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Abstract: Text sentiment analysis is an important but challenging task. Remarkable success has
been achieved along with the wide application of deep learning methods, but deep learning
methods dealing with text sentiment classification tasks cannot fully exploit sentiment linguistic
knowledge, which hinders the development of text sentiment analysis. In this paper, we propose
a sentiment-feature-enhanced deep neural network (SDNN) to address the problem by integrating
sentiment linguistic knowledge into a deep neural network via a sentiment attention mechanism.
Specifically, first we introduce a novel sentiment attention mechanism to help select the crucial
sentiment-word-relevant context words by leveraging the sentiment lexicon in an attention mechanism,
which bridges the gap between traditional sentiment linguistic knowledge and current popular deep
learning methods. Second, we develop an improved deep neural network to extract sequential
correlation information and text local features by combining bidirectional gated recurrent units with a
convolutional neural network, which further enhances the ability of comprehensive text representation
learning. With this design, the SDNN model can generate a powerful semantic representation of
text to improve the performance of text sentiment classification tasks. Extensive experiments were
conducted to evaluate the effectiveness of the proposed SDNN model on two real-world datasets with
a binary-sentiment-label and a multi-sentiment-label. The experimental results demonstrated that
the SDNN achieved substantially better performance than the strong competitors for text sentiment
classification tasks.

Keywords: deep learning; sentiment attention mechanism; bidirectional gated recurrent unit;
convolutional neural network

1. Introduction

With the exponential growth of large collections of opinion-rich resources, sentiment
classification [1] has been one of the most important tasks in natural language processing (NLP), which
aims to automatically classify the sentiment polarity of a given text as negative, positive or more
fine-grained classes. It can help companies to process and extract precious data from massive amounts
of information, which contain great business value in brand monitoring, customer services, market
research, politics, and social services. For example, tracking consumers’ overall appreciation of a
certain product can assist merchants in adjusting their marketing strategy.

A fundamental problem of NLP is text representation learning, which is encoding the text into
continuous vectors by constructing a projection from semantics to points in high-dimensional spaces.
The effect of text sentiment classification mainly depends on extracting compact and informative
features from unstructured text through representation learning. Mainstream representation models
for text sentiment classification can be divided into two categories based on the knowledge and
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information they use: traditional machine learning-based representation models and current popular
deep learning-based representation models. The traditional machine learning-based representation
models train a sentiment classifier relying on sentiment linguistic knowledge such as bag-of-words
and sentiment lexicon, where the sentiment polarity of text is largely determined to be positive if the
number of positive words is larger than that of the negative ones. In contrast, the current popular
deep learning-based representation models utilize the deep neural network to learn the semantic
information contained in text. The performance of deep learning-based representation models is often
more superior than that of machine learning-based representation models when the syntactic structure
of text is complex. In this paper, we mainly focus on integrating sentiment linguistic knowledge
into the deep neural network to enhance the quality of text representation learning for sentiment
classification task.

The main idea of the traditional machine learning-based representation models [2] is to employ
text classifiers such as the naive Bayes classifier, maximum entropy model, and support vector machines
to predict the sentiment polarity of the given texts. The performance of the naive Bayes classifier for
text sentiment classification is based on the conditional probability of word-level features belonging
to certain sentiment class, where features are manually designed by the bag-of-words representation
method [3]. The maximum entropy model is also a statistical machine learning method based on the
bag-of-words representation approach and its accuracy of sentiment classification entirely depends on
the quality of the hand-crafted corpus so that the process of parameter optimization is computationally
intensive and time-consuming [4]. The support vector machines constructs the sentiment feature
vector mainly relying on the frequency of occurrence of words in text and trains the decision function
to predict the sentiment polarity of sentences [5]. The success of these machine learning algorithms
generally relies on improving feature engineering work in terms of the bag-of-words representation
learning method and manual sentiment lexicon. For example, considering each sentence as a vector
with the following groups of features: n-grams, character n-grams, non-contiguous n-grams, POS tags,
cluster n-grams, and lexicon features, support vector machines [6] can beat all strong competitors to
be the best performer of traditional machine learning models in the SemEval-2014 task. However,
traditional statistical representation learning-based feature engineering work is labor intensive, and
it is difficult to breakthrough its performance bottleneck for text sentiment classification tasks in the
current field of NLP due to the failure to encode word order and syntactic information. Although
the application of sentiment linguistic knowledge in conventional machine learning approaches has
reached the upper bound, this phenomenon does not mean that it is not suitable for the current popular
deep learning methods. The main goal of our thesis is to explore a way to combine sentiment linguistic
knowledge with deep learning methods so as to stimulate the maximum potential of the sentiment
linguistic knowledge.

Recently, it has been widely acknowledged that deep learning-based representation models
have achieved great success in text sentiment classification tasks [7,8]. This is because deep learning
methods are capable of learning text representation from original data without laborious feature
engineering work, and capture semantic relations between context words in a scalable manner better
than traditional machine learning approaches. As Mikolov et al. [9] proposed, the Word2Vec method
which converted each word in the text into a continuous dense vector and distributed the different
syntax and semantic features of each word to each dimension in vector space, the deep learning models
could apply this method to the word embedding module in order to simplify feature engineering
work. Kalchbrenner et al. [10] used a convolutional neural network for modeling sentences to obtain
a promising result in text sentiment classification tasks, which demonstrated n-gram features from
different positions of a sentence through convolutional operations which could promote the efficiency
of predicting sentiment polarity. However, the convolutional neural network completely ignores the
sequence information of the text while paying attention to the local features of a sentence. In contrast to
the convolutional neural network, a long short-term memory (LSTM) network [11] is good at learning
sequential correlation in the text by using an adaptive gating mechanism. Tai et al. [12] verified the
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importance of text sequence information learned by standard LSTM to the effect of text sentiment
classification and further proposed a Tree-LSTM that incorporates the linguistic syntactic structure of a
sentence into this particular structure. Unfortunately, the LSTM structure has lost the ability to learn
local features of text, which is an important property of the convolutional neural network. The gated
recurrent unit (GRU) [13] network is an improved variant of the LSTM, which has been improved in
terms of network structure and performance, but it does not change the congenital defect of LSTM
in capturing the text’s local features. To avoid ignoring sequence correlation information or context
local features when dealing with original unstructured text, it is important to explore an effective
combination strategy that takes advantage of the convolutional neural network (CNN) and the GRU
network to enrich a sufficient text representation for sentiment classification in our work.

In addition, the attention mechanism is put forward to greatly improve the quality of sentiment
representation learning. The seminal NLP work using the attention mechanism is neural machine
translation, where different weights are assigned to source words to implicitly learn alignments for
translation [14]. The core of the attention mechanism is to imitate human’s attention behavior, that a
human asked to read a sentence can selectively focus on parts of context words that are important for
understanding the sentence. Several recent works have been proposed to design a fusion model of
an attention mechanism and a deep learning method to do sentiment representation learning tasks.
Zhou et al. [15] proposed a hierarchical attention model which was jointly trained with the LSTM
network to capture these key sentiment signals for predicting the sentiment polarity. Zhou et al. [16]
made significant progress in extracting deep meaningful sentiment features effectively by combining
bidirectional LSTM with an attention mechanism. Du et al. [17] integrated the attention mechanism
with a CNN to enhance the quality of extracted local text features. Our work is inspired by the
characteristic of attention mechanisms. With the help of an attention mechanism as a bridge, sentiment
linguistic knowledge and deep learning methods can be perfectly integrated to enhance the sentiment
feature of text.

To alleviate the aforementioned limitations, in this study, we propose a sentiment-feature-enhanced
deep neural network (SDNN) for text sentiment classification. First, we propose a novel sentiment
attention mechanism that uses a traditional sentiment lexicon as an attention source attending to
context words via the attention mechanism. Its goal is to learn more comprehensive and meaningful
sentiment-aware sentence representations as input to the deep neural network, establishing an effective
relationship between sentiment linguistic knowledge and deep learning methods. Second, we designed
a new model based on deep learning, combining GRU and CNN, to further enhance the representation
quality of textual structure information. Above all, CNN performs poorly in learning sequential
correlation information, while GRU lacks the ability to extract context local features. By using our
design, this model can effectively compensate for their own defects and maximize the potential of their
respective strengths.

The main contributions of our work are summarized as follows:

1. We leverage traditional sentiment lexicon and a current popular attention mechanism to design
a novel sentiment attention mechanism. The sentiment attention mechanism shows strong
capability of interactively learning sentiment and context words to highlight the important
sentiment features for text sentiment analysis.

2. Both text sequential correlation information generated by recurrent neural network and
context local features captured by the convolutional neural network are essential in the text
sentiment classification task, so we designed a deep neural network to effectively combine a
GRU-based recurrent neural network and a convolutional neural network to enrich textual
structure information.

3. Extensive experiments have been conducted on two real-world datasets with a
binary-sentiment-label and a multi-sentiment-label to evaluate the effectiveness of the SDNN
model for text sentiment classification. The experimental results demonstrate that the proposed
SDNN model achieves substantial improvements over the compared methods.
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The remainder of this paper is organized as follows. Section 2 presents the SDNN architectures
for text sentiment classification in detail, including the feature-enhanced word-embedding module,
bidirectional GRU network module, convolutional neural network module, and sentence classifier
module. The experiment is introduced in Section 3. Section 4 presents the conclusions and discusses
future work.

2. Model

The architecture of the proposed SDNN model is shown in Figure 1, which consists of four key
components: the feature-enhanced word-embedding module, bidirectional GRU network module,
convolutional neural network module, and the sentence classifier module. In addition, both the
bidirectional GRU network module and the convolutional neural network module jointly constitute
the deep neural network module. The goal of our model is to predict the sentiment polarity of the
given sentence. In the rest of this section, we will elaborate our SDNN model in detail.
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Figure 1. The architecture of the proposed sentiment-feature-enhanced deep neural network
(SDNN) model.

2.1. Feature-Enhanced Word Embedding Module

The first step is to pre-process the input sentence and sentiment resource words. In order to
transfer each word in the sentence to a real-value vector, we applied the pre-trained GloVe [18] method
in the word embedding layer. Let L ∈ R|V|×d be the embedding lookup table generated by GloVe, where
d is the dimension of word vector and |V| is the vocabulary size. Suppose the input sentence consists of
n words and the sentiment resource sequence consists of m words. The input sentence retrieves the
word vectors from L and gets a list of vectors [w1, w2, · · · , wn] where wi ∈ Rd is the word vector of the
ith word. Similarly, the sentiment resource sequence can retrieve the word vectors from L and form a
list of vectors

[
ws

1, ws
2, · · · , ws

m

]
. In this way, we can get the matrix Wc = [w1, w2, · · · , wn] ∈ Rn×d for

context words and the matrix Ws =
[
ws

1, ws
2, · · · , ws

m

]
∈ Rm×d for sentiment resource words.

After obtaining the general matrix of the word vector, we propose the novel sentiment attention
mechanism to help highlight the vital sentiment-resource-relevant context words for generating the
sentence representation with enhanced sentiment features. Specifically, we leverage sentiment words
in the sentiment lexicon as sentiment resource words and integrate them with the attention mechanism
to emphasize more important information related to the sentiment polarity. The sentiment lexicon
collects sentiment resource words from both Hu and Liu [19] and Qian et al. [20], including 10,899
sentiment resource words in total. Then, the attention mechanism uses sentiment resource words as an
attention source attending to the context words to learn the feature-enhanced word embedding. In the
following, we will describe the sentiment attention mechanism in detail.
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First, inspired by the fact that the sentiment words can largely guide the sentiment polarity in
the context of a sentence, we plan to design the word-level relationship between the sentiment words
and the context words. For example, in the sentence “This movie is so wasteful of talent, it is truly
disgusting”, composed of the sentiment words (i.e., “wasteful” and “disgusting”) and the context
words (i.e., all words in this sentence except the sentiment words), “wasteful” and “disgusting” play a
key role in directing the sentiment polarity of this sentence. Mathematically, we adopt the dot product
operation between the context words and the sentiment words to form a correlation matrix. The
specific calculation method is as follows:

Ms = Wc
◦ (Ws)T (1)

where ◦ denotes the dot product operation and Ms
∈ Rn×m represents the relevance matrix between the

context words and the sentiment words.
Then, we define the context-word-relevant sentiment word representation matrix Xs generated by

the dot product operation between the context words Wc and the correlation matrix Ms:

Xs = (Wc)T
◦Ms (2)

where Xs
∈ Rd×m represents the sentiment word representation matrix related to the context words.

Similarly, we can compute the sentiment-word-relevant context word representation matrix Xc by the
dot product between the sentiment words Ws and the correlation matrix Ms:

Xc = (Ms
◦Ws)T (3)

where Xc
∈ Rd×n represents the context word representation matrix related to the sentiment words.

The illustration of sentiment-context word correlation is shown in Figure 2.
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After obtaining the sentiment-context word correlation, we adopt the attention mechanism to
highlight the information contributing to predicting the sentiment polarity of the input sentence. As
described in this section, we consider the sentiment influence on the context from the sentiment words,
which can provide more clues to pay attention to the related sentiment features. Meanwhile, we can
handle some complex situations with changing sentiment by using the attention mechanism. For
example, in the sentence “It is actually my favorite kind of film, but as an adaptation, it fails from
every angle”, a real-world man will focus on the word “favorite” after reading the first clause of this
sentence. Because “favorite” is the word that largely represents the sentiment polarity of the current
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sentence. Until the last word in this sentence is read, the man’s attention will turn to the word “fail”,
which determines the sentiment polarity of the whole sentence. By using the attention mechanism that
can simulate the real-world man’s attention, “fails” in the context of “it fails from every angle” will be
assigned more “attention” than “favorite” in the context of “my favorite kind of film”. Formally, the
attention score function β is defined as follows:

ts =

∑m
i=1 Xs

i
m

(4)

β
([

Xc
i ; ts

])
= uT

s tan h
(
Ws

[
Xc

i ; ts
])

(5)

where ts denotes the overall representation of sentiment words, uT
s and Ws are learnable parameters.

With the attention score function β that calculates the importance of the ith word Xc
i in the context, the

attention mechanism generates the attention vector αi by:

αi =
exp

(
β
([

Xc
i ; ts

]))
∑n

i=1 exp
(
β
([

Xc
i ; ts

])) (6)

where αi represents the importance of the ith word in the sentence. Finally, we can attend the attention
vector αi to the context words:

xi = αiXc
i (7)

where xi represents the ith word of the original input sentence. The final output of the feature-enhanced
word-embedding layer is X = [x1, x2, · · · , xn]. Although the attention mechanism can highlight
the sentiment features in the sentence, the model cannot fully capture the interactive information
of the textual structure. In order to enhance the final representation of the sentence, we pass the
sentence representation generated by the feature-enhanced word-embedding module to the deep
neural network module.

2.2. Deep Neural Network Module

The deep neural network module is composed of two parts: Bi-GRU and CNN. As we all know,
text is structured and organized. With the purpose of avoiding the destruction of the sequence structure
of text, our model passes the output of feature-enhanced word-embedding layer to the Bi-GRU layer
and then to the CNN layer, and obtain the final representation of the input sentence. In the following,
we will detail the two parts in the order of the data flow.

As shown in Figure 1, the Bi-GRU layer contains two sub-layers for the forward and backward
sequences, respectively, which is beneficial to have access to the future context as well as the past
context. Since the GRU unit is a variant of LSTM, we first briefly review the LSTM for the sequence
modeling task. The main idea of the LSTM is to overcome the problem of gradient vanishing and
expansion in the recurrent neural network by introducing an adaptive gating mechanism that controls
the data flow to and from their memory cell units. Taking the sequence vector X = [x1, x2, · · · , xn]

from the output of feature-enhanced word-embedding layer as an example, LSTM processes the data
word-by-word corresponding to the time-step from the past to the future. At time step t, the current
hidden state ht and the current memory-cell state ct are calculated as follows:

it = sigmoid (Wi·[ht−1, xt] + bi) (8)

ft = sigmoid
(
W f ·[ht−1, xt] + b f

)
(9)

ot = sigmoid (Wo·[ht−1, xt] + bo) (10)

c̃t = tanh (Wc·[ht−1, xt] + bc) (11)
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ct = ft � ct−1 + it � c̃t (12)

ht = ot � tan h(ct) (13)

where · denotes matrix multiplication and � stands for element-wise multiplication. it refers to the
input gate which controls the input of new information to the memory cell, ft indicates the forget gate,
which controls how long certain values are held in the memory cell, and ot represents the output gate
which controls how much the values stored in the memory cell affect the output activation of the block.
Wi, W f , and Wo are the weight matrixes for these three gates, respectively, while bi, b f , bo are the bias
vectors for these gates.

As for GRU, it is regarded as an optimization of LSTM, and it can not only merge the input gate it
and the forget gate ft of LSTM into the reset gate rt, but also optimize the update mode of the hidden
state ht. In addition, the output gate ot corresponds to the update gate zt. Throughout this design, the
GRU can maintain the advantage of the LSTM while having a simpler structure, fewer parameters, and
better convergence than the LSTM [13]. As shown in Figure 3, at each time-step t, the GRU transition
functions are defined as follows:

rt = sigmoid (Wr ·[ht−1, xt]) (14)

zt = sigmoid (Wz ·[ht−1, xt]) (15)

h̃t = tanh
(
Wh̃ ·[rt � ht−1, xt]

)
(16)

ht = (1− zt) � ht−1 + zt � h̃t (17)
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In the Bi-GRU layer, the forward GRU layer processes the sentence word-by-word in the order of

the input sequence to obtain the hidden state
→

ht at each time-step t. The backward GRU layer does
the same thing, except that its input sequence is reversed. The final hidden state ht at time step t is
updated as:

→

ht =
→

GRU (xt,
→

ht−1) (18)
←

ht =
←

GRU (xt,
←

ht−1) (19)

ht = [
→

ht ⊕
←

ht] (20)

where ⊕ denotes element-wise sum between the forward hidden state
→

ht and the backward hidden state
←

ht. The output of the Bi-GRU layer is H = [h1, h2, · · · , hn], where n is the length of the input sentence.
Although the sentence representation obtained by the Bi-GRU layer maintains the sequence

information of the sentence, it is not flexible enough to predict the sentiment polarity of the input
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sentence. To alleviate this problem, the SDNN model feeds the output of the Bi-GRU layer into
the CNN layer. This is because the CNN has the ability of recognizing the local features inside a
multi-dimensional field. Specifically, the CNN layer consists of a one-dimension convolutional layer
and a max-pooling layer. First, we can treat H = [h1, h2, · · · , hn] ∈ Rn × d, where hi represents the
ith word in the sentence with d dimension, as an “image” like in Figure 1, so the one-dimension
convolutional layer can slide along the word dimension to convolve the matrix H with multiple kernels
of different widths. The convolutional operation can be represented as follows:

ci = f (Hi :i+K ◦ Wc + bc) (21)

where ◦ denotes the dot product operation, K represents the width of convolutional kernel, f is a
non-linear function such as ReLU, Wc is the convolutional matrix, and bc is the bias term. Each kernel
corresponds to a linguistic feature detector which extracts a specific pattern of n-gram at various
granularities [10]. The convolutional kernel is applied to each possible region of the matrix H to
produce a feature map C = [c1, c2, · · · , cnK ] for the same width of convolutional kernel, where nK

is the number of convolutional kernels. Then for each ci in C, the max pooling layer extracts the
maximum value from the generated feature map:

pi = down (ci) (22)

where down (·) represents the max pooling function. Through this way, the pooling layer can extract
the local dependency within different regions to keep the most salient information, and it results in a
fixed-size vector whose size is equal to nK. Finally, the output of the max pooling layer with different
widths is concatenated to form the final sentence representation S∗ =

[
p1, p2, · · · , pnK × nwid

]
, where

nwid denotes the number of different width.
In the deep neural network module, the sequence information generated by Bi-GRU and the local

feature captured by CNN are integrated with an effective strategy of combining Bi-GRU and CNN,
which can help the sentence classifier to predict the sentiment polarity.

2.3. Sentence Classifier Module

For text sentiment classification, the final sentence representation S∗ of the input text S is fed into
a softmax layer to predict the probability distribution of sentence sentiment label over C (number of
sentiment category labels), and the sentiment label with the highest probability is selected as the final
sentiment category to which the sentence belongs. The function is shown as follows:

ỹ =
exp

(
WT

o s∗ + bo
)

∑C
i=1 exp

(
WT

o s∗ + bo
) (23)

ypre = argmax ỹ (24)

where ỹ is the predicted sentiment distribution of the sentence, ypre is the selected sentiment label, WT
o

and bo are the parameters to be learned.
In order to train the SDNN model, we adopt the categorical cross-entropy loss function as the

reasonable training objective which is minimized in the training process:

J(θ) = −
N∑

i=1

C∑
j=1

y j
i log ỹ j

i + λr(
∑
θ ∈ Θ

θ2) (25)

where N is the training set, y is the one-hot distribution of the ground truth, λr is the coefficient for
the L2 regularization, and Θ is the parameter set which includes all the parameters that need to be
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optimized during the training process. All the parameters are updated by the stochastic gradient
descent strategy, which is defined as:

Θ = Θ − λl
∂J(θ)
∂Θ

(26)

where λl is the learning rate. The specific hyper-parameter settings are described in Section 3.2.

3. Experiments

3.1. Datasets

We conduct experiments on two publicly available datasets. The movie review (MR) dataset is
a movie review dataset with one sentence per review collected by Pang and Lee [21], which aims to
detect positive or negative reviews. The MR dataset has 5331 negative samples and 5331 positive
samples. The Stanford Sentiment Treebank (SST) dataset is an extension of the MR by Socher et al. [22],
which is manually separated from the train, development, test sets, and contains fine-grained sentiment
labels (very positive, positive, neural, negative, very negative). Similar to the sample distribution of
the MR dataset, the number of instances of each class in the SST dataset is approximately equal, which
can effectively avoid the reduction of model generalization ability caused by the uneven distribution
of dataset samples in the process of model training. In particular, since the MR dataset lacks a
development set, we randomly sampled 10% of the training data as the development set. The detailed
dataset statistics are shown in Table 1.

Table 1. The summary statistics of the two datasets. c: number of target classes, l: average sentence
length, m: maximum sentence length, train/dev/test: train/development/test set size, |V|: vocabulary size,
|Vpre|: number of words present in the set of pre-trained word embeddings, CV: 10-fold cross validation.

Dataset c l m train dev test |V| |Vpre|

Movie review (MR) 2 21 59 10,662 - CV 20,191 16,746
Stanford Sentiment Treebank (SST) 5 18 51 8544 1101 2210 17,836 12,745

3.2. Implementation Details

In order to improve the quality of the dataset, we pre-processed the text data by removing
stopwords (e.g., “in”, “of”, “from”) and punctuation. Then, all word embeddings from the text
data were initialized by 200-dimensional GloVe vectors pre-trained by Pennington et al. [18]. For
the out-of-vocabulary words, we randomly sampled their embeddings from a uniform distribution
U (−0.1, 0.1). Some works adopted the fine-tuned training strategy for word vectors to improve
the performance for text sentiment classification tasks [23]. In contrast, with the purpose of better
reflecting the generalization ability of the model, we preferred to use the general embeddings for all
datasets. What is more, we treated all the context words as sentiment resource words to implement the
self-attention mechanism as if there was no sentiment resource word in the sentence.

For the deep neural network, the hidden states of the GRU unit in each layer were set to 200. In
the convolution layer, we employed 1D convolutional filter windows of 3, 4, and 5 with 100 feature
maps each, and a 1D pooling size of 4.

During the training process, we optimized the proposed model with the AdaDelta algorithm [24]
by following the learning rate of 10−2 and the mini-batch size of 32. To alleviate the overfitting problem,
we employed the dropout strategy [25], with a dropout rate of 0.5 for the Bi-GRU layer, 0.2 for the
penultimate layer, and 10−5 for the coefficient λr of L2 regularization. To evaluate the performance of
the sentiment classification task, we used Accuracy and F1 as the metrics.
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3.3. Baseline Methods

In order to comprehensively evaluate the performance of the SDNN, we set several strong baseline
methods for sentiment classification, including traditional machine learning models, traditional deep
learning models, deep learning models relying on specified parsing structure, and models extracting
important information by attention mechanisms.

SVM/Feature-SVM: SVM [6] is a classic machine learning method to solve sentiment classification
tasks, which won first place in the SemEval-2014 Task 4 by using the following groups of features:
n-grams, character n-grams, non-contiguous n-grams, POS tags, cluster n-grams, and lexicon features.
In addition, we incorporated sentiment resource words into the implementation of the SVM model
(denoted as Feature-SVM).

LSTM/Bi-LSTM: LSTM/Bi-LSTM (Bidirectional Long Short-Term Memory) [12] has the capability
to acquire dependencies between words in a sentence by incorporating the long short-term memory
unit and the bidirectional variant into neural networks, which makes it effective in solving the problem
of the long dependence of text.

CNN: A convolutional neural network [26] is a very strong baseline for text sentiment classification
tasks. It can sufficiently capture the local feature information of the text to generate task-specific
sentence representation.

BLSTM-C: BLSTM-C (Bi-LSTM combined with the generalized CNN) [27] combines CNN with
Bi-LSTM networks in order to fuse the local information and sequence information of text to form
feature-enhanced sentence representation for predicting the sentiment polarity of a sentence.

Tree-LSTM: Tree-LSTM (Tree-structured long short-term memory) [12] introduced memory
information into tree-structured neural networks, relying on predefined paring structures, which helps
to capture the semantic relatedness.

LR-Bi-LSTM: LR-Bi-LSTM (Linguistically Regularized-based Bidirectional Long Short-Term
Memory) [20] makes use of linguistic roles with neural networks by utilizing linguistic regularization
on intermediate outputs with KL divergence.

Self-Attention: Self-attention [28] can learn structured sentence embedding with a special
regularization term.

3.4. Experimental Results

3.4.1. Overall Performance

Experimental results listed in Table 2 show that our proposed model (SDNN) performs
competitively on MR and SST datasets. We can draw the following observations from Table 2.

First, we can see that the Feature-SVM outperformed the SVM on two datasets by roughly 0.9%
on accuracy and 0.8% on F1. It shows that the SVM equipped with sentiment linguistic knowledge
can better learn the representation of text. It also means that the sentiment linguistic knowledge
is important to text sentiment classification tasks. Obviously, compared with Feature-SVM on two
datasets, our SDNN model improved the accuracy by roughly 8.0% and F1 by roughly 7.3%. The
main reason is that traditional machine learning-based methods pay more attention to word frequency
features while ignore the context structure information.

Second, the conventional deep learning models (i.e., LSTM, Bi-LSTM, and CNN) outperformed
Feature-SVM by a large margin on the MR and SST datasets. Although the performance of LSTM on
the MR dataset was similar to that of the Feature-SVM, the accuracy and F1 of the LSTM on the SST
dataset were improved by 4.9% and 4.3%, respectively. The LSTM was the worst performer of the
conventional deep learning models. Undoubtedly, compared with the traditional deep learning models
(i.e., LSTM, Bi-LSTM, and CNN), BLSTM-C had better results by effectively combining the CNN and
LSTM networks, because it can simultaneously learn the sequence structure information of the text and
capture the local features of the text, which helps to better understand the text structure information.
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Table 2. Evaluation results (%) for the MR and SST datasets. The best result for each dataset is
in bold. Results marked with # were retrieved from the references (i.e., [20,22,26,27]), while those
unmarked with # were obtained either by our own implementation or with the same codes shared by
the original authors.

Models
MR SST

Accuracy F1 Accuracy F1

SVM 76.4 78.8 40.7 # 42.4
Feature-SVM 77.3 79.4 41.5 43.3

LSTM 77.4 # 79.6 46.4 # 47.6
Bi-LSTM 79.3 # 81.0 49.1 # 50.5

CNN 81.5 # 82.7 48.0 # 49.3
BLSTM-C 82.4 83.8 50.2 # 52.0

Tree-LSTM 80.7 # 82.1 50.1 # 51.8
LR-Bi-LSTM 82.1 # 83.6 50.6 # 52.3

Self-Attention 81.7 82.9 48.9 50.1

SDNN 83.7 84.9 51.2 52.9
SDNN w/o sentiment attention 82.5 84.1 50.0 51.5

Further, the deep learning models with parsing structures (i.e., Tree-LSTM and LR-Bi-LSTM)
outperformed the LSTM model on the two datasets by roughly 4.0% on accuracy and 3.8% on F1.
These examples demonstrate that integrating external knowledge into deep neural networks can have
a better understanding of the input text for sentiment analysis. As we expected, the SDNN achieved
the best performance among all the strong competitors on the MR and SST datasets. Compared with
the BLSTM-C, which was the best performer of all of the baseline methods on the same datasets, our
SDNN model upgraded the results by about 1.2% on accuracy and 1.0% on F1. The results confirm our
main idea that integrating sentiment linguistic knowledge into the deep neural network can enhance
the quality of text representation learning for sentiment classification.

In order to analyze the effectiveness of the sentiment attention mechanism of SDNN, we also
designed the ablation test in terms of discarding the sentiment attention mechanism (denoted as SDNN
w/o sentiment attention). It can be clearly seen from the experimental results that the accuracy and F1
of the SDNN decreased sharply without regard to the sentiment attention mechanism. This proves
our intuition that the proposed sentiment attention mechanism plays a crucial role in SDNN for text
sentiment classification.

3.4.2. Effects of Different Combinations of Bi-GRU and CNN

To investigate the effectiveness of different combinations of Bi-GRU and CNN, we designed a
series of models to compare the different effects of different combinations.

Bi-GRU+CNN: The Bi-GRU+CNN model proposed in the paper.
CNN+Bi-GRU: Based on Bi-GRU+CNN, the output of the word-embedding layer passes through

the deep neural network in the order of the first CNN and the second Bi-GRU.
CNN-Bi-GRU: On the basis of Bi-GRU+CNN, the output of the word-embedding layer inputs

into the Bi-GRU and CNN, respectively, and then the outputs of the networks are concatenated to form
a representation of the sentence.

The results are shown in Table 3. We can see that the performance of CNN-Bi-GRU is mediocre
relative to the other two models, but the 6.7% difference between Bi-GRU+CNN and CNN+Bi-GRU is
not coincidental. The main reason is that the initial convolutional layer of CNN+Bi-GRU destroyed the
sequence structure of the text so that the Bi-GRU layer behind it was just like a fully connected layer,
which fails to harness the full capabilities of the Bi-GRU layer. The CNN+Bi-GRU was even worse than
a regular LSTM by 0.4%. On the other hand, Bi-GRU+CNN achieved the best performance among the



Future Internet 2019, 11, 96 12 of 15

three variant models. This was because the initial Bi-GRU layer can encode every token in the input
text into a vector that contains not only the information of the original token but also the information
of the previous token. In this way, the order of each token in the generated text representation is the
same as the order in the original text. Afterwards, the CNN layer will find local patterns by using the
generated representation, which can further improve the accuracy. This proves that the combination of
Bi-GRU and CNN is very sensitive to the improvement of deep neural network performance.

Table 3. Test accuracies (%) of different combinations of Bi-GRU and CNN.

Models MR SST

Bi-GRU+CNN 83.7 51.2
CNN+Bi-GRU 77.0 46.1
CNN-Bi-GRU 81.9 48.5

3.4.3. Effects of the Dimension of Sentiment Resource Words

Since the sentiment attention mechanism was added in the word-embedding layer, in order
to verify the influence of different dimensions of sentiment resource words on the classification
accuracy, we used SDNN to analyze the accuracy under different dimensions on the MR dataset. The
experimental results are shown in Figure 4.
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Figure 4. Classification of different dimensions of sentiment resource words on the MR dataset. When
the dimension of the word vector is equal to 0, it means that the sentiment attention mechanism was
not used in this model.

From Figure 4, we can see that when the dimension of the word vector is less than 200, the accuracy
increases rapidly with the increase of the dimension. One main reason is that the model can adjust more
component parameters of the sentiment resource word vector to learn the sentiment information of the
sentence along with the increase of the dimension of the word vector. However, when the dimension
of the word vector exceeds 200, the classification accuracy will fluctuate instead. This phenomenon
is related to the meaning of the dimension of the word vector. In a word vector, each dimension
represents a deep semantic feature, which is obtained by pre-training a specific corpus. Since the
parameters of a word vector remain unchanged during the training process, only the parameters of the
attention mechanism associated with it are optimized. In other words, when the dimension of the
word vector exceeds a certain threshold, the word vector is burdened with many irrelevant parameters
of vector dimension. For the optimization of the sentiment attention mechanism, these parameters are
redundant, which will affect the parameter adjustment of the sentiment attention mechanism so as to
affect the learning quality of sentiment linguistic knowledge. Thus, we used 200 as the dimension of
the sentiment resource word vector in the experiment.
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3.5. Visualization of Attention Mechanism

We picked a comment sentence with changing sentiment features as a case study and visualized
the attention results. To make the visualized results comprehensible, we removed the deep neural
network module to make the sentiment attention mechanism directly work on the word embedding,
thus we can check whether the effect of the attention mechanism conforms with human’s attention
performance. The visualization results are shown in Figure 5.
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In Figure 5a, we can find that the distribution of attention weights is relatively uniform throughout
the sentence when the attention mechanism is initialized. This is because the parameters of the attention
mechanism are uniformly distributed during the initialization stage, which makes the attention score
of each word similar. This phenomenon is similar to the performance of human’s attention, when a
human is asked to read a sentence, he will always give an overview of all the words. As the training
process progresses, the attention mechanism gradually focuses on words that contribute a lot to the
overall sentiment polarity of the sentence. This is related to the supervised learning process, in which
the attention mechanism interactively learns the relationship between the context and the sentiment
words to optimize the performance of text sentiment classification. In the same way, after reading a
sentence, humans only pay attention to several key parts of this sentence, which helps to understand
the general meaning of this sentence. As shown in Figure 5b, the ultimate result of the attention
mechanism mainly highlights three words (i.e., “fails”, “but”, and “adaptation”), which are in line
with the sentiment polarity of this sentence. Finally, with the purpose of improving the quality of word
embedding, the sentiment attention mechanism is combined with the conventional word embedding,
which serves as the input layer of the deep neural network to extract text structure information. From
the perspective of the overall training process of the model, the sentiment attention mechanism will
highlight distinguishable words contributing to the orientation of sentiment polarity, so that the model
can avoid blindly learning all the context words in the next step.

4. Conclusions and Future Work

In this paper, we proposed the sentiment-feature-enhanced deep neural network for text
sentiment classification tasks by integrating sentiment linguistic knowledge into the deep neural
network via a sentiment attention mechanism. We implemented the novel sentiment attention
mechanism by combining a traditional sentiment lexicon with an attention mechanism to learn
sentiment-feature-enhanced word representation, bridging the knowledge gap between conventional
sentiment linguistic knowledge and the deep learning method. In addition, we also designed a deep
neural network to effectively combine local features within the sentence captured by the convolutional
neural network and the sequence information across a sentence generated by a bidirectional GRU



Future Internet 2019, 11, 96 14 of 15

network, which can further improve the quality of text representation for achieving greater promotion of
text sentiment classification tasks. Extensive experiments were conducted on real-world datasets with a
binary-sentiment-label and a multi-sentiment-label. The experimental results showed that the proposed
SDNN significantly outperformed the state-of-the-art methods for text sentiment classification tasks.

In the future, we will try to use this model to analyze the actual emotions of specific users, such as
sadness, happiness or depression, which can lay a good foundation for providing better specific users’
experience in terms of the marketing service industry. Furthermore, it can be seen from experimental
results that the proposed model still has much room for improvement on the dataset with fine-grained
sentiment labels. Therefore, the reinforcement learning method to build structured text representation
without explicit linguistic structure annotations will be tried in our experiment to see if it will achieve
better performance.
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