
future internet

Article

An Access Control Model for Preventing Virtual
Machine Hopping Attack

Ying Dong * and Zhou Lei

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; leiz@shu.edu.cn
* Correspondence: Cyvil@shu.edu.cn; Tel.: +86-1316-711-5161

Received: 27 February 2019; Accepted: 23 March 2019; Published: 26 March 2019
����������
�������

Abstract: As a new type of service computing model, cloud computing provides various services
through the Internet. Virtual machine (VM) hopping is a security issue often encountered in the
virtualization layer. Once it occurs, it directly affects the reliability of the entire computing platform.
Therefore, we have thoroughly studied the virtual machine hopping attack. In addition, we designed
the access control model PVMH (Prevent VM hopping) to prevent VM hopping attacks based on
the BLP model and the Biba model. Finally, we implemented the model on the Xen platform.
The experiments demonstrate that our PVMH module succeeds in preventing VM hopping attack
with acceptable loss to virtual machine performance.

Keywords: cloud security; virtual machine hopping; BLP model; Biba model; PVMH model

1. Introduction

Cloud computing is an Internet-based, emerging network computing model. It is another new
computing concept after parallel computing, grid computing, and utility computing [1]. It is regarded
as another revolution in the computer field. With the gradual development and advantages of cloud
computing, the core technologies and applications of cloud computing have been highly valued by
governments, companies, and scientific research institutions. Many IT companies such as Google [2],
Amazon [3], Azure and Alibaba have taken cloud computing as an important direction for future
technological innovation and invested heavily in research and development. Many countries even
regard cloud computing as an important opportunity to develop and upgrade the information industry
and promote the development of the information society. In the investigation report of the RightScale
2018 status, 96% of IT professionals surveyed said that their company was adopting cloud computing
services, and 92% said they used public clouds. As companies move more applications to the cloud,
the cloud computing market is increasingly booming. According to research firm Gartner, the public
cloud market value will reach 186.4 billion US dollars in 2018, an increase of 21.4% over last year.
While IT leaders decided to adopt cloud computing because of the benefits they bring, they still face
a very important cloud computing challenge, one of which is security.

The virtual machine (VM) hopping attack [4,5] studied in this paper mainly involves the security
between different virtual machines on the same host and the security between the virtual machine and
the host. In a cloud platform, multiple virtual machines are distributed together on the same physical
machine. If a virtual machine is compromised or an illegal intruder obtains the highest authority of
a virtual machine by some means, there is a security risk that an illegal user uses the virtual machine as
a springboard to attack other virtual machines and even attack the virtual machine manager to illegally
obtain data files on the virtual machine. There are various vulnerabilities in different virtualization
platforms. A Xen official announced a major security vulnerability, codenamed "Dome Breaking"
(XSA-148/CVE-2015-7835). It shows that there is exploitable vulnerability in virtual machines
running in the Para-Virtualized (PV) mode of the Xen platform, which is prone to virtual machine

Future Internet 2019, 11, 82; doi:10.3390/fi11030082 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/1999-5903/11/3/82?type=check_update&version=1
http://dx.doi.org/10.3390/fi11030082
http://www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 82 2 of 21

hopping attacks and virtual machine escaping attacks. Jason Geffner of CrowdStrike found a security
vulnerability related to the virtual floppy controller in the open source computer emulator QEMU,
codenamed “VENOM” (CVE-2015-3456). It existed in many computer virtualization platforms (notably
Xen, KVM, VirtualBox, and the native QEMU client). This vulnerability could allow an attacker to get
rid of the guest identity restrictions from an infected virtual machine and likely to gain code execution
rights from the host. In addition, an attacker can use it to access the host system and all virtual
machines running on the host, and can elevate access permissions so that attackers can access the host's
local network and neighboring systems. Another vulnerability (CVE-2018-10853) indicated that KVM
4.10 and later versions in the Linux kernel have security flaws in implementation due to the failure
to detect the CPL (the privilege level of the currently executing task or program). An attacker could
exploit this vulnerability to elevate privileges and cause virtual machine hopping attacks. Since the
virtual machine hopping attack is a security risk of the virtualization layer, the security risks in the
virtualization layer may cause the security system of the entire cloud computing platform to collapse.
Therefore, if a virtual machine hopping attack occurs in the cloud platform, huge damage is brought to
the entire cloud platform.

In summary, research on how to improve the security of the cloud computing platform itself and
prevent malicious attacks in the cloud computing environment has theoretical and practical significance
for promoting the healthy development of cloud computing platforms and their applications. The VM
hopping attack is a very harmful attack method. Researchers should pay enough attention to the
prevention of VM hopping attacks to make the cloud platform more stable and reliable.

In this paper, we study the related content of virtual machine hopping attacks. According to
the BLP model and the Biba model, the prevent VM hopping (PVMH) model is proposed by
combining the integrity and confidentiality of computer security, and strives to prevent virtual machine
hopping attacks.

The rest of this paper is organized as follows: Section 2 describes several studies that are closely
related to our research; Section 3 introduces some background knowledge, including virtual machine
hopping attacks and access control techniques; Section 4 details the design and implementation of our
proposed PVMH model; by several experiments in Section 5, we demonstrate the effectiveness of our
PVMH model; and, finally, we conclude the paper and discuss future work in Section 6.

2. Related Works

Cloud computing and traditional IT technologies have different service models, operating modes,
forms of information exchange, and technologies that provide cloud services, which makes cloud
computing face different threats and risks from traditional IT technologies. Virtualization plays an
important role in the construction of cloud computing. However, there are various vulnerabilities
in current virtualization implementations, and the virtualization layer [6] faces various security
challenges. With the help of network virtualization, a single network infrastructure can be divided into
several virtual architectures. This benefits a wide range of applications, including cloud computing
infrastructures. In [7], Bays et al. discussed several main challenges and threats related to the virtual
network security, and presented the corresponding solutions, as well as the security aspects that had
not yet been approached. In a cloud environment, security is vital to detecting intrusions into the
virtual network layer. Nathiya et al. [8] proposed a hybrid intrusion detection system (H-IDS) to
monitor security in a virtual network layer, but they did not deploy and verify the experiment.

The security problems in virtualization can be divided into two categories: Virtualization security
risks and virtualization security attacks. Common virtualization attacks [9] include virtual machine
stealing and tampering, virtual machine hopping, virtual machine escape, virtual-machine based
rootkit (VMBR) attacks, and denial of service attacks. Based on the BLP model, Jiang et al. [10]
proposed PVME to prevent virtual machine escape from the aspects of access control. They added two
new access properties (execute (e*) and control (c*)) to the PVME model and formulated several rules
for different VM states. Nguyen et al. [11] showed that the virtual switch itself can retransmit TCP

Future Internet 2019, 11, 82 3 of 21

packets, which can be abused for amplification attacks by internal attackers. Rakotondravony et al. [12]
presented a new classification of malware attacks in IaaS cloud environments, which helps practitioners
at early stages of the design of virtual machine introspection based mitigation mechanisms by
identifying relevant attacks.

Central to the cloud environment is virtualization technology, the core of which is the virtual
machine (VM). Therefore, the communication capabilities between VMs are paramount. For cloud
users, poor VM communication extends tenant tasks and VM lease time, eventually increasing
their costs. On the other hand, the poor communication between VMs also introduces security
vulnerabilities [13]. Al-Said et al. [14] outlined security challenges that exist in virtualization techniques
and which are used to support several customers on one shared physical infrastructure. Ren et al. [15]
analyzed the security threats and challenges virtual machines faced and presented several typical
attacks to virtual machine on the Xen platform. Elmrabet et al. [16] proposed a new three-layer security
architecture, which is composed of virtual switch, virtual firewall, and VLANs, to prevent attacks to
virtual machines, such as sniffing, spoofing, and mac flooding. Sathya et al. [17] introduced a trusted
model for VM security in cloud computing. They encrypted the VM images and used snapshot
technique and a third-party monitor, all of which improves the confidentiality, integrity, and availability
of VM in cloud. Mohammad-Mahdi et al. [18] presented an approach to efficiently detect side-channel
attacks based on cross-VM cache, using hardware fine-grained information provided by Intel Cache
Monitoring Technology (CMT) and Hardware Performance Counters (HPCs).

These studies on virtualization security have achieved relatively satisfying results in virtualization
security prevention. However, when focusing on the problem of virtual machine hopping attack,
these studies are relatively one-sided and do not solve this problem well. Once virtual machine hopping
attacks occurs, the files on the attacked virtual machine are completely exposed to the attacker, and even
the entire virtualization layer is implicated, resulting in a larger-scale leak. Therefore, preventing virtual
machine hopping attacks has very high research value.

3. Preliminaries

3.1. VM Hopping

3.1.1. VM Hopping Analysis

VM hopping is a common attack mode in virtualization security attacks. It means that an attacker
attempts to gain access to other virtual devices on the same Hypervisor based on one virtual machine,
and then attacks it. According to the implementation of virtualization, virtual machines on the same
Hypervisor can communicate with each other by network connections, shared memory or other shared
resources. However, it’s the implementation of virtualization that results in VM hopping. VM hopping
can be divided into the following two situations:

In one case, an attacker might use a malicious virtual machine to quietly access or control other
virtual machines on the Hypervisor by those communication between virtual machines.

Another situation is that if an attacker from virtual machine VM1 illegally oversteps the
Hypervisor layer and gains access to the host operating system, he can even destroy virtual
machine VM2.

3.1.2. VM Hopping Hazard

The two situations of VM hopping attacks pose a great threat to the virtualization layer and even
the entire cloud platform from different aspects.

In the first situation, an attacker uses a malicious virtual machine and quietly accesses or controls
other virtual machines on the same host by virtual machine communication. On the one hand, since the
attacker can monitor the flow through the attacked virtual machine, he can attack the virtual machine
by controlling or changing the flow. On the other hand, the attacker can modify the configuration of

Future Internet 2019, 11, 82 4 of 21

the controlled virtual machine, so that the running virtual machine is forced to shut down, resulting in
interruption of communication and incomplete communication. The entire attacked virtual machine is
exposed to the attacker, and all files stored on it are unprotected, causing immeasurable losses to users
of this virtual machine.

When the VM hopping attack succeeds, the attacker directly lands on the host by overstepping
the Hypervisor layer. Inevitably, the attacker can intercept the I/O data flow of other virtual machines
on this host machine, analyze and obtain relevant data of other users, and then carry out further
attacks on sensitive information. If the default user, or even the administrator's basic information
is modified, the host machine will be unprotected as well. What's more, if a virtual machine on the
host runs as a basic service, the attacker can forcibly shut down or delete the virtual machine through
Hypervisor privileges, causing the interruption of basic services and an unrecoverable disaster to the
entire virtualization platform.

3.1.3. VM Hopping Defense

At present, VM hopping defense is mainly solved by building healthier Hypervisors and designing
more robust access control policies.

(1) Build lightweight Hypervisor. In most computer systems, TCB (trusted computing base) is
a combination of all the security devices that constitute a secure system. TCB, which provides security
for the entire system, is highly reliable and is the basis for ensuring the safety of high-level application
operations. However, the larger the TCB, the more code, the higher probability of vulnerability, and the
harder it is to ensure its own credibility. Therefore, the design of lightweight Hypervisors should be as
simple as possible. A lightweight Hypervisor, such as Trustvisor, Secvisor, and Cloudvisor, only retains
the key feature and implements the other features in other virtualization layers. To our knowledge,
ARCN, the latest lightweight Hypervisor, only has 25,000 lines of code.

(2) Design access control policy [19]. Access control is a common technical means for system
security and information security, ensuring the confidentiality and integrity of data from all aspects.
In the field of virtualization, the security risks are mainly caused by illegal resource access, and the
design of access control is aimed at the access rights of resources between the subject and the object.
Therefore, the access control policy is used to solve the related problems in the virtualized domain.
Due to the more complex state transitions and hazards of virtual machine hopping attacks, a set of
access control policies should be designed specifically.

In this paper, we assume the host system is trusted, and only concentrate on the access control
policy of guest machines.

3.2. Access Control

Access control consists of three entities: The subject (sending the access request), the object
(being accessed), and the security access policy (the access rules of the subject accessing the object).

Traditional access control has three access policies: (1) Discretionary Access Control [20] (DAC),
which allows a subject to impose specific restrictions on access control. (2) Mandatory Access
Control [21] (MAC), which does not allow subject interference to some extent. (3) Role-based access
control policy [22] (RBAC), which assigns access rights according to user roles. With the rapid
development of cloud computing, mobile computing, and other application scenarios, there is also an
attribute-based access control [23] (ABAC).

3.2.1. BLP Model

The Bell-LaPadula security model [24] (BLP model), proposed by D.E. Bell and L.J. LaPadula
in 1973, is a multi-level security model simulating military security strategy and is the most famous
multi-level security model. The BLP model is used to control access to classified information. As the
first mathematical model to formalize the security policy, it is a state machine indeed, which uses state

Future Internet 2019, 11, 82 5 of 21

variables to represent the security state of the system, and state transition rules to describe the change
process of the system.

The BLP model has many advantages: (1) The BLP model is one of the earliest models to describe
multi-level security policy. (2) The BLP model is a strictly formalized model, and has the formalized
proof. (3) The BLP model is a safe model with both discretionary access control and mandatory access
control. (4) Control information can only flow from low security to high security, which meets the
military department and other institution with high data confidentiality demand.

However, it also has some disadvantages: (1) Low-security information flows to high-security
objects, which may damage the data integrity of high-security objects and be used by viruses or hackers.
(2) As long as it is legal for the information to flow from low security to high security, it does not
conform to the minimum privilege principle, no matter whether there is demand for work. (3) The BLP
model focuses on confidentiality control, but lacks integrity control, so it cannot solve the problem of
hidden channels, which means high-level processes can convey information to low-level processes by
sharing resources.

3.2.2. Biba Model

The Biba model [25], proposed by K.J. Biba in 1977, is the first model that involves the integrity
of computer systems. The Biba model was developed after the BLP model and was used to address
application data integrity issues.

The Biba model supports five kinds of control policy: (1) Low-water-mark mandatory access
control policy (LOMAC), (2) low-water-mark mandatory access control policy for object (LOMAC-O),
(3) low-water-mark integrity audit policy (LO-IA), (4) ring policy (RP), and (5) strict integrity policy
(SIP). Among these security policies, strict integrity is the most famous one, which is mathematically
dual with the BLP security policy model. Since the strict integrity policy is most frequently used,
the Biba model refers to this specific policy in most instances.

Strict integrity policy is a mathematical dual of the confidentiality strategy based on Trusted
Computer System Evaluation Criteria (TCSEC). The strict integrity policy provides No Read Down
(NRD) and No Write Up (NWU) characteristics. From these two characteristics, the Biba and BLP
models have exactly opposite characteristics. The BLP model provides confidentiality, while the Biba
model guarantees the integrity of data.

4. Methods

The BLP model allows information to flow from low security to high security, and prohibits the
flow of information in the opposite direction. The Biba model allows information to flow from high
integrity to low integrity, and prohibits the flow of information in the opposite direction. If the BLP
model is directly combined with the Biba model, which implements strict integrity policy, entities at
different levels are not able to communicate with each other, resulting in “information islands” in the
system. Therefore, in practical application, these two models cannot be directly applied, one model
has to be made with corresponding modifications to the other model.

4.1. PVMH Model Design

The application background of the BLP and Biba models was aimed at the traditional operating
system environment. Considering that the scenario studied in this paper is a virtualization
environment, the PVMH access control model is designed based on the characteristics of virtualization
environments and the differences between virtualization environments and traditional operating
systems. To a large extent, the PVMH model borrows from the BLP model. As a model to prevent
virtual machine hopping attack, it also integrates the characteristics of the Biba model into the
BLP model.

Future Internet 2019, 11, 82 6 of 21

4.1.1. Model Elements

Basically, the PVMH model inherits most notations of the BLP model; its main model elements
include: Subject, object, access attribute, access control matrix, security level, etc., as follows:

1. Subject: The capital S represents the subject set, while the lowercase s is a single subject,
namely S = {s1, s2, . . . , sn}.

2. Object: The capital O represents the object set, while the lowercase o represents a single object,
namely O = {o1, o2, . . . , on}.

3. Access Attribute Set A = {r, a, w, e}: The PVMH model has different attributes: Read-only (r),
write-only (a), read-write (w), and execute (e).

4. Access Matrix M: Each element mij in M represents the access permission of subject Si to object
Oj in current state.

5. Security Level R = (C, I, K): The capital C indicates the confidentiality level, the capital I
indicates the integrity level, and the capital K indicates the security category. The PVMH
model has several functions associated with security level: fsc for subject confidentiality,
fsi for subject integrity, fsk for subject security category, foc for object confidentiality, foi for
object integrity, fok for object security category, fht for the highest writing-up level, and flt
for the lowest writing-up level. Function frole represents user identity, that is, whether the
user is a trusted subject (Hypervisor or the privileged virtual machine) or a general subject.
The notations ≥ and > represent the partially ordered relationship of confidentiality between
subject and object, while the notation ⊇ represents the inclusion relationship of the security
category between subject and object. The security level set R =

(
R1, R2, . . . , Rp

)
is a partial order

set, and each item Ri =
(
Ci, Ii, K′i

)
in the set represents a security level, where Ci ∈ C, Ii ∈ I,

K′i ⊆ K, 1 ≤ i ≤ p. Ri dominates Rj, denoted as Ri ≥ Rj, if and only if Ci ≥ Cj ∪ Ii ≥ Ij ∪ K′i ⊇ K′j .
The functions fsr stands for the security levels of the subject and for represents for the security
levels of the object.

6. Subject–object Security Label: The subject security label includes security level, information
category (optional), and the highest writing-up level. The highest writing-up level of the subject
indicates the highest security level of the object that allows the subject to perform the append
or write-only access. The object security label includes security level, information category
(optional), and lowest writing-up level. The lowest writing-up level of the object represents the
lowest security level of the subject that allows append or write-only access to the object.

7. Request Element RA = {g, r}: The lowercase g represents a get or give request while the
lowercase r represents a release or rescind request.

8. The system state set V is represented by a quaternion V = {B×M×F×H}, where B = P(S×O×A) is
the current access set, b represents the current access set, M is the access control matrix, F is the
access function, and H is the hierarchical structure between objects, representing the subordinate
relationship between objects. In object hierarchy, there is at most one node and only one parent
node, and there is no ring in the structure.

4.1.2. Security Axioms

All security axioms of the PVMH model are named with PVME- as a prefix.
Axiom 1 (PVMH-ds Axiom). The PVMH-ds axiom is improved from BLP’s ds-characteristic

security axiom. State v = (b×M× f × H) satisfies the discretionary security axiom, if and only if
∀ (s, o, x) ∈ b, x ∈ Mij is always true, where x is one of four access attributes: Read-only (r), write-only
(a), read-write (w), or execute (e).

Future Internet 2019, 11, 82 7 of 21

Axiom 2 (PVMH-* Axiom).S' is a subset of S. A state v = (b×M× f × H) satisfies the PVMH-*
axiom, if and only if for all (s, o, x) ∈ b, there exists:

s ∈ s′ ⇒

(O ∈ b(s : r)) ⇒ (fsr (S)> for(O))

(O ∈ b(s : a)) ⇒ (fsr (S)< for(O) and fht (S) ≥ for(O) and fsr (S) ≥ flt(O))

(O ∈ b(s : w)) ⇒ (fsr (S) = for(O))

(O ∈ b(s : e)) ⇒ (Si ∈ ST)

According to BLP’s ss-characteristic, the PVMH-ss-characteristic should exist in the PVMH model.
However, the Hypervisor needs to communicate with the guest virtual machines, and it has full
access permission to all guest virtual machines, that is, read-only (r), write-only (a), read-write (w),
or execute (e). Therefore, when the Hypervisor plays the role of subject, it is in the trusted subject set ST ,
which obviously violates the PVMH-ss-characteristic; but, for all guest virtual machines, they satisfy
the PVMH-*-characteristic, and it is easy to deduce that they also satisfy the PVMH-ss-characteristic.
Therefore, due to the existence of the Hypervisor, the so-called PVMH-ss-characteristic needs to be
removed from the PVME model.

4.1.3. State Transition Rules

Based on BLP security criterion and Biba model, the PVMH model improves the integrity and
confidentiality of the BLP model to a certain extent. The PVMH model includes 11 state transition
rules, which are expressed as PVMH − Ri, where 1 ≤ i ≤ 11. The domain of the rule is denoted as
dom(PVMH − Ri). The output result is defined as the set D = {yes, no, ?}, where “yes” accepts the
request, “no” rejects the request and “?” means the request is illegal, which does not belong to any
request domain.

Rule 1 (PVMH − R1 (get-read)). Subject virtual machine Si accesses object virtual machine Oj in

read-only (r) mode. The definition is dom(PVMH − R1) =
{

Rk |
(

g, Si, Oj, r
)
∈ R(1)

}
. This pseudo

code is as follow:

PVMH − R1 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R1)(
yes,

(
b ∪

{(
Si , Oj , r

)}
, M, f , H

))
i f [Rk ∈ dom(PVMH − R1)]

and
[
r ∈ Mij

]
and

[
fsr (Si)> for

(
Oj
)

or Si ∈ ST
]

(no, v) otherwise

If the decision is “yes”, add a new rule that Si is allowed to access Oj in read-only (r) mode into
current access set.

Rule 2 (PVMH − R2 (get-append)). Subject virtual machine Si accesses
object virtual machine Oj in write-only or append (a) mode. The definition is

dom(PVMH − R2) =
{

Rk |
(

g, Si, Oj, a
)
∈ R(1)

}
. The pseudo code is as follow:

PVMH − R2 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R2)(
yes,

(
b ∪

{(
Si , Oj , a

)}
, M, f , H

))
i f [Rk ∈ dom(PVMH − R2)] and

[
a ∈ Mij

]
and

[
fsr (Si)< for

(
Oj
)]

and
[

fht (Si) ≥ foc
(
Oj
)]

and
[

fsc (Si) ≥ flt
(
Oj
)]

or [Si ∈ ST]

(no, v) otherwise

If the decision is “yes”, add a new rule that Si is allowed to access Oj in write-only or append (a)
mode into current access set.

Future Internet 2019, 11, 82 8 of 21

Rule 3 (PVMH − R3 (get-write)). Subject virtual machine Si accesses object virtual machine Oj
or ST (trusted subject) accessed object virtual machine Oj in read–write (w) mode. The definition is

dom(PVMH − R3) =
{

Rk |
(

g, Si, Oj, w
)
∈ R(1)

}
. This pseudo code is as follow:

PVMH − R3 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R3)(
yes,

(
b ∪

{(
Si , Oj , w

)}
, M, f , H

))
i f [Rk ∈ dom(PVMH − R3)] and

[
w ∈ Mij

]
and

[
fsr (Si) = for

(
Oj
)]

or [Si ∈ ST]

(no, v) otherwise

If the decision is “yes”, add a new rule that Si is allowed to access Oj in read-write (w) mode into
current access set.

Rule 4 (PVMH − R4 (give-read/append/write)). Hypervisor (Sλ) needs to
set permission for subject virtual machine Si accessing object virtual machine Oj
in a certain mode, including read-only, write-only or read–write. The definition
is dom(PVMH − R4) =

{
Rk |

(
Sλ, g, Si, Oj, x

)
∈ R(2)

}
, x ∈ A. This pseudo code is as follow:

PVMH − R4 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R4)(

yes,
(
b, M\Mij ← {x}, f , H

))
i f [Rk ∈ dom(PVMH − R4)]

and [Sλ ∈ ST] and
[

Oj /∈ OR
]

(no, v) otherwise

If the decision is “yes”, add a new element that Si is allowed to access Oj in x mode into
access matrix.

Rule 5 (PVMH − R5 (create-object)). Subject Si (Hypervisor or privileged
virtual machine) needs to create object virtual machine Oj. The definition is

dom(PVMH − R5) =
{

Rk |
(

g, Si, Oj, Lu
)
∈ R(3)

}
. The pseudo code is as follow:

PVMH − R5 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R5)(

yes,
(
b, M, f \ fo ← fo ∪

(
Oj, Lu

)))
i f [Rk ∈ dom(PVMH − R5)]

and [Sλ ∈ ST]

(no, v) otherwise

Notation ← is assignment, which means assigning fo ∪
(
Oj, Lu

)
to fo. Pair

(
Oj, Lu

)
refers

to mapping relation fo
(
Oj
)
= Lu while pair

(
OR, Oj

)
refers to another relation H(OR) = Oj.

Notation f \ fo ← fo ∪
(
Oj, Lu

)
means set security level of Oj to Lu in security level vector (see

Section 4.1.3). This expression is also used in the following rules.
If the decision is “yes”, Oj is created and meanwhile, the related element is added into the security

level and object level.
Rule 6 (PVMH − R6 (delete-object)). Subject Si (Hypervisor or privileged virtual machine)

needs to delete object virtual machine Oj (1 ≤ j ≤ n), n virtual machines in total). The definition is

dom(PVMH − R6) =
{

Rk |
(
Si, Oj

)
∈ R(4)

}
. The pseudo code is as follow:

PVMH − R6 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R6)yes,

(
b− ACC

(
Oj
)
−OPE

(
Sj
))

,
M\
{

Muj ← ∅, Mju ← ∅
}

, f ,
H −

(
OR, Oj

)

 i f [Rk ∈ dom(PVMH − R6)] and [Sλ ∈ ST]

and
[

Sj /∈ ST
]

and
[
Oj /∈ OR

]
(no, v) otherwise

In this function, 1 ≤ u ≤ n, with n virtual machines in total.
Notation ACC

(
Oj
)
=
(
S ×

{
Oj
}
× A

)
∩ b refers to all access associated with Oj in current

Future Internet 2019, 11, 82 9 of 21

access set b while notation OPE(Si) =
(
{S} ×Oj × A

)
∩ b refers to all access from Si to the deleted

virtual machine in current access set b.
If the decision is “yes”, Oj is deleted and, meanwhile, the related element is removed from current

access b, access matrix M, and object level H.
Rule 7 (PVMH − R7 (rescind-read/append/write)). The Hypervisor (Sλ)

needs to revoke permission for subject virtual machine Si accessing object virtual
machine Oj, including read-only, write-only, or read–write. The definition is

dom(PVMH − R7) =
{

Rk |
(
Sλ, r, Si, Oj, x

)
∈ R(2)

}
, x ∈ A. The pseudo code is as follow:

PVMH−R7 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R7)(

yes,
(
b−

(
Si, Oj, x

)
, M\Mij − {x}, f , H

))
i f [Rk ∈ dom(PVMH − R7)]

and [Sλ ∈ ST] and
[
Oj /∈ OR

]
(no, v) otherwise

If the decision is “yes”, remove the element that Si can access Oj in x mode from access matrix,
and, meanwhile, remove the rule that Si can access Oj in x mode from current access set.

Rule 8 (PVMH − R8 (modify-object-l)). The Hypervisor needs to modify Lu, the security level
of object virtual machine.

In the following, PVMH − ∗(Rk, v) is the characteristic function, which guarantees that if it
outputs “true” and state v satisfies the PVMH-* characteristic with respect to S∗(S∗ ⊆ S), the state
v after this transition also satisfies the PVMH-* characteristic. The strict mathematic definition is
as follows:

PVMH − ∗(Rk , v) = true⇔
∀Sλ ∈ S′,

[(
Sλ , Oj, a

)
∈ b⇒ Lu fsr(Sλ) & fsc(Sλ) ≥ flt

]
&
[(

Sλ , Oj, w
)
∈ b⇒ Lu = fsr(Sλ)

]
&
[(

Sλ , Oj, r
)
∈ b⇒ Lu fsr(Sλ)

]
∀Oλ ∈ O,

[(
Sλ , Oj, a

)
∈ b⇒ for(Oλ)Lu& foc(Oλ) ≥ fht

]
&
[(

Sλ , Oj, w
)
∈ b⇒ for(Oλ) = Lu

]
&
[(

Sλ , Oj, r
)
∈ b⇒ for(Oλ) Lu

]
The definition isdom(PVMH − R8) =

{
Rk |

(
r, Si, Oj, Lu

)
∈ R(3)

}
. The pseudo code is

as follows:

PVMH − R8 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R8)(
yes,

(
b, M, f \ fo ← fo ∪

(
Oj, Lu

)
, H ∪

(
OR, Oj

)))
i f [Rk ∈ dom(PVMH − R8)]

and [Si ∈ ST] and
[
Oj 6= OR

]
and [PVMH − ∗(Rk , v) = true]

(no, v) otherwise

If the decision is “yes”, set security level of Oj to Lu.
Rule 9 (PVMH − R9 (modify- fsc)). The trusted subject needs to modify the

highest writing-up level for a certain subject virtual machine. The definition is
dom(PVMH − R9) =

{
Rk |

(
r, Si, Oj, fht

)
∈ R(5)

}
. The pseudo code is as follows:

PVMH − R9 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R9)

(yes, (fht = Highest)) i f [Rk ∈ dom(PVMH − R9)]

and [frole(Si) = admin]and
[(

Sm, Oj, a
)

/∈ b
]

and[fsc(Si) ≤ Highest]
(no, v) otherwise

Future Internet 2019, 11, 82 10 of 21

Notation fht refers to the highest writing-up level of the subject, while “Highest” refers to the
highest writing-up level of the subject granted by administration. If the decision is “yes”, the highest
writing-up level of the subject is updated to “Highest”.

Rule 10 (PVMH − R10 (modify- foc)). The trusted subject needs to modify the
lowest writing-up level for a certain subject virtual machine. The definition is
dom(PVMH − R10) =

{
Rk |

(
r, Si, Oj, flt

)
∈ R(5)

}
. The pseudo code is as follows:

PVMH − R10 (Rk , v) =

(?, v) i f Rk /∈ dom(PVMH − R10)

(yes, (fht = Lowest)) i f [Rk ∈ dom(PVMH − R10)]

and [frole(Si) = admin]and
[(

Sm, Oj, a
)

/∈ b
]

and
[

foc
(
Oj
)
≤ Lowest

]
(no, v) otherwise

Notation flt refers to the lowest writing-up level of the subject, while ”Lowest” refers to the lowest
writing-up level of the subject granted by administration. If the decision is “yes”, the lowest writing-up
level of the subject is updated to “Lowest”.

Rule 11 (discretionary access control). The access matrix allows the subject virtual machine Si
to access the object virtual machine Oj in x mode only if x is contained in both the row element of Si
and column element of Oj in the access control matrix. The state v satisfies the discretionary security
characteristic if and only if

(
Si, Oj, x

)
∈ b⇒ x ∈ Mij .

By setting the highest writing-up level and the lowest writing-up level that each subject can
write into, the PVMH model implements stricter integrity restrictions, while keeping most security
characteristics of the BLP model, so it also has higher security.

4.2. PVMH Model Mapping

4.2.1. Subject–Object Mapping

This paper takes Xen as the virtualization platform. In Xen, the privileged virtual machine is
denoted as Domain0, the ordinary virtual machine is denoted as DomainU, and the virtual machine
manager is denoted as Hypervisor. Domain0 and Hypervisor are the trusted subjects, which manage
all virtual machines on the same host. In the BLP model, both subject and object are abstract words,
while in the cloud platform system, the subject may be Hypervisor, Domain0, or DomainU, and the
object may be Hypervisor, DomainU, or a specific file, memory snip, data unit, etc. When access
control is Hypervisor-related, the Hypervisor is at the highest level of confidentiality and integrity.

4.2.2. Access Attribute Mapping

In Xen, read and write operations between guest virtual machines are accomplished through
communication mechanisms. The interaction between guest virtual machines corresponds to the
access properties of the PVMH model. In the PVMH model, event channels can be established and
event notifications sent as long as one guest virtual machine has some access to attribute to another
guest virtual machine. The corresponding operation can be found in state transitions of the PVMH
model, as shown in Table 1.

Future Internet 2019, 11, 82 11 of 21

Table 1. State transition rules.

Virtual Machine State Corresponding Function Effect Corresponding
Transition Rules

virtual machine
management modifying access permission Hypervisor modifies access permission for

a certain virtual machine. Rule 8

modifying object security level Hypervisor modifies security level of
a certain subject virtual machine. Rule 10

modifying subject security level Hypervisor modifies security level of
a certain object virtual machine. Rule 9

authorizing access attribute Hypervisor grants some access attribute to
a certain subject virtual machine. Rule 4

releasing access attribute Hypervisor revokes some access attribute
from a certain subject virtual machine. Rule 7

creating a guest
virtual machine

creating a subject Hypervisor creates a subject virtual
machine and sets its security level. Rule 5

creating an object Hypervisor creates an object virtual
machine and sets its security level. Rule 5

deleting a guest
virtual machine

deleting a subject Hypervisor deletes a subject virtual
machine and its related data. Rule 6

deleting an object Hypervisor deletes an object virtual
machine and its related data. Rule 6

virtual machine
communication (access

to shared data, etc.)

writing an object Subject virtual machine writes data into
and reads data from object virtual machine. Rule 2

reading an object Subject virtual machine only reads data
from object virtual machine. Rule 1

appending an object Subject virtual machine only writes data
into object virtual machine. Rule 3

4.2.3. Access Matrix Mapping

In our framework designed with the PVMH model, the access matrix is stored as a binary file
in the virtual machine manager, while a backup file is also stored in the privileged virtual machine.
Each element of the access matrix is a one-dimensional ordered tuple (SID, OID, R, A, W, Flag) where
SID is the subject security ID number, OID is the object security ID number, R is read-only access
attribute, A is write-only access attribute, W is read–write access attribute, and Flag is used to indicate
whether the rule is valid; "1" is valid and "0" is invalid. The security ID number is set by the system
administrator, and the ID number of the virtual machine in the cloud platform is allocated by the cloud
system when the virtual machine starts up. For a virtual machine, both the SID and the OID are equal
to its security ID number, that is, SID = OID = ID. In the cloud platform, the ID number is a 13-bit
binary number, and R, A, and W are represented by 1-bit binary numbers. When R (or A or W) is set to
1, the subject has the access attribute for the object, and when the value is set to 0, the subject does not
have the access attribute for the object. It can be seen that the six-element tuple has a total of 30 binary
digits (13 bits for SID and OID, 1 bit for R, A, and W, and 1 bit for Flag), and the default access matrix
is sorted by pair (SID, OID) in ascending order, which is very efficient for searching later.

4.2.4. Current Access Set

The current access set b (b ⊆ S×O× A) includes all access that the subject has for the object in
some certain modes. The current access set can be used to determine whether the state of the system is
secure. In the PVMH model, each subject has its own current access set b, denoted as b(S) ⊆ O× A.
The elements in the object set O are represented by OID, and the access attribute set A includes three
elements: Read-only (r), write-only (a), and read–write (w).

4.2.5. Security Level

The PVMH model has 8 confidentiality levels and 8 integrity levels. The confidentiality set is
defined as C = {C1, C2, . . . , C8}, where C1 > C2 > . . . > C8, while the integrity set is defined as
I = {I1, I2, . . . , I8}, where I1 > I2 > . . . > I8. Both the confidentiality level and integrity level are 3-bit
binary numbers, as shown in Table 2.

Future Internet 2019, 11, 82 12 of 21

Table 2. Secret level.

Confidentiality Level Integrity Level Binary Secret Level

C1 I1 111 Level-1
C2 I2 110 Level-2
C3 I3 101 Level-3
C4 I4 100 Level-4
C5 I5 011 Level-5
C6 I6 010 Level-6
C7 I7 001 Level-7
C8 I8 000 Level-8

PVMH has 16 security categories or access permissions. The security category set is defined as
K = {K1, K2, . . . , K16}. The security category is a 16-bit binary number, where each bit is a specific
access permission. When the ith bit from the left is set to 1, the subject gains access to the object in Ki
mode. When it is set to 0, the subject loses this access.

4.3. PVMH Model Implementation

We designed the PVMH architecture according to the security control module of the cloud
computing platform, as shown in Figure 1.

Future Internet 2019, 11, x FOR PEER REVIEW 12 of 21

The PVMH model has 8 confidentiality levels and 8 integrity levels. The confidentiality set is
defined as 𝐶 = {𝐶 , 𝐶 , … , 𝐶 }, where 𝐶 > 𝐶 > ⋯ > 𝐶 , while the integrity set is defined as 𝐼 =

{𝐼 , 𝐼 , … , 𝐼 }, where 𝐼 > 𝐼 > ⋯ > 𝐼 . Both the confidentiality level and integrity level are 3-bit binary
numbers, as shown in Table 2.

Table 2. Secret level.

Confidentiality Level Integrity Level Binary Secret Level
𝐶 𝐼 111 Level-1
𝐶 𝐼 110 Level-2
𝐶 𝐼 101 Level-3
𝐶 𝐼 100 Level-4
𝐶 𝐼 011 Level-5
𝐶 𝐼 010 Level-6
𝐶 𝐼 001 Level-7
𝐶 𝐼 000 Level-8

PVMH has 16 security categories or access permissions. The security category set is defined as

𝐾 = {𝐾 , 𝐾 , … , 𝐾 }. The security category is a 16-bit binary number, where each bit is a specific
access permission. When the 𝑖th bit from the left is set to 1, the subject gains access to the object in 𝐾
mode. When it is set to 0, the subject loses this access.

4.3. PVMH Model Implementation

We designed the PVMH architecture according to the security control module of the cloud
computing platform, as shown in Figure 1.

Figure 1. The PVMH architecture.

The PVMH framework prototype system is divided into two parts, with the core part in the
hypervisor and the other part in the Host OS. The Host OS has an Access Management module. The
hypervisor includes an Access Matrix module, an access control module (PVMH-ACM), a PVMH
Information module, and an Access Decision module.
1. Access Management Module: The Access Management module is located in the Host OS, which

is the entrance for the system administrator managing the entire PVMH module. When creating
a virtual machine, the administrator can set the confidentiality level and integrity level

Figure 1. The PVMH architecture.

The PVMH framework prototype system is divided into two parts, with the core part in the
hypervisor and the other part in the Host OS. The Host OS has an Access Management module.
The hypervisor includes an Access Matrix module, an access control module (PVMH-ACM), a PVMH
Information module, and an Access Decision module.

1. Access Management Module: The Access Management module is located in the Host OS,
which is the entrance for the system administrator managing the entire PVMH module.
When creating a virtual machine, the administrator can set the confidentiality level and integrity
level according to specific requirements, and manage both the access matrix and information
structure, according to the actual situation.

2. Access Decision Module: The main task of the Access Decision module is to check the access
request sent by the virtual machine, to determine whether the access attribute of the PVMH

Future Internet 2019, 11, 82 13 of 21

module is satisfied, and filter requests that are illegal or have malicious data. Only legitimate
requests are sent to PVMH-ACM module.

3. Access Matrix Module: The Access Matrix module is located in the virtual machine manager and
stores all the required access matrices.

4. PVMH-ACM Module: The PVMH-ACM module is a concrete implementation of the security
hook function interface provided by the Linux Security module (LSM). In addition, this module
implements the specific functions of the PVMH model.

5. PVMH Information Module: Each virtual machine has its own information structure (PVMH
Information), which is responsible for recording information about running virtual machines.
The information includes the ID number of the virtual machine, the confidentiality level,
the integrity level and the security category, and the pointer to the entry of the access matrix list
entry and the current access set b(s), which was gradually established in the process from virtual
machine starting-up to running.

6. Linux Security Module (LSM): LSM is the basis for implementing the PVMH-ACM module.
When the underlying operating system starts, the LSM starts to function. When the corresponding
security hook function is called, the user-implemented security module is called immediately.

When the virtual machine issues an access request, the PVMH-ACM module determines whether to
allow access to the resource according to the corresponding access control rules. The access control
flowchart is shown in Figure 2:

Future Internet 2019, 11, x FOR PEER REVIEW 13 of 21

according to specific requirements, and manage both the access matrix and information
structure, according to the actual situation.

2. Access Decision Module: The main task of the Access Decision module is to check the access
request sent by the virtual machine, to determine whether the access attribute of the PVMH
module is satisfied, and filter requests that are illegal or have malicious data. Only legitimate
requests are sent to PVMH-ACM module.

3. Access Matrix Module: The Access Matrix module is located in the virtual machine manager
and stores all the required access matrices.

4. PVMH-ACM Module: The PVMH-ACM module is a concrete implementation of the security
hook function interface provided by the Linux Security module (LSM). In addition, this module
implements the specific functions of the PVMH model.

5. PVMH Information Module: Each virtual machine has its own information structure (PVMH
Information), which is responsible for recording information about running virtual machines.
The information includes the ID number of the virtual machine, the confidentiality level, the
integrity level and the security category, and the pointer to the entry of the access matrix list
entry and the current access set b(s), which was gradually established in the process from
virtual machine starting-up to running.

6. Linux Security Module (LSM): LSM is the basis for implementing the PVMH-ACM module.
When the underlying operating system starts, the LSM starts to function. When the
corresponding security hook function is called, the user-implemented security module is called
immediately.

Figure 2. Access flowchart. high-res figure Figure 2. Access flowchart. high-res figure

According to PVMH architecture, the specific implementation process is as follow:

Future Internet 2019, 11, 82 14 of 21

Step 1: The subject virtual machine sends a request to access the object virtual machine in a certain
mode. The Access Decision module intercepts these requests, checks whether they conform to the
access attributes of PVMH module, filters the illegal or malicious data requests directly, returns "Error",
and sends the requests that conform to the access attributes to the PVMH-ACM module in Hypervisor.

Step 2: The PVMH-ACM module queries in the Access Matrix and PVMH Information by
resolving the incoming message, and makes decisions according to the state transition rules.

Specifically, it takes it as an example that the subject virtual machine (SID) accesses the object
virtual machine (OID) in read-only (R) mode.

(1) The PVMH-ACM module queries the current access set b(S) of the subject virtual machine from
the PVMH Information module. If it finds the target pair (OID, R), the PVMH-ACM module
accepts the request and returns "yes" directly; otherwise, it jumps to (2) to continue.

(2) All access matrix items associated with SID and OID are stored into a linked list. The PVMH-ACM
module searches the linked list from the head node. If it finds the target tuple (SID, OID, 1XXX)
(X is 0 or 1), it jumps to (3) for a further decision; otherwise, it rejects the request and returns
“no” directly.

(3) The PVMH-ACM module finds the information of the object virtual machine in the PVMH
Information module, and compares the confidentiality level of the subject virtual machine with
that of the object virtual machine. If rule PVMH − R1 is satisfied, the PVMH-ACM returns "yes"
as a decision result and adds the value pair (OID, R) into the current access set b(S); otherwise,
it rejects the request and returns "no".

The entire access process is stored in the PVMH Information module, and when the same access is
repeated in the future, the PVMH-ACM access control module will directly output the result, instead of
matching the subject and object security level and other Information.

Step 3: The PVMH-ACM module sends the decision result to the LSM module. If the PVMH-ACM
module outputs “yes”, the LSM module allows the subject virtual machine to access the object virtual
machine, and carries out the security access control according to the specific hook function; otherwise,
access is rejected.

5. Experiments

5.1. Basic Environment

The experiment is performed on a Dell PC with the following configuration, as shown in Table 3.

Table 3. Hardware parameters.

Hardware Parameter

CPU Intel Core i7-6700, 3.4 GHz
Memory 8GB

Hard disk 1TB

In this experiment, Xen is used as the private cloud platform driven by the virtualization
environment, and the “virt-manager” tool is used to manage virtual machines. For convenience,
the host operating system is configured with the graphical interface, and since the virtual machine
requires only a basic environment, the graphical interface is removed from the guest operating system.
The details are shown in Table 4.

Future Internet 2019, 11, 82 15 of 21

Table 4. Operating system environment.

Machine System Version Kernel Version Graphical Interface

Host machine Ubuntu 16.04.5 4.15.0-42-generic Yes
Virtual machine CentOS-6.10 4.4.163-1.el6.elrepo.i686 No
Xen Hypervisor N/A xen-hypervisor-4.6-amd64 N/A

5.2. The Initialization of PVMH Module

The PVMH module needs to be initialized before it can run. After initialization, the legal access
attributes are stored in the Access Decision module, and the initial access matrix is stored in the Access
Matrix module. The system administrator can modify the access matrix according to the access request
at any time.

The PVMH-ACM module registers its initialization function through the interface provided by the
Linux security module LSM, which is called during the initialization of LSM. The initialization function
loads the access matrix into the memory address space of Hypervisor. Based on memory-efficient
consideration, such as searching, adding, or deleting elements, an ordered bidirectional linked list is
used. In addition, the PVMH-ACM initialization function provides the LSM with information about the
security hook functions. The PVMH-ACM module runs at one of these two modes: Mandatory access
control or discretionary access control, which depends on the access information returned from the
Access Decision module. The PVMH Information module records the information of each virtual
machine. PVMH Information is a bidirectional linked list in Hypervisor, and each node holds the
relevant information of a specific running virtual machine, which includes the security ID number,
confidentiality level, integrity level, security category, and the pointers to the access matrix linked
list entry and the current access set b(s). After initialization, only an empty table exists in the PVMH
Information module. When a certain virtual machine starts, the corresponding security ID number,
confidentiality level, integrity level, and security category are assigned. These four items are read by
the PVMH Information module and saved into the bidirectional linked list, which forms the first four
elements of this virtual machine.

5.3. Experiments and Results

There are many cases of virtual machine hopping attacks. Two of the possible scenarios of virtual
machine hopping attacks have been selected here to verify the role of the PVMH module.

Attack scenario 1: Virtual machine hopping attacks between virtual machines due to shared
memory communication. Typical communication through shared memory is as follows: VM1 creates
shared memory and transfers its grant reference to both virtual machines VM2 and VM3; VM2 and
VM3 respectively map the authorized memory pages to their respective address spaces; By address
mapping, VM2 and VM3 can read or write the shared page as it is exactly in their own memory address.
When VM2 and VM3 have finished accessing this shared memory, they revoke the memory page
address. At last, VM1 revokes the authorization and reclaims the grant reference. In the experiment,
shared memory communication is implemented by dynamic kernel.

Expected result: After the PVMH module is started, if VM2 and VM3 do not satisfy the access
control rules, the shared memory cannot be used, thus the dynamic kernel fails and cannot be inserted
in VM2 and VM3.

Create virtual machines with the virt-manager tool, as shown in Figure 3.

Future Internet 2019, 11, x FOR PEER REVIEW 15 of 21

Table 4. Operating system environment.

Machine System Version Kernel Version Graphical Interface
Host machine Ubuntu 16.04.5 4.15.0-42-generic Yes

Virtual machine CentOS-6.10 4.4.163-1.el6.elrepo.i686 No
Xen Hypervisor N/A xen-hypervisor-4.6-amd64 N/A

5.2. The Initialization of PVMH Module

The PVMH module needs to be initialized before it can run. After initialization, the legal access
attributes are stored in the Access Decision module, and the initial access matrix is stored in the
Access Matrix module. The system administrator can modify the access matrix according to the
access request at any time.

The PVMH-ACM module registers its initialization function through the interface provided by
the Linux security module LSM, which is called during the initialization of LSM. The initialization
function loads the access matrix into the memory address space of Hypervisor. Based on
memory-efficient consideration, such as searching, adding, or deleting elements, an ordered
bidirectional linked list is used. In addition, the PVMH-ACM initialization function provides the
LSM with information about the security hook functions. The PVMH-ACM module runs at one of
these two modes: Mandatory access control or discretionary access control, which depends on the
access information returned from the Access Decision module. The PVMH Information module
records the information of each virtual machine. PVMH Information is a bidirectional linked list in
Hypervisor, and each node holds the relevant information of a specific running virtual machine,
which includes the security ID number, confidentiality level, integrity level, security category, and
the pointers to the access matrix linked list entry and the current access set b(s). After initialization,
only an empty table exists in the PVMH Information module. When a certain virtual machine starts,
the corresponding security ID number, confidentiality level, integrity level, and security category
are assigned. These four items are read by the PVMH Information module and saved into the
bidirectional linked list, which forms the first four elements of this virtual machine.

5.3. Experiments and Results

There are many cases of virtual machine hopping attacks. Two of the possible scenarios of
virtual machine hopping attacks have been selected here to verify the role of the PVMH module.

Attack scenario 1: Virtual machine hopping attacks between virtual machines due to shared
memory communication. Typical communication through shared memory is as follows: VM1
creates shared memory and transfers its grant reference to both virtual machines VM2 and VM3;
VM2 and VM3 respectively map the authorized memory pages to their respective address spaces; By
address mapping, VM2 and VM3 can read or write the shared page as it is exactly in their own
memory address. When VM2 and VM3 have finished accessing this shared memory, they revoke the
memory page address. At last, VM1 revokes the authorization and reclaims the grant reference. In
the experiment, shared memory communication is implemented by dynamic kernel.

Expected result: After the PVMH module is started, if VM2 and VM3 do not satisfy the access
control rules, the shared memory cannot be used, thus the dynamic kernel fails and cannot be
inserted in VM2 and VM3.

Create virtual machines with the virt-manager tool, as shown in Figure 3.

Figure 3. Create VM1.

After creation, list all running virtual machines, as shown in Figure 4.

Figure 3. Create VM1.

After creation, list all running virtual machines, as shown in Figure 4.

Future Internet 2019, 11, 82 16 of 21
Future Internet 2019, 11, x FOR PEER REVIEW 16 of 21

Figure 4. Command listing all running virtual machines.

The security level and category of virtual machines are given in Table 5.

Table 5. Security settings of VM1, VM2, and VM3.

Subject/
Object

SID = OID = ID
Confidentiality

Level
Integrity Level Security Category

VM1 0000 0000 0000 1 C1（111） I2（110） 0011 0100 1000 1010

VM2 0000 0000 0001 0 C3（101） I5（011） 0000 1011 1001 0110

VM3 0000 0000 0001 1 C5（100） I5（011） 0010 1011 1010 0011

Obviously, VM1 > VM2 > VM3 when comparing confidentiality and VM1 > VM2 = VM3 when
integrity is concerned. Without PVMH, VM1, VM2, and VM3 can access each other. After PVMH is
configured, however, VM1 can access VM2 and VM3 while VM2 and VM3 cannot access VM1.

The access matrix is given in Table 6.

Table 6. Access matrix of VM1, VM2, and VM3.

Subject/Object SID=OID
Access Attribute

Flag
R A W

VM1 0000 0000 0000 1 1 1 1 1

VM2 0000 0000 0001 0 0 0 0 1

VM3 0000 0000 0001 1 0 0 0 0

The shared memory is created in VM1 and the key log is printed, as shown in Figure 5.

Figure 5. Create shared memory in VM1.

The function of the kernel in VM1: First take a physical page of 4K size; then write "Hello, by DY
in DOM#1" into this page; the starting memory address is 0xdb566000 in the address space of VM1;
then authorize according to the ID number of VM2 and VM3 and return the corresponding grant
reference identifier, which is 797 for VM2 and 798 for VM3.

According to the ID number of VM1 and the grant reference identifier mentioned above, the
shared memory is referenced in the VM2 through dynamic kernel. Without PVMH, VM2
successfully reads the shared information written by VM1, as shown in Figure 6.

Figure 4. Command listing all running virtual machines.

The security level and category of virtual machines are given in Table 5.

Table 5. Security settings of VM1, VM2, and VM3.

Subject/Object SID = OID = ID Confidentiality Level Integrity Level Security Category

VM1 0000 0000 0000 1 C1(111) I2(110) 0011 0100 1000 1010
VM2 0000 0000 0001 0 C3(101) I5(011) 0000 1011 1001 0110
VM3 0000 0000 0001 1 C5(100) I5(011) 0010 1011 1010 0011

Obviously, VM1 > VM2 > VM3 when comparing confidentiality and VM1 > VM2 = VM3 when
integrity is concerned. Without PVMH, VM1, VM2, and VM3 can access each other. After PVMH is
configured, however, VM1 can access VM2 and VM3 while VM2 and VM3 cannot access VM1.

The access matrix is given in Table 6.

Table 6. Access matrix of VM1, VM2, and VM3.

Subject/Object SID=OID
Access Attribute Flag

R A W

VM1 0000 0000 0000 1 1 1 1 1
VM2 0000 0000 0001 0 0 0 0 1
VM3 0000 0000 0001 1 0 0 0 0

The shared memory is created in VM1 and the key log is printed, as shown in Figure 5.

Future Internet 2019, 11, x FOR PEER REVIEW 16 of 21

Figure 4. Command listing all running virtual machines.

The security level and category of virtual machines are given in Table 5.

Table 5. Security settings of VM1, VM2, and VM3.

Subject/
Object

SID = OID = ID
Confidentiality

Level
Integrity Level Security Category

VM1 0000 0000 0000 1 C1（111） I2（110） 0011 0100 1000 1010

VM2 0000 0000 0001 0 C3（101） I5（011） 0000 1011 1001 0110

VM3 0000 0000 0001 1 C5（100） I5（011） 0010 1011 1010 0011

Obviously, VM1 > VM2 > VM3 when comparing confidentiality and VM1 > VM2 = VM3 when
integrity is concerned. Without PVMH, VM1, VM2, and VM3 can access each other. After PVMH is
configured, however, VM1 can access VM2 and VM3 while VM2 and VM3 cannot access VM1.

The access matrix is given in Table 6.

Table 6. Access matrix of VM1, VM2, and VM3.

Subject/Object SID=OID
Access Attribute

Flag
R A W

VM1 0000 0000 0000 1 1 1 1 1

VM2 0000 0000 0001 0 0 0 0 1

VM3 0000 0000 0001 1 0 0 0 0

The shared memory is created in VM1 and the key log is printed, as shown in Figure 5.

Figure 5. Create shared memory in VM1.

The function of the kernel in VM1: First take a physical page of 4K size; then write "Hello, by DY
in DOM#1" into this page; the starting memory address is 0xdb566000 in the address space of VM1;
then authorize according to the ID number of VM2 and VM3 and return the corresponding grant
reference identifier, which is 797 for VM2 and 798 for VM3.

According to the ID number of VM1 and the grant reference identifier mentioned above, the
shared memory is referenced in the VM2 through dynamic kernel. Without PVMH, VM2
successfully reads the shared information written by VM1, as shown in Figure 6.

Figure 5. Create shared memory in VM1.

The function of the kernel in VM1: First take a physical page of 4K size; then write "Hello, by DY
in DOM#1" into this page; the starting memory address is 0xdb566000 in the address space of VM1;
then authorize according to the ID number of VM2 and VM3 and return the corresponding grant
reference identifier, which is 797 for VM2 and 798 for VM3.

According to the ID number of VM1 and the grant reference identifier mentioned above, the shared
memory is referenced in the VM2 through dynamic kernel. Without PVMH, VM2 successfully reads
the shared information written by VM1, as shown in Figure 6.Future Internet 2019, 11, x FOR PEER REVIEW 17 of 21

Figure 6. Refer shared memory in VM2, without PVMH module.

The function of the kernel in VM2: First, the 4K size is divided from the address space for
mapping the shared page. Then VM2 maps the shared page to its own address space according to
the ID number of VM1 and the grant reference identifier; in VM2, the starting address of this
mapped page is 0xe19c0000; after that, the information "Hello, by DY in DOM#1" written by VM1
can be read and the access is completed.

In order to verify the role of the PVMH module, the dynamic kernel needs to be removed from
VM2 at first, then the PVMH module enabled and the dynamic kernel reinserted in VM2, as shown
in Figures 7 and 8 respectively.

Figure 7. Enable the PVMH module.

Figure 8. Refer shared memory in VM2, with PVMH enabled.

After starting the PVMH module, VM2 loses its permission to access the shared memory, which
results in the failure of the dynamic kernel insertion. Similar results can be observed in VM3 with
and without the PVMH module. This is consistent with PVMH rules, because VM2 has lower
confidentiality and lower integrity than VM1.

Attack scenario 2: The attacker uses the VM4 to mount and modify the /boot partition of VM5
through Hypervisor. As a result, VM5 cannot be started, causing the virtual machine hopping attack.

Expected result: After the PVMH module is started, if the access control rule is not satisfied,
VM4 cannot access the/boot partition of VM5, even using the privileged virtual machine Dom0.

Set the security level and category of VM4 and VM5, as shown in Table 7.

Table 7. Security settings of VM4 and VM5.

Subject/Object SID = OID = ID
Confidentiality

Level
Integrity

Level
Security Category

VM4 0000 0000 0010 0 C4（100） I6（010） 0011 0000 1010 1000

VM5 0000 0000 0010 1 C3（101） I5（011） 0000 0011 1001 1000

Obviously, VM4 < VM5 when comparing both confidentiality and integrity. Without PVMH,
VM4 can mount the/boot partition of VM5 through Dom0. After PVMH is started, however, VM4
cannot access VM5 anymore.

The access matrix is given in Table 8.

Figure 6. Refer shared memory in VM2, without PVMH module.

Future Internet 2019, 11, 82 17 of 21

The function of the kernel in VM2: First, the 4K size is divided from the address space for
mapping the shared page. Then VM2 maps the shared page to its own address space according to the
ID number of VM1 and the grant reference identifier; in VM2, the starting address of this mapped
page is 0xe19c0000; after that, the information "Hello, by DY in DOM#1" written by VM1 can be read
and the access is completed.

In order to verify the role of the PVMH module, the dynamic kernel needs to be removed from
VM2 at first, then the PVMH module enabled and the dynamic kernel reinserted in VM2, as shown in
Figures 7 and 8 respectively.

Future Internet 2019, 11, x FOR PEER REVIEW 17 of 21

Figure 6. Refer shared memory in VM2, without PVMH module.

The function of the kernel in VM2: First, the 4K size is divided from the address space for
mapping the shared page. Then VM2 maps the shared page to its own address space according to
the ID number of VM1 and the grant reference identifier; in VM2, the starting address of this
mapped page is 0xe19c0000; after that, the information "Hello, by DY in DOM#1" written by VM1
can be read and the access is completed.

In order to verify the role of the PVMH module, the dynamic kernel needs to be removed from
VM2 at first, then the PVMH module enabled and the dynamic kernel reinserted in VM2, as shown
in Figures 7 and 8 respectively.

Figure 7. Enable the PVMH module.

Figure 8. Refer shared memory in VM2, with PVMH enabled.

After starting the PVMH module, VM2 loses its permission to access the shared memory, which
results in the failure of the dynamic kernel insertion. Similar results can be observed in VM3 with
and without the PVMH module. This is consistent with PVMH rules, because VM2 has lower
confidentiality and lower integrity than VM1.

Attack scenario 2: The attacker uses the VM4 to mount and modify the /boot partition of VM5
through Hypervisor. As a result, VM5 cannot be started, causing the virtual machine hopping attack.

Expected result: After the PVMH module is started, if the access control rule is not satisfied,
VM4 cannot access the/boot partition of VM5, even using the privileged virtual machine Dom0.

Set the security level and category of VM4 and VM5, as shown in Table 7.

Table 7. Security settings of VM4 and VM5.

Subject/Object SID = OID = ID
Confidentiality

Level
Integrity

Level
Security Category

VM4 0000 0000 0010 0 C4（100） I6（010） 0011 0000 1010 1000

VM5 0000 0000 0010 1 C3（101） I5（011） 0000 0011 1001 1000

Obviously, VM4 < VM5 when comparing both confidentiality and integrity. Without PVMH,
VM4 can mount the/boot partition of VM5 through Dom0. After PVMH is started, however, VM4
cannot access VM5 anymore.

The access matrix is given in Table 8.

Figure 7. Enable the PVMH module.

Future Internet 2019, 11, x FOR PEER REVIEW 17 of 21

Figure 6. Refer shared memory in VM2, without PVMH module.

The function of the kernel in VM2: First, the 4K size is divided from the address space for
mapping the shared page. Then VM2 maps the shared page to its own address space according to
the ID number of VM1 and the grant reference identifier; in VM2, the starting address of this
mapped page is 0xe19c0000; after that, the information "Hello, by DY in DOM#1" written by VM1
can be read and the access is completed.

In order to verify the role of the PVMH module, the dynamic kernel needs to be removed from
VM2 at first, then the PVMH module enabled and the dynamic kernel reinserted in VM2, as shown
in Figures 7 and 8 respectively.

Figure 7. Enable the PVMH module.

Figure 8. Refer shared memory in VM2, with PVMH enabled.

After starting the PVMH module, VM2 loses its permission to access the shared memory, which
results in the failure of the dynamic kernel insertion. Similar results can be observed in VM3 with
and without the PVMH module. This is consistent with PVMH rules, because VM2 has lower
confidentiality and lower integrity than VM1.

Attack scenario 2: The attacker uses the VM4 to mount and modify the /boot partition of VM5
through Hypervisor. As a result, VM5 cannot be started, causing the virtual machine hopping attack.

Expected result: After the PVMH module is started, if the access control rule is not satisfied,
VM4 cannot access the/boot partition of VM5, even using the privileged virtual machine Dom0.

Set the security level and category of VM4 and VM5, as shown in Table 7.

Table 7. Security settings of VM4 and VM5.

Subject/Object SID = OID = ID
Confidentiality

Level
Integrity

Level
Security Category

VM4 0000 0000 0010 0 C4（100） I6（010） 0011 0000 1010 1000

VM5 0000 0000 0010 1 C3（101） I5（011） 0000 0011 1001 1000

Obviously, VM4 < VM5 when comparing both confidentiality and integrity. Without PVMH,
VM4 can mount the/boot partition of VM5 through Dom0. After PVMH is started, however, VM4
cannot access VM5 anymore.

The access matrix is given in Table 8.

Figure 8. Refer shared memory in VM2, with PVMH enabled.

After starting the PVMH module, VM2 loses its permission to access the shared memory,
which results in the failure of the dynamic kernel insertion. Similar results can be observed in
VM3 with and without the PVMH module. This is consistent with PVMH rules, because VM2 has
lower confidentiality and lower integrity than VM1.

Attack scenario 2: The attacker uses the VM4 to mount and modify the /boot partition of VM5
through Hypervisor. As a result, VM5 cannot be started, causing the virtual machine hopping attack.

Expected result: After the PVMH module is started, if the access control rule is not satisfied,
VM4 cannot access the/boot partition of VM5, even using the privileged virtual machine Dom0.

Set the security level and category of VM4 and VM5, as shown in Table 7.

Table 7. Security settings of VM4 and VM5.

Subject/Object SID = OID = ID Confidentiality Level Integrity Level Security Category

VM4 0000 0000 0010 0 C4(100) I6(010) 0011 0000 1010 1000
VM5 0000 0000 0010 1 C3(101) I5(011) 0000 0011 1001 1000

Obviously, VM4 < VM5 when comparing both confidentiality and integrity. Without PVMH,
VM4 can mount the/boot partition of VM5 through Dom0. After PVMH is started, however,
VM4 cannot access VM5 anymore.

The access matrix is given in Table 8.

Table 8. Access Matrix of VM4 and VM5.

Subject/Object SID = OID
Access Attribute Flag

R A W

VM4 0000 0000 0010 0 1 0 1 1
VM5 0000 0000 0010 1 1 0 0 1

Future Internet 2019, 11, 82 18 of 21

VM4 uses the privileged virtual machine Dom0 to view the partition of VM5, as shown in Figure 9.

Future Internet 2019, 11, x FOR PEER REVIEW 18 of 21

Table 8. Access Matrix of VM4 and VM5.

Subject/Object SID = OID
Access Attribute

Flag
R A W

VM4 0000 0000 0010 0 1 0 1 1

VM5 0000 0000 0010 1 1 0 0 1

VM4 uses the privileged virtual machine Dom0 to view the partition of VM5, as shown in
Figure 9.

Figure 9. Partition of VM5.

The disk of VM5 is divided into two partitions: /and/boot. Before the PVMH module is enabled,
VM4 mounts and accesses the/boot partition of VM5 through Dom0. The “Start” value of the
partition/boot, 2048, is used to calculate the offset in command mount, as shown in Figure 10:

Figure 10. Mount and view the/boot partition of VM5, without PVMH.

Since VM4 can modify the/boot partition of VM5, it can attack VM5 easily. Unmount the
partition, enable the PVMH module and remount the/boot partition of VM5. The results are as given
in Figure 11.

Figure 11. Mount and view the/boot partition of VM5, with PVMH enabled.

After the PVMH module is enabled, VM4 cannot mount the/boot partition of VM5. It should be
noted that the mount operation corresponds to a series of Linux system calls. In our implementation,
after the PVMH module interception, it affects the input of subsequent system calls, so the error
message is “No such file or directory”.

Figure 9. Partition of VM5.

The disk of VM5 is divided into two partitions: /and/boot. Before the PVMH module is enabled,
VM4 mounts and accesses the/boot partition of VM5 through Dom0. The “Start” value of the
partition/boot, 2048, is used to calculate the offset in command mount, as shown in Figure 10:

Future Internet 2019, 11, x FOR PEER REVIEW 18 of 21

Table 8. Access Matrix of VM4 and VM5.

Subject/Object SID = OID
Access Attribute

Flag
R A W

VM4 0000 0000 0010 0 1 0 1 1

VM5 0000 0000 0010 1 1 0 0 1

VM4 uses the privileged virtual machine Dom0 to view the partition of VM5, as shown in
Figure 9.

Figure 9. Partition of VM5.

The disk of VM5 is divided into two partitions: /and/boot. Before the PVMH module is enabled,
VM4 mounts and accesses the/boot partition of VM5 through Dom0. The “Start” value of the
partition/boot, 2048, is used to calculate the offset in command mount, as shown in Figure 10:

Figure 10. Mount and view the/boot partition of VM5, without PVMH.

Since VM4 can modify the/boot partition of VM5, it can attack VM5 easily. Unmount the
partition, enable the PVMH module and remount the/boot partition of VM5. The results are as given
in Figure 11.

Figure 11. Mount and view the/boot partition of VM5, with PVMH enabled.

After the PVMH module is enabled, VM4 cannot mount the/boot partition of VM5. It should be
noted that the mount operation corresponds to a series of Linux system calls. In our implementation,
after the PVMH module interception, it affects the input of subsequent system calls, so the error
message is “No such file or directory”.

Figure 10. Mount and view the/boot partition of VM5, without PVMH.

Since VM4 can modify the/boot partition of VM5, it can attack VM5 easily. Unmount the partition,
enable the PVMH module and remount the/boot partition of VM5. The results are as given in Figure 11.

Future Internet 2019, 11, x FOR PEER REVIEW 18 of 21

Table 8. Access Matrix of VM4 and VM5.

Subject/Object SID = OID
Access Attribute

Flag
R A W

VM4 0000 0000 0010 0 1 0 1 1

VM5 0000 0000 0010 1 1 0 0 1

VM4 uses the privileged virtual machine Dom0 to view the partition of VM5, as shown in
Figure 9.

Figure 9. Partition of VM5.

The disk of VM5 is divided into two partitions: /and/boot. Before the PVMH module is enabled,
VM4 mounts and accesses the/boot partition of VM5 through Dom0. The “Start” value of the
partition/boot, 2048, is used to calculate the offset in command mount, as shown in Figure 10:

Figure 10. Mount and view the/boot partition of VM5, without PVMH.

Since VM4 can modify the/boot partition of VM5, it can attack VM5 easily. Unmount the
partition, enable the PVMH module and remount the/boot partition of VM5. The results are as given
in Figure 11.

Figure 11. Mount and view the/boot partition of VM5, with PVMH enabled.

After the PVMH module is enabled, VM4 cannot mount the/boot partition of VM5. It should be
noted that the mount operation corresponds to a series of Linux system calls. In our implementation,
after the PVMH module interception, it affects the input of subsequent system calls, so the error
message is “No such file or directory”.

Figure 11. Mount and view the/boot partition of VM5, with PVMH enabled.

After the PVMH module is enabled, VM4 cannot mount the/boot partition of VM5. It should be
noted that the mount operation corresponds to a series of Linux system calls. In our implementation,
after the PVMH module interception, it affects the input of subsequent system calls, so the error
message is “No such file or directory”.

Through these two specific scenario experiments, it can be seen that the PVMH module has
played a role in preventing virtual machine hopping attacks. In addition to the above experimental
results, performance cost testing of PVMH is required to understand the impact of integrating PVMH
into the original virtualization platform.

Performance overhead experiment: Taking attack scenario 1 as an example, the most critical and
time-consuming step in shared memory communication is to generate a system interruption through
the HYPERVISOR_grant_table_op function, and then call a set of hypercalls. Before and after the

Future Internet 2019, 11, 82 19 of 21

PVMH module is enabled, the actual time of the function call is tested separately to measure the
performance impact of the PVMH module on the original virtualization platform.

As shown in Figure 12, without PVMH module, it takes 853 microseconds to call a set of
hypercalls via HYPERVISOR_grant_table_op. After loading the PVMH module, the average time is
932 microseconds, which results in an additional time loss of 9%.

Future Internet 2019, 11, x FOR PEER REVIEW 19 of 21

Through these two specific scenario experiments, it can be seen that the PVMH module has
played a role in preventing virtual machine hopping attacks. In addition to the above experimental
results, performance cost testing of PVMH is required to understand the impact of integrating
PVMH into the original virtualization platform.

Performance overhead experiment: Taking attack scenario 1 as an example, the most critical
and time-consuming step in shared memory communication is to generate a system interruption
through the HYPERVISOR_grant_table_op function, and then call a set of hypercalls. Before and
after the PVMH module is enabled, the actual time of the function call is tested separately to
measure the performance impact of the PVMH module on the original virtualization platform.

Figure 12. Performance with and without the PVMH module.

As shown in Figure 12, without PVMH module, it takes 853 microseconds to call a set of
hypercalls via HYPERVISOR_grant_table_op. After loading the PVMH module, the average time is
932 microseconds, which results in an additional time loss of 9%.

It can be seen from the above analysis that the PVMH module can effectively prevent the virtual
machine hopping problem in the cloud computing environment without significantly reducing the
system performance.

6. Conclusions

By analyzing the above experimental results, it is clear that PVMH can effectively prevent
Virtual Machine hopping attacks and ensure the security between different virtual machines on the
same host. Since the PVMH module needs to call the system function when it is running, it
consumes a certain amount of system performance, but for the overall effect, the additional loss is
within an acceptable range.

In future research, the safety rules of PVMH could be further streamlined, making the PVMH
model more suitable for preventing Virtual Machine hopping attacks. In addition, we need to
strengthen the connection between the PVMH module and the LSM module, which could reduce the
workload and achieve better preventive effects.

Author Contributions: Ying Dong and Zhou Lei conceived and designed the PVMH model; Ying Dong
performed the experiments and wrote the paper; Zhou Lei revised the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

853

932

0

100

200

300

400

500

600

700

800

900

1,000

Ti
m

e
(U

n
it
: m

s)

without PVMH

with PVMH

Figure 12. Performance with and without the PVMH module.

It can be seen from the above analysis that the PVMH module can effectively prevent the virtual
machine hopping problem in the cloud computing environment without significantly reducing the
system performance.

6. Conclusions

By analyzing the above experimental results, it is clear that PVMH can effectively prevent Virtual
Machine hopping attacks and ensure the security between different virtual machines on the same
host. Since the PVMH module needs to call the system function when it is running, it consumes
a certain amount of system performance, but for the overall effect, the additional loss is within an
acceptable range.

In future research, the safety rules of PVMH could be further streamlined, making the PVMH
model more suitable for preventing Virtual Machine hopping attacks. In addition, we need to
strengthen the connection between the PVMH module and the LSM module, which could reduce the
workload and achieve better preventive effects.

Author Contributions: Ying Dong and Zhou Lei conceived and designed the PVMH model; Ying Dong performed
the experiments and wrote the paper; Zhou Lei revised the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gulati, G. Multi-Tenant Architecture. In A Private Cloud; LAP Lambert Academic
Publishing: Saarbrücken, Germany, 2012.

2. Dean, J.; Ghemawat, S. MapReduce: A flexible data processing tool. Commun. ACM 2010, 53, 72–77.
[CrossRef]

http://dx.doi.org/10.1145/1629175.1629198

Future Internet 2019, 11, 82 20 of 21

3. DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin, A.; Sivasubramanian, S.;
Vosshall, P.; Vogels, W. Dynamo: Amazon’s highly available key-value store. In Proceedings of the
Twenty-First ACM SIGOPS Symposium on Operating Systems Principles (SOSP’07), Stevenson, WA, USA,
14–17 October 2007; ACM: New York, NY, USA, 2007; pp. 205–220.

4. Catteddu, D.; Hogben, G. Cloud Computing - Benefits, risks and recommendations for information security.
In Proceedings of the 2009 Iberic Web Application Security Conference, Madrid, Spain, 10–11 December 2009;
Springer: Berlin Heidelberg, 2010.

5. Ormandy, T. An empirical study into the Security exposure to hosts of hostile virtualized environments.
In Proceedings of the CanSecWest Applied Security Conference, Vancouver, Canada, 18 March 2007; pp. 1–18.

6. Modi, C.N.; Acha, K. Virtualization layer security challenges and intrusion detection/prevention systems in
cloud computing: A comprehensive review. J. Supercomput. 2017, 73, 1192–1234. [CrossRef]

7. Bays, L.R.; Oliveira, R.R.; Barcellos, M.P.; Gaspary, L.P.; Madeira, E.R. Virtual network security: Threats,
countermeasures, and challenges. J. Internet Serv. Appl. 2015, 6, 1. [CrossRef]

8. Nathiya, T.; Suseendran, G. An Effective Hybrid Intrusion Detection System for Use in Security Monitoring
in the Virtual Network Layer of Cloud Computing Technology. In Data Management, Analytics and Innovation.
Advances in Intelligent Systems and Computing; Balas, V., Sharma, N., Chakrabarti, A., Eds.; Springer:
Singapore, 2019; Volume 839.

9. Pan, W.; Zhang, Y.; Yu, M.; Jing, J. Improving virtualization security by splitting hypervisor into smaller
components. In IFIP Annual Conference on Data and Applications Security and Privacy, Paris, France, 11–13 July
2012. Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Springer Nature: Basel, Switzerland, 2012; Volume 7371, pp. 298–313.

10. Wu, J.; Lei, Z.; Chen, S.; Shen, W. An Access Control Model for Preventing Virtual Machine Escape Attack.
Future Internet 2017, 9, 20. [CrossRef]

11. Nguyen, S.D.; Mimura, M.; Tanaka, H. Abusing TCP retransmission for DoS attack inside virtual network.
In Information Security Applications. WISA 2017; Lecture Notes in Computer Science; Kang, B., Kim, T., Eds.;
Springer: Cham, Switzerland, 2018; Volume 10763.

12. Rakotondravony, N.; Taubmann, B.; Mandarawi, W.; Weishäupl, E.; Xu, P.; Kolosnjaji, B.; Protsenko, M.; De Meer, H.;
Reiser, H.P. Classifying malware attacks in IaaS cloud environments. J. Cloud Comput. 2017, 6, 26. [CrossRef]

13. Mthunzi, S.N.; Benkhelifa, E.; Alsmirat, M.A.; Jararweh, Y. Analysis of VM communication for VM-based
cloud security systems. In Proceedings of the 2018 Fifth International Conference on Software Defined
Systems (SDS), Barcelona, Spain, 23–26 April 2018; pp. 182–188.

14. Said, T.A.; Rana, O.F. Analysing Virtual Machine Security in Cloud Systems. In Proceedings of the
International Conference on Intelligent Cloud Computing, Muscat, Oman, 24–26 February 2014.

15. Ren, X.; Zhou, Y. A Review of Virtual Machine Attack Based on Xen. In Proceedings of the International
Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2016), Shanghai, China, 28–29 May 2016.

16. Elmrabet, Z.; Elghazi, H.; Sadiki, T.; Elghazi, H. A New Secure Network Architecture to Increase Security
among Virtual Machines in Cloud Computing. In Advances in Ubiquitous Networking; Lecture Notes in
Electrical Engineering; Sabir, E., Medromi, H., Sadik, M., Eds.; Springer: Singapore, 2016; Volume 366.

17. Sathya Narayana, K.; Pasupuleti, S.K. Trusted Model for Virtual Machine Security in Cloud Computing.
In Progress in Computing, Analytics and Networking. Advances in Intelligent Systems and Computing; Pattnaik, P.,
Rautaray, S., Das, H., Nayak, J., Eds.; Springer: Singapore, 2018; Volume 710.

18. Bazm, M.-M.; Sautereau, T.; Lacoste, M.; Südholt, M.; Menaud, J.-M. Cache-Based Side-Channel Attacks
Detection through Intel Cache Monitoring Technology and Hardware Performance Counters. In Proceedings
of the Third IEEE International Conference on Fog and Mobile Edge Computing (FMEC 2018), Barcelona,
Spain, 23–26 April 2018; pp. 1–6.

19. Silva, E.F.; Muchaluat-Saade, D.C.; Fernandes, N.C. ACROSS: A generic framework for attribute-based
access control with distributed policies for virtual organizations. Future Gener. Comput. Syst. 2017, 78, 1–7.
[CrossRef]

20. Graham, G.S.; Denning, P.J. Protection: Principles and Practice. In Proceedings of the Spring Joint Computer
Conference (AFIPS ’72), Atlantic City, NJ, USA, 16–18 May 1972; ACM: New York, NY, USA, 1972; pp. 417–429.

21. Bell, D.E.; La Padula, L.J. Secure Computer System: Unified Exposition and Multics Interpretation; DTIC Document;
Mitre Corp.: Bedford, MA, USA, 1976.

22. Sandhu, R.S. Role-based access control models. Computer 1996, 29, 38–47. [CrossRef]

http://dx.doi.org/10.1007/s11227-016-1805-9
http://dx.doi.org/10.1186/s13174-014-0015-z
http://dx.doi.org/10.3390/fi9020020
http://dx.doi.org/10.1186/s13677-017-0098-8
http://dx.doi.org/10.1016/j.future.2017.07.049
http://dx.doi.org/10.1109/2.485845

Future Internet 2019, 11, 82 21 of 21

23. Jha, S.; Sural, S.; Atluri, V.; Vaidya, J. Specification and Verification of Separation of Duty Constraints in
Attribute-Based Access Control. IEEE Trans. Inf. Forensics Secur. 2018, 13, 897–911. [CrossRef]

24. Bell, D.E.; La Padula, L.J. Secure Computer Systems: Mathematical Foundations; Technical Report MTR-2457;
Mitre Corporation: McLean, VA, USA, 1973.

25. Biba, K.J. Integrity Considerations for Secure Computer System; ESD-76-372; PSAF Electronic System Division,
Hanscom Air Force Base: Bedford, MA, USA, 1977.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIFS.2017.2771492
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Preliminaries
	VM Hopping
	VM Hopping Analysis
	VM Hopping Hazard
	VM Hopping Defense

	Access Control
	BLP Model
	Biba Model

	Methods
	PVMH Model Design
	Model Elements
	Security Axioms
	State Transition Rules

	PVMH Model Mapping
	Subject–Object Mapping
	Access Attribute Mapping
	Access Matrix Mapping
	Current Access Set
	Security Level

	PVMH Model Implementation

	Experiments
	Basic Environment
	The Initialization of PVMH Module
	Experiments and Results

	Conclusions
	References

