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Abstract: We present an analysis of clock recovery algorithms in both polarization division
multiplexing systems and mode division multiplexing systems. The impact of inter-polarization time
skew and polarization mode dispersion in single-mode fibers, as well as the combined impact of
mode mixing and mode group delay spread in multi-mode fibers under different coupling regimes
are investigated. Results show that although the clock tone vanishing has a known solution for
single-mode systems, in multi-mode systems even for low group delay spread, strong coupling will
cause clock tone extinction, making it harder to implement an effective clock recovery scheme.

Keywords: optical communications; clock recovery; space-division multiplexing; coherent
communications

1. Introduction

In the past few years, coherent communication techniques have established themselves as the
main solution to overcome the capacity limitations of legacy intensity modulation/direct detection
(IM-DD) systems in optical communications [1]. The feasibility of coherent optical communications
came with advances in silicon technology that allowed the full mitigation and compensation of linear
transmission impairments by digital signal processing (DSP) [2].

In such systems, the data need to be processed synchronously. Sending a pilot clock tone together
with the signal through the optical fiber would be inefficient, raising the need for extraction of the
clock information from the data waveform itself. Channel impairments and transceiver imperfections
such as chromatic dispersion (CD), polarization mode dispersion (PMD) and time skew between
components were shown to be critical for clock extraction [3–7], making analog clock recovery
unfeasible. Thus, to partially compensate these impairments before a fully digital clock recovery
is mandatory.

The first implementations of DSP-based coherent optical receivers were deployed envisioning
systems with 100 Gb/s per channel over single-mode fibers (SMF), and employing polarization division
multiplexing (PDM) and advanced modulation formats such as m-ary phase-shift keying (M-PSK) and
m-ary quadrature amplitude modulation (M-QAM) [2,8]. Such systems in combination with wavelength
division multiplexing (WDM) can not satisfy future capacity demands. One of the most promising
options for overcoming the capacity bottleneck is to employ space division multiplexing (SDM) [1].

SDM is an enabling technology that can provide interface data rates for future 10 Tb/s per channel
and beyond systems [9,10]. It can be realized by multiplexing the signal in several cores using multicore
fibers (MCF) as the transmission channel, several modes using few mode fibers (FMF), also known
as mode division multiplexing (MDM) or by a combination of the two. For systems employing MCF,
a relatively low degree of crosstalk between cores can be achieved. In contrast, this is a challenging
task for systems employing FMF, where a high degree of mode crosstalk may occur [11].
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So far, the research community has mainly focused on equalization schemes for mode mixing
and delay spread mitigation [12–18]. Strong mode coupling regime has been shown to be
preferable in terms of equalizer impulse response length [11] and nonlinearity tolerance [19,20].
However, most experimental demonstrations have been in the weak/intermediate coupling
regimes [12]. So far, very little attention has been paid to the impact of mode mixing on clock recovery
performance and feasibility. Typically, clock recovery is performed before dynamic multiple-input
multiple-output (MIMO) equalization by extracting a clock tone from the signal and then resampling
it, so if the clock tone cannot be extracted due to transmission impairments, the remaining part of the
DSP chain may fail [5]. It is therefore essential to investigate the tolerance and performance of clock
recovery for systems employing MDM.

In this article, we extend our recent work [21] and present a detailed numerical analysis of clock
recovery for long-haul transmission dual-polarization in a SMF and space-division multiplexing using
a FMF in weak, intermediate and strong coupling regimes. We show that although for a SMF, the clock
tone vanishing can be dealt with a simple polarization rotation [7] and compensation of the transmitter
time-skew between polarizations [22], the combined effects of mode coupling and inter-modal
dispersion in a FMF can significantly degrade the performance of the timing synchronization. In the
strong coupling regime, even with low group delay spread, the clock tone completely vanishes, making
timing synchronization challenging.

This article is structured as follows. In Section 2, we present a review of clock recovery in
coherent optical receivers, showing the basic algorithm implementations. In Section 3, we define
the propagation model for single-mode and multi-mode optical fibers. In Section 4, we analyze
through simulations the performance of clock recovery in single-mode optical fibers considering
inter-polarization time skews and polarization mode dispersion. In Section 5, we analyze through
simulations the performance of multi-mode optical fibers under different coupling regimes considering
modal dispersion. Finally, the article is concluded in Section 6.

2. Clock Recovery in Coherent Optical Receivers

In communication systems, the synchronization between the sample rate, generated at the receiver
clock, and the symbol rate, generated at the transmitter clock, is necessary for a correct extraction of
the transmitted information [2]. The main objective of the symbol synchronization is then to determine,
with the best precision as possible, the optimal decision instant where the signal has the maximum
energy and signal-to-noise ratio.

Some synchronization solutions in literature use data-aided algorithms [23], which implies the
transmission of a clock signal or a pre-determined symbol training sequence. However, such solutions
require either higher power, to transmit an off-band clock tone, or higher transmission rates,
to introduce an overhead, thus penalizing the transmission. On the other hand, non-data-aided
algorithms [24,25] are capable of extracting the intrinsic timing information from the received signal,
therefore, the success of such algorithms rely directly on the quantity and quality of the clock
information available at the received signal. Factors such as bandwidth limitation, intersymbol
interference or low signal-to-noise ratio tend to impair the performance of these methods.

Feedback Timing Synchronization Method

In the 1980’s, Gardner proposed a feedback algorithm that needed only two samples per
symbol for timing estimation [24], resulting in low computational complexity. Figure 1 shows the
implementation of the method.
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Figure 1. Timing recovery implementation.

This algorithm is based on the principle that PSK signals ideally have constant modulus.
The signal power is maximal when the signal is sampled at the optimum decision instant, and it
loses energy in the transitions between its constellation points. To illustrate it, Figure 2a shows a
quadriphase shift keying (QPSK) constellation sampled at the optimum decision instants in red, and the
transitions between symbols, in black. Figure 2b shows the eye diagram of the in-phase component,
and Figure 2c shows the eye diagram of the power of the QPSK signal. The reader can note that while
in the transitions, the signal power is lower on average, compared to the optimum decision instant.

(c)(b)(a) (d)

Figure 2. (a) QPSK constellation, in red, with its intersymbol transitions, in black; (b) In-phase
component eye-diagram; (c) Power eye-diagram; (d) S-curve, in red, and all values eGardner can assume
in a QPSK signal, in black.

Therefore, the algorithm tries to maximize the power of the received signal at the sampling instant
by adjusting its timing. To achieve it, the timing error detector block in Figure 1 computes the Gardner
timing error function, eGardner, given by the inflection point by the derivative of the power of the
interpolator output, b[n]. Then,

eGardner[n] = P′b[n] =
(

b[n]b[n]
)′

= b
′
[n]b[n] + b[n]b′[n]

=
(

b′i [n]− jb′q[n]
) (

bi[n] + jbq[n]
)
+
(
bi[n]− jbq[n]

) (
b′i [n] + jb′q[n]

)
= 2bi[n]b′i [n] + 2bq[n]b′q[n],

(1)

where n is the discrete index at 2 samples per symbol period, Pb[n] is the power of interpolator output,
bi[n] and bq[n] are, respectively, the real and imaginary parts of b[n], the symbol ′ indicates the first
derivative, and the overbar indicates the complex conjugate. Numerically approximating the signal
derivative by

b′[n] =
1
2
(b [n + 1]− b [n− 1]) , (2)

then, adjusting to make the signal causal and averaging through N symbols, the timing error function
in average, êGardner, is defined by
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êGardner =
1
N

N−1

∑
n=0

{
bi[2n− 1] (bi[2n]− bi[2n− 2]) + bq[2n− 1]

(
bq[2n]− bq[2n− 2]

)}
=

1
N
<
{ N−1

∑
n=0

[
b∗[2n− 1] (b[2n]− b[2n− 2])

]}
.

(3)

where < indicates the real part. Figure 2d shows all the possible values eGardner[n] can assume, in black,
and êGardner, in red. This last curve is known in the literature as the S-curve and can be used to indicate
if the signal is late or in advance compared to the optimum decision instant.

The timing error function is then passed through a proportional-plus-integral controller (P + I)
that filters and controls the clock frequency and phase of a numeric controlled oscillator (NCO) that
will therefore drive the timing of the signal interpolators, locking when the timing error function is
zero (in the middle of the S-curve).

Using Fourier transform properties, one can show that the Gardner’s timing error function, can be
computed in frequency domain by [26]

êGardner =
2
K

K/2

∑
k=1

{
sin
(

2πk
K

)
=(B[k]B[k + K/2])

}
, (4)

where = indicates imaginary part, B[k] is the discrete Fourier transform of b[n], and K is the discrete
Fourier transform length. This equation is similar to the one presented by Godard [25],

êGodard =
2
K

K/2

∑
k=1

{
=(B[k]B[k + K/2])

}
, (5)

and has been proven to yield similar results compared to the Gardner method [26].
The performance of the clock recovery algorithm can be therefore described by the amplitude of

the S-curve. The clock tone amplitude (CTA) can be extracted by computing the absolute value instead
of the imaginary part in êGodard [7],

CTA =

∣∣∣∣∣K/2

∑
k=1

B(k)B∗ (k + K/2)

∣∣∣∣∣ . (6)

3. Matrix Propagation Model for Optical Fibers

3.1. Single-Mode Fibers without Coupling between Polarizations

Neglecting nonlinearities and noise, the transmission through an optical fiber can be described by

Eout(Ω) = M(Ω)Ein(Ω), (7)

where M(Ω) is a 2× 2 matrix describing the transfer characteristics of the optical fiber supporting
2 polarizations, and Ein(Ω) and Eout(Ω) are frequency-domain 2-dimensional input and output
electrical field vectors.

Due to fabrication processes, single-mode fibers present birefringence, i.e., orthogonal polarization
states will travel through the fiber at different speeds. If there is no coupling between polarization
modes, then the fiber transfer characteristic can be described by

M(Ω) = VΛ(Ω)U†, (8)

where V and U are random unitary rotation matrices describing coordinate base changes necessary
due to the unknown spatial direction of the birefringence, and † indicates the conjugate transpose of
the matrix. V and U are defined by
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V, U def
=

[
cos(θ) sin(θ)ejφ

− sin(θ) cos(θ)ejφ

]
, (9)

where θ and φ are the azimuth and ellipticity angles of the unitary rotation matrix. Λ(Ω) is a diagonal
matrix describing the linear propagation in each of the polarization modes. Including polarization
dependent loss (PDL), differential group delay (DGD), and chromatic dispersion (CD). Λ(Ω) can be
expressed by

Λ(Ω) = diag [a1(Ω) , a2(Ω)] , (10)

a1(Ω) = exp
{

g1

2
− j

τL
2

Ω− jD
λ2L
4πc

Ω2 + jS
λ4L

24π2c2 Ω3
}

, (11)

a2(Ω) = exp
{

g2

2
+ j

τL
2

Ω− jD
λ2L
4πc

Ω2 + jS
λ4L

24π2c2 Ω3
}

, (12)

where g = [g1, g2] is the PDL vector, τ is the DGD, related to polarization mode dispersion (PMD),
D is the CD parameter, S is the fiber dispersion slope, related to third-order CD, and L is the length of
the fiber.

3.2. Single-Mode Fibers with Strong Coupling between Polarizations

Due to bends and stretches, the birefringence will vary throughout the fiber, making it impractical
to design long optical fibers with no coupling between polarizations. Consequently, the differential
group delay can be a limiting factor for optical communications. To overcome this issue, SMFs are
fabricated with intentional birefringence rotations in order to average out the group delay [27].
Therefore, a common numerical approximation for the fiber model is to consider the optical fiber as the
concatenation of shorter sections of fiber (Figure 3). Each of these sections is a piece of fiber that has
length slightly longer than the length over which the complex polarization fields remain correlated [28]
and has no coupling between polarizations, but both random rotations at the input and at the output
occur. Moreover, the DGD is kept constant in each fiber section.

 )()1( M )()2( M )()3( M )()4( M )(
)( sec 

K
M)(inE )(outE

Figure 3. Strong-coupling optical fiber model as the concatenation of shorter fiber sections.

Then, considering Ksec sections of a fiber with each of these sections having length Lsec,
and neglecting noise and nonlinearities, the signal at each fiber section output is related to the its input
signal by

E(k)
out(Ω) = M(k)(Ω)E(k)

in (Ω), (13)

where k is the section index. The full fiber transfer characteristic is, then,

M(Ω) =
Ksec

∏
k=1

V(k)Λ(k)(Ω)U(k)†. (14)

3.3. Multi-Mode and Multi-Core Fibers

Generalizing the model for both single- and multi-mode fibers, the transfer function characteristic,
M(Ω), can be extended and take the form of a Z×Z matrix, where Z is the number of all possible
spatial degrees of freedom, and Ein(Ω) and Eout(Ω) are frequency-domain Z-dimensional input and
output electrical field vectors. The term “degrees of freedom” includes both the two polarizations in a
SMF (Z = 2) and all possible spatial degrees of freedom in a FMF (Z = 2P > 2, where P is the number
of modes). The matrix Λ(k)(Ω) can be expressed as
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Λ(k)(Ω) = diag [a1(Ω) , a2(Ω) , · · · , aZ(Ω)] , (15)

ad(Ω) = exp

{
g(k)z

2
− jτ(k)

z Ω− j
Dzλ2Lsec

4πc
Ω2 + j

Szλ4Lsec

24π2c2 Ω3

}
, z ∈ [1, 2, · · · , Z] , (16)

where g(k) =
[

g(k)1 , g(k)2 , . . . , g(k)Z

]
is the uncoupled mode-dependent loss (MDL) vector,

τ(k) =
[
τ1

(k), τ2
(k), . . . , τZ

(k)
]

is the group delay vector, related to the mode delay (MD),

D =
[

D1, D2, . . . , DZ

]
is the CD vector, and S =

[
S1, S2, . . . , SZ

]
is the fiber dispersion slope vector.

V(k) and U(k) are random Z×Z unitary matrices generated by random Givens’ rotation
matrices [29]:

V(k), U(k) def
=

Z−1

∏
i=1

Z

∏
k=i+1

G (i, k, θi,k, φi,k) , (17)

where each element gm,n of G is given by:

gm,n =



cos (θi,k) , if m = n = i

cos (θi,k) ejφi,k , if m = n = k

sin (θi,k) ejφi,k , if m = i and n = k

− sin (θi,k) , if m = k and n = i

1, if m = n 6= i or m = n 6= k

0, otherwise.

(18)

In the single-mode case, Z = 2, the rotation matrix from Equation (17) assumes the same form
of Equation (9). The Givens’ rotation matrices are basically rotations relative to an axis, therefore to
generate the Z×Z unitary matrices, we generate random rotations relative to all possible axes.

3.4. Time Skew between Polarizations and Modes

Another parameter that can affect the clock recovery performance is the time skew between signal
components [22]. So, apart from the DGD, the signal components can be time mismatched due to
propagation differences in the electrical cables both at the transmitter and the receiver. We can model
the time skew between signal components, W(Ω), by:

W(Ω) = diag [exp{−jΩτ1}, exp{−jΩτ2}, · · · , exp{−jΩτZ}] . (19)

Therefore, regarding the time skews, the received signal is related to the input signal by,

Eout(Ω) = WRx(Ω)M(Ω)WTx(Ω)Ein(Ω). (20)

In the next sections, we will analyze the clock recovery performance evaluating the clock tone
amplitude for the QPSK modulation format. Higher-order QAM modulation formats are expected
to have similar performance as the spectrum shape of these formats are invariant to the modulation
order [30].

4. Clock Recovery Performance in Single-Mode Fibers

4.1. Time Skew between Polarizations

First, to evaluate the impact of the time skew between polarizations we considered a back-to-back
system with the time skew both in the transmitter and the receiver. We also considered a polarization
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azimuth rotation between transmitter and receiver. For simplicity, the ellipticity rotations were not
considered. The transfer function of this simulation was then,

Eout(Ω) =

[
e−jΩτRx/2 0

0 ejΩτRx/2

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
e−jΩτTx/2 0

0 ejΩτTx/2

]
Ein(Ω), (21)

where τTx was the time skew between polarizations at the transmitter, τRx was the time skew between
polarizations at the receiver, and θ the rotation angle. The received signal in polarization X is then,

Eout,X = e−jΩτRx/2
(

e−jΩτTx/2 cos(θ)Ein,X + ejΩτTx/2 sin(θ)Ein,Y

)
. (22)

Therefore, the received signal is a combination of the transmitted signal in both polarizations with
opposite timings due to the transmitter inter-polarization time skew. On the other hand, the receiver
time skew only delays the transmitted signal components with the same timing. Thus, it is expected
that the transmitter inter-polarization time skew will affect the clock tone amplitude depending on the
polarization rotation during transmission, while the receiver time skew will not affect it. To show this
behavior, we then considered an NRZ-QPSK at 32 GBd as signal input and swept the rotation angle
from 0 to 90 degrees and the transmitter time skew from 0 to 31.125 ps, equivalent to the interval from
0 to 1 symbol period. The parameters used in this simulation are summarized in Table 1. The receiver
time skew was set to zero. The CTA was computed and it is shown in Figure 4.

As we can see, the CTA goes to zero when the rotation angle is 45 degrees and the inter-polarization
time skew in the transmitter is around half symbol period. This means that estimation and
compensation of inter-polarization time skews at the transmitter side is crucial.

Table 1. Parameters for B2B evaluation of CTA due to transmitter time skew.

Parameter Value

Modulation format NRZ-QPSK
Symbol rate 32 GBd

Rotation angle interval [0, 90°]
Rotation angle step size 1°

Transmitter time skew interval [0, 31.125] ps
Transmitter time skew step size 778.125 fs

Receiver time skew 0

XY Time Skew (ps) Rotation (degree)

0

30
9025 75

0.5

20

N
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m
al

iz
ed
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6015 4510 30

1

5 15
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Figure 4. Normalized clock tone amplitude as function of rotation angle and transmitter-side
inter-polarization time skew.
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4.2. Polarization Mode Dispersion

In order to analyze the clock recovery performance in single-mode fibers, we used the
configuration as shown in Figure 5. We consider 32 GBd non-return-to-zero (NRZ)-QPSK modulated
signals multiplexed in Z = 2 degrees of freedom (two polarizations). The transmission link was
simulated numerically and consisted of a single-mode fiber with strong coupling between polarizations
divided in 10,000 sections of fiber with 10 m each [27], resulting in a 100 km fiber link.

…

10000 sections of 10 m

SMF

D
SP

Tx 1

Tx 2

Rx 1

Rx 2

Pol. 
MUX

Pol. 
DEMUX

Figure 5. General set-up for numerical simulation model of polarization multiplexed systems.

To evaluate the behavior of timing recovery with different values of DGD, we considered random
Givens rotation matrices and swept the group delay of each fiber segment, i.e., each segment had
a random rotation with an angle uniformly distributed in the interval θ ∼ [0, 2π). We swept the
uncoupled DGD from 0.005 to 500 ps/km, i.e., the propagation delay difference between polarizations
in each fiber section. Then, we measured the resulting DGD by the maximum difference of the two
eigenvalues of the matrix, H(Ω), defined by [11]

H(Ω) = j
∂M(Ω)

∂Ω
M∗(Ω), (23)

with the differentiation being computed numerically. This resulting DGD is the DGD after all rotations
between sections and discrete delays. The parameters used in this simulation are summarized in
Table 2.

Table 2. Parameters for evaluation of CTA due to PMD in single-mode fiber transmission.

Parameter Value

Modulation format NRZ-QPSK
Symbol rate 32 GBd

Number of fiber sections 10,000
Fiber length per section 10 m

Total fiber length 100 km
Rotation angle per section uniform distribution ∼ [0, 360°)
Uncoupled DGD interval [0.005, 500] ps/km
Uncoupled DGD step size 25.89% greater every iteration

Transmitter time skew 0
Receiver time skew 0

We considered both the CTA extracted directly from the received signal at polarization X, Eout,X ,
and also the CTA extracted by a combination of the polarizations X and Y, Eout,XY, given by

Eout,XY = Eout,Xcos(φ) + Eout,Y sin(φ), (24)

where φ is the angle that is tracked maximizing the CTA value [7]. The results are shown in Figure 6.
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Figure 6. Normalized clock tone amplitude as function of resulting DGD for a single-mode fiber.

We can see by Figure 6 that using the polarization rotation method [7], the CTA remain at the
maximum level until a resulting DGD of 10 ps. Since a typical modern single-mode fiber has PMD
parameter around 0.1 ps/

√
km, the CTA would only be degraded after 10,000 km, needing at least

ten times this transmission distance to drop the CTA to half of its maximum value. Therefore, for all
practical applications the vanishing of clock tone is not a problem for polarization multiplexed
transmission through single-mode fibers.

5. Clock Recovery Performance in Multi-Mode Fibers

In order to analyze clock recovery performance in multi-mode systems we used the general
configuration as shown in Figure 7. We considered 32 GBd NRZ-QPSK modulated signals spatially
multiplexed in Z = 6 degrees of freedom. The transmission link was simulated numerically and
consisted of a 3-mode FMF divided in sections of 10 km, with two degrees of freedom per mode. In the
receiver DSP, the clock extraction and resampling was performed before dynamic MIMO equalization
to enable the equalizer to keep up with slow timing drifts in steady state operation. The clock extraction
was performed per mode, so we had one value of clock tone magnitude for each of the modes.

…

…

Ksec sections of 10 km

…

FMF

D
SP

Tx 1

Tx 2

Tx D

Rx 1

Rx D

Rx 2
Mode 
MUX

Mode 
DEMUX

Figure 7. General set-up for numerical simulation model of multi-mode multiplexed systems.

To evaluate the behavior of timing synchronization in different coupling regimes, we swept the
rotation distribution of the unitary matrices V(k) and U(k) in Equation (17), measuring the crosstalk into
the fundamental mode group due to high order mode groups. The parameters used in this simulation
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are summarized in Table 3. For simplicity we did not distinguish between inter- and intra-mode group
coupling. We are not considering any losses, non-linearities and chromatic dispersion.

Table 3. Parameters for evaluation of CTA due to PMD in single-mode fiber transmission.

Parameter Value

Modulation format NRZ-QPSK
Symbol rate 32 GBd

Number of degrees of freedom 6
Fiber length per section 10 km

Total fiber length (Figure 8) 1000 km
Total fiber length (Figure 9) 100, 300, 500 and 1000 km

Uncoupled group delay (Figure 8) 0, 0.03, 0.3, 3 and 300 ps/km
Uncoupled group delay interval (Figure 9) [0.001, 1000] ps/km

Rotation angle per section zero-mean normal distribution
Rotation angle variance interval [0, 2000°]

Transmitter time skew 0
Receiver time skew 0

We show in Figure 8 the results for a 1000 km transmission of 3-mode FMF. This fiber has two
mode groups, two degrees of freedom (one mode) on fundamental group and four degrees of freedom
(two modes) in the second group. Here, the crosstalk is the ratio of the contribution of the second
mode group into the fundamental mode. We define a strong coupling regime when the crosstalk is
approximately 3 dB, the weak coupling regime when the crosstalk is lower than −18 dB and refer
to intermediate coupling regime for the region in-between. The results shown are the average of
10 random simulations for each crosstalk value in a system with no losses or chromatic dispersion.

-21 -18 -15 -12 -9 -6 -3 0 3
Crosstalk (dB)

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

 C
lo

ck
 T

on
e

∆τ = 300 ps/km 
∆τ = 3 ps/km 
∆τ = 0.3 ps/km
∆τ = 0.03 ps/km 
∆τ = 0 ps/km

Figure 8. Normalized clock tone amplitude as a function of crosstalk between mode groups in a
1000 km transmission of a 3-mode FMF for different values of uncoupled group delay.

Here, we parametrize the curves using the uncoupled group delay, ∆τ, which is the time difference
between the fastest and the slowest modes’ group velocities. As expected for zero group delay, the clock
tone remained unchanged at the maximum value irrespective of the crosstalk. However, increasing
the uncoupled group delay, we saw a dramatic drop in the clock tone quality. In the strong coupling
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case, an uncoupled group delay of less than 0.03 ps/km was required in order to still have a detectable
clock tone higher than 50% of the maximum value.

We also evaluated the behavior of clock tone quality for strong coupling regime as a function of
uncoupled group delay for different transmission distances. Results are shown in Figure 9. The clock
tone quality drops for smaller values of uncoupled group delay as the transmission distance increases,
so for long-haul MDM transmission the delay spread requirements are even tighter.

10-2 100 102

Uncoupled Group Delay (ps/km)
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100 km 
300 km 
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1000 km

Figure 9. Normalized clock tone amplitude as a function of uncoupled group delay between mode
groups in a 3-mode FMF for distinct transmission distances.

6. Conclusions

We showed through simulations that the inter-polarization time skew, polarization rotation,
and PMD can be compensated in optical systems employing single-mode fibers and, therefore, will not
affect the performance of clock synchronization. Particularly, it would need more than 10,000 km
of a modern fiber with DGD of 0.1 ps/

√
km in order to be able to see some impact of DGD on the

clock recovery performance. However, in multi-mode systems the mode coupling and delay spread
could have a impact much worse in the performance of timing synchronization. It was demonstrated
although strong coupling reduces the coupled group delay spread [11] and nonlinearities [19], the clock
tone will completely vanish even for very low group delays, making timing synchronization unfeasible.
In order to have a detectable clock tone higher than 50% of the maximum value, the multi-mode
optical fiber would need to have an impractical uncoupled group delay of less than 0.03 ps/km.
Also, we showed that increasing the transmission distance will reduce the group delay tolerance of
MDM systems even more under strong coupling regime. Possible solutions could be use of pilot
tones for timing synchronization or operation in weak coupling regime with sparsity managed MIMO
equalizers [17,18]. Other transmission impairments such as the equalization enhanced phase noise [31]
and fiber nonlinearities [32] could possibly impact the clock recovery performance and are planned to
be analyzed in future works.

Author Contributions: J.C.M.D. conceived, designed and performed the simulations; J.C.M.D., F.D.R. and D.Z.
analyzed the data and wrote the paper.

Funding: This work was supported by Villum Foundation, Søborg, Denmark, under Villum Foundation Young
Investigator program.



Future Internet 2018, 10, 59 12 of 14

Acknowledgments: The authors would like to thank Molly Piels for valuable discussions. The authors alone are
responsible for the content.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CD Chromatic dispersion
CTA Clock tone amplitude
DGD Differential group delay
DSP Digital signal processing
IM-DD Intensity modulation/direct detection
FMF Few mode fiber
MCF Multi-core fiber
MD Mode delay
MDL Mode-dependent loss
MDM Mode division multiplexing
MIMO Multiple-input multiple-output
M-PSK m-ary phase shift keying
M-QAM m-ary quadrature amplitude modulation
NCO Numeric controlled oscillator
NRZ Non-return-to-zero
PDM Polarization division multiplexing
PDL Polarization dependent loss
PMD Polarization mode dispersion
PSK Phase shift keying
P+I Proportional-plus-integral controller
QPSK Quadriphase shift keying
SDM Space-division multiplexing
SMF Single-mode fiber
WDM Wavelength division multiplexing
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