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Abstract: The prediction of roll motion in unmanned surface vehicles (USVs) is vital for marine safety
and the efficiency of USV operations. However, the USV roll motion at sea is a complex time-varying
nonlinear and non-stationary dynamic system, which varies with time-varying environmental
disturbances as well as various sailing conditions. The conventional methods have the disadvantages
of low accuracy, poor robustness, and insufficient practical application ability. The rise of deep
learning provides new opportunities for USV motion modeling and prediction. In this paper, a
data-driven neural network model is constructed by combining a convolution neural network (CNN)
with long short-term memory (LSTM) for USV roll motion prediction. The CNN is used to extract
spatially relevant and local time series features of the USV sensor data. The LSTM layer is exploited
to reflect the long-term movement process of the USV and predict roll motion for the next moment.
The fully connected layer is utilized to decode the LSTM output and calculate the final prediction
results. The effectiveness of the proposed model was proved using USV roll motion prediction
experiments based on two case studies from “JingHai-VI” and “JingHai-III” USVS of Shanghai
University. Experimental results on a real data set indicated that our proposed model obviously
outperformed the state-of-the-art methods.
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1. Introduction

Unmanned surface vehicles (USVs) [1] are small unmanned marine vehicles that travel on water in
a remote or autonomous manner. USVs are characterized by small size, fast movement, and high
flexibility. In recent years, they have been adopted to conduct missions such as marine rescue,
environmental monitoring [2], island reef mapping [3], and resource exploration [4]. The safety of
USVs is critical when conducting missions, and the roll motion is directly related to the safety and
operating performance [5]. In order to ensure that USVs conduct their missions safely, it is necessary
to predict the USV roll motion, so that the operator or automatic control system has sufficient time to
avoid serious accidents.

The USV roll motion at sea is a time-varying, nonlinear, and uncertain complex dynamic system. It
is affected by control systems such as steering and propulsion systems, as well as external disturbances
produced by wind, waves, and sea current [6,7]. Moreover, the USV roll motion and the movements in
other degrees of freedom (e.g., heave and pitch motions) are coupled with each other. Therefore, it is
difficult to establish precise mathematical models to represent the USV roll motion at sea.

Over the past decades, many methods have been developed to model and predict ship motion.
Francescutto et al. [8] applied an available mathematical model with concentrated parameters to
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the roll-sloshing problem. Daalen et al. [9] formulated a differential equation model (a Mathieu-
type equation) for modeling the roll dynamics of a ship sailing in large-amplitude head waves.
Silva et al. [10] described a time-domain non-linear strip theory model of ship motions in six degrees
of freedom based on a potential flow strip theory using Frank’s close fit method. These methods
require mechanical analysis and mathematical modeling of the hull, so there are some difficulties in
practical application. Later, scholars proposed some simple and practical methods. According to the
theoretical differences, these methods can be classified into three types: Kalman filtering, time series
methods, and neural-network-based methods [11]. Kalman filtering is a recursive linear minimum
variance filter for online forecasting [12]. Triantafyllou et al. [13] proposed a Kalman filtering model
for ship motion prediction and applied it to a DD-963 destroyer. In implementing the Kalman filtering,
accurate state-space equations and noise statistics are necessary. However, in practical engineering
applications, these are difficult to obtain. Therefore, although Kalman filtering is simple in calculation,
its use is difficult in practical applications.

Time series methods provide a feasible solution, which only requires the history and current ship
motion status data for prediction. These methods are suitable for practical engineering applications, as
they do not require a comprehensive understanding of the ship’s dynamic system. Classic time series
prediction methods which are widely used include autoregressive (AR) and moving average (MA)
models, as well as many extended models based on them [14–16]. Yumori et al. [17] proposed a time
domain model based on autoregressive moving average (ARMA) to predict real-time ship motion.
This model best fitted an input wave sensor time history to the ship response time history and was
applied to aircraft landing on the ship. However, as ship motion is non-stationary, it conflicts with the
stationary assumption of classic time series methods. Therefore, many improved methods based on
classic time series methods have been proposed. Zhou et al. [18] conducted a nonlinear autoregressive
(NAR) model using an orthogonalization technique, and the experimental results indicated that the
NAR model gave better prediction accuracy than the AR model. Jun et al. [19] combined empirical
mode decomposition (EMD) and discrete wavelet transform decomposition (DWT) to improve the
AR model for ship motion prediction. Compared with the conventional AR model, this model is
more capable of handling nonlinear and non-stationary signals. Suhermi et al. [20] adapted a hybrid
methodology to combine autoregressive integrated moving average (ARIMA) and deep neural network
(DNN) models for predicting the roll motion. The hybrid model had a good ability to capture the
linear and nonlinear patterns. Although these improved methods have shown their effectiveness, they
are still limited in nonlinear ship motion prediction, as explicit relationships between input and output
variables for the data sets have to be hypothesized.

Neural networks are a simulation of the biological nervous system [21]. In contrast to time
series methods, neural networks are more capable of modeling nonlinear systems without a priori
knowledge of the relationships between input and output variables. In recent decades, neural networks
have been successfully applied in various fields, such as natural language processing [22], computer
vision [23], and autonomous driving [24]. There are also some USV applications. Wang et al. [25]
presented a path-following controller based on a radial basis function neural network (RBFNN) for
formation control in single unmanned surface vehicles. In theory, a neural network can approximate
any nonlinear system with arbitrary accuracy [26]. Accordingly, they have been used to model
the nonlinear ship motion dynastic system for prediction. Yang et al. [27] obtained a ship motion
prediction model based on a BP neural network by training the ship motion MATLAB simulation data.
Their experimental results showed that the trends of the true and predicted values were consistent.
Huang et al. [28] proposed a coarse and fine-tuning fixed-grid wavelet network model to predict ship
roll motion, which is trained by simulated ship roll motion data in regular waves. These neural
network models are trained by MATLAB simulation data instead of actual measured sensor data, and
therefore the applicability of these models in the real world remains to be verified.

Yin et al. [29] constructed an ensemble prediction scheme by combining the discrete wavelet
transform (DWT) method with a variable-structure radial basis function (RBF) network for real-time
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ship roll motion prediction. Yin et al. [30] constructed a variable-structure RBF network sequentially by
an adaptive sliding data window (SDW) learning scheme to predict ship roll motion online. The two
references adopted a variable-structure RBF neural network as the prediction model. In their model,
an innovative algorithm was proposed to adjust the data sliding window online. Both the structure
and parameters of RBF neural network were tuned according to the data of the current window in
order to achieve real-time prediction. However, in the process of training the neural network, they
used real-time data, making the training set relatively small. In this way, the neural network model
could be overfitting and its generalization ability was poor. Moreover, they only used ship roll motion
time series data to train the neural network model, and ignored the coupling characteristics between
the ship movements in six degrees of freedom [31,32], as well as the influence of the control system on
the ship’s movements.

With the rise of deep learning (DL) [33], data-driven prediction methods are increasingly applied
in various fields [34,35]. In maritime applications, Joohyun Woo [36] proposed a deep-learning-based
dynamic model identification method. The long short-term memory (LSTM) [37] based dynamic model
extracted patterns of USV dynamics from free-running test data, and outperformed conventional
simplified maneuvering models. However, the data-driven method requires a large amount of data
for training. Fortunately, there are normally many sensors installed on the ship at various positions.
During the sea trials, these sensors measure the ship’s motion status data and control system status
data in real time. These time series sensor data are stored. Therefore, this approach provides a new
strategy for ship motion modeling and prediction. We can model the ship motion by mining the
hidden information of sensor data.

In this paper, we propose a coupled convolutional neural network (CNN) [38] and long
short-term memory (LSTM) [37] model for USV roll motion prediction. The data measured by
sensors installed on the USV are adopted as the data set of the proposed model. These sensor
data contain six-degree-of-freedom motion status data and control status data, and constitute a
multidimensional space of the USV movement. The USV roll motion of the next moment is influenced
not only by the other five degrees of freedom and control states, but also by the movement of the
previous period. CNNs have been proven to be powerful for processing spatial data, and have been
widely used in computer vision [38–40]. LSTM is a type of recurrent neural network (RNN) [41]
designed for the time-series problem. Therefore, in our proposed model, a CNN is used to extract
spatial features and local time-series features of the USV sensor data. The output of the CNN layer are
higher-dimensional feature maps, which are the input of the LSTM layer. The wind, waves, and sea
current are natural phenomena that usually change continuously over a period of time. They act on
the USV, causing a series of changes in the USV’s motion status. So, the current USV roll motion is
affected by the motion status in the past. Therefore, the LSTM layer is exploited to model the long-term
movement process of the USV and predict the roll motion in the next moment. After that, the fully
connected layer is utilized to decode the LSTM output and calculate the final prediction results. The
proposed model is able to extract features in both spatial and temporal dimensions to obtain better
prediction results for USV roll motion. To prove the effectiveness of the proposed model, it was applied
to “JingHai-VI” and “JingHai-III” USVs of Shanghai University.

The paper is organized as follows: Section 2 presents the proposed coupled CNN and LSTM
model for USV roll motion prediction in detail. Section 3 describes the source of the data set and the
data preprocessing process. The experimental results and discussion of two case studies are shown in
Section 4. Finally, the paper is concluded in Section 5.

2. Methodology

2.1. Framework of the Proposed Prediction Model

In this paper, a coupled CNN and LSTM model is proposed for USV roll motion prediction.
The target roll motion time series data are denoted as R = {rt−D, rt−D+1, · · · , rt}. The
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other degree-of-freedom movement status data and control status data are denoted as Fi =

{ f i
t−D, f i

t−D+1, · · · , f i
t}, where t and D denote the time step and the length of setting time window,

respectively. In our proposed prediction model, the input time series data is S = R ∪ F1 ∪ F2 ∪ · · · ∪ Fi,
and the output is the target roll motion data at time step t + 1, denoted as rt+1. The framework of the
proposed model is shown in Figure 1. The multi-channel one-dimensional convolution layer is utilized
to eliminate data redundancy and extract spatially relevant features. The LSTM layer is exploited to
extract the long-term time-series features and model the USV roll motion. The fully connected layer
is used to decode the LSTM output and calculate the final predicted results at the next moment. The
input data are mapped into higher-dimensional feature maps, and these feature maps are the input to
the LSTM layer.

Our proposed prediction model for USV roll motion can be expressed by the following:

Ct = f (WcXt), (1)

Lt = g(W lCt + Ul Lt−1), (2)

Yt = h(WyLt), (3)

where Xt denotes a set of input data and Yt represents the output of the prediction model. Ct, Lt, and
Yt are the outputs of the convolution layer, LSTM layer, and fully connected layer, respectively. Wc, W l ,
Ul , and Wy are the weight matrices of the model: Wc denotes the weight matrices of the input layer
to the convolutional layer; W l denotes the weight matrices of the convolutional layer to the LSTM
layer; Ul is the weight matrices of the LSTM hidden layer at last moment to the output of the current
moment; Wy means the weight matrices of the LSTM layer to the fully connected layer.

Figure 1. Framework of the proposed coupled convolutional neural network (CNN) and long
short-term memory (LSTM) prediction model.

2.2. Convolution-Based USV Sensor Data Feature Extraction

A typical CNN is alternately performed by several convolution layers, pooling layers, and fully
connected layers, as shown in Figure 2. The convolution layer extract features from the input data by
performing a convolution operation. This is the core of the CNN. For one-dimensional input data, the
convolution operation with a one-dimensional kernel is performed as follows:

s(t) = (x ∗ω)(t) = ∑
a

x(a)(t− a), (4)
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where x is the input data, t represents time, ω denotes weighting function (also known as the
convolution kernel), a is the position where the convolution kernel is currently sliding, and ∗ denotes
the convolution operation. Feature mapping is implemented by sliding several different convolution
kernels. The parameters are shared with each convolution kernel on each convolution layer. The
weight-sharing structure of the CNN reduces the network complexity and reduces the number of
weights. The pooling layer reduces the size of the output dimension by max pooling or average pooling.
After several rounds of convolution and pooling, the multidimensional data will be flattened by the
fully connected layer. At present, the typical CNN has been improved according to different tasks.

Figure 2. The typical CNN structure.

In our proposed prediction model, the input is the sensor data of the USV. These sensor data
are different features of USV movements at a certain point in time. These features constitute
a multidimensional space of the USV’s movements. Similar to the color images, which are a
three-dimensional space composed of three channels (RGB), these sensor data can be regarded as a
multi-dimensional space composed of multi-channel movement features. Inspired by the CNN feature
extraction of color images, in the proposed model, we automatically extract features of these sensor
data through the convolution operation.

At the CNN layer, the input data are converted to several three-dimensional matrices of 1×D×m
(also known as M-dimensional row vector). D denotes the length of the setting time window; m is the
number of channels (also known as the number of features). Macroscopically, it can be described that
the input data are one-dimensional time series data of m channels.

The multi-channel one-dimensional convolution operation is used to process the input data. The
sliding convolution kernels move vertically to extract features from the m channels of the input data.
The size of the convolution kernel is 1× k × m, where m is the number of channels. As shown in
Figure 1, there are N types of convolution kernels, corresponding to N feature maps. The operation
processing of one type convolution kernel is shown in Figure 3. On each channel of input data, the
convolution operation is performed with convolution kernels of size 1× k. The resulting matrix of the
dot product of the input data and the convolution kernel is summed, and then a basic term is added.
The convolution operation can be calculated as follows:

Mj = f (
m

∑
i=1

Xi × K j
i + bj), (5)

where j and i denote the feature map and the channel, respectively; M is the feature map; m is the
number of channels; X denotes the input time series data on a channel; K represents the convolution
kernel; bj means the basic matrices. Note that the parameters of the convolution kernels on the m
channels are not shared, and the bias bj is shared. With the translation of the convolution kernels in
the vertical direction, the convolution operation is repeated to obtain feature maps. The input data are
mapped into higher-dimensional feature maps by the convolution layer. The feature extraction of the
USV sensor data is realized. The primary purpose of the pooling layer is to simplify the computational
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complexity of the network by compressing the input. Compared to image data, our data dimension is
small. Therefore, no pooling operation is required after the convolution layer. We directly take the
feature maps of the convolution layer output as the input of the LSTM layer. Moreover, these feature
maps retain the time-series characteristics, making the LSTM prediction better.

Figure 3. Processing of the M-channel 1D-convolution operation.

2.3. LSTM-Based USV Roll Motion Modeling

LSTM is an elegant variant of the recurrent neural network (RNN) developed by Hochreiter Sepp
and Schmidhuber Jürgen [37]. It solves the problems of gradient explosion and gradient disappearance
in RNN. The core concept of LSTM is cell state and “gate”. The cell state is equivalent to the path
of information transmission, allowing information to pass through the sequence chain, which can
be regarded as the “memory” of the network. In theory, the cell state is able to pass on relevant
information during the sequence processing. The “gates” are internal mechanisms that regulate the
flow of information by removing or adding information to the cell state. The LSTM cell includes
a forget gate, input gate, and output gate as depicted in Figure 4, which are composed of sigmoid and
tanh activation functions, pointwise multiplication operation, and pointwise addition operation.

Figure 4. Diagram of an LSTM cell.

In our proposed model, the input of the LSTM layer is the feature maps of the convolution layer
output. These feature maps are three-dimensional matrices of 1× D− k + 1× N with time-series
characteristics. The third dimension of these matrices represents the features extracted by the
convolution layer. The second dimension of these matrices is used as the time step of the LSTM.
Xt, St, and Ct denote the input, the hidden state, and the cell state at time step t, respectively; W f , Wi,
WC, Wo, b f , bi, bC, and bo denote the weight matrices and the basic matrices of the forget gate, the input
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gate, the cell state, and the output gate, respectively. The process of USV roll motion modeling based
on LSTM is as follows:

• At time step t, the first step is to decide what past step feature maps information will be discarded
or retained by the following forget gate ft:

ft = σ(W f · [St−1, Xt] + b f ). (6)

The information from the previous time step St−1 and Xt are passed to the sigmoid function at
time step t. The closer the output value is to 0, the more it will be discarded. The closer it is to 1,
the more it will be retained.

• Then, what new information will be stored in the cell state by the input gate it is determined.
First, the information of the previous time step St−1 and Xt are passed to the sigmoid function
to decide what information will be updated. Second, the information of the previous time step
St−1 and Xt are passed to the tanh function to create a new candidate value vector C̃t. Finally,
pointwise multiplication of it by C̃t is given as the output. The description is as follows:

it = σ(Wi · [St−1, Xt] + bi), (7)

C̃t = tanh(Wc · [St−1, Xt] + bc). (8)

• The next step is to update the cell state. First, the previous time step Ct−1 is pointwise multiplied
by ft. This value is then added point by point with the output value of the input gate. This can be
given as:

Ct = Ct−1 ⊗ ft ⊕ C̃t.⊗ it (9)

• The final step is to produce the output by the output gate ot. First, the information of the previous
time step St−1 and Xt are passed to the sigmoid function to determine which parts of cell state
will be produced as output. Then, the updated cell state Ct is passed to the tanh function, creating
a new candidate value vector. Finally, the output of the tanh function is multiplied pointwise
by ot to calculate St. After that, St is taken as the output of the current cell, while St and Ct are
passed to the next time step. This can be described as follows:

ot = σ(Wo · [St−1, Xt] + bo), (10)

St = ot ⊗ tanh(Ct). (11)

Finally, the fully connected layer connects all the nodes between the adjacent LSTM layer and
calculates the final predicted results for USV roll motion at time step t + 1.

2.4. Objective Function

In our proposed prediction model, at time step t there are observed values and predicted values,
denoted as Or

t and Pr
t , respectively. The observed values are considered as the true values. The

optimization goal is to make the predicted values as close as possible to the true values by back
propagation. The loss function can be given as:

RMSE =

√
∑N

i (Or
i − Pr

i )
2

N
, (12)

where i and N are the subscript of the time step and the prediction duration, respectively. The smaller
the value of RMSE is, the better our model. Dropout [42] is used to avoid over-fitting during training.
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3. Experiments

In this section, we introduce the process of data collection and pre-processing. The experimental
settings and performance indexes of proposed model will be shown in detail. In addition, we provide
a brief overview of the reference models.

3.1. Data Set

In this paper, the two data sets employed are the sensor data recorded by “JingHai-VI” and
“JingHai-III” USVs [43] during a sea mission in 2018. “JingHai-VI” is a USV for online monitoring of
marine environments. “JingHai-III” is mainly used to detect underwater terrain such as island reefs
and shallow offshore waters. These sensor data are time-series data, including data recorded by the
two USVs during their missions in different waters of China in 2018 with sea state ranging from 1
to 3. The sensor sampling frequency was 5 Hz. Seven pairs of time-series sensor data were used as
the data set for the proposed model, including the following features: {roll, pitch, yaw, longitude,
latitude, altitude, and speed}. The data of status features: {speed, yaw} contains information about
the control system of USV. The data of status features: {roll, pitch, yaw, longitude, latitude, altitude}
contain information on the USVs’ six-degrees-of-freedom movement. The sensor data was taken from
data collected over the course of a year.

3.2. Data Pre-Processing

First, it is necessary to clean the data because the raw sensor data may contain noisy information.
Reducing noise from raw data can minimize its effects on further modeling. The noise source can be
either internal or external. In this paper, the major noise source is external because the sensor noise
is caused by unavoidable external factors such as gradients and nonhomogeneous media. Statistical
estimation was used to remove the internal noise, and the external noise was eliminated by a median
filtering technique. Then, the seven pairs of status time-series data were divided into input x and output
y by the lag time method. The input x can be expressed as {St−D, St−D+1, · · · , St}, and the output
y can be expressed as rt+1. Finally, because these data are distributed differently, we normalized them.

3.3. Experimental Settings

The proposed model was implemented with Keras. The set lag time step was 9. The kernel size of
the convolution layer was 1× 3× 7 and the number of kernels was 128. The hidden units of the two
LSTM layers were 64 dimensions. The activation function of all the layers was a ReLU. All weights
were constrained by L2 regularization with the weight decay coefficient of 0.0005. Dropout was also
applied in all the LSTM layers, with a dropout rate of 0.2. Batch size was set to 32. The model was
optimized with Adam with an initial learning rate of 0.001.

3.4. Model Evaluation

In this paper, three performance indexes were used to evaluate the performance of the proposed
prediction model. There are root mean square error (RMSE), mean absolute error (MAE), and M2/1.
The RMSE can be calculated by (1). The calculation formula of MAE is shown below:

MAE =
∑N

i |Or
i − Pr

i |
N

. (13)

RMSE and MAE calculate the prediction error of the model. The closer these values are to 0, the better
the predictive performance of the model. A more accurate performance improvement between two
models can be calculated using the following formula:

M2/1 =
I1 − I2

I1
= 1− I2

I1
, (14)
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where M2/1 denotes the percentage of performance improvement of model 2 compared to model 1; I2

and I1 denote the performance indexes for model 2 and model 1, respectively.

3.5. Reference Models

To demonstrate the advantages of the proposed model, four classic models (i.e., ARIMA, DNN,
univariate LSTM, and multivariate LSTM) were compared. The USV roll motion status time-series
data were used as the data set for the ARIMA model, DNN, and univariate LSTM. Multivariate LSTM
used the same data set as the proposed model.

4. Experimental Results and Discussion

In this section, two real data sets were used to validate the proposed prediction model. We carried
out two practical case studies.

4.1. Case Study 1: “JingHai-VI” USV

Several time-series data were selected randomly as the training set from the data set of
“JingHai-VI”. These time series data totaled 100,000 time steps. Several representative data were
selected as the test sets which were not the part of the training set. These test sets were named
“JingHai-VI” test set-1, “JingHai-VI” test set-2, and “JingHai-VI” test set-3, respectively. Test set-1
comprises the data recorded by “JingHai-VI” as it moved in a straight line. Test set-2 comprises the
data recorded by “JingHai-VI” in a circular curve motion. Test set-3 is composed of the data recorded
by “JingHai-VI” during z-curve movement. There are 2000, 3000, and 5000 time steps in each set,
respectively. In Figure 5, panels (a), (b), and (c) are the trajectory history of “JingHai-VI” test set-1,
“JingHai-VI” test set-2, and “JingHai-VI” test set-3, respectively. These three trajectories are the most
probable for “JingHai-VI” to conduct its mission.

To show the prediction accuracy of the proposed model, the final RMSE and MAE values of each
test set are listed in Table 1. Figure 6 shows the part of the final prediction results of our proposed
model, where panels (a), (b), and (c) represent the results of “JingHai-VI” test set-1, “JingHai-VI” test
set-2, and “JingHai-VI” test set-3, respectively. It can be seen that the predicted values of the proposed
model were in good agreement with the actual measured values.

To reveal the prediction performances of ARIMA, DNN, univariate LSTM, multivariate LSTM,
and our proposed model, the results of these three test sets are listed in Tables 2–4, respectively. It
can be seen that our proposed model had the best performance among all the above. On the whole,
the neural network models outperformed the ARIMA model in proving that the linear method is not
precise enough to model the nonlinear USV roll motion. The DNN model and univariate LSTM model
performed poorly compared to the multivariate LSTM model and the proposed model. They simply
model time-series data without considering additional information. Univariate LSTM performed
better than DNN due to its ability to deal with long-term sequence data prediction. Although the
multivariate LSTM model considers additional information, it does not effectively extract features of
this information. Therefore, it did not perform well compared to the proposed model. The decrease
percentages M2/1 in RMSE of the proposed model compared to the other models are shown in Table 5.
Compared to the other models, the performance index RMSE of our proposed model was reduced to
varying degrees.
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Figure 5. The trajectory history of “JingHai-VI” test sets: (a) test set-1, (b) test set-2, and (c) test set-3.

Figure 6. The prediction results of “JingHai-VI” by the proposed model: (a) test set-1; (b) test set-2;
and (c) test set-3.

Table 1. Root mean square errors (RMSEs) and mean absolute errors (MAEs) of the proposed model
for “JingHai-VI”.

Test Set RMSE (°) MAE (°)

“JingHai-VI” test set-1 0.14 0.11
“JingHai-VI” test set-2 0.08 0.06
“JingHai-VI” test set-3 0.16 0.12

Table 2. RMSEs and MAEs of each model at “JingHai-VI” test set-1. ARIMA: autoregressive integrated
moving average; DNN: deep neural network.

Model RMSE (°) MAE (°)

ARIMA 0.22 0.17
DNN 0.17 0.12
Univariate LSTM 0.16 0.12
Multivariate LSTM 0.15 0.12
CNN+LSTM (proposed) 0.14 0.11
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Table 3. RMSEs and MAEs of each model at “JingHai-VI” test set-2.

Model RMSE (°) MAE (°)

ARIMA 0.14 0.10
DNN 0.13 0.09
Univariate LSTM 0.12 0.08
Multivariate LSTM 0.09 0.07
CNN+LSTM (proposed) 0.08 0.06

Table 4. RMSEs and MAEs of each model at “JingHai-VI” test set-3.

Model RMSE (°) MAE (°)

ARIMA 0.22 0.17
DNN 0.18 0.14
Univariate LSTM 0.16 0.12
Multivariate LSTM 0.18 0.14
CNN+LSTM (proposed) 0.15 0.10

Table 5. Decrease percentage in RMSE of the proposed model compared to other models in each test
set of “JingHai-VI”.

Test Set CNN+LSTM/ARIMA CNN+LSTM/DNN CNN+LSTM/Univariate LSTM CNN+LSTM/Multivariate LSTM

Test set-1 36% 18% 13% 7%
Test set-2 43% 38% 33% 11%
Test set-3 32% 17% 6% 17%

4.2. Case Study 2: “JingHai-III” USV

As in Case Study 1, the 20,000 time-step time-series data were selected as the training set from
the dataset of “JingHai-III”. Several representative data were selected as test sets. These test sets were
named “JingHai-III” test set-1, “JingHai-III” test set-2, and “JingHai-III” test set-3, respectively. Test
set-1 is the data recorded by “JingHai-III” as it moves in a straight line. Test set-2 is the data recorded
by “JingHai-III” doing the turning motion. Test set-3 is the data recorded under the curve movement
of “JingHai-III”. They were 470, 1400, and 600 time steps in these sets, respectively. Figure 7a–c shows
the trajectory history of “JingHai-III” test set-1, “JingHai-III” test set-2, and “JingHai-III” test set-3,
respectively. These three trajectories are the most likely to occur when “JingHai-III” conducts a mission.

Figure 7. The trajectory history of “JingHai-III” test sets: (a) test set-1; (b) test set-2; and (c) test set-3.

The final RMSE and MAE values of each test set are listed in Table 6. Figure 8 shows that the
predicted values fit the actual measured values well. Figure 8a–c shows the final prediction results
of the proposed model for “JingHai-III” test set-1, “JingHai-III” test set-2, and “JingHai-III” test
set-3, respectively.

The results of these models on three test sets are listed in Tables 7–9, respectively. It can be seen
that our proposed model had the best performance. The decrease percentages M(2/1) in RMSE of
the proposed model compared to the other models are shown in Table 10. Slightly different from the
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discussion of Case Study 1, it was found that the univariate LSTM model performed better than the
multivariate LSTM model for the individual test sets. Moreover, the ARIMA model performed well
when the USV roll motion changed regularly.

Table 6. RMSEs and MAEs of the proposed model for “JingHai-III”.

Test Set RMSE (°) MAE (°)

“JingHai-III” test set-1 0.14 0.10
“JingHai-III” test set-2 0.49 0.36
“JingHai-III” test set-3 0.36 0.22

Figure 8. The prediction results of “JingHai-III” by the proposed model: (a) test set-1; (b) test set-2;
and (c) test set-3.

Table 7. RMSEs and MAEs of each model in “JingHai-III” test set-1.

Model RMSE (°) MAE (°)

ARIMA 0.18 0.12
DNN 0.16 0.12
Univariate LSTM 0.16 0.11
Multivariate LSTM 0.16 0.11
CNN+LSTM (proposed) 0.14 0.10

Table 8. RMSEs and MAEs of each model in “JingHai-III” test set-2.

Model RMSE (°) MAE (°)

ARIMA 0.56 0.40
DNN 0.51 0.40
Univariate LSTM 0.53 0.39
Multivariate LSTM 0.51 0.39
CNN+LSTM (proposed) 0.49 0.36
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Table 9. RMSEs and MAEs of each model in “JingHai-III” test set-3.

Model RMSE (°) MAE (°)

ARIMA 0.37 0.22
DNN 0.38 0.30
Univariate LSTM 0.39 0.28
Multivariate LSTM 0.43 0.31
CNN+LSTM (proposed) 0.36 0.22

Table 10. The decrease percentage in RMSE of the proposed model compared to other models in each
test set of “JingHai-III”.

Test Set CNN+LSTM
/ARIMA

CNN+LSTM
/DNN

CNN+LSTM
/Univariate LSTM

CNN+LSTM
/Multivariate LSTM

Test set-1 22% 13% 13% 13%
Test set-2 13% 4% 8% 4%
Test set-3 3% 5% 8% 16%

5. Conclusion and Future Works

In this paper, a coupled CNN and LSTM prediction model is proposed and applied to USV roll
motion prediction. The CNN layer extracts spatially relevant and local time-series features of the
USV sensor data. The LSTM layer reflects the long-term USV movement process and predicts roll
motion for the next moment. The fully connected layer decodes the LSTM output and obtains the
final prediction results. Two case studies were carried out. The sensor data measured by “JingHai-VI”
and “JingHai-III” USVs of Shanghai University were modeled for roll motion prediction. In both
case studies, the experiment results indicated that the proposed model had superior performance to
ARIMA, DNN, univariate LSTM, and multivariate LSTM models. We proved that the proposed model
was efficient in predicting USV roll motion.

Future work will focus on modeling all six degrees of freedom motion of USVs, and an attention
mechanism will be added to the prediction model. Moreover, larger data sets will be used to train the
prediction model.
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