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Abstract: The spectral efficiency of wireless networks can be significantly improved by exploiting
spatial multiplexing techniques known as multi-user MIMO. These techniques enable the allocation
of multiple users to the same time-frequency block, thus reducing the interference between users.
There is ample evidence that user groupings can have a significant impact on the performance of
spatial multiplexing. The situation is even more complex when the data packets have priority
and deadlines for delivery. Hence, combining packet queue management and beamforming
would considerably enhance the overall system performance. In this paper, we propose a
combination of beamforming and scheduling to improve the overall performance of multi-user
MIMO systems in realistic conditions where data packets have both priority and deadlines beyond
which they become obsolete. This method dubbed Reward Per Second (RPS), combines advanced
matrix factorization at the physical layer with recently-developed queue management techniques.
We demonstrate the merits of the this technique compared to other state-of-the-art scheduling
methods through simulations.

Keywords: scheduling; beamforming; WLAN; OFDM; resource allocation; EDF; priority; deadline;
queuing; EDF; ZFBF

1. Introduction

In recent years, the deployment of media-rich applications for mobile devices has increased.
These applications consume higher bandwidths from each mobile device. At the same time, the number
of devices has grown rapidly and is expected to be on the order of tens of billions when including
Internet-of-Things devices, vehicular networks, and personal communication [1,2]. This growth
will lead to larger bandwidth requirements in the near future. According to Cisco’s Networking
Visual Index report [3], data traffic is expected to triple in volume by 2022. New critical applications
such as autonomous cars demand very low latency for packet transmission. Enforcing low latency
means that each packet has a deadline that needs to be met. This challenge can only be addressed if
channel throughput is increased and a proper scheduling mechanism that manages both priorities and
deadlines is introduced into the network. These challenges exist both in the Internet network cores
and in cellular networks, whether these are C-RAN-based [4] or massive MIMO base-station-based
networks [5]. Methods to perform effective network resource orchestration to minimize the bandwidth
and network resource consumption were presented in [6]. However, to achieve the benefits of SDN
orchestration, the base-stations or the C-RAN need to cross optimize the scheduling mechanism
together with the physical layer beamforming [4,7–9] Moreover, dealing with both priority and
deadline constraints requires a new approach to user scheduling and resource allocation, which
ensures that the scheduler and the physical layer are harmonized to optimize performance. We can no
longer expect that maximizing the spectral efficiency, using greedy allocation, will be optimal given
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the overall system constraints. To be optimal in the context of a multi-user MIMO system, we need a
different approach to the physical layer beamforming and coding design.

The downlink of the MU-MIMO channel is known in the information theoretic context as the
Broadcast Channel (BC). Several methods have been proposed to improve data rates over the broadcast
channel. The Dirty Paper Coding (DPC) concept [10] for non-causally known multi-user interference
at the transmitter was proven to eliminate the interference perfectly without power penalty.

The main drawback of this method is that finding the resulting optimal transmit co-variances
has very high computational complexity. To reduce this computational complexity, several other
beamforming techniques have been proposed. Zero-Forcing (ZF) beamforming was introduced
as a simple alternative to DPC. In [11], the relationship between the linear ZF precoding design
and generalized inverses in linear algebra was presented. Typically, the ZF method is sub-optimal.
However, it has been shown to suffer a constant loss relative to capacity achieving approaches such as
DPC in the case of large numbers of users and a high signal-to-noise ratio [12,13].

To overcome the shortcomings of ZF beamforming, where transmission to non-orthogonal users
suffers significant power penalty, the proper scheduling and grouping of packets are required [13] to
achieve optimal behavior. Indeed, the work in [7,13,14] proposed opportunistic or greedy grouping
of users. This is indeed a special case of the general problem of joint scheduling and beamforming.
This problem is known to be NP-hard [9]. Several approaches have been taken in order to propose
scheduling with lower complexity beyond the greedy solutions above. Convex approximation
algorithms were proposed in [9]. In the case of large numbers of MSs, opportunistic policies
achieve near DPC performance in terms of the average delay [7]. Different policies handle the power
constraint issue [15,16], trying to maximize the overall throughput. Other approaches to maximize
the throughput used an arbitrary set of orthogonal beamforming in the case of low-rate beamforming
feedback [17]. In [5], partitioning the users into groups with the approximately similar channel
co-variance eigenvectors method was presented. This method enables the “massive MIMO” gains.
In [8], a unified urgent weight was proposed by taking into account QoS requirements, such as delay
deadline, minimum data rate, Queue State Information QSI, and the user fairness requirement. Various
methodologies have been used to approach the aforementioned joint optimization task in the downlink
of MU-MIMO communication systems [18]. In [17], Per User Unitary and Rate Control (PU2RC) was
analyzed, and in [19], a generic channel covariance-based beamforming scheme was presented. In [4],
the authors described a method to maximize the system utility, subject to the diverse QoS requirements
of users and the power constraints. In [20], Joint Opportunistic Scheduling and Receiver Design
(JOSRD) was analyzed for MU-MIMO. All these studies, considered scheduling policies to improve
the resource block allocation while maximizing the SINR or the achievable overall system throughput.
However, improving capacity is not enough to support new applications. These techniques cannot
be applied when both deadlines and constraints are required. While other network management
techniques exist for other network models such as device-to-device interference management [21] or
ad-hoc networks [22], these techniques are inapplicable in the context of base-station scheduling.

Many IoT systems are assumed to be hard real-time systems. In hard real-time systems, if a
packet fails to be delivered before its deadline expires, it is considered to be lost. The hard real-time
systems problem has been widely discussed in queuing theory [23–26]. The Earliest Deadline First
(EDF) scheduling policy is one of the most common methods to schedule packets in a hard real-time
environment [25]. The EDF is optimal in many queuing models [25,27–31]; however, in the presence of
prioritized packets, it can be sub-optimal [32]. At the same time, applications differ in terms of their
importance. Application priority normally reflects their importance. The priority is attached to the
application’s packet. Priority becomes a reward upon successful delivery of a packet. The reward
is considered to benefit the network if the packet is delivered on time [33]. Scheduling mechanisms
that consider both rewards and deadlines were presented in [34]. Another scheduling policy is
based on the cµk/θk-rule presented in [35–37]. The cµk/θk-rule is based on having a finite number of
queues, each queue presenting a possible packet’s priority. The policy selects the queue to be served.
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The decision aims to reduce the summation of cµk/θk over the queues. In cµk/θk, c presents a cost
function of the queue, which is similar to a reward summation, µk presents the kth queue packets
arrival rate, and θk presents the abandon rate from the queue. The policy selection process takes into
consideration the queue rewards, the arrival rate expectation, the abandon rate expectation, and the
queue length.

A similar approach to prioritization can be found in WLAN standard 802.11e [38], which
implements a queue per priority and assigns different idle time bounds according to the queue
priority. Recently, the authors developed a significantly improved solution for managing queues with
both priorities and deadlines [32].

The above queuing theoretic papers discuss queue management policies independent of the
underlying physical layer, assuming a single server with a deterministic or random service rate.
In contrast, managing queues of packets aimed at independent users with different communication
channels requires a cross-layer approach, as priorities and deadlines need to be measured against
the effect of each user on other users grouped together. A simplified approach was presented in [39]
where packets with priorities and deadlines were scheduled to static beams. It is the goal of this
paper to propose a cross-layer approach for scheduling and beamforming. A typical application of
the proposed approach would be for WLAN networks; for example, WLAN equipment supporting
the IEEE 802.11ac standard planned for a maximum throughput of at least 500 Mb/s for a single user
and at least 1 Gb/s for multiple users [40,41]. The IEEE 802.11ac Multiple Access Control (MAC)
layer extended the IEEE 802.11n standard to accommodate an MU-MIMO [42]. In order to increase
the capacity, new bands were allocated, such that the IEEE 802.11ac standard aims for a WLAN
working at multi-user transmission at 60 GHz. This standard was defined to increase the throughput
of next-generation WLANs via both analog and digital beamforming [43–45]. The 802.11 standard
indeed contains a priority mechanism at the medium control level; however, these are insufficient to
support delay-critical applications. In this paper, we use a scheduling policy combined with the ZF
beamforming technique to improve systems with traffic under a hard real-time environment, as well
as priorities.

The remainder of this paper is organized as follows. Section 2 introduces the system model.
Section 3 describes the RPS algorithm. Section 4 presents simulation results, and conclusions are drawn
in Section 5.

2. System Model

Consider a system composed of a WLAN Access Point (AP) and a finite number of Mobile
Stations (MSs), as depicted in Figure 1. Data packets arrive at the AP and need to be transmitted to
their designated MS. The AP has multiple antennas, whereas each MS has a single antenna (multi-user
MIMO). This problem is a variant of the well-known broadcast channel problem. The AP needs to
transmit the packets to the MS. The arriving packets have both priority and deadlines. The system is
defined to be a hard real-time system; i.e., packets that miss their deadline do not earn their priority as
rewards. The goal is to maximize the sum of the rewards over the complete system.

Figure 1. System.
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2.1. Queuing Model

This section summarizes the standard queuing model. The complete set of assumptions for the
queuing model can be found in [32].

A queuing model is composed of jobs, scheduling policy queues, and servers. The jobs entering
the system are described by a renewal process with different attributes. The attributes may be assigned
upon arrival or later on. The scheduling policy is responsible for allocating the servers to the jobs and
choosing the job to be processed out of the queue when the server is idle. The queuing model of the
data packets assumes a renewal reward process [33]. We use the extended Kendall [32,46] notation
A/B/C− D/P to characterize the input random process and the service mechanism.

As defined below:

• A refers to the inter-arrival time of the renewal process.
• B refers to the random process of service time required by the packets.
• C refers to the number of servers.
• D refers to the deadline random process.
• P refers to the priority or reward random process.

Each packet arriving at the AP has its destination MS, payload, priority, and deadline. Let Ji
(i ∈ N) be the ith packet that arrives to the system. Let Ai, Bi, Ci, Di, and Pi be random variables
defining the job, Ji. The packet arrival time, denoted ti, is defined by:

ti = ti−1 + Ai =
i

∑
j=1

Aj. (1)

Let the tuple Ji =< ai, bi, ei, pi > represent a packet i with its random parameters where ai, bi, ei,
and pi are realizations of Ai, Bi, Ei, and Pi.

Following are the queuing model assumptions:

A1 The pair (Ai, Pi) is a renewal reward process.
A2 Packets’ deadlines are measured with respect to the end of transmission.
A3 The reward is obtained only if packets arrived on time (hard real-time system requirements).
A4 bi, ei, and pi are known upon arrival of Ji to the queue.
A5 The scheduling policy is non-preemptive, and forcing idle time is not allowed.

Let Sπ
t be the set of packets that were successfully delivered to their destinations by policy π up

to time t. By definition, the renewal reward process provides a mechanism to analyze the performance
of the system. The cumulative rewards’ function is a simple way to compare the performance of
different algorithms.

Definition 1. The cumulative reward function for time t and policy π is:

Uπ
t = ∑

Ji∈Sπ
t

pi. (2)

The objective is to find a policy π that maximizes the cumulative reward function.

2.2. ZF Beamforming for MU-MIMO Wireless Networks

Consider the downlink of an MU-MIMO system with a single Access Point (AP) operating over a
single band using N transmit antennas and a single antenna receiver for each of the M Mobile Stations
(MSs). The combined vector channel can be described as:

y = HWx + z. (3)
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where y, x, z ∈ CM×1, a channel gain matrix H ∈ CM×N , and a beamforming matrix W ∈ CN×M.
Let:

H∗ = QR (4)

be a QR decomposition of H∗ [47]. Let L = R∗, and let H = LQ∗. Assume that W = Q. The equivalent
channel is given by:

y = Lx. (5)

Note that at this stage, each user is not subject to interference by users with a higher index [48].
To complete the ZF beamforming, we need to invert L and normalize the total transmit power.
Practically, since L is a lower triangular matrix, we can use forward substitution to compute the
transmitted vector. Furthermore, we can normalize the total power of the transmitted vectors prior to
beamforming with Q, since Q is unitary. Let s ∈ CM×1 be the vector of symbols that are required to be
transmitted to the different mobile stations.

We also use the following assumptions:

A6 The AP has perfect Channel State Information (CSI).
A7 Transmitted data symbols (sk) are uncorrelated
A8 The power allocated to each user is constant. To simplify notation, we assume that the same

power is allocated to all users, i.e., E{s2
k} = 1 and E{x2

k} = P.

Let x = L−1G s where G is a diagonal M×M real gain matrix.
Since Lx = Gs, then x and G can be calculated using forward substitution as described below:

k

∑
j=1

lkjxj = gkksk =⇒ xk =
1

lkk

(
gkksk −

k−1

∑
j=1

lkjxj

)
. (6)

Assuming A8, then:

E{x2
k} =

1
l2
kk

E

{
(gkksk −

k−1

∑
j=1

lkjxj)
2

}
=

1
l2
kk

(
g2

kk + P
k−1

∑
j=1

l2
kj

)
= P. (7)

From Equation (7), it can be derived that:

gkk =

√√√√P

(
(l2

kk − βk

k−1

∑
j=1

l2
kj

)
),

where βk ∈ [0, 1] and gk,k is always real.

(8)

Define x by:

xk =
1

lkk

√√√√P(l2
kk − βk

k−1

∑
j=1

l2
kj)sk −

k−1

∑
j=1

lkjxj

 . (9)

The energy that is allocated to transmit sk is:

P

(
1− βk

l2
kk

k−1

∑
j=1

l2
kj

)
. (10)
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Therefore, the SINR as a function of βk is given by:

SINR(βk) =

P

(
1− βk

l2
kk

k−1
∑

j=1
l2
kj

)

l2
kk(1− βk)

k−1
∑

j=1
l2
kjP+ σ2

k

. (11)

The optimal βk solves the following problem:

βk = arg max (SINR(βk))
βk∈[0,1]

. (12)

The achievable bit rate for MS k is given by:

rk = log2(1 + SINR(βk)). (13)

2.3. Combining Scheduling and Beamforming

We now describe the overall system model. In the queuing model presented above, a known
service time is assumed. In the combined model, service time or the packet transmission time should be
derived from the packet length and the channel throughput at the time of the transmission. In contrast
to the standard queuing model, this implies that the transmission time is affected by the packets already
scheduled for transmission and calls for a cross-layer approach to scheduling and beamforming.

In order to keep the model simple, the following changes are made. In the combined model,
the reference to an MS is omitted; instead, the channel gain vector is added to the packet
(Ji = < ai, bi, ei, pi, di, hi >); in other words wk, xk, and sk are referred to accordingly. This
approach is similar to the original model with respect to the system objectives. The original service
time of a packet bi refers now to the packet length. The actual service is defined by the packet length
and the available data rate for a specific subscriber at a specific time.

The additional assumptions are:

A9 Each packet is addressed to a specific MS (multicasting will be considered in an extension of
this work).

A10 hi is known upon arrival of Ji to the queue.
A11 Channel coherence time is longer than the packet service time.
A12 The queuing model is G/D/n− /G/B where n = N.

As in standard queuing models, this model also has three possible events:

E1 The packet arrives at the system.
E2 The beginning of packet transmission.
E3 The end of packet transmission.

The system state machine is depicted in Figure 2 . Packets that arrive at the system (Event E1)
need to either wait in the queue or begin transmission (Event E2). At this stage, the scheduler can drop
expired packets, select a queue for the packet (for a multiple queue model), and implement a queue
insertion policy. The beginning of packet transmission (Event E2) is a result of both the existence of
one or more eligible packets (either in the queue or arriving) and available resources at the transmitter.
Based on resource availability, the scheduler selects the packet to be transmitted from the queue.
The packet is dropped if its deadline has expired, and a new packet is selected. Then, the scheduler
calculates the packet beamformer and transmits the new packets with the existing packets. The end of
packet transmission (Event E3) frees resources. The transmitter keeps transmitting packets for which
their transmission did not end and adds new packets for transmission (Event E3). The first case may
require a precoder recalculation to achieve better performance after the resources are released.
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Figure 2. System state machine.

Communication systems always use a discrete set of modulation and coding schemes. Therefore,
there is a minimal data rate that the system can transmit. For such a data rate, there is a minimal SINR
requirement for proper decoding.

In order to support variable matrices and vectors over time, we introduce the notation of
Ht, Qt, Lt, st, and xt.

As is common in high spectral efficiency coherent transmission, we assume that the channel is
under-spread [49], i.e., fixed along the transmission of each packet.

3. RPS Scheduling Policy

User selection is crucial for ZFBF in particular and linear ZF in general. Hence, the interaction
between the scheduler and the physical layer is a crucial element in any scheduler for MU-MIMO
systems. Moreover, the addition of new users can reduce the rate of already allocated users.
Full combinatorial search for optimal user selection even without deadlines and priorities is
prohibitively complex. Under deadline constraints, adding users to a set of transmitting users can
result in missing the deadlines of these users by reducing their rates. Therefore, a scheduling policy that
decouples this dependence should significantly reduce the complexity of user selection, while allowing
the scheduler to allocate the users independently of previously-allocated users. The proposed RPS
policy achieves this through a linear algebraic decomposition of the channel matrix in a way that
allows for a sequential addition of users without harming already transmitting users.

In this section, we present a new scheduling policy called RPS that combines ZFBF and reward
per transmission time ordering. The RPS algorithm gives priority to packets with a higher reward
per second. The arrival queue is ordered according to EDF, and the search for the packet with the
highest RPS is limited to the first N packets. The RPS scheduling policy uses ZFBF as the precoding
mechanism. The ZFBF by nature provides resource allocation in decreasing order from the first row
of the channel matrix to the last row. The RPS takes advantage of this characteristic to provide better
bandwidth to selected packets. Packets that cannot achieve the required bandwidth to meet their
deadlines are not selected for transmission. Consequently, several packets with the same destination
or packets that should use the same steering vector are not transmitted together, and only one packet
is transmitted at a time. In any case, such packets are not transmitted until either they get the required
bandwidth or they miss their deadline and are dropped from the queue. Figure 3 depicts the new
scheduling policy.

Figure 3. RPS policy packet flow.

The scheduling policy is composed of four algorithms:

M1 New packet insertion into the arrival queue, Algorithm 1.
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M2 Selection of the packet for transmission in case there is an eligible packet and there are available
transmission resources, Algorithm 2.

M3 Precoder update for additional new packet transmission, Algorithm 3.
M4 Precoder downdate for a packet that ended its transmission, Algorithm 4.

Algorithm 1 responds to a packet arrival event (Event E1). If there are available resources for
transmission and the queue is not empty, the selection algorithm is activated (Algorithm 2). If the
selection process ends successfully, Algorithm 3 runs to prepare the new precoding. At this point, the
packets that are eligible for transmission and were precoded are transmitted. For packets that have just
begun their transmission, this event is Event E2. At the end of transmission, i.e., Event E3, Algorithm 4
is activated in order to downdate the precoding matrices. Figure 2 depicts the state machine that
activates the algorithms.

Algorithm 1 New packet queue insertion.
Let Ji be the packet that arrives at the system at time ti.

1: Drop Ji if its deadline has expired
2: Add Ji to the queue according to the EDF arrival policy.

The following algorithm selects a packet from the arrival queue to be transmitted.

Algorithm 2 Select new packet for transmission.
Let Ht−1 be the channel matrix in the previous stage, and let Qt be the arrival queue at the current
time. Let Qt(i).h, Qt(i).length and Qt(i).deadline be the channel vector, the length, and the deadline of
the packet, which is in the ith position in queue Qt. Let currentTime be the actual time as defined by
the index time t. Let K be the packet selection window size.

1: windowSize = min(length(arrivalQin), K);
2: i=1;
3: while i < windowSize do
4: Htemp = [Ht−1, Q(i).h]
5: Perform L and Q updating
6: Calculate the expected transmission rate(i) for packet Qt(i) using Equations (7), (11), and (13)

7: if Qt(i).length
rate(i) + currentTime < Qt(i).deadline then

8: RewardPerUnitTime(i) = Qt(i).priority∗rate(i)
Qt(i).length

9: else
10: RewardPerUnitTime(i) = 0

11: j = argmax
i

RewardPerUnitTime(i)

12: if RewardPerUnitTime(j) == 0 then
13: return -1
14: else
15: return j

Algorithm 3 Precoder update.

1: Ht = [Ht−1, Q(i).h]
2: Perform L and Q updating
3: Calculate x using Equations (7), (11), (9), and (13)

For additional details about QRupdate, please refer to [50].
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Algorithm 4 Precoder downdate.

1: Update Ht by removing the column of the packet that ended its transmission from Ht−1
2: Perform L and Q downdating
3: Calculate x using Equations (7), (11), (9), and (13)

In Algorithm 4, L and Q are downdated; alternatively, with additional computational effort, it
is possible to calculate L and Q from the beginning. In this case, packets that were added to the
transmission after the packet that ended may improve their bit rate. Algorithms 3 and 4 perform
QR factorization updating and downdating. These operations can be carried out more efficiently as
presented in [51,52] and [50]. In the case of massive MIMO, the probability of having almost orthogonal
channels is very high.

Computational Complexity of RPS

The computational complexity of RPS is composed of three components:

• Complexity of processing a new packet.
• Selection of a transmitted packet.
• Transmission complexity.

Upon arrival, the RPS adds the packet to the queue according to the earliest deadline first order
with a complexity of O(log|Q|) where |Q| is the size of the arrival queue; when the buffer size is
limited, this is always less than log(bu f f ersize). By our assumptions, the size of the arrival queue is
bounded by:

Qmax =
maximal deadline×minimal packet length

maximal bandwidth×maximal number of beams
. (14)

This complexity is similar to other sorted policies like EDF and priority greedy. In contrast,
LIFO and FIFO have a O(1)complexity of packet insertion. However, even the logarithmic complexity
is very moderate.

The computational complexity of adding a new packet to a ZF beamformer (i.e., QR update) using
the Gram–Schmidt process or Householder transformation is 2N2 [47]. This computation is required
regardless of the scheduling policy. After this step, we keep L and Q to avoid new computation.
Selecting a new packet for transmission in RPS requires K − 1 partial QR updates per packet on
average. Each partial QR update has a computational complexity of 2N, i.e., if the packet is not selected
and a different packet is selected, the L and Q matrices are updated accordingly. When a packet ends,
we perform a simple QR downdate by removing the relevant column and row, which has complexity
2N. Therefore, the total average complexity for processing a packet is bounded by:

log(Qmax) + 2N2 + 2N(K− 1). (15)

Note that a packet transmission complexity for any scheduling policy with a sorted queue is
log(Qmax). Therefore, the updating of a ZF beamformer is 2N2 + 2N(K̂− 1) where K̂ is the average
number of packets processed until an eligible packet is found. Therefore, the total average complexity
of the beamformer processing per packet is bounded by:

log(Qmax) + 2N2 + 2N(K̂− 1). (16)

Optimal resource allocation even without beamforming is an NP hard problem [6] and [32].
This implies that our policy is likely to be sub-optimal. However, with a moderate polynomial
complexity, we outperform all prior scheduling algorithms that are not designed jointly with
the beamformer.
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4. Simulations

In this section, we present numerical simulations comparing the performance of FIFO, EDF,
priority greedy (Greedy), and the cross-layer RPS scheduling policies.

The simulation software was written using MATLAB R2019a. The software was built of two
modules. The first module is called the Packet Generator (PG) and is responsible for packet generation.
The second module is called Policy Runner (PR) and is used to simulate the scheduling policies
behavior and measure their performance. At the beginning, the PG generates a configurable number
of tests. Each test randomly picks a configurable number of MS locations. Then, the PG generates
a configurable number of packets, which simulates the arrival process. After the PG generates the
tests and their packets, the PR processes them according to the different policies’ schemes. All policies
receive as an input the same stream of packets with the same MSs location. The PR measures the
cumulative rewards, the number of packets that were delivered on time, the number of packets
that cannot be delivered because of the short period between the arrival and the deadline, packets
that expired while waiting in the queue and packets that were delivered after the deadline expired.
The calculation of the available bandwidth for transmission was based on (13). We ran the simulation
using a personal computer equipped with an Intel(R) Core(TM) i5-4670S 3.1-GHz CPU and 16 GB
RAM memory. The average CPU utilization was 27%, and the average memory utilization was 1.34 GB.
The processing environment impacted mainly the simulation, which was used here in order to quantify
the computational complexity and not for the actual processing time of the beamformer.

The data for the channel simulation were generated as follows: An AP was located at the origin
with and eight-element uniform linear antenna array operating at a frequency of 2.4 GHz (λ = 12.5 cm).
We generated 200 sets of locations of N = 32 MSs and channels for each of these. The multipath
effect was simulated by a superposition of a line of site channel and seven i.i.d. Rayleigh fading taps,
with excess delay and relative power according to Extended Pedestrian A. The mobile stations were
located randomly 2–20 m away from the AP. Figure 4 depicts one of the MS’s location realization of
one test, while Figure 5 depicts the realization of 200 tests.

Figure 4. Access point (red) and mobile station (blue) locations for a single test.



Future Internet 2019, 11, 172 11 of 20

Figure 5. Access point (red) and mobile station (blue) locations for 200 tests.

The transmission power was set to 20 dBm. The total power of the AWGN was set to −101 dBm.
We modeled the large-scale fading using a path loss of ( 4πd

λ )α where α = −3.5 and d is the distance
between the antenna to the MS.

The arrival process contained 2000 packets. The different random processes were set as follows:

1. The arrival-time process was exponentially distributed with λa = 42,000, 46,000, 50,200, 54,400,
58,000 and 62, 000.

2. The packets size was set to be similar to the Internet packet size distribution [53]. Forty percent
were short packets with a length of 64 bytes; 40% were long packets with a length of 1500 bytes.
The length of the rest of the packets (medium packets) was uniformly distributed between the
short and the long packet lengths∼ U[64, 1500].

3. The deadline was exponentially distributed with λd = 15 from the arrival to the end of service.
4. The reward was an integer that was distributed according to packet length. Short packets’ reward

was uniformly distributed ∼ U[5, 9]. Long packets’ reward was uniformly distributed ∼ U[1, 6],
and medium packets’ reward was uniformly distributed ∼ U[1, 10].

5. The destination of the packet was distributed uniformly between the MSs ∼ U[1, 32].

We compared four scheduling policies: FIFO, priority greedy, EDF, and RPS. In order to generate
a fair environment, the FIFO, priority greedy, EDF, and RPS scheduling policies were implemented
similarly in the following manner:

1. Packets whose deadline expired were removed from the arrival queue.
2. Packets with less than a 1-Kpbs rate did not begin transmission.
3. Packets were selected only from a window of K packets at the prefix of the queue.
4. All scheduling policies used ZFBF with a sequential insertion approach.
5. Matrices L and Q were downdated after packets ended their transmission.

The naive implementation of FIFO, EDF, and priority greedy selects a packet from the head of
the queue and waits until this packet has enough bandwidth to be transmitted. We first explore the
possibility to allow these policies to look for an eligible packet out of the first K packets in the queue.
We ran simulations with different window sizes K = {1, 2, 4, 6, 8, 10, 12} in order to set the appropriate
window size. Figures 6–8 present the results of the number of delivered packets, the cumulative
rewards, and the processing time using different values of K, respectively. The results showed that
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increasing the window size improved the performance of the all policies while consuming more
processing time. The RPS achieved an optimal performance already when K = 2. In other policies, the
larger the window, the better the performance achieved, as well as the higher the CPU run time. In the
subsequent simulations, we used a K = 8 in which FIFO, priority greedy, and RPS had a similar CPU
consumption per packet.

Figure 6. Percentage of delivered packets with different window sizes (λa = 56,000).

Figure 7. Cumulative rewards’ percentage with different window sizes (λa = 56,000).

Figure 9 presents the cumulative reward of the different policies at different arrival rates. Figure 10
presents the number of packets that were delivered on time at different arrival rates. The general trend
was as the traffic load became higher, less packets were delivered on time; however, the RPS packet
loss was significantly lower than the other policies. In all measurements, the RPS policy outperformed
significantly the other scheduling policies.

Figures 11 and 12 present the overall simulation processing time and the average processing time
per a delivered packet at different arrival rates. As expected, increasing the traffic load increased
the processing time linearly. The processing time of FIFO, priority greedy, and RPS were similar.
EDF showed worse performance. In Section 3, we present computational analysis of a single packet’s
handling. The results here emphasize that joint scheduling kept the overall performance low with less
redundant processing time of packets that were not delivered on time.
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Figure 8. Processing time in seconds with different window sizes (λa = 56,000).

Figure 9. Percentage of cumulative reward with different arrival rates.

Figure 10. Percentage of delivered packets with different arrival rates.
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Figure 11. Processing time in seconds with different arrival rates.

Figure 12. Delivered packet average processing time in seconds with different arrival rates.

Figures 13 and 14 present the CDF of the packets that were delivered on time. Figures 15 and 16
present the CDF of the cumulative reward. The 10% outage point at λa = 56,000 for RPS was 30%
better than all other scheduling policies, both in the cumulative reward and in the number of delivered
packets. As the arrival rate was higher, all policies collected less rewards and delivered less packets
on time. The degradation of the service was not similar for all policies; the FIFO policy suffered the
most; the EDF policy and the priority greedy policies suffered less; while the RPS policy had a minor
degradation of the performance. The RPS policy cumulative reward was 35% better at a 10% outage
than the priority greedy policy and was 40% better than the priority greedy policy in the expected total
number of delivered packets.

One should note that the RPS policy also provided a significantly more robust packet delivery,
since the expected reward CDF was very concentrated compared to the other scheduling policies.
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Figure 13. CDF of number of delivered packets (λa = 42,000). FIFO; , EDF; , Greedy; , RPS.

Figure 14. CDF of number of delivered packets (λa = 66,000). FIFO; , EDF; , Greedy; , RPS.
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Figure 15. CDF of cumulative rewards (λa = 42,000). FIFO; , EDF; , Greedy; , RPS.

Figure 16. CDF of cumulative rewards (λa = 66,000). FIFO; , EDF; , Greedy; , RPS.

5. Discussion and Conclusions

We presented a cross-layer queuing model for packets with priority and deadlines that is
applicable in an MU-MIMO downlink operating over a single band. We described the RPS scheduling
policy that combines maximizing the reward per second approach with ZFBF precoding to design
jointly the beamformer and the scheduling algorithm. Simulations demonstrated that the proposed
technique performed significantly better in this context compared to existing techniques. Thus,
designing a cross-layer, joint scheduling, and precoding can significantly improve the performance
of the transmission of packets with deadlines and priorities. Extension of the proposed technique
to OFDM systems (here, beamforming was done independently at each frequency) is an interesting
research direction. However, the insights provided by the current paper allow one to consider joint
scheduling and beamforming in the downlink of OFDM systems such as 5G and WLAN.
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Abbreviations
Terms
AP Access Point
AWGN Additive White Gaussian Noise
BC Broadcast Channel
C-RAN Cloud Radio Access Network
DPC Dirty Paper Coding
EDF Earliest Deadline First
GBC Gaussian Broadcast Channel
LOS Line Of Sight
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
MS Mobile Station
MCS Modulation and Coding Scheme
MU Multi User
MU-MIMO Multi User MIMO
OFDM Orthogonal Frequency-Division Multiplexing
PG Packet Generator
QoS Quality of Service
QSI Queue State Information
PR Policy Runner
RPS Reward Per Second
SINR Signal-to-Interference plus Noise Ratio
SDN Software-Defined Network
SNR Signal-to-Noise Ratio
WLAN Wireless Local Area Network
ZFBF Zero Forcing Beam Forming
Notations
Ai Arrival random variable
Bi Packet length random variable
C Number of servers
Di Deadline random variable
Ji A packet that arrived at time ti.
Pi Reward or priority random variable
ti The time of the ith arrival
K Defines the queue prefix size for eligible packets (window size)
M The number of antennas
N The number of mobile stations
H The channel state information
H∗ The conjugate transpose of matrix H
L A lower triangular matrix
P The transmission power
Q An orthogonal matrix
R An upper triangular matrix
W The beamforming matrix
x A vector presenting the transmitted signal
y A vector presenting the received signal at the MS
z A vector presenting the AWGN
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