
future internet

Article

Development of a Social DTN for Message
Communication between SNS Group Members

Hidenori Takasuka 1, Koichi Hirai 2 and Kazumasa Takami 1,2,*
1 Department of Information Systems Science, Faculty of Engineering, Soka University, 1-236 Tangi-cho,

Hachioji-shi 192-8577, Japan; raito1261@gmail.com
2 Information Systems Science Major, Graduate School of Engineering, Soka University, 1-236 Tangi-cho,

Hachioji-shi 192-8577, Japan; i.remember_tt@icloud.com
* Correspondence: k_takami@soka.ac.jp; Tel.: +81-42-691-9400

Received: 22 March 2018; Accepted: 3 April 2018; Published: 4 April 2018
����������
�������

Abstract: Smartphones have the ability to communicate with other terminals through ad hoc
connections. A variety of applications have been developed to exploit this ability. The authors have
developed an Android OS (operating system) application (called “social DTN manager”) that builds
a DTN (delay, disruption, disconnection tolerant networking) among members of a social networking
service (SNS) community using a community token. The members can exchange messages over
this network. Control messages for building a DTN are forwarded to only those nodes that use
the same community token in order to reduce flooding of message copies. When a source node
sends a communication request to its destination node, they exchange control messages to establish
a communication route. Relay nodes use these messages to create and hold routing information
for these nodes in their routing tables. Thereafter, relay nodes can forward data messages based
on their routing tables. This again reduces flooding of message copies. The social DTN manager
incorporates these functions, Facebook Graph API and Google Nearby Connections API. The authors
have installed it in Android terminals and confirmed that a social DTN can successfully be built using
this application and that data messages can be exchanged between terminals via reactive routes.

Keywords: DTN (delay, disruption, disconnection tolerant networking); social networking service
(SNS); Android OS application; message communication

1. Introduction

Today, people at almost any place can access the Internet using mobile terminals by subscribing
to a mobile communication carrier. They can also access the Internet via public wireless local area
networks (LANs) that are provided at public places. Thus, pervasive social networking (PSN) [1]
environments, in which people can access social network services (SNS) anytime from anywhere,
are gradually expanding. However, public wireless LANs are not yet widely available in Japan and
thus visitors from abroad can exchange messages via the Internet only in limited places.

Smartphones, which are highly sophisticated, have the ability to set up an ad hoc connection.
A variety of applications are being studied to exploit this ability. The authors proposed to use a social
MANET (mobile ad hoc network) [2], which is constructed by identifying terminals that belong to a
certain SNS community, to expand the area where Internet access is possible beyond public wireless
LAN areas.

DTN (delay, disruption, disconnection tolerant networking) [3–11] has been studied to achieve
reliable data transfer even in an inferior communication environment in which network interruptions
or long delays occur frequently. However, if a malicious node participates in a DTN, it can disturb the
network operation. Therefore, it is necessary to study how to limit nodes that participate in a DTN.

Future Internet 2018, 10, 32; doi:10.3390/fi10040032 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/1999-5903/10/4/32?type=check_update&version=1
http://www.mdpi.com/journal/futureinternet
http://dx.doi.org/10.3390/fi10040032

Future Internet 2018, 10, 32 2 of 20

We have developed an Android OS (operating system) application that enables members of an
SNS community to build a DTN and exchange messages through it. A community token is used to
identify members of the same group. We proposed methods of creating and sharing a community
token to identify community members in [2]. Use of this token can limit terminals that participate
in a DTN and thus ensure network security. To reduce flooding of message copies for constructing
a DTN, control messages are forwarded to only those nodes that hold the same community token.
In addition, when a source node sends a communication request to its destination node, these nodes
exchange control messages to establish a communication route. Relay nodes use these messages to
create and hold routing information for these nodes in their routing tables. Thereafter, relay nodes can
forward data messages based on their routing tables. This again reduces flooding of message copies.
We have developed a social DTN manager that incorporates these functions, Facebook Graph API [12]
and Google Nearby Connections API [13], and installed it in Android terminals and confirmed that a
social DTN can successfully be built. Section 2 presents related studies and the position of the method
proposed in this paper. Section 3 describes how a social DTN can be built. Section 4 explains the
experimental social DTN manager we have built. Section 5 verifies that the experimental social DTN
manager operates as expected and evaluates route establishment time in a DTN that was built with
Android terminals in which the experimental social DTN manager was installed. Section 6 presents
conclusions and future issues.

2. Related Studies

This section presents related studies of DTN routing, the creation of a routing table and
how to build an ad hoc network among Android terminals. It also describes the position of the
proposed method.

2.1. DTN Routing

Well-known DTN routing methods include epidemic routing [4], Spray and Wait [5], location-
based routing [6], and the motion vector scheme (MoVe) [6]. Epidemic routing attempts to send
a message to the destination node by propagating copies of a bundle to surrounding nodes
unconditionally and without restrictions. In contrast, Spray and Wait suppresses resource depletion by
setting an upper limit to the number of copies that can be created. Location-based routing assumes that
all nodes involved in message relaying are informed of the location of the destination node. It makes
each of these nodes forward a message to an adjacent node that is located closer to the destination
node than itself until the message reaches the destination. Although this routing principle of selecting
the next relay node based on location information is the simplest, there is no guarantee that the
bundle-relaying node moves close to the destination node. MoVe uses motion vectors (i.e., moving
speed vectors) instead of location information in order to raise the probability at which the relaying
node moves towards the destination node. In these methods, no node holds a routing table, a table
which contains information about the relaying nodes that forward messages between the source node
and destination node.

Existing routing methods that use dedicated relay nodes include message ferry [7] and routing
based on traveling route information [8]. In the former, “ferry nodes”, which are dedicated relay
nodes, travel through clusters, are places where some or all nodes are likely to come together. Ferry
nodes have routing tables for all nodes or all clusters. In routing based on traveling route information,
dedicated relay nodes have routing tables, but no routing tables for routing inside a local area because
epidemic routing is applied there.

Other routing methods intended to reduce flooding of message copies include a method that
creates routing tables from encounter history [9], a method that calculates the probability at which
messages reach their destination nodes based on encounter probability and uses routing tables that
hold this information [10], and a method that creates routing tables based on the profiles and behavior
history of individuals (called “social-context-awareness” [11] in this paper).

Future Internet 2018, 10, 32 3 of 20

However, these methods do not use node identification information to select nodes that participate
in a DTN and thus permit all nodes to participate. In the method proposed in this paper, only those
nodes that hold a community token are permitted to participate in a DTN and these nodes have
routing tables.

2.2. Creation of a Routing Table

DTN routing tables can be created either proactively or reactively. In a proactive method,
a routing table containing information about all nodes or dedicated relay nodes is created before
communication is actually made between nodes. There are two types of proactive method: fixed
type and encounter information sharing type. In the former, routing tables are created based on
planned node contact patterns. In the latter, routing tables that contain information about all
those nodes that have encountered each other accidentally or about all dedicated nodes are created.
The sharing type is further divided into periodic sharing and passing-by sharing. In the former, nodes
periodically exchange route information messages to share route information. In the latter, nodes
share route information only when they pass by each other. On the other hand, in a reactive method,
the source node sends a route establishment request message to the destination node when it wants to
communicate with the latter. When a response message is sent back to the source node, relay nodes
involved create routing tables for this connection.

Message ferry [7] and routing based on traveling route information [8] are proactive methods
and are both the fixed type. There is a method in which information about a node located two hops
away from the encountered node is exchanged as meta information [9,10]. Passing-by methods include
PRoPHET [11] and HiBOp [14].

The proposed method is a reactive type because a route is established only when the source node
wants to communicate with the destination node. Some routing tables have information about only
those relay nodes that are within a limited number of hops to the destination node or that have an
encounter probability within a certain range. No such restrictions are applied to the proposed method.

2.3. How to Build an Ad Hoc Network among Android Terminals

In existing methods, an ad hoc network is established among Android terminals as follows.
Normal Android OS does not permit the use of ad hoc mode. Either of the following two methods
is used to get around this problem. One method is to apply a patch for permitting the use of ad hoc
mode to a custom Android OS, build a kernel and implement routing software that supports multiple
hops [15,16]. The other method is to implement a virtual environment called Debian on an Android
OS and additionally implement routing software that supports multiple hops [17]. However, these
methods cannot be used with the user privilege. It is necessary to acquire the administrator privilege.
Moreover, it is necessary to modify the OS of all terminals that participate in an ad hoc network.

2.4. Position of the Proposed Method

Table 1 classifies DTN routing methods according to the criteria used to determine flooding
of message copies as described in Section 2.1 and according to routing table creation methods as
described in Section 2.2. The proposed method identifies community members, uses routing tables
to determine whether to flood message copies, and creates routing tables reactively. There are three
different routing table creation methods: table format type, encounter probability calculation type and
social-context-awareness type.

Future Internet 2018, 10, 32 4 of 20

Table 1. Classification of routing methods according to the criteria used to determine flooding and
according to routing table creation methods.

Community
Identification

Routing
Table

Routing Table
Creation Criteria Used to Determine Flooding Routing Method

None

None

None: flooding of messages to all adjacent
nodes Epidemic [4]

Flooding of messages to nodes up to a
certain number of hops (a certain number
of copies)

Spray and Wait [5]

Distance to the destination node Location-based [6]

Motion vector to the destination node motion vector
scheme (MoVe) [6]

Used Proactive

Fixed
Routing table
(includes encounter
probability calculation
type, social-context-
awareness type)

Message ferry [7],
Routing based on
traveling route
information [8]

Encounter
information
sharing

Meta information
exchange [9,10],
PRoPHET [11],
HiBOp [14]

Present Reactive Proposed method

Table 2 compares the proposed method with existing routing methods of establishing an ad hoc
network with Android terminals, as described in Section 2.3. The proposed method builds ad hoc
connections between Android terminals using Nearby Connections API [13], which is independent of
OS. Both Bluetooth and Wi-Fi Direct can be used.

Table 2. Methods of building an ad hoc network with Android terminals.

Implementation Detailed Method Usage Conditions Position

OS modification

Custom operating system (OS) +
patches [15,16]

• This cannot be used with the
user privilege.

Existing methods
Building a virtual environment
called “Debian” [17]

• It is necessary to acquire the
administrator privilege.

• It is necessary to modify the
OS of all terminals that use
an ad hoc network.

• Either Bluetooth or Wi-Fi can
be used.

Application
Google Nearby Connections
API [13], which is independent
of OS

• This can be used with the
user privilege.

• Bluetooth and Wi-Fi Direct
can be used simultaneously.

Proposed method

3. How to Build a Social DTN

This section presents an overview of a service that uses a social DTN, and the functional
configuration of the system that we have developed as an application for Android terminals. It also
describes the procedures for creating and sharing a community token, which is a distinctive feature of
this system, and a reactive route establishment method.

3.1. Service Overview

Members of an SNS community can exchange messages over an ad hoc network, a social DTN
built with the terminals of these members, without using the SNS. An example of using this network
is shown in Figure 1.

Future Internet 2018, 10, 32 5 of 20

Figure 1. Example of using a social DTN (delay, disruption, disconnection tolerant networking). (a) The
left figure shows an environment, such as an airport, where the user (e.g., a visitor from abroad) can
access the Internet; (b) The right figure shows an environment, such as on the street, where the user
cannot access the Internet.

The authors proposed a method in which people (who are assumed to be visitors from abroad)
use a community token by interacting with an SNS in [2]. The user creates a community token and
uploads it to an SNS. Relay nodes that periodically search for community tokens download uploaded
community tokens via the SNS and hold them. After that, users can use a community token to identify
terminals that belong to the same SNS community. They can participate in an ad hoc network in the
background and use DTN communication.

In the proposed social DTN and message communication, ad hoc communication between
terminals and mobile carrier communication do not always need to operate simultaneously. The current
research assumes that the users are visitors from abroad and that they access only public wireless
LANs. As shown in the left image in Figure 1, a user in an airport or a hotel can access the Internet and
browse SNSs or post messages there. As shown in the right image in Figure 1, a user touring on the
street cannot make message communication with other members of the group unless there happens to
a public wireless LAN. The proposed social DTN is useful in such a case. People, such as students,
who subscribe to a mobile carrier but want to reduce the amount of data communication to decrease
communication costs can also be candidate users of the social DTN. Even when users who have none
of the above-mentioned requirements become relay nodes, there are no restrictions on simultaneous
use of ad hoc communication and mobile carrier communication.

3.2. DTN Architecture

The proposed DTN architecture is shown in Figure 2. The ad hoc communication function uses
Nearby Connections API [13] as well as Bluetooth and Wi-Fi Direct to establish a communication link
between terminals that share the same community token. After that, a route is established and data
communication is started based on the DTN routing protocol.

Nearby Connections API [13] provides several strategies. We have selected “P2P_STAR,” which
is a one-to-many P2P strategy and offers high communication speed. We have used a mode in
which there are N Discoverers (children) for each Advertiser (parent). The Advertiser broadcasts a
communication request message, specifying two parameters: Strategy and Service ID. Service ID is an
application-unique value used to identify communication made by the same application at Nearby
Connections API [13]. It is set by the application developer. The Discoverer receives a broadcast
message that has the same Strategy and Service ID parameters as those specified by the Advertiser.
It also sends a communication request message. Both the Advertiser and the Discoverer check the
communication request and Service ID sent from the other terminal, and if they both give permission,

Future Internet 2018, 10, 32 6 of 20

a communication link is established between the two terminals. The communication phase moves
to the phase in which data, such as text and file, can be exchanged. After that, data exchange can
continue until one of the two terminals disconnects the communication.

Figure 2. Proposed DTN architecture.

3.3. How to Create and Share a Community Token

3.3.1. How to Create a Community Token

Use of a community token was already proposed in [2]. The contents of the community token
used in this system are shown in Table 3. Group ID identifies an SNS group. Token ID is a character
string used to determine which community token is new. Its initial value is the MAC (Media Access
Control) address of the terminal that has created the community token. The value is incremented by
one each time the community token is updated. Updating of a community token becomes necessary
when a member newly joints or leaves an SNS group. The above-mentioned updating mechanism
discriminates between old and new token IDs to prevent an old community token from being used
by mistake. Max-Battery of Device (MBoD) is the maximum level of battery power consumption
permitted when a terminal operates as a relay node.

Table 3. Contents of a community token.

Name Overview Usage

Group ID The ID used in the social networking service
(SNS) is used. This is used to identify a group.

Token ID

The initial value is the MAC (Media Access
Control) address of the source node.
The value is incremented by one each time
the community token is updated.

This is used to determine which
community token is new.

Max-Battery of
Device (MBoD)

This is the maximum level of battery power
consumption in communication. This is
reduced by the level of battery power
consumed during the DTN communication.

If the value of a node becomes “0”,
the node is eliminated from
routing in order to avoid excessive
use of resources.

Source node address This is the MAC address of the source node
that has created the community token.

This is used for routing.
(See Section 3.4 for detail).

3.3.2. How to Obtain Group Information and Share a Community Token

Facebook has been used as an SNS for sharing a community token. An application that
incorporates Facebook Graph API [12] has been developed. Nodes obtain Facebook group information,
create a community token and manage (i.e., post and delete) it. A community token is created from a

Future Internet 2018, 10, 32 7 of 20

user-unique access token issued by Facebook. Therefore, users obtain a Group ID publicized in each
Facebook group. Specifically, a node sends a GET request to the Facebook group node via Facebook
Graph API [12]. The Facebook group node sends group information back to the user as a response.
The application that has received it extracts a Facebook group ID from it. The sequence of steps needed
for a node to obtain group information is shown in Figure 3a.

To share the created community token with other participants, the user posts a message with a
message ID added to the group. The message ID indicates that the message contains a community
token. The character string “Token” is used as the message ID. When a group is created in Facebook,
a Facebook group ID is assigned to it. It is a 16-digit number unique to the group. It is used to indicate
which group the community token has been created for. The sequence of steps needed for a group to
share information is shown in Figure 3b.

Figure 3. Sequences for group information acquisition and community token sharing. (a) Group
information acquisition; (b) Community token sharing.

3.4. DTN Routing Protocol

A reactive routing protocol has been designed by referring to the AODV (Ad-hoc On-Demand
Distance Vector) protocol [18], which is a representative MANET (mobile ad-hoc network) protocol.

Future Internet 2018, 10, 32 8 of 20

The aim of this design was that, since nodes that make up the DTN are mobile terminals, we wanted to
reduce the consumption of their resources as much as possible. In other words, a route is established
between nodes only when there is a request for message communication between these nodes.
Only during communication, relay nodes need to hold resources for that communication. However,
unlike MANET, mesh-network-based communication is not possible because Nearby Connections
API [13] is used. Only ad hoc communication is possible. Therefore, we describe a function that
stores, carries and forwards a message through repetitive connections and disconnections of an ad hoc
communication link.

3.4.1. Routing Message Type and Creation of a Routing Table

Route establishment operation starts when the source node sends a route establishment request
(rreQ_m) to the destination node. A relay node that has received this request creates a routing table
entry with the destination node address (DA) in the message as the terminal node address (TNA),
and the address of the adjacent node that forwarded this message as the relay node address (RNA).
It then forwards the message. The destination node that has received the route establishment request
(rreQ_m) creates a route establishment response (rreP_m) with the source node (SA) as its destination
and sends it back to the adjacent node from which it has received the route establishment request.
A node that has received this message completes the routing table with the source node address as the
terminal node address, and the address of the adjacent node that has sent the message as the relay
node address. Relay nodes repeat this routing table creation until the route is established up to the
source node. After that, the source node sends data messages (dsnD_m), which contain text, image,
etc., to the destination node. A relay node selects a relay node with an RNA whose TNA is identical
to the DA in the received message (dsnD_m) as the relay node to which it will forward the message.
This is repeated until the message reaches the destination node.

The message types and message elements described above are shown in Table 4. The route
establishment request ID is a message used to indicate which route establishment request is new.
Its initial value is “1”. It is incremented by one each time the source node sends a route establishment
request. The MAC address of each terminal is used as the DA and SA for that terminal. The structure
of a routing table is shown in Table 5.

Table 4. Message types and elements route establishment request (rreQ_m); route establishment
response (rreP_m); data messages (dsnD_m).

Element
Type rreQ_m rreP_m dsnD_m

Message type m_type (1 byte) Yes Yes Yes
Route establishment request ID (8 bytes) Yes Yes Yes
Destination node address DA (17 bytes) Yes Yes Yes
Source node address SA (17 bytes) Yes Yes Yes
Transmitted data (n bytes) No No Yes

Table 5. Structure of a routing table.

Element Remarks

Terminal node address (TNA) DA and SA, which are elements in each message

Relay node address (RNA)

The address of the adjacent node that has received
rreQ_m or rreP_m that contains TNA. The SA of that
message is set in TNA. The address of the adjacent
node is set in RNA.

Future Internet 2018, 10, 32 9 of 20

3.4.2. Algorithm for Sending Messages

This subsection describes the algorithm used by the Advertiser when the user requests the
application to send a message. The Advertiser uses the Algorithm 1 to select the node to which it will
forward the message.

Algorithm 1. Algorithm for Sending Messages

Step 1: The Advertiser starts Nearby Connections API [13] and begins to search for a Discoverer.
Step 2: If the Advertiser finds a Discoverer, it compares the Service ID of its own terminal and that of the
Discoverer.

Case 2-1: If the two Service IDs are not identical, the Advertiser discards the communication with the
Discoverer. Go to Step 4.
Case 2-2: If the two Service IDs are identical, the Advertiser collects the MAC addresses of all Discoverers.
Go to Step 3.

Step 3: The Advertiser decides as follows depending on the type of message it will send:
Case 3-1: If the message is rreQ_m, the Advertiser sends the message. Go to Step 4.
Case 3-2: If the message is rreP_m or dsnD_m, the Advertiser checks the following:

IF 3-2: the DA in each message exists in the TNA in its routing table,
THEN 3-2:
IF 3-2-1: the RNA associated with that TNA exists in the group of MAC addresses collected,

THEN 3-2-1: the Advertiser sends the message. Go to Step 4.
ELSE 3-2-1: the Advertiser discards the message. Go to Step 4.

ELSE 3-2: the Advertiser discards the message. Go to Step 4.
Step 4: The Advertiser makes a transition to the halt state.

3.4.3. Algorithm for Receiving Messages

This subsection describes the Algorithm 2 used by the Discoverer to selectively receive a message
from the Advertiser. The acceptance analysis tree in Step 3 is shown in Figure 4.

Figure 4. Analysis tree to decide whether to accept the received message.

Future Internet 2018, 10, 32 10 of 20

Algorithm 2. Algorithm for Receiving Messages

Step 1: The Discoverer starts Nearby Connections API [13] and begins to search for the Advertiser.
Step 2: If the Discoverer finds the Advertiser, it compares the Service ID of its own terminal and that of the
Advertiser.

Case 2-1: If the two Service IDs are not identical, the Discoverer discards the communication with the
Advertiser. Go to Step 4.
Case 2-2: If the two Service IDs are identical, the Discoverer collects the MAC address of the Advertiser.
Go to Step 3.

Step 3: The Discoverer decides as follows depending on the type of message it will send:

Case 3-1: If the message is rreQ_m, the Discoverer decides as follows depending on the role of its node.

Case 3-1-1: If the node is a relay node, the Discoverer sets the DA in the TNA, and sets the MAC
address of the node that has sent that message in the RNA in its routing table. The Discoverer stores
the received message in its storage so that it can forward it to the next relay node. Go to Step 4.
Case 3-1-2: If the node is the destination node, the Discoverer sets the SA in the TNA, and sets the
MAC address of the node that has sent that message in the RNA in its routing table. It creates rreP_m
and stores it in its storage. Go to Step 4.

Case 3-2: If the message is rreP_m, the Discoverer checks the following:

IF 3-2: the DA in each message exists in the TNA in the routing table,
THEN 3-2: the Discoverer decides as follows depending on the role of its node.
Case 3-2-1: If the node is a relay node, the Discoverer takes out the RNA associated with the TNA

and stores it in its storage so that it can forward it to that relay node. The Discoverer sets the SA in
the TNA and sets the MAC address of the node that has sent that message in the RNA associated
with that TNA in the routing table. Go to Step 4.

Case 3-2-2: If the node is a source node, the Discoverer sets the SA in the TNA, and sets the MAC
address of the node that has sent that message in the RNA associated with that TNA in the routing
table. Go to Step 4.

ELSE 3-2: the Discoverer discards the message. Go to Step 4.

Case 3-3: If the message is dsnD_m, the Discoverer decides as follows:

IF 3-3: the DA in each message exists in the TNA in the routing table,
THEN 3-3: the Discover decides as follows depending on the role of its node.

Case 3-3-1: If the node is a relay node, the Discoverer checks MBoD.
IF 3-3-1: MBoD = 0,

THEN 3-3-1: the Discoverer discards that message. Go to Step 4.
ELSE 3-3-1: the Discoverer takes out the RNA associated with the TNA and stores it in its storage so that it
can forward it to that relay node. Go to Step 4.

Case 3-3-2: If the node is a destination node, the Discoverer takes out the data, and hands them to
the application.

ELSE 3-3: the Discoverer discards the message. Go to Step 4.

Step 4: The Discoverer makes a transition to the halt state.

3.5. Message Sequence for Establishing a Route

The sequence of message exchanges for establishing routes and exchanging data is shown in
Figure 5. Since Nearby Connections API [13] is used, the discovery phase and the advertising phase are
also shown. Message transmission takes place in the advertising phase while message reception takes
place in the discovery phase. “Move” means moving to one of the relay nodes 1 to N. The definitions
of route establishment request time, route establishment response time, and data exchange time are
also shown in Figure 5.

Future Internet 2018, 10, 32 11 of 20

Figure 5. Sequence of message exchange for DTN communication. (a) Route establishment; (b)
Data exchange.

4. Development of an Experimental Social DTN Manager Application

We have developed an experimental system application, called “social DTN manager.” The
functions implemented and the development environment used are described below. Some of the
graphical user interfaces (GUIs) used in the experimental system are also shown.

4.1. Functions Implemented in the System

The system configuration of the application is shown in Figure 6. This Android application is
mainly written in Java JDK 8. It obtains account information, information about the group the user
belongs to and messages generated within the group from Facebook via Facebook Graph API [12].
It also posts or deletes messages. In addition, it makes DTN communication with the social DTN
managers on other terminals via Nearby Connections API [13] using Bluetooth or Wi-Fi Direct. Service
ID, which is used to authenticate an ad hoc communication link, consists of application package name,
Group ID of the community token, and the source node address of the community token.

Future Internet 2018, 10, 32 12 of 20

Future Internet 2018, 10, x FOR PEER REVIEW 12 of 20

Main functions implemented and their program sizes are shown in Table 6. The application

development environment and the application execution conditions are shown in Table 7.

Figure 6. Configuration of the experimental system.

Table 6. Main functions implemented.

Function Name
Program

Size
Functional Overview

Linkage with

Facebook
853 lines

Enables the user to use his/her own Facebook account to browse, post

or delete messages in the group he/she belongs to as the

administrator.

Terminal information

acquisition
191 lines Obtains the terminal’s MAC address and MBoD.

Community token

management
639 lines

Uploads or downloads a community token created using terminal

information to or from the Facebook group.

DTN routing 2087 lines Establishes an ad hoc communication link and performs routing.

Text and file

exchange
244 lines

Exchanges text and files with terminals to which a communication

link has been established.

Table 7. Development environment and application execution conditions.

Classification Item Contents

Development

environment

Machine DELL OptiPlex 3040

OS Windows10 Pro

Application development software Android Studio 3.0 (Gradle version 4.1)

Build tool API 26.0.2: Android8.0 (Oreo) [19]

Application execution

conditions

Application name Social DTN Manager

Operating environment Android sdk 15 (Android 4.3) or higher

Application type Android SDK, Java

Third-party plug-ins

Facebook Android SDK [20]

Google Play Service API (nearby) [21]

Google gson [22]

4.2. GUI of the Social DTN Manager

We developed two or three GUIs for each function listed in Table 6. The GUI for Linkage to

Facebook and that for text and file exchange are shown in Figure 7. Figure 7a shows the GUI layout

for a case where there exists a community token created by the user. The user can confirm the

Facebook group name and the community token through this GUI. Icons for deleting a community

token and starting a connection are provided. Figure 7b show the GUI layout used by the user to

select the type of message he/she wants to create.

Terminal

Android Application

Social DTN Manager

Facebook
Groups

Internet

Facebook
Account

HTTPS

Adjacent
terminal

•Linkage with Facebook
•Terminal information acquisition
•Community token management

•DTN routing
•Text and file exchange

Bluetooth,
Wi-Fi Direct

Facebook
Graph

API [12]

Nearby
Connections

API [13]

Figure 6. Configuration of the experimental system.

Main functions implemented and their program sizes are shown in Table 6. The application
development environment and the application execution conditions are shown in Table 7.

Table 6. Main functions implemented.

Function Name Program Size Functional Overview

Linkage with Facebook 853 lines
Enables the user to use his/her own Facebook account to
browse, post or delete messages in the group he/she belongs to
as the administrator.

Terminal information
acquisition 191 lines Obtains the terminal’s MAC address and MBoD.

Community token
management 639 lines Uploads or downloads a community token created using

terminal information to or from the Facebook group.

DTN routing 2087 lines Establishes an ad hoc communication link and performs routing.

Text and file exchange 244 lines Exchanges text and files with terminals to which a
communication link has been established.

Table 7. Development environment and application execution conditions.

Classification Item Contents

Development
environment

Machine DELL OptiPlex 3040
OS Windows10 Pro

Application development software Android Studio 3.0 (Gradle version 4.1)
Build tool API 26.0.2: Android8.0 (Oreo) [19]

Application
execution conditions

Application name Social DTN Manager
Operating environment Android sdk 15 (Android 4.3) or higher

Application type Android SDK, Java

Third-party plug-ins
Facebook Android SDK [20]

Google Play Service API (nearby) [21]
Google gson [22]

4.2. GUI of the Social DTN Manager

We developed two or three GUIs for each function listed in Table 6. The GUI for Linkage to
Facebook and that for text and file exchange are shown in Figure 7. Figure 7a shows the GUI layout for
a case where there exists a community token created by the user. The user can confirm the Facebook
group name and the community token through this GUI. Icons for deleting a community token and
starting a connection are provided. Figure 7b show the GUI layout used by the user to select the type
of message he/she wants to create.

Future Internet 2018, 10, 32 13 of 20

Figure 7. Graphical user interface (GUI) examples of the social DTN manager application developed.
(a) GUI layout for linkage to Facebook after a community token has been created; (b) Message type
selection dialog for sending text or files.

5. Evaluation

This section presents the results of the operation test of the experimental application, and
measurements of route establishment time and data transmission time as well as measurement
conditions.

5.1. Operation Test of the Social DTN Manager

To verify the operation of the experimental application, we created and shared a community token
through linkage with Facebook and established a route between the source node and the destination

Future Internet 2018, 10, 32 14 of 20

node. A character string or an image file registered by the source node was sent to the destination
node. The specifications of the terminals used in the experiment are shown in Table 8. The structure of
the experimental network is shown in Figure 8. The source node, the destination node and 1 to 4 relay
nodes were laid out along a line 100 m long or 250 m long. All terminals had the same community
token. The source node and the destination node were fixed, and relay nodes were carried by persons,
who walked at a speed of about 5 km/h. A 55-kilobyte-character string was created at the source node
and sent to the destination node. A 1-Mbyte image file was also sent.

Table 8. Specifications of the terminals used in the experiment.

Terminal Model OS Version Usage

Nexus5 Android 7.1.2 Source node

HUAWEI Y6 SCL-L02
IMEI:861105030008770 Android 7.1.2 Relay node

HUAWEI Y6 SCL-L02
IMEI: 861105030097666 Android 7.1.2 Relay node

BLUEDOT BNP-500
Serial: ZLY5CUNNQS6HUWK7 Android 4.4.2 Relay node

BLUEDOT BNP-500
Serial: OVTSEY79QO4HZT8D Android 4.4.2 Relay node

NEC PC-TE507FAW Android 6.0.1 Destination node

Figure 8. Structure of the experimental network.

An example of sending text from the source node for the first time is described below along with
terminal display images.

The user taps “Text” on the screen shown in Figure 7b. The user enters a character string on the
screen in Figure 9a, and taps “OK.” If the routing table of the source node has no information about
the destination node address, the source node suspends discovery operation and starts advertising
operation. Thus, an rreQ_m is broadcast.

When a relay node starts the application and starts discovery operation, the screen shown in
Figure 9b is displayed. When the relay node discovers the rreQ_m, it attempts to set up a connection
to the terminal that has sent the rreQ_m. After this connection is set up, the relay node receives the
rreQ_m and recognizes that it is a relay node. To forward the rreQ_m, the relay node starts advertising
operation as shown in Figure 9c.

When the destination node starts the application and starts discovery operation (Figure 9b),
it discovers the rreQ_m being broadcast, and attempts to set up a connection to the relay node. After

Future Internet 2018, 10, 32 15 of 20

this connection is set up, the destination node receives the rreQ_m, recognizes that it is the destination
node, creates an rreP_m, and starts advertising operation (Figure 9c).

When the relay node discovers rreP_m (Figure 9b), it checks whether its routing table has
information about the destination of that message. If it has, it establishes an ad hoc connection to the
terminal that has sent the rreP_m. After that, it receives the rreP_m, recognizes that it is a relay node,
and starts advertising operation to forward the rreP_m (Figure 9c).

When the source node receives the rreP_m, it sends to the destination node a dsnD_m that
contains the text input by the user. We confirmed that the destination node successfully received
that message.

Figure 9. Text data transmission screen. (a) Text input screen; (b) Screen when discovery operation has
been started; (c) Screen when advertising operation has been started.

5.2. Route Establishment Time

We measured the time it takes between the time when the source node transmits an rreQ_m and
the time when it receives an rreP_m. The route establishment request time is defined as a period
between the time when the source node starts advertising operation and the time when the destination
node has received the message and confirms that the communication with the relay node has been
discarded, as shown in Figure 5. The route establishment response time is defined as a period between

Future Internet 2018, 10, 32 16 of 20

the time when the destination node completes the creation of an rreP_m based on the rreQ_m it has
received and the time when the source node has received the rreP_m and starts advertising operation
to send data, as shown in Figure 5. These two types of time were calculated from stored log data.

Using the terminals shown in Table 6 and the network structure shown in Figure 8, we measured
the route establishment time three times for each of the three patterns (three different numbers of
hops). Detailed experimental conditions are shown in Table 9. Relay nodes were located between the
source node and the destination node. When a relay node received a message from the source node,
the person who held the relay node began to walk. The average values of the measurements are shown
in Figure 10.

Table 9. Experimental conditions for the measurement of the route establishment time.

Item Value

Number of terminals 3, 4 or 6
Number of hops (i.e., number of relay nodes) 1, 2 or 4
Number of experiments 3 experiments per pattern
Use of different community tokens None

Figure 10. Required route establishment time.

In cases where the distance was 100 m, as the number of hops was increased from one to two,
the average route establishment time increased moderately from 142 s to 185 s but when the number
of hops was increased to four, the average route establishment time jumped to 437 s. In cases where
the number of hops was two, the route establishment time for a distance of 100 m was much shorter
than that for a distance of 250 m. However, in cases where the number of hops was four, the route
establishment time for a distance of 250 m was 495 s, which was only slightly longer than the route
establishment time for a distance of 100 m, which was 437 s. In spite of the fact that the difference
in distance was 150 m, the difference in route establishment time was only 58 s. This difference was
very small considering that it takes 108 s for a person to walk 150 m at a speed of 5 km/h. The route
establishment time per distance for the case of 100 m was much longer than that for the case of 250 m.
This indicates that, when there are many other terminals in an area within which a terminal can
communicate with another terminal, the route establishment time increases.

More specifically, according to the specifications of Nearby Connections API [13], a communication
is established when the Advertiser broadcasts a message and the Discoverer receives that message.

Future Internet 2018, 10, 32 17 of 20

If there are many Advertiser terminals, it takes a longer time for the Discoverer to receive messages.
Specifically, even if a terminal sets up a connection with another terminal, it rejects reception of
messages from this terminal if it finds that it does not have information about this terminal in its
routing table. In other words, a terminal cannot decide whether to permit message exchange with
another terminal until after it has set up a connection with that terminal. This means that, the more
terminals there are in an area within which a terminal can communicate with other terminals, the more
processing load it takes for the terminal to receive messages. This results in an increase in the time
needed to establish a route.

In addition, Nearby Connections API [13] uses a cool time at the phase when a terminal sends
communication link requests to other terminals. A Discoverer may discover an Advertiser that is not
listed in its routing table and try to communicate with it. In such a case, communication is ultimately
not established and discarded. However, according to the specifications of Nearby Connections
API [13], the Discoverer must wait for a certain time (about 30 s) after this attempted communication
was discarded before it can start discovery operation again. During this cool time, the Discoverer cannot
discover other nodes. This is one of the reasons why it took a long time to establish a communication.
As in the previous case, the more Discoverers there are in an area within which the Advertiser can
communicate with another node, the more frequently this type of event occurs.

5.3. Route Establishment Time When There Are Terminals Belonging to Different Groups

We made experiments to examine whether route establishment time changes if multiple terminals
try to establish routes and if there are terminals nearby that have community tokens different from
that of a particular terminal. The network structure used in this experiment is shown in Figure 11.
The conditions for this experiment are shown in Table 10.

Figure 11. Network structure used in the experiment for a case where terminals belonging to different
groups exist.

The results of the experiment are shown in Figure 12. In the case of one hop, the route
establishment time was shorter when all terminals belonged to the same group (homogeneous).
However, in the case of two hops, the route establishment time was shorter when there were
terminals that belonged to different groups (heterogeneous). This is because the time needed to
start communication varies because of the specifications of Nearby Connections API [13], as mentioned
in Section 5.2. However, terminals belonging to another group hardly affected the route establishment

Future Internet 2018, 10, 32 18 of 20

time. The reason is that, in this system, a terminal decides whether to establish a communication with
another terminal successively based on both community tokens and information in its routing table.

Table 10. Experimental conditions for a case where terminals belonging to different groups exist.

Item Value

Number of terminals 5 or 6
Number of hops 1 or 2
Number of experiments 2 per pattern
Number of terminals belonging to a different group 1 advertising terminal and 1 discovering terminal
Number of different types of community token 3

Figure 12. Route establishment time when there are terminals belonging to different groups.

5.4. Data Exchange Time

We measured the time needed for a number of terminals to exchange information after they have
established routes. The network structure used is the same as shown in Figure 8. The experimental
conditions are shown in Table 11.

Table 11. Experimental conditions for measuring data exchange time.

Item Value

Number of terminals 3, 4 or 6
Number of hops 1, 2 or 4
Number of experiments 3 per pattern
Distance between the source node and the destination node 25 or 100 m (250 m only in the case of 4 hops)

Exchanged data Character string (TEXT = 55 bytes),
Image file (FILE = 1 Mbytes)

Presence of different community tokens None

The results of the experiment are shown in Figure 13. The data exchange time is the time needed
to execute everything in Figure 5b. It increases as the number of hops increases or the distance between
the source node and the destination node increases. For the reason explained in Section 5.2, the data
exchange time increases when there are many terminals in the area concerned. However, when an
image file is to be sent, Nearby Connections API [13] automatically decides whether Bluetooth or Wi-Fi
Direct is used. The user cannot make a selection. Therefore, we were not able to know which of the
two was used.

Future Internet 2018, 10, 32 19 of 20

Figure 13. Data exchange time.

6. Conclusions

The authors have developed an Android OS application that enables members of an SNS
community to build a DTN by sharing a community token and to exchange messages. When the
source node wants to establish a communication to the destination node in the DTN, they exchange
control messages for route establishment. These messages are also used by relay nodes to create their
routing tables. This can reduce flooding of message copies. The developed application is a social DTN
manager that incorporates these functions and Facebook Graph API [12] and Nearby Connections
API [13]. We have installed it in Android terminals and confirmed that a social DTN can successfully
be built and that nodes can exchange data.

A problem with the above implementation was that the communication speed was not stable
because of the restrictions imposed by the API specifications. To further improve the performance,
it is necessary to devise a way to resolve hardware restrictions. It is also necessary to study the
implementation of a function that enables the source node to access the Internet via the destination
node that is connected to a Wi-Fi access point. Furthermore, it is necessary to verify updating of the
token ID of a community token when the number of SNS group members change and the method of
discriminating between new and old token IDs.

Author Contributions: Hidenori Takasuka and Koichi Hirai designed the proposed method, developed the
software prototype of the evaluation system, collected the evaluation data and wrote the initial draft of the paper.
Kazumasa Takami provided the direction for their research activities and refined the proposed method, the
analysis of the evaluation results and the writing of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Papadopoulou, E.; Gallacher, S.; Taylor, N.K.; Williams, M.H.; Blackmun, F.L.; Ibrahim, I.S.; Lim, M.I.;
Mimtsoudis, I.; Skillen, P.; Whyte, S. Combining Pervasive Computing with Social Networking for a Student
Environment. In Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing,
Auckland, New Zealand, 20–23 January 2014; pp. 11–19.

2. Hirai, K.; Takami, K. Building a Social MANET based on an SNS Community Token. In Proceedings of the
13th International Symposium on Frontiers of Information Systems and Network Applications (FINA-2017),
Taipei, Taiwan, 27–29 March 2017.

Future Internet 2018, 10, 32 20 of 20

3. Tsuru, M.; Uchida, M.; Takine, T.; Nagata, A.; Matsuda, T.; Miwa, H.; Yamamura, S. Delay tolerant networking
technology: The latest trends and prospects. IEICE Commun. Soc. Mag. 2011, 2011, 57–68. [CrossRef]

4. Vahdat, A.; Becker, D. Epidemic Routing for Partially-Connected Ad Hoc Networks; Technical Report CS-2000-06;
Duke University: Durham, NC, USA, 2000.

5. Spyropoulos, T.; Psounis, K.; Raghavendra, C.S. Spray and Wait: An Efficient Routing Scheme for Intermittently
Connected Mobile Networks. In Proceedings of the ACM SIGCOMM’05 Workshops, Philadelphia, PA, USA,
22–26 August 2005.

6. LeBrun, J.; Chuah, C.; Ghosal, D.; Zhang, M. Knowledge-Based Opportunistic Forwarding in Vehicular
Wireless Ad Hoc Networks. In Proceedings of the IEEE Vehicular Technology Conference (VTC 2005-Spring),
Stockholm, Sweden, 30 May–1 June 2005.

7. Zhao, W.; Ammar, M.; Zegura, E. A Message Ferrying Approach. In Proceedings of the 5th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’04), Tokyo, Japan, 24–26 May 2004;
pp. 187–198.

8. Okamoto, K.; Takami, K. Routing Based on Information about the Routes of Fixed-Route Traveling Nodes
and on Destination Areas Aimed at Reducing the Load on the DTN. Future Internet 2016, 8, 15. [CrossRef]

9. Ippisch, A.; Graffi, K. Infrastructure Mode Based Opportunistic Networks on Android Devices. In Proceedings
of the IEEE 31st International Conference on Advanced Information Networking and Applications (AINA
2017), Taipei, Taiwan, 27–29 March 2017.

10. Ippisch, A.; Sati, S.; Graffi, K. Device to device communication in mobile Delay Tolerant networks. In
Proceedings of the 21st International Symposium on Distributed Simulation and Real Time Applications
(DS-RT), Rome, Italy, 18–20 October 2017; pp. 91–98.

11. Lindgren, A.; Doria, A.; Schel’en, O. Probabilistic Routing in Intermittently Connected Networks. ACM
SIGMOBILE Mobile Comput. Commun. Rev. 2003, 7, 19–20. [CrossRef]

12. Facebook for Developers. Available online: https://developers.facebook.com/docs/graph-api/overview/
(accessed on 6 January 2018).

13. Google Developers. Available online: https://developers.google.com/nearby/connections/overview
(accessed on 6 January 2018).

14. Boldrini, C.; Conti, M.; Jacopini, J.; Passarella, A. HiBOp: A History Based Routing Protocol for Opportunistic
Networks. In Proceedings of the IEEE International Symposium on World of Wireless, Mobile and
Multimedia Networks (WoWMoM’07), Helsinki, Finland, 18–21 June 2007; pp. 1–12.

15. Cyanogenmod. Available online: http://web.archive.org/web/20160410142436 (accessed on 26 February
2018).

16. Thinktube Inc. Available online: http://www.thinktube.com/android-tech/46-android-wifi-ibss (accessed
on 26 February 2018).

17. Debian Kit for Android. Available online: http://sven-ola.commando.de/repo/debian-kit-en.html
(accessed on 26 February 2018).

18. RFC 3651—Ad Hoc On-Demand Distance Vector (AODV) Routing. Available online: https://www.ietf.org/
rfc/rfc3561.txt (accessed on 21 March 2018).

19. Android Studio, SDK Platform Tools Release Notes. Available online: https://developer.android.com/
studio/releases/platform-tools.html (accessed on 4 March 2018).

20. Facebook Android SDK. Available online: https://developers.facebook.com/docs/android?locale=en_US
(accessed on 4 March 2018).

21. Google Play Service API (Nearby). Available online: https://developers.google.com/android/guides/setup
(accessed on 4 March 2018).

22. Github Google-Gson. Available online: https://github.com/google/gson (accessed on 4 March 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1587/bplus.2011.16_57
http://dx.doi.org/10.3390/fi8020015
http://dx.doi.org/10.1145/961268.961272
https://developers.facebook.com/docs/graph-api/overview/
https://developers.google.com/nearby/connections/overview
http://web.archive.org/web/20160410142436
http://www.thinktube.com/android-tech/46-android-wifi-ibss
http://sven-ola.commando.de/repo/debian-kit-en.html
https://www.ietf.org/rfc/rfc3561.txt
https://www.ietf.org/rfc/rfc3561.txt
https://developer.android.com/studio/releases/platform-tools.html
https://developer.android.com/studio/releases/platform-tools.html
https://developers.facebook.com/docs/android?locale=en_US
https://developers.google.com/android/guides/setup
https://github.com/google/gson
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Studies
	DTN Routing
	Creation of a Routing Table
	How to Build an Ad Hoc Network among Android Terminals
	Position of the Proposed Method

	How to Build a Social DTN
	Service Overview
	DTN Architecture
	How to Create and Share a Community Token
	How to Create a Community Token
	How to Obtain Group Information and Share a Community Token

	DTN Routing Protocol
	Routing Message Type and Creation of a Routing Table
	Algorithm for Sending Messages
	Algorithm for Receiving Messages

	Message Sequence for Establishing a Route

	Development of an Experimental Social DTN Manager Application
	Functions Implemented in the System
	GUI of the Social DTN Manager

	Evaluation
	Operation Test of the Social DTN Manager
	Route Establishment Time
	Route Establishment Time When There Are Terminals Belonging to Different Groups
	Data Exchange Time

	Conclusions
	References

