pi(

√
1 +

v[k]4

4v4
0
− v[k]2

2v2
0
)1/2

+
1
2

d0ρsAv[k]3,

(13)

where v[k] is the constant flight speed of the UAV in a time slot. P0 and Pi represent the blade profile
power and induced power in hovering status, respectively. Utip denotes the tip speed of the rotor
blade, v0 is known as the mean rotor induced velocity in hover, and d0 and s are the fuselage drag
ratio and rotor solidity, respectively. ρ and A denote the air density and rotor disc area, respectively.
Therefore, the propulsion energy in a time slot is P[k]δt. Furthermore, the overall propulsion energy of
the UAV is

E =
K

∑
k=1

P[k]δt. (14)

We assume that P0 = 577.3 W, Pi = 793.0 W, Utip = 200 m/s, v0 = 7.21 m/s, d0 = 0.3,
ρ = 1.225 kg/m3, s = 0.05, and A = 0.79 m2 [28]. Based on the optimal UAV trajectory derived
for different schemes, the overall propulsion energy consumed by the UAV is listed in Table 2. On observing
the results, for shorter time periods, that is when T = 40 s, 30 s, and 20 s, the DS method consumes most
propulsion energy, while the non-DS fair bandwidth allocation scheme consumes least propulsion energy.
In the DS method, the UAV hovers for the longest time, and in the two non-DS schemes, it hovers for
much less time. When the UAV flying speed is less than around 40 m/s, it consumes most power when
remains in the hovering status [28]. This is why the UAV consumes most propulsion energy in the DS
method. However, for a longer time period, when T = 60 s, the non-DS bandwidth contention scheme
consumes most propulsion energy. This is because the UAV hovers at the position of each victim sequentially.
The DS method consumes more energy than the non-DS fair bandwidth allocation scheme, but with higher
max-min average data rate among all the victims.

To better understand the relationship of propulsion power and the speed of UAV, we plot Figure 8
with the same parameters configured in the simulation. By observing the curve, the minimum power
consumption is at a UAV speed of around 20 m/s rather than when hovering, at 0 m/s. Hence in order
to reduce the propulsion energy consumption for the DS method, we replace the hovering status with
a circular movement with a relative small radius at a speed of 20 m/s. By providing a small angular
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UAV movement, the propulsion energy needed to provide sufficient lift is appreciably reduced as
shown in the last row of Table 2.

Table 2. UAV propulsion energy (kJ) comparison.

T = 60 s T = 40 s T = 30 s T = 20 s

non-DS bandwidth contention scheme 88.43 63.83 51.21 34.14
non-DS fair bandwidth allocation scheme 69.77 45.26 36.26 30.84

DS method 76.83 69.78 62.24 52.24
DS method (adjusted) 62.22 46.91 39.68 30.82
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Figure 8. UAV propulsion power consumption.

6. Conclusions

In this paper, we consider a dual sampling bandwidth efficient transmission technique in regard to
the UAV flight trajectory, so as to maximize the minimum data transmission throughput among all the
victims. In order to solve the problem, we propose an iterative algorithm which alternately optimizes
the victim bandwidth scheduling and UAV trajectory. In addition, power balance is implemented in
each iteration of the algorithm for supporting the DS method. We compare the DS scheme with two
non-DS schemes, that is, a fair bandwidth allocation scheme and a bandwidth contention scheme.
The DS scheme outperforms the non-DS schemes in terms of the optimal max-min average data rate
among all the victims. The theoretical analysis reveals that the proposed solution is very close to the
ground true optimal value. The optimal UAV flight trajectory for the DS scheme is different from the
non-DS bandwidth contention scheme and non-DS fair bandwidth allocation scheme, as the UAV flies
to positions that are not necessarily close to each victim. The UAV trajectory derived by the proposed
algorithm is pre-configured before the UAV is dispatched and we assume the UAV is explicitly guided
to follow the optimal trajectory. In regard to the UAV propulsion energy consumption, for shorter
time periods, the non-DS fair bandwidth allocation scheme consumes the least energy. For longer time
periods, the DS method consumes the second least energy but achieves the highest max-min average
data rate among all victims. However, if the UAV hovering episodes are replaced by small circular
movements, the propulsion energy consumption for DS method can be significantly reduced.

Moreover, the assumption that the UAV starts and ends at fixed locations is reasonable. As in
a disaster scenario, maybe only some certain places are able for launching and landing the UAV.
In addition, a feasible path can be either a straight line, a circular curve or in other types, as long as the
UAV can follow this path to fly through the area to connect all the victims. Meanwhile, a feasible path
helps the staff collect the UAV back.
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