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Abstract: Operation scheduling is one of the most practical optimization problems to efficiently
manage the electric power supply and demand in microgrids. Although various microgrid-related
techniques have been developed, there has been no established solution to the problem until now.
This is because the formulated problem becomes a complicated mixed-integer programming problem
having multiple optimization variables. The authors present a framework for this problem and its
effective solution to obtain an operation schedule of the microgrid components considering their
coordination. In the framework, trading electricity with traditional main power grids is included
in the optimization target, and uncertainty originating from variable renewable energy sources is
considered. In the solution, the formulated problem is reformulated to reduce the dimensions of its
solution space, and, as a result, a combined algorithm of binary particle swarm optimization and
quadratic programming is applicable. Through numerical simulations and discussions of their results,
the validity of the authors’ proposal is verified.

Keywords: microgrids; power supply-demand management; unit commitment (UC); economic load
dispatch (ELD); binary particle swarm optimization (BPSO); quadratic programming (QP); uncertainty

1. Introduction

Microgrids are used in electric power grids to manage a localized group of power sources
and loads that can operate in both connecting and disconnecting to the traditional main power
grids [1–3]. In association with the growth of renewable energy-based generation systems (REGs),
this concept has been attracting attention as one of the most realistic sustainable power grids in
terms of efficient use of REGs. Actually, microgrids bring the possibility of grid independence to
consumers by improving/keeping the efficiency, reliability, and quality in power supply and demand
management in which components of the microgrids can be operated appropriately. Since the early
2000s, extensive research and development has been in progress to figure out efficient solutions for
microgrid operations [4]. Furthermore, demonstrative field tests for microgrids have been actively
promoted around the world [5–7].

There are two types of microgrid components: controllable and uncontrollable components.
The former includes controllable generation systems (CGs), energy storage systems (ESSs), and controllable
loads (CLs). A part of the controllable components (e.g., electric vehicles (EVs)), change their attributes
depending on the judgement of whether the main grids accept reverse power flow from them or not
(accepted: ESS, not accepted: CL). On the other hand, electrical loads in consumer-side and variable
REGs (VREGs) (e.g., solar photovoltaic generation systems (PVs) and wind power generation systems
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(WTs)) are in the latter. Since the VREGs, whose outputs strongly depend on the weather condition, take
a significant portion of electrical power sources of microgrids, it becomes very difficult to manage the
power supply and demand with few adverse effects on the main power grids [1–9]. If microgrid operators
cannot maintain the balance of supply and demand, the resulting electricity surplus/shortage must be
compensated by trading electricity with an extra payment to the main grids, called imbalance penalty.
These are reasons why an operation scheduling method for the microgrids is crucially required.

Focusing on operation of the CGs, the operation scheduling problem in the microgrids is
formulated as a mixed-integer programming (MIP) problem that combines optimization problems
of the unit commitment (UC) and the economic load dispatch (ELD). This problem is essentially the
same as scheduling problems for thermal power generation units [10–16], and, therefore, their solution
algorithms are applicable. Branch-and-bound (BB) [17,18] and dynamic programming (DP) [19,20]
have been traditionally utilized in thermal power generation scheduling. Meanwhile, intelligent
optimization-based techniques have also been involved in solving the problems. Evolutionary
programming (EP) [21], genetic algorithms (GAs) [22], simulated annealing (SA) [23,24], tabu search
(TS) [25,26], and particle swarm optimization (PSO) [27,28] have been employed in them. Although
various traditional and intelligent algorithms have been applied, there has been no established solution
until now. Moreover, practical operation scheduling in the microgrids becomes more complicated.
This is because installation of the other controllable components brings new optimization variables
representing charging/discharging operations of the ESSs and charging operation of the CLs, and their
influences cannot be neglected from the microgrid operations. That is, it is necessary to determine
the states of all optimization variables simultaneously from the viewpoint of efficient operation of the
microgrids [3,26,27,29–33].

Under these circumstances, first, the authors formulate a problem framework to obtain a
coordinated operation schedule of the microgrid components. In the problem framework, trading
electricity with the main grids is introduced in the optimization target to provide operational alternatives
for the microgrid operators. To treat VREG-originated uncertainty, a variation range of the uncertain
variables is defined, and the solution candidates (operation schedules) are evaluated using the expected
value of operation cost. Next, the formulated problem is reformulated by utilizing its characteristics
with the goal to reduce the dimensions of the solution space. As a result of problem reformulation, a
combined algorithm of binary particle swarm optimization (BPSO) and quadratic programming (QP)
can be applied in the solution. Unlike intelligent algorithms whose solutions much depend on choices
of the initial solution and random number sequences [21–28,33], the proposed solution can restrain
its dependency and, thus, provide us with more stable solutions. Finally, validity of the problem
framework and usefulness of its solution method are verified through numerical simulations and a
discussion of their results.

2. Problem Framework

2.1. Overview of Target Problem

Figure 1 illustrates a typical microgrid model consisting of (1) CGs, (2) ESSs, (3) CLs, (4) electrical
loads, and (5) VREGs. As already described, components 1–3 are controllable, and components 4 and
5 are uncontrollable. Detailed definitions of the variables are shown in Section 2.2. The operation
scheduling problem in the microgrids is generally formulated to determine a set of start-up/shut-down
timing and output shares of component 1, charging/discharging states of component 2, and charging
states of component 3 in response to the forecasted values of net load on each time interval [26,27,30,33].
The net load is calculated by the sum of the forecasted values of electricity consumption of component
4 and output of component 5.

If the microgrid operators cannot manage the power supply and demand appropriately,
the resulting electricity surplus/shortage must be eliminated by trading electricity with the main power
grids. In this case, an extra payment is required for compensating the imbalance in the power supply
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and demand as an imbalance penalty. However, electricity trades in the operation scheduling stage
have the possibility to reduce complexity in the power supply and demand balancing operations as
compared to adjusting operations of the controllable components. In other words, an appropriate
operation schedule considering the electricity trade often provides economic benefits for the microgrid
operators by improving/keeping the reliability and quality of the power supply. For these reasons,
the authors regard electricity trading as an additional controllable component, although components
in the main grids cannot be controlled by the microgrid operators.
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Figure 1. Example of a generalized microgrid model. CG, controllable generation system; ESS, energy
storage system; CL, controllable load; VREGs, variable renewable energy-based generation systems.

2.2. Formulation of Target Problem

As described in Section 2.1, the operation scheduling problem has five optimization variables
defined as

ui,t ∈ {0, 1}, for ∀i, ∀t, (1)

gi,t ∈
[
Gmin

i , Gmax
i

]
, for ∀i, ∀t, (2)

s j,t ∈
[
Smin

j , Smax
j

]
, for ∀ j, t ∈ TS j, (3)

vk,t ∈
[
Vmin

k , 0
]
, for ∀k, t ∈ TVk, (4)

et ∈ R, for ∀t, (5)

where t is time (t = 1, · · · , T); i is the number of CGs (i = 1, · · · , NG); ui,t is the ON/OFF state variable
of CGs (ON: 1, OFF: 0), which is an element of vectors ut and u; gi,t is the output of CGs, which is an
element of vectors gt and g; Gmax

i and Gmin
i are the maximum and the minimum outputs of CGs; j is the

number of ESSs ( j = 1, · · · , NS); s j,t is the output of ESSs and an element of vectors st and s; Smax
j and

Smin
j are the maximum and the minimum capable outputs of ESSs (Smin

j < 0 < Smax
j ); TS j is the set of

available time that ESSs are available; k is the number of CLs (k = 1, · · · , NV); vk,t is the consumption of
CLs and an element of vectors vt and v; Vmin

k is the maximum capable consumption of CLs (Vmin
k < 0);

TVk is the set of available time of CLs; and et is the trading electricity, which is an element of vector e.
In general, the operation scheduling problem requires the assumption that forecasted values of the

electricity consumption and the VREG outputs are given no matter whether they include uncertainty or
not. With a view to treat the uncertainty, the authors express the variable representing the changeable
net load with

dt ∈
[
dmin

t , dmax
t

]
, for ∀t, (6)

where dmax
t and dmin

t are the maximum and the minimum assumable values of the net load, and they
can be set by referring to the historical record.

Fuel costs of the CGs are normally approximated as quadratic functions by means of their outputs
and, thus, can be minimized by controlling the CG outputs as steadily as possible. As opposed to the
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CGs, the ESSs consume no fuel in their operations directly, and this makes it challenging to evaluate
their operating cost. In this paper, the objective function is represented as

min
u,g,s,v,e

∑T

t=1

∫ dmax
t

dmin
t

{
Ct(ut, gt) + Mtet + Ite′t

}
f
(
d̂t
)
ddt, (7)

subject to

Ct(ut, gt) =
∑NG

i=1

{(
Ai + Bigi,t + Cigi,t

2
)
+ SCi(1− ui,t−1)

}
ui,t, (8)

where C(ut, gt) is the operation cost of CGs; Mt is the price of electricity trade; It is the price of the
imbalance penalty; e′t is the imbalance of electricity; f

(
d̂t
)

is the probability density function for the
forecasted net load, d̂t; Ai, Bi, and Ci are the coefficients of fuel cost of CGs; and SCi is the start-up cost
of CGs.

Besides, the microgrid must satisfy the below conditions.

• Balance of power supply and demand

dt =
∑NG

i=1
gi,tui,t +

∑NS

j=1
s j,t +

∑NV

k=1
vk,t +

(
et + e′t

)
, for ∀t. (9)

• State duration for CGs

If 0 < uon
i,t < MUTi then ui,t = 1; If 0 < uo f f

i,t < MDTi then ui,t = 0, for ∀i, ∀t, (10)

where uon
i,t and uo f f

i,t are the consecutive operating and suspending durations of CGs; and MUTi
and MDTi are the minimum operating and suspending durations of CGs.

• Ramp rate for CGs
∆Gdown

i ≤ gi,t − gi,t−1 ≤ ∆Gup
i , for ∀i, ∀t, (11)

where ∆Gup
i and ∆Gdown

i are the ramp-up and the ramp-down rates of CGs.

• Maximum and minimum outputs for CGs

gmin
i,t ≤ gi,t ≤ gmax

i,t , for ∀i, ∀t,(
gmax

i,t = min
(
Gmax

i , gi,t−1 + ∆Gup
i

)
; gmin

i,t = max
(
Gmin

i , gi,t−1 + ∆Gdown
i

))
,

(12)

where gmax
i,t and gmin

i,t are the maximum and the minimum outputs for CGs at t.

• State for ESSs

Qmin
j ≤ q j,t ≤ Qmax

j , for ∀ j, t ∈ TS j,(
If s j,t ≤ 0 then q j,t = q j,t−1 − η js j,t; If s j,t > 0 then q j,t−1 −

1
η j

s j,t

)
,

(13)

where q j,t is the state-of-charge (SOC) level in ESSs; Qmax
j and Qmin

j are the maximum and the
minimum SOC levels of ESSs; and η j is the overall efficiency of ESSs.

• Maximum and minimum outputs for ESSs

smin
j,t ≤ s j,t ≤ smax

j,t , for ∀ j, t ∈ TS j,(
smax

j,t = min
(
Smax

j , q j,t−1 −Qmin
j

)
; smin

j,t = max
(
Smin

j , q j,t−1 −Qmax
j

))
,

(14)

where smax
j,t and smin

j,t are the maximum and the minimum outputs for ESSs at t.
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• State for CLs

Pmin
k ≤ pk,t ≤ Pmax

k , for ∀k, t ∈ TVk,
(
pk,t = pk,t−1 − ξkvk,t

)
, (15)

where pk,t is the SOC level in CLs; Pmax
k is the maximum SOC level of CLs; and ξk is the overall

efficiency of CLs.
• Maximum consumption for CLs

vmin
k,t ≤ vk,t ≤ 0, for ∀k, t ∈ TVk,

(
vmin

k,t = max
(
Vmin

k , pk,t−1 − Pmax
k

))
, (16)

where vmin
k,t is the maximum consumption for CLs at t.

In summary, the target optimization problem is to determine the operation schedule, (u, g, s, v, e),
which minimizes the objective function (7) under constraints (9)–(16). Here, electricity trading is
classified into et and e′t for calculating the expected values of the trading cost and the imbalance penalty
individually. By using (9), (12), (14), and (16), we can calculate the expected imbalance electricity, e′t , as

If dt − et <
∑NG

i=1 gmin
i,t ui.t +

∑NS
j=1 smin

j,t +
∑NV

k=1 vmin
k,t then

e′t = dt − et −

(∑NG
i=1 gmin

i,t ui.t +
∑NS

j=1 smin
j,t +

∑NV
k=1 vmin

k,t

)
If dt − et >

∑NG
i=1 gmax

i,t ui.t +
∑NS

j=1 smax
j,t then

e′t = dt − et −

(∑NG
i=1 gmax

i,t ui.t +
∑NS

j=1 smax
j,t

)
Else e′t = 0

. (17)

The reserve margin is automatically secured by (7) and (17) (depending on the expected operational
cost in the microgrid).

3. Solution Method

3.1. Overview of Solution Method

Since every controllable component has a certain influence on the microgrid operations, it is
important to determine the states of all optimization variables considering their relationships. However,
this problem, as is well known, becomes a complicated MIP problem; therefore, it is hard to solve exactly.
Under the circumstances, the application of intelligent optimization algorithms has been regarded as a
realistic alternative. Typical algorithms are GA [22], SA [23,24], TS [25,26], and PSO [27,28,33]. In this
paper, a BPSO was selected to ease the difficulty of the problems brought by the UC. The ELD problem
for each UC candidate, which is created by the paradigm of searching in the BPSO, is solved by a
QP solver.

3.2. Application of Quadratic Programming

As defined in (1)–(5), the operation scheduling problem has both discrete and continuous optimization
variables. The former is u, and the latter consists of g, s, v and e. With a view to improve compatibility
between the target problem and its solution method, the authors redefined the optimization variables as

u′h,t ∈ {0, 1}, for ∀h, ∀t, (18)

g′h,t ∈
[
Gmin

h , Gmax
h

]
, for ∀h, ∀t, (19)

where h is the number of controllable components (h = 1, · · · , NH; NH = NG + NS + NV + 1); u′h,t is
the ON/OFF state variable of controllable components (ON: 1, OFF: 0), which is an element of vector u′h
and u′; g′h,t is the output of controllable components, which is an element of vector g′t and g’; and Gmax

h
and Gmin

h are the maximum and the minimum outputs of controllable components.
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In (18) and (19), all controllable components are aggregated. The (NG + 1)-th to the (NG + NS)-th
components are the ESSs, the (NG + NS + 1)-th to the (NH − 1)-th components mean the CLs and
the NH-th components represent the trading of electricity. By (7), the sets of coefficients, (Ah, Bh, Ch),
for both the ESS and the CL (NG < h < NH) are (0, 0, 0), and for the trading electricity (h = NH)
they become (0, M, 0). SCh (NG < h) can be simply set to 0 because there are no start-up costs in
each component.

Now, if we fix the states of controllable components on each time, u’h,t, the target problem can
be regarded as a special type of optimization problem that has a quadratic objective function and
several variables subject to linear constraints, called the quadratic optimization problem. In this
case, QP solvers can be applied; therefore, there is no need to concern the difficulty in determining
continuous variables after creating u′. In other words, the dimensions of the solution space are reduced
from (u, g, s, v, e) to u′, and as a result, we can expect to improve the searching ability of the applied
intelligent algorithms.

3.3. Application of Binary Particle Swarm Optimization

PSO is a population-based, stochastic computational algorithm [34] that optimizes a problem by
iteratively trying to improve a solution candidate for a given measure of quality, called fitness function.
An initial set of randomly created solutions, called the initial swarm, propagates in the design of the
search space towards the optimal solution over a number of iterations, called moves, based on the large
amount of information that is fitted and shared by all members of the swarm. Each particle x has a
position, ym

x , and a velocity, zm
x , in iteration m (m = 1, 2, . . . , M) and flies through the search space to find

the best positions and velocities. The inertia weight factor, ω, controls the iteration size. With regards
to the proposed problem formulation, the below equations describe the solution update mechanism.

ym
x = u′, (20)

ym+1
x = ym

x + zm+1
x , (21)

zm+1
x = ωzm

x + θ1r1[y∗x − ym
x ] + θ2r2

[(
min
xεX

y∗x
)
− ym

x

]
, (22)

where θ1 and θ2 are the cognitive factors that represent the trust for each particle and the swarm;
r1 and r2 are the random numbers in the range, [0, 1]; y∗x is the personal best for particle x, called pbest;
min
xεX

y∗x is the best in the swarm, called gbest; and X is the set of all particles.

Although PSO has succeeded in many continuous problems, it still has some difficulties in treating
discrete optimization problems [35]. To modify ON/OFF states of the controllable components, u′h,t,
the PSO is expanded as a BPSO, which introduces the following sigmoid function in part of the
PSO algorithm.

If 0.5 <
1

1 + e−u′h,t
then u′h,t = 1, else u′h,t = 0, for h < NG, ∀t. (23)

Here, u′h,t for the ESSs and the CLs (NG < h < NH − 1) can be set to 1 in the range of available
periods of the components (ESSs: t ∈ TS j, CLs: t ∈ TVk), while it can be set to 0 in the other periods
(ESSs: t < TS j, CLs: t < TVk). This is because the outputs for the ESSs and the CLs include 0 in their
controllable ranges. For the same reason, u′h,t for electricity trading (h = NH) can be set to 1 for all time
periods. As a result, we can fix u′, and, therefore, the combined method of BPSO and QP solves the
formulated problem approximately.
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With the aim of handling the constraints, the penalty method, which replaces a constrained
optimization problem by a series of unconstrained problems, is applied during the iterative process.
The fitness function is represented as

F =
∑T

t=1


∫ dmax

t

dmin
t

{
Ct(ut, gt) + Mtet + Ite′t + VIOt

}
f (dt)ddt

, (24)

where VIOt is the weighted sum of violation of the constraints excluding (9) (VIOt � Ct(ut, gt) +

Mtet + Ite′t).

4. Numerical Simulations

4.1. Numerical Conditions

Numerical simulations were carried out on the microgrid model, which was already illustrated
in Figure 1, to verify the validity of the authors’ proposal. Figure 2 shows profiles of the forecasted
net load and the price in electricity trade. As shown in Figure 2, the aggregated PV on sunny day
was referred to as the aggregated VREG. The imbalance penalty was set to a large value to avoid the
electricity surplus/shortage in the operation stage. Specifications of the controllable components in
the microgrid model are summarized in Tables 1 and 2. Here, the ESSs and the CLs were aggregated
into one large-scale component, respectively, to simplify discussions. These were made by referring
to [26,27,33,36].

Time interval, ∆t, was set to 1 h, and daily operation schedules (t = 1, 2, . . . , 24) were determined.
However, the period of optimization target was set from 8:00 AM (t = 1) to 7:00 AM (t = 24) considering
operation of the time-constrained components in the microgrid model. The available duration of the
CLs was set from 9:00 PM to 7:00 AM. The initial SOC level of the aggregated ESS was set to 50% of its
capacity, and the level had to be returned to the original state until the end of the scheduling period.
On the other hand, the initial SOC level of the aggregated CL was set to 50%, and it had to be 100% at
the end of the scheduling period.
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Figure 2. (a) Forecasted net load; (b) electricity price.

Table 1. Specification of CGs (“#” means “any currency unit is applicable”).

i Ai (#) Bi (#/MW) Ci (#/MW2) SCi (#) Gmax
i (MW) Gmin

i (MW)

1 12,000.0 3800.0 1.2 3000.0 20.0 4.0
2 7800.0 3100.0 1.8 1000.0 16.0 3.2
3 2400.0 2500.0 2.8 500.0 12.0 2.4

Table 2. Specifications of aggregated ESS and aggregated CL.

Smax (MW) Smin (MW) Qmax (MWh) Qmin (MWh) Vmax (MW) Pmax (MWh) Pmin (MWh)

1.8 –1.8 10.4 2.6 –1.5 9.6 2.4
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Under these conditions, the authors determined the following three operation schedules by the
proposed solution method:

Case 1 Operation schedule without the reserve margin.
Case 2 Operation schedule considering the conventional reserve margin that compensates deviation

within 5% of the net load.
Case 3 Operation schedule based on the proposed framework.

In accordance with the results of preliminary trials and errors, the parameters for BPSO were set
as follows: |X| = 40, M = 300, ω = 0.9, θ1 = 2.0, and θ2 = 2.0.

4.2. Results and Discussion

Figures 3–5 and Table 3 summarize the numerical results. As shown in Figures 3–5, the balance of
power supply and demand for the forecasted net load was maintained by the sum of output shares of
the CGs, the aggregated ESS and the aggregated CL, and the trading electricity in all cases. In Cases 1
and 2, the numerical simulations succeeded within a few minutes. However, Case 3 required a few
hours to obtain the optimal operation schedule since evaluation of the UC candidates (calculation by
the QP solver) became complicated. Therefore, improvement in the computational speed remains
an important issue in the authors’ proposal, although the process can be accomplished from the
perspective of practical use.Future Internet 2019, 11, x FOR PEER REVIEW 8 of 10 
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Figure 3. (a) Operation schedule for forecasted net load in Case 1; (b) state-of-charge (SOC) level in
Case 1.
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Figure 4. (a) Operation schedule for forecasted net load in Case 2; (b) SOC level in Case 2.
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Figure 5. (a) Operation schedule for forecasted net load in Case 3; (b) SOC level in Case 3.
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Table 3. Comparison of numerical results.

Case Cost for Forecasted Net Load (#) Expected Cost (#)

1 1,921,509.5 2,101,022.6
2 1,929,108.8 2,051,418.4
3 1,960,789.9 1,960,832.3

In Table 3, the operation schedule of Case 1 was the best result for the forecasted net load. It means
that the operational cost increased in the other cases for securing the reserve margin against the
uncertainty in the actual operation. Besides, it was found that the expected values of the operation
costs became worse than the operation costs for the forecasted net load in each case. However, in Case
3, the increase in the objective function was not so large as compared to that in Case 2 in spite of the
potential risk that was reflected in both cases. As a result, the expected cost in Case 3 was the smallest
as opposed to the operation cost for the forecasted net load. From these results, we can conclude that
the authors’ proposal functioned well.

5. Conclusions

This paper presented a problem framework and its effective solution to obtain an operation
schedule to coordinate microgrid components considering. In the problem framework, trading of
electricity was included in the optimization target, and VREG-originated uncertainty was considered.
Moreover, the formulated problem was reformulated to reduce the dimensions of its solution space;
therefore, the BPSO–QP was applicable in the solution method. Through numerical simulations and a
discussion of their results, we can conclude that the proposed problem framework and its solution
method functioned appropriately.

In future works, the authors will improve the calculation time of BPSO–QP. In addition, the authors
will propose more effective solutions with respect to the characteristics of the target optimization problem.

Author Contributions: Conceptualization, H.T., R.G., T.Z.S. and H.A.; methodology, H.T., R.G. and T.Z.S.;
validation, H.T., R.G. and N.D.T.; writing—original draft preparation, H.T. and N.D.T.; writing—review and
editing, H.T. and T.Z.S.; supervision, H.T. and H.A.

Funding: This research was funded by Japan Society for the Promotion of Science (JSPS), grant numbers 16K06215
and 19K04325.

Acknowledgments: The authors would like to acknowledge Gifu Renewable Energy System Research Center of
Gifu University.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Office of Electricity Delivery and Energy Reliability. DOE Microgrid Workshop Report. Available online:
https://www.energy.gov/sites/prod/files/2012%20Microgrid%20Workshop%20Report%2009102012.pdf
(accessed on 31 May 2019).

2. Ton, D.T.; Smith, M.A. The U.S. Department of Energy’s Microgrid Initiative. Electr. J. 2012, 25, 84–94.
[CrossRef]

3. Bevrani, H.; Francois, B.; Ise, T. Microgrid Dynamics and Control; Wiley: Hoboken, NJ, USA, 2017.
4. Hatziargyriou, N.; Asano, H.; Iravani, R.; Marnay, C. Microgrids for Distributed Generation. IEEE Power

Energy Mag. 2007, 133, 144–149.
5. Investigating R&D Committee on advanced power system. Current Status of Advanced Power Systems

including Microgrid and Smartgrid. IEEJ Tech. Rep. 2011, 1229. Available online: https://www.bookpark.ne.
jp/cm/ieej/detail.asp?content_id=IEEJ-GH1229-PRT (accessed on 24 October 2019).

6. New Energy and Industrial Technology Development Organization. Case Studies of Smart Community
Demonstration Project. Available online: http://www.nedo.go.jp/english/reports_20130222.html (accessed on
31 May 2019).

https://www.energy.gov/sites/prod/files/2012%20Microgrid%20Workshop%20Report%2009102012.pdf
http://dx.doi.org/10.1016/j.tej.2012.09.013
https://www.bookpark.ne.jp/cm/ieej/detail.asp?content_id=IEEJ-GH1229-PRT
https://www.bookpark.ne.jp/cm/ieej/detail.asp?content_id=IEEJ-GH1229-PRT
http://www.nedo.go.jp/english/reports_20130222.html


Future Internet 2019, 11, 223 10 of 11

7. Choi, Y.J.; Choi, I.S.; Lee, H.J.; Chae, W.K. Operational Experience of Microgrids. In Smart Grid Handbook,
3 Volume Set; Liu, C.C., McAuthur, S., Lee, S.J., Eds.; Wiley: Hoboken, NJ, USA, 2016; Volume 3, pp. 1213–1234.

8. Chowdhury, D.; Hassan, A.S.M.K.; Khan, M.Z.R. Scalable DC Microgrid Architecture with Phase Shifted
Full Bridge Converter Based Power Management Unit. In Proceedings of the 10th International Conference
on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2018; pp. 22–25.

9. Hassan, A.S.M.K.; Chowdhury, D.; Khan, M.Z.R. Scalable DC Microgrid Architecture with a One-Way
Communication Based Control Interface. In Proceedings of the 10th International Conference on Electrical
and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2018; pp. 265–268.

10. Kerr, R.H.; Scheidt, J.L.; Fontana, A.J.; Wiley, J.K. Unit Commitment. IEEE Trans. Power A Syst. 1996, PAS-85,
417–421. [CrossRef]

11. Sen, S.; Kothari, D.P. Optimal Thermal Generating Unit Commitment: A Review. Int. J. Electr. Power
Energy Syst. 1998, 20, 443–451. [CrossRef]

12. Hobbs, B.F.; Rothkopf, M.H.; O′Neill, R.P.; Chao, H.P. The Next Generation of Electric Power Unit Commitment
Models; Springer: New York City, NY, USA, 2001.

13. Padhy, N.P. Unit Commitment—A Bibliographical Survey. IEEE Trans. Power Syst. 2004, 19, 1196–1205.
[CrossRef]

14. Bhardwaj, A.; Tung, N.S.; Kamboj, V. Unit Commitment in Power System: A Review. Int. J. Power Eng. 2012,
6, 51–57. [CrossRef]

15. Saravanan, B.; Das, S.; Sikri, S.; Kothari, D.P. A Solution to the Unit Commitment Problem—A Review.
Front. Energy 2013, 7, 223–236. [CrossRef]

16. Zheng, Q.P.; Wang, J.; Liu, A.L. Stochastic Optimization for Unit Commitment—A Review. IEEE Trans.
Power Syst. 2015, 30, 1913–1924. [CrossRef]

17. Cohen, A.I.; Yoshimura, M. A branch-and-Bound Algorithm for Unit Commitment. IEEE Trans. Power A Syst.
1983, PAS-102, 444–451. [CrossRef]

18. Chen, C.L.; Wang, S.C. Branch-and-Bound Scheduling for Thermal Generating Units. IEEE Trans.
Energy Convers. 1993, 8, 184–189. [CrossRef]

19. Snyder, W.L.; Powell, H.D.; Raiburn, J.C. Dynamic Programming Approach to Unit Commitment. IEEE Trans.
Power Syst. 1987, 2, 339–348. [CrossRef]

20. Ouyang, Z.; Shahidehpour, S.M. An Intelligent Dynamic Programming for Unit Commitment Application.
IEEE Trans. Power Syst. 1991, 6, 1203–1209. [CrossRef]

21. Juste, K.A.; Kita, H.; Tanaka, E.; Hasegawa, J. An Evolutionary Programming Solution to the Unit Commitment
Problem. IEEE Trans. Power Syst. 1990, 14, 1452–1459. [CrossRef]

22. Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V. A Genetic Algorithm Solution to the Unit Commitment Problem.
IEEE Trans. Power Syst. 1996, 11, 83–92. [CrossRef]

23. Mantawy, A.H.; Abdel-Magid, Y.L.; Selim, S.Z. A Simulated Annealing Algorithm for Unit Commitment.
IEEE Trans. Power Syst. 1998, 13, 197–204. [CrossRef]

24. Simopoulos, D.N.; Kavatza, S.D.; Vournas, C.D. Unit Commitment by an Enhanced Simulated Annealing
Algorithms. IEEE Trans. Power Syst. 2006, 21, 68–76. [CrossRef]

25. Rajan, C.C.A.; Mohan, M.R. An Evolutionary programming-based Tabu Search Method for Solving the Unit
Commitment Problem. IEEE Trans. Power Syst. 2004, 19, 577–585. [CrossRef]

26. Takano, H.; Zhang, P.; Murata, J.; Hashiguchim, T.; Goda, T.; Iizaka, T.; Nakanishi, Y. A determination
method for the optimal operation of controllable generators in micro grids that copes with unstable outputs
of renewable energy generation. Electr. Eng. Jpn. 2015, 190, 56–65. [CrossRef]

27. Hayashi, Y.; Miyamoto, H.; Matsuki, J.; Iizuka, T.; Azuma, H. Online Optimization Method for Operation of
Generators in Micro Grid. IEEJ Trans. PE 2008, 128, 388–396. (In Japanese) [CrossRef]

28. Jeong, Y.W.; Park, J.B. A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problem for
Power Systems. IEEE Trans. Power Syst. 2010, 25, 1486–1495. [CrossRef]

29. Lu, B.; Shahidehpour, M. Short-Term Scheduling of Battery in a Grid-Connected PV/Battery System.
IEEE Trans. Power Syst. 2005, 20, 1053–1061. [CrossRef]

30. Palma-Behnke, R.; Benavides, C.; Lanas, F.; Severino, B.; Reyes, L.; Llanos, J.; Saez, D. A Microgrid Energy
Management System Based on the Rolling Horizon Strategy. IEEE Trans. Smart Grid. 2013, 4, 996–1006.
[CrossRef]

http://dx.doi.org/10.1109/TPAS.1966.291678
http://dx.doi.org/10.1016/S0142-0615(98)00013-1
http://dx.doi.org/10.1109/TPWRS.2003.821611
http://dx.doi.org/10.3923/ijepe.2012.51.57
http://dx.doi.org/10.1007/s11708-013-0240-3
http://dx.doi.org/10.1109/TPWRS.2014.2355204
http://dx.doi.org/10.1109/TPAS.1983.317714
http://dx.doi.org/10.1109/60.222703
http://dx.doi.org/10.1109/TPWRS.1987.4335130
http://dx.doi.org/10.1109/59.119267
http://dx.doi.org/10.1109/59.801925
http://dx.doi.org/10.1109/59.485989
http://dx.doi.org/10.1109/59.651636
http://dx.doi.org/10.1109/TPWRS.2005.860922
http://dx.doi.org/10.1109/TPWRS.2003.821472
http://dx.doi.org/10.1002/eej.22687
http://dx.doi.org/10.1541/ieejpes.128.388
http://dx.doi.org/10.1109/TPWRS.2010.2042472
http://dx.doi.org/10.1109/TPWRS.2005.846060
http://dx.doi.org/10.1109/TSG.2012.2231440


Future Internet 2019, 11, 223 11 of 11

31. Li, N.; Uckun, C.; Constantinescu, E.M.; Birge, J.R.; Hedman, K.W.; Botterud, A. Flexible Operation of
Batteries in Power System Scheduling with Renewable Energy. IEEE Trans. Sustain. Energy 2016, 7, 685–696.
[CrossRef]

32. Hammati, R.; Saboori, H. Short-Term Bulk Energy Storage Scheduling for Load Leveling in Unit Commitment:
Modeling, Optimization, and Sensitivity Analysis. J. Adv. Res. 2016, 7, 360–372. [CrossRef] [PubMed]

33. Soe, T.Z.; Takano, H.; Shiomi, R.; Taoka, H. Determination method for optimal cooperative operation plan of
microgrids by providing alternatives for microgrid operators. J. Int. Counc. Electr. Eng. 2018, 8, 103–110.
[CrossRef]

34. Clerc, M. Particle Swarm Optimization; Wiley: Hoboken, NJ, USA, 2006.
35. Lee, S.; Soak, S.; Oh, S.; Pedryczm, W.; Jeon, M. Modified binary particle swarm optimization. Prog. Nat. Sci.

2008, 18, 1161–1166. [CrossRef]
36. Takano, H.; Nagaki, Y.; Murata, J.; Iizaka, T.; Ishibashi, T.; Katsuno, T. A study on supply and demand

planning for Power Producer-Suppliers utilizing output of megawatt solar plants. J. Int. Counc. Electr. Eng.
2016, 6, 102–109. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSTE.2015.2497470
http://dx.doi.org/10.1016/j.jare.2016.02.002
http://www.ncbi.nlm.nih.gov/pubmed/27222741
http://dx.doi.org/10.1080/22348972.2018.1477090
http://dx.doi.org/10.1016/j.pnsc.2008.03.018
http://dx.doi.org/10.1080/22348972.2016.1173794
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Framework 
	Overview of Target Problem 
	Formulation of Target Problem 

	Solution Method 
	Overview of Solution Method 
	Application of Quadratic Programming 
	Application of Binary Particle Swarm Optimization 

	Numerical Simulations 
	Numerical Conditions 
	Results and Discussion 

	Conclusions 
	References

