
future internet

Article

Elastic Scheduling of Scientific Workflows under
Deadline Constraints in Cloud
Computing Environments

Nazia Anwar 1,2 and Huifang Deng 1,*
1 School of Computer Science and Engineering, South China University of Technology,

Guangzhou 510006, China; naziascut@gmail.com
2 Department of Computer Science, University of Education, Lahore 54770, Pakistan
* Correspondence: hfdeng@scut.edu.cn; Tel.: +86-189-0300-1886

Received: 19 November 2017; Accepted: 2 January 2018; Published: 7 January 2018

Abstract: Scientific workflow applications are collections of several structured activities and
fine-grained computational tasks. Scientific workflow scheduling in cloud computing is a challenging
research topic due to its distinctive features. In cloud environments, it has become critical to perform
efficient task scheduling resulting in reduced scheduling overhead, minimized cost and maximized
resource utilization while still meeting the user-specified overall deadline. This paper proposes
a strategy, Dynamic Scheduling of Bag of Tasks based workflows (DSB), for scheduling scientific
workflows with the aim to minimize financial cost of leasing Virtual Machines (VMs) under a
user-defined deadline constraint. The proposed model groups the workflow into Bag of Tasks
(BoTs) based on data dependency and priority constraints and thereafter optimizes the allocation
and scheduling of BoTs on elastic, heterogeneous and dynamically provisioned cloud resources
called VMs in order to attain the proposed method’s objectives. The proposed approach considers
pay-as-you-go Infrastructure as a Service (IaaS) clouds having inherent features such as elasticity,
abundance, heterogeneity and VM provisioning delays. A trace-based simulation using benchmark
scientific workflows representing real world applications, demonstrates a significant reduction in
workflow computation cost while the workflow deadline is met. The results validate that the proposed
model produces better success rates to meet deadlines and cost efficiencies in comparison to adapted
state-of-the-art algorithms for similar problems.

Keywords: IaaS cloud; scientific workflow; resource provisioning; scheduling; cost minimization;
deadline-constrained

1. Introduction

Various scientific domains such as biology, medicine, planetary science, astronomy, physics,
bioinformatics and environmental science, often involves the use of simulations of large-scale
complex applications for validating behavior of different real-world activities. Most of such scientific
applications are constructed as workflows containing a set of computational tasks linked via control
and data dependencies. The workflow is partitioned into multiple tasks which may have different sizes
and require different running times ranging from tens of seconds to multiple minutes [1]. Workflow
scheduling is a process of mapping workflow tasks to processing resources called Virtual Machines
(VMs) and managing their execution while satisfying all dependencies, constraints and objective
functions. It is well-known that workflow scheduling problems are Nondeterministic Polynomial time
(NP)-complete [2], so finding the perfect solution in polynomial time is not viable in all cases. Efficiently
executing such workflows within a reasonable amount of time usually require massive storage
and large-scale distributed computing infrastructures such as cluster, grid, or cloud. Among such

Future Internet 2018, 10, 5; doi:10.3390/fi10010005 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi10010005
http://www.mdpi.com/journal/futureinternet


Future Internet 2018, 10, 5 2 of 23

infrastructures, cloud computing has emerged as an economical and scalable distributed computing
environment for the design and execution of large and complex scientific workflow applications [3].
However, cloud environments may incur significant computing overheads that can adversely affect
the overall performance and costs of the workflow execution [4]. In real cloud environment, some
factors can cause delays. The overall workflow execution time and scheduling time overheads may
include the additional times for queuing delay, workflow engine delay, tasks grouping delay, data
transfer overhead, resource allocation, resource preparation, VM provisioning and deprovisioning
delays, task runtime variance, VM boot time, VM idle times and other unexpected delays in real
environments. IaaS providers make no guarantees on the value of these delays and it can have higher
or lower variability and impact on the execution of a workflow. Data communication overheads may
be critical in case of data-intensive workflows. For instance, the execution of two dependent tasks
on one less powerful resource but with zero or negligible transfer overhead would be more efficient
than the execution on two more powerful but separate resources with significant transfer overhead.
Therefore, in order to minimize the overheads incurred, the most challenging problems in workflow
schedulers are the minimization of execution time and monetary budget of workflow execution and
capability of dynamic adaptation to any unexpected delays.

The majority of existing strategies which focus on both of these objectives simultaneously, lack
in consideration of one or more crucial aspects of workflow scheduling. For example, dynamic
provisioning of resources is not considered in [5–8], scalability in terms of large number of tasks is not
considered in [9], heterogeneity of resources is not considered in [8,10], resource auto-scaling is not
considered in [11], data dependencies are not considered in [12] and task clustering technique in [5] is
not fully autonomous. Moreover, unlike multiple independent BoTs or single task-based workflows,
the concept of using multiple connected and constrained BoTs for reducing the data transfer time is
not considered in most existing scheduling algorithms [13,14].

To address the limitations of previous research, we propose a dynamic and scalable cost-efficient
deadline constrained algorithm for scheduling workflows using dynamic provisioning of resources
in a single cloud environment, using CPLEX solver (https://www.ibm.com/analytics/data-science/
prescriptive-analytics/cplex-optimizer) and Mixed Integer Programming (MIP). We call our algorithm
as Dynamic Scheduling of Bag of Tasks based workflows (DSB). The main contributions of this study
are summarized as follows.

(1) Grouping homogeneous tasks with the same depth into BoTs according to their priorities and
dependency constraints in order to minimize queuing overheads and then distributing the overall
workflow deadline over different BoTs.

(2) Implementation of a technique for scheduling of tasks on dynamic and scalable set of VMs in
order to optimize cost while satisfying their deadlines.

(3) The proposed algorithm involves dynamic provisioning of resources as MIP problem by the use
of IBM ILOG CPLEX.

(4) Extensive simulations with results for real world scientific applications.

The rest of the paper is organized as follows. Section 2 provides an overview of the related
work. Section 3 presents the scientific workflow application model, the cloud resource model and
the workflow execution model assumed in this work. Section 4 provides the proposed scheduling
algorithm. Section 5 presents results and finally Section 6 concludes the paper.

2. Related Work

In the last two decades, several research studies have been conducted that address the problem of
workflow scheduling due to its NP-completeness. The Quality of Service (QoS)-constrained workflow
scheduling algorithms tries to maximize the performance while meeting other user-defined QoS
constraints, for example, cost minimization of a workflow execution under deadline constraints, as in
IC-PCP and IC-PCP2 [15], URH [16], DPDS [17] and EPSM [18].

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer


Future Internet 2018, 10, 5 3 of 23

Rodriguez and Buyya [19] considered an application model similar to the one addressed in this paper
and proposed a scheduling algorithm for optimizing a workflow’s execution time (that is, makespan)
under a budget constraint. They proposed resource provisioning plan for a subset of the workflow
tasks as a mixed integer linear programming (MILP) model. However, their solution is tailored
for fine-grained billing periods such as per-minute billing. Moreover, the algorithm’s objective
is to minimize the makespan instead of meeting a deadline constraint. Despite these differences,
we consider their work relevant as the authors not only consider dynamic resource provisioning and
delays but also consider several VM instance types with different characteristics and prices.

Dziok et al. [20] presented an adaptive algorithm and used the MIP approach to schedule
workflows in IaaS clouds for optimizing cost under a deadline constraint. However, they do not
consider reusing of already assigned VMs and also do not consider data transfer time.

Malawski et al. [8] presented a dynamic resource provisioning and scheduling algorithm called DPDS.
It schedules workflows under given deadline and budget constraints along with the information about
resource utilization for VM provisioning and scheduling. However, it attempts to maximize the
number of completed workflows rather than minimizing the rental cost of a single BoT workflow.
Moreover, it supports single instance type and do not consider resource heterogeneity which is in
contrast to the current IaaS cloud model that offer a wide variety of instance types and dynamic
provisioning and scheduling of resources.

Task granularity has been addressed in several research studies for reducing the impact of
overheads that may arise when executing scientific workflows in distributed environments, such as
the cloud [4,12,21]. Task grouping methods reduce computational granularity by reducing the number
of computational activities by grouping fine-grained tasks into course-grained tasks. These techniques
attempt to minimize queuing times and scheduling overheads when resources are limited. However,
task granularity may limit the degree of inherent parallelism, therefore it must be done optimally.

Mao and Humphrey [9] proposed an auto-scaling mechanism that schedules workflow jobs in
order to minimize the monetary cost while meeting the application deadlines on clouds. A static
resource provisioning plan is made based on a global optimization heuristic and then adapted to
dynamic changes by running the global optimization algorithm every time a task is scheduled.
However, they do not consider the different priorities of each job and considered dynamic
and unpredictable workloads of workflow. Furthermore, the high computational overhead in
Scaling-Consolidation-Scheduling (SCS) hinders its scalability in terms of the number of tasks in
the workflow and they do not provide a near-optimal solution.

Malawski et al. [22] explicate a deadline and budget constraint scheduling algorithm which tries
to maximize the amount of work completed. The scheduling algorithm proposed by Byun et al. [10]
estimated the minimum number of resources needed to execute the workflow in a cost- effective way.
But, they considered a single type of VM and fails to consider the heterogeneous nature of clouds.

The proposed Dynamic Scheduling of Bag of Tasks based workflows (DSB) algorithm covers all
of these deficits and presents a dynamic and scalable cost-efficient deadline constrained algorithm for
scheduling workflows using dynamic provisioning of resources in a single cloud environment.

3. System Model

This section presents the application model, cloud resource model and the overall workflow
model for the execution of our proposed method for scheduling of scientific workflows in the cloud.
The parameters and their semantics used throughout this paper are summarized in Table 1.



Future Internet 2018, 10, 5 4 of 23

Table 1. Notations.

Notation Description

W Workflow represented by Directed Acyclic Graph (DAG)
V Set of tasks of the workflow, represented by vertices of the DAG
E Set of directed edges between the vertices
BoT Set of BoTs
VM Set of Virtual Machines (VMs)
n Number of tasks
k Number of VM types
u Number of BoTs
vi A task such that vi ∈ V
vj A task such that vj ∈ V
ventry Virtual entry node
vexit Virtual exit node
vrun Running task
eij An edge such that eij ∈ E between the tasks vi and vj
ep,i Inward edges of task vi
ei,c Outward edges of task vi
botq A BoT such that botq ∈ BoT
mr A virtual machine of type r such that mr ∈ VM
pred(vi) Immediate predecessor of task vi
succ(vi) Immediate successor of task vi
RTr

i Estimated Runtime of task vi on VM mr
CTr

ij Communication time of edge eij from tasks vi and vj on a VM mr
ETr

i Execution time of task vi on VM mr
STr

i Start time of task vi on VM mr
FTr

i Finish time of task vi on VM mr
ECr

i Execution cost of task vi on VM mr
li Service length of task vi
pr Processing power of VM mr
hr Billing interval length of VM type mr
cr Cost per interval unit of VM type mr
br Bandwidth capacity of VM mr
dr Provisioning delay in VM allocation
pvr VM performance variability
sltr Start leasing time of VM mr
tcij Data transfer cost of communicating data from task vi to vj
sij Size of data needed to be communicated from task vi and vj
uranki Upward rank of a task
ddi Degree of dependency of task vi

lv
(

vj

)
Maximum number of edges from task ventry to vj

countlv Number of tasks in the level lv
DLW Deadline associated with the workflow W to complete its execution
MPW Overall schedule length of workflow W
ASW Elapsed time between DLW and the estimated MPW
ASlv Available spare time of a level lv
ASi Available spare time of a task level vi
SDi Estimated sub-deadline for task vi of the workflow
EFTr

i Earliest finish time of task vi on VM mr
CPTsel Cumulative processing time of submitted tasks on VM msel
yr,u Variable representing number of tasks assigned to uth VM of type r
nr

bot Number of tasks in bot ∈ BoT assigned to VM of type r

3.1. Scientific Workflow Application Model

The standard way to represent a BoT-based workflow is a Directed Acyclic Graph (DAG)
W = (V, E, B) in which V = {v1, v2, . . . , vn} is the set of vertices representing n different tasks
of the workflow, E =

{
eij
∣∣(1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j

}
is the set of directed edges between the



Future Internet 2018, 10, 5 5 of 23

vertices, representing data or control dependencies between the tasks vi and vj, indicating a task
vj cannot start its execution before vi finishes and sends all the needed output data to task vj and
BoT = {bot1, bot2, . . . , botu} is the set of BoTs, in which botq is the set of qth BoT. Each task has an
estimated runtime RTi which denotes the precedence constraint assigned to task vi. Also, each edge
eij has a communication time CTij which denotes the amount of data needed to be communicated
and the precedence constraint from tasks vi and vj, if they are executed on different resources. It is
predetermined and known a priori. In this case, task vi is considered one of the immediate predecessor
of task vj and task vj is considered one of the immediate successor of task vi. The predecessor task of vi
is denoted as pred(vi) and the successor task as succ(vi). Task vi can have multiple predecessors and
multiple successor tasks. A task is considered as a ready task when all its predecessors have finished
execution. Any task without a predecessor task is called as the entry task ventry and a task with no
successor task is called the exit task vexit. Since the proposed method needs a graph with individual
entry and exit nodes, virtual entry and exit nodes denoted by ventry and vexit respectively, with zero
execution time and zero transmission time have been inserted into the DAG.

The crux of the proposed research is scheduling a BoT-based workflow based on the deadline
constraint while minimizing the budget of the application. The proposed approach, called DSB,
considers pay-as-you-go IaaS cloud model having inherent features such as elasticity, abundance,
heterogeneity, dynamic provision of resources, interval-based pricing model and VM provisioning
delays. A user-defined deadline is submitted initially with the workflow DAG.

3.2. Cloud Resource Model

The IaaS cloud model, adopted in this work, offers virtualized resources containing various
instance types at different costs. In this study, the cloud resource model is based on Amazon Elastic
Compute Cloud (Amazon EC2), where VM instances are dynamically provisioned on-demand for
executing scientific workflow applications. Under this pay-per-use interval-based model, the IaaS
providers charge customers for used hours of VM instances and each partial hour consumed is billed
as a full hour. We assume that the users have access to unlimited number of instances represented by a
set of heterogeneous virtual machines, VM = {m1, m2, m3, . . . , mk} where mr ∈ VM|1 ≤ r ≤ k and r
is an index of the instance type having varied prices and configurations.

3.3. Workflow Execution Model

The workflow execution model used in the proposed method is shown in Figure 1. The scientific
workflow is described as DAG where the nodes denote individual executional tasks and the edges
denote control and data constraints (i.e. the set of parameters) between the tasks. The output data
in the form of files by one task is used as input data for another task. In the model used in this
study, the scientific workflow is abstract, i.e. the workflow is unaware of the details of physical
locations of the executables and the data. This model fits a number of workflow management
systems (WMSs). IaaS providers allow WMSs to access to infinite pool of VMs for lease. For instance,
Pegasus (https://pegasus.isi.edu/) and Galaxy [23,24]. An introduction of the main components of
the workflow execution environment are given below, details of which may be found in [25].

1. Workflow submission: The user submits the workflow application to the WMS for scheduling of
the workflow tasks. The WMS resides on the host machine which may be a user’s laptop or a
community resource.

2. Target execution environment: It can be a local machine, like the user’s laptop, or a virtual
environment such as the cloud or a remote physical cluster or a grid [26]. On the basis of the
available resources, the WMS maps given abstract workflow into an executable workflow and
execute them. Moreover, it monitors the execution and manages the input data, intermediate
files and output files of the workflow tasks. An overview of the main components of the target
execution environment are discussed below:

https://pegasus.isi.edu/


Future Internet 2018, 10, 5 6 of 23

1. Workflow mapper: The workflow mapper produces an executable workflow on the basis
of the abstract workflow submitted by the user. It identifies the appropriate data and the
software and hardware resources required for the execution. Moreover, the mapper can
restructure the workflow for performance optimization.

2. Clustering engine: To reduce system overheads, one or more small tasks are clustered into
single execution unit called job in WMS.

3. Workflow engine: The workflow engine submits the jobs defined by the workflow in order
of their dependency constraints. Thereafter, the jobs are submitted to the local workflow
scheduling queue.

4. Local workflow scheduler and local queue: The local workflow scheduler manages and
supervises individual workflow jobs on local and remote resources. The elapsed time
between the submission of a job to the job scheduler and its execution in a remote compute
node (potentially on cloud) is denoted as the queue delay.

5. Remote execution engine: It manages the execution of clustered jobs on one or more remote
compute nodes.Future Internet 2018, 10, x FOR PEER REVIEW    6 of 23 

 

Remote Compute Nodes

User

Submit 
Workflow

Remote Scheduler

m3.medium c3.xlarge m3.xlarge

c3.4xlargem3.2xlargec3.2xlarge

Storage
Workflow Mapper

Clustering Engine

Workflow Engine

Local Workflow Scheduler

Monitoring
Job
Queue

Workflow 
DB

 

Figure 1. A workflow system architecture. DB: Database 

1. Workflow submission: The user submits the workflow application to the WMS for scheduling 

of the workflow tasks. The WMS resides on the host machine which may be a user’s laptop or a 

community resource. 

2. Target  execution  environment:  It  can be  a  local machine,  like  the user’s  laptop, or  a virtual 

environment such as the cloud or a remote physical cluster or a grid [26]. On the basis of the 

available resources, the WMS maps given abstract workflow into an executable workflow and 

execute them. Moreover,  it monitors the execution and manages the  input data,  intermediate 

files and output files of the workflow tasks. An overview of the main components of the target 

execution environment are discussed below: 

1. Workflow mapper: The workflow mapper produces an executable workflow on the basis of 

the  abstract workflow  submitted  by  the  user.  It  identifies  the  appropriate  data  and  the 

software  and  hardware  resources  required  for  the  execution. Moreover,  the mapper  can 

restructure the workflow for performance optimization. 
2. Clustering engine: To reduce system overheads, one or more small tasks are clustered into 

single execution unit called job in WMS. 

3. Workflow engine: The workflow engine submits the jobs defined by the workflow in order 

of  their dependency  constraints. Thereafter,  the  jobs are  submitted  to  the  local workflow 

scheduling queue. 

4. Local workflow  scheduler  and  local  queue:  The  local workflow  scheduler manages  and 

supervises  individual  workflow  jobs  on  local  and  remote  resources.  The  elapsed  time 

between the submission of a job to the job scheduler and its execution in a remote compute 

node (potentially on cloud) is denoted as the queue delay. 

5. Remote execution engine: It manages the execution of clustered jobs on one or more remote 

compute nodes. 

4. The Proposed DSB Workflow Scheduling Algorithm 

4.1. Assumptions 

The current study assumes that the workflow application executes in a single cloud data center 

so  that  one  possible  source  of  execution  delay  and  data  transfer  cost  between  data  centers  is 

eliminated. The average bandwidth between  the VM  instances  is assumed  to be  fixed during  the 

execution of ܹ. The estimated runtime of task on a VM instance, denoted as  ܴ ௜ܶ
௥  is known to the 

scheduler in advance. It is obtained by Equation (1). The runtime of virtual entry and exit nodes is 

Figure 1. A workflow system architecture. DB: Database.

4. The Proposed DSB Workflow Scheduling Algorithm

4.1. Assumptions

The current study assumes that the workflow application executes in a single cloud data center so
that one possible source of execution delay and data transfer cost between data centers is eliminated.
The average bandwidth between the VM instances is assumed to be fixed during the execution of W.
The estimated runtime of task on a VM instance, denoted as RTr

i is known to the scheduler in advance.
It is obtained by Equation (1). The runtime of virtual entry and exit nodes is zero. Moreover, the tasks
do not have the ability to checkpoint their work or get preemption. In other words, a task has to be
restarted in case of its failure. Furthermore, we assume that for every VM type, the processing capacity
is furnished either from the IaaS provider or can be estimated based on the work of [27]. We assume a
VM boot time of 97 s based on the measurements presented by Mao and Humphrey [9] for EC2 cloud.
We adopted a performance degradation model based on results achieved in Amazon EC2 clouds by



Future Internet 2018, 10, 5 7 of 23

Jackson et al. [28]. Therefore, we consider the loss in VM performance based on a normal distribution
with mean of 15% and standard deviation of 10% in our proposed approach as well.

Similarly, the amount of data needed to be communicated between the tasks of a workflow are
considered to be known in advance. The communication time for the tasks allocated to the same VM is
considered to be zero. Moreover, data communication cost between resources are assumed to be zero,
since in IaaS clouds, data communication inside a data center is free. Furthermore, the cloud datacenter
is considered to have unlimited resources, so resource contention is almost negligible. Additionally,
we assume that all VMs have enough memory to run any task of the workflow.

4.2. Problem Statement

The scheduling problem addressed in the present study can be defined as dynamically scaling
a set of VMs and assigning each task to a given VM in order to minimize the cost of the application
while fulfilling the deadline constraint.

4.3. Basic Definitions

Definition 1. Estimated runtime of task vi on a VM mr, denoted by RTr
i , is computed using Equation (1).

RTr
i =

li
pr × (1− pvr)

(1)

where li is the service length of task vi measured in Floating Point Operations (FLOP), pr is the Central
Processing Unit (CPU) processing capacity of VM mr in Million Floating Point Operations Per Second
(MFLOPS) based on the number of EC2 compute units and pvr is the VM performance variability
which represent the uncertainties such as potential variability or degradation in CPU performance in
real cloud environments.

Definition 2. Communication time of edge eij between tasks vi and vj on VM mr, denoted by CTr
ij, is computed

using Equation (2).

CTr
ij = sij/br (2)

where sij is the size of data needed to be communicated from tasks vi and vj in Megabytes (MB) and br

is the bandwidth capacity of VM mr in Megabytes Per Second (MBps).

Definition 3. Execution time of task vi on a VM, denoted by ETr
i , is computed using Equation (3).

ETr
i = RTr

i + max
vi∈pred(j)

CTr
ij + dr (3)

In IaaS cloud, provisioning delay in VM allocation, that is dr can be caused by multiple factors
such as, data center location, VM setup time, software setup time, VM migration time, quantity of
simultaneous VM provisioning requests and variations in VM types, Operating Systems (OS) and
time zones.

Definition 4. Start time of running task vi on VM mr, denoted by STr
i , is computed as in Equation (4).

STr
i = sltr + ∑

vp∈pred(vi)

ETr
p (4)

where sltr is start leasing time of VM mr and ∑vp∈pred(vi)
ETr

p is the total execution time of assigned
tasks to VM mr.

Definition 5. Execution cost of task vi on VM mr, denoted by ECr
i , is computed as in Equation (5).



Future Internet 2018, 10, 5 8 of 23

ECr
i =

(
ETr

i × cr

hr

)
+
(
sij × tcij

)
(5)

where hr represents used billing interval of VM mr, cr represents the cost per interval unit of VM
mr, sij is the size of the data to be transferred from vi to vj and tcij represents the data transfer cost
(per MB) of communicating data from task vi to vj. It becomes zero, if the tasks are scheduled on VMs
within the same data center. So, we also do not consider this price when calculating the workflow’s
execution cost.

Definition 6. The upward rank for a task vi is the length of critical/longest path from task vi to the exit
task (vexit), including the execution time of vi. Thus, the priority of each task is defined as given by
Topcuoglu et al. [29].

uranki = RTi + max
vj∈succ(vi)

(
CTij + urank j

)
(6)

Definition 7. The Degree of Dependency of each task vi, denoted as DDi, is provided by Equation (7).

ddi =

 ∑
vp∈pred(vi)

ep,i + ∑
vc∈succ(vi)

ei,c

 (7)

where ∑vp∈pred(vi)
ep,i is the sum of all inward edges of task vi and ∑vp∈pred(vi)

ep,i is the sum of all
outward edges of task vi.

Definition 8. Level of a task vj in the workflow, denoted as lv
(
vj
)
, is defined as the maximum number of edges

from the task ventry to vj. All the tasks in a BoT have same level. It is computed by Equation (8). Level of ventry

is assumed to be zero.

lv
(
vj
)
= 1 + max

vi∈pred(vj)
(lv(vi)) (8)

Definition 9. Finish Time of task vi on VM mr is computed as in Equation (9).

FTr
i = STr

i + ETr
i (9)

Definition 10. Makespan (that is, schedule length) of workflow W is calculated by Equation (9).

MPW = FTr
sink (10)

In other words, the overall makespan of the workflow is computed as the elapsed time between
ventry and vexit.

Definition 11. Available spare time of a workflow is the amount of elapsed time between the user-defined
deadline and the makespan, as computed by Equation (11).

ASW = DLW −MPW (11)

Definition 12. Available spare time of a level is provided by Equation (12).

ASlv =

(
RTlv
RTW

)
× ASW (12)

where RTlv is the runtime of all tasks in the corresponding level lv and RTW is the runtime of all tasks
of the workflow W.



Future Internet 2018, 10, 5 9 of 23

Definition 13. Available spare time of a level is distributed among the tasks in the corresponding level,
as provided by Equation (13).

ASi =

(
countlv

n

)
× ASlv (13)

where countlv is the number of all tasks in the corresponding level lv and n is the number of all tasks
in the workflow W.

Definition 14. Sub-deadline of a task is the maximum limit of finish time of the corresponding task.
The sub-deadline of each task vi is calculated by recursive traversal of the workflow DAG downwards, starting
from ventry, as provided by Equation (14).

SDrun = min
vi∈pred(vrun)

{SDi + CTr
run,i + RTr

run + ASi} (14)

Definition 15. Sub-deadline of a BoT is initialized as

SDbot = dr + max
vi∈bot

SDr
i . (15)

Definition 16. Earliest Finish Time of a task vi on VM, denoted as EFTr
i , is given by Equation (16).

EFTr
i = min(RTr

i ) + max
vp∈pred(vi)

(
CTr

pi + SDp

)
(16)

where min
(

RTr
i
)

is the minimum finish time of task vi over all instances and SDp is the estimated
sub-deadline for predecessor of vi.

4.4. Proposed Algorithm

The main objective of the proposed DSB technique for scheduling scientific workflows in cloud
computing is achieving high success rates with lower pay-per-use cost while satisfying the deadline
constraint. The proposed DSB includes five distinct steps, namely task prioritization, task grouping,
deadline distribution, task selection and elastic resource provisioning phase as presented next.

4.4.1. Task Prioritization

In the first step which is called task prioritization, we propose a task ordering strategy for
optimizing task assignment. First, the tasks of the workflow are assigned priorities in order to guarantee
task dependencies. For assigning priorities to the workflow tasks, their upward ranks [29] are calculated
by Equation (6). The priority of tasks calculated using this technique has several benefits, which make it
a worthy candidate for the prioritizing phase. Its implementation is simple. It considers the execution
time of the workflow tasks, the transfer time between each pair of the tasks and the critical path of the
workflow. Besides, this technique ensures that every task of the workflow has a higher priority over its
successor tasks. It is calculated recursively for each task, beginning from the ending task to the first
task of the workflow. The degree of dependency of each task is calculated by Equation (7). The tasks in
the workflow having higher number of inward and outward edges have higher priority than others
for scheduling them on the available VMs. Finally, the task scheduling sequence after the first phase,
contain tasks sorted in descending order of their priorities. By assigning a priority to each task of the
workflow, this method creates tasks with higher priorities earlier than the other tasks.



Future Internet 2018, 10, 5 10 of 23

4.4.2. Task Grouping

Subsequently, in the second step, the tasks are combined into BoTs by applying horizontal
grouping so that the tasks in each BoT have the same functionality and the same level (that is, depth)
in the workflow DAG and are guaranteed to be ready for processing in parallel [19]. Figure 2 shows
our example benchmark scientific workflows after applying horizontal grouping. The homogeneous
tasks are represented by same color in Figure 2. Each BoT can comprise a single task or multiple tasks.
Tasks within each BoT are homogeneous and share the same single immediate predecessor, have
identical data distribution structure and have same type in terms of data size, input/output size and
computational cost. Table 2 shows the published details of these real-world workflows including
the DAG, the average data size and the reference runtime of tasks based on Xeon@2.33 GHz CPUs
(Compute Units ∼= 8) [25,30,31].

Future Internet 2018, 10, x FOR PEER REVIEW    10 of 23 

 

4.4.1. Task Prioritization 

In  the  first  step which  is  called  task prioritization, we propose  a  task  ordering  strategy  for 

optimizing  task  assignment.  First,  the  tasks  of  the workflow  are  assigned  priorities  in  order  to 

guarantee task dependencies. For assigning priorities to the workflow tasks, their upward ranks [29] 

are  calculated  by  Equation  (6).  The  priority  of  tasks  calculated  using  this  technique  has  several 

benefits, which make it a worthy candidate for the prioritizing phase. Its implementation is simple. 

It considers the execution time of the workflow tasks, the transfer time between each pair of the tasks 

and the critical path of the workflow. Besides, this technique ensures that every task of the workflow 

has a higher priority over its successor tasks. It is calculated recursively for each task, beginning from 

the ending task to the first task of the workflow. The degree of dependency of each task is calculated 

by Equation (7). The tasks in the workflow having higher number of inward and outward edges have 

higher priority than others for scheduling them on the available VMs. Finally, the task scheduling 

sequence after the first phase, contain tasks sorted in descending order of their priorities. By assigning 

a priority to each task of the workflow, this method creates tasks with higher priorities earlier than 

the other tasks. 

4.4.2. Task Grouping 

Subsequently,  in  the  second  step,  the  tasks  are  combined  into BoTs  by  applying horizontal 

grouping so that the tasks in each BoT have the same functionality and the same level (that is, depth) 

in the workflow DAG and are guaranteed to be ready for processing in parallel [19]. Figure 2 shows 

our example benchmark scientific workflows after applying horizontal grouping. The homogeneous 

tasks are represented by same color in Figure 2. Each BoT can comprise a single task or multiple tasks. 

Tasks within each BoT are homogeneous and share  the same single  immediate predecessor, have 

identical data distribution structure and have same type in terms of data size, input/output size and 

computational cost. Table 2 shows the published details of these real‐world workflows including the 

DAG,  the  average data  size  and  the  reference  runtime  of  tasks  based  on Xeon@2.33 GHz CPUs 

(Compute Units ≅  8) [25,30,31]. 

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 1

Level 2

Level 3

Level 4

Level 5
 

(a) Montage  (b) CyberShake

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8
 

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6
 

(c) Epigenomics  (d) LIGO Inspiral Analysis Future Internet 2018, 10, x FOR PEER REVIEW    11 of 23 

 

Level 1

Level 2

Level 3

Level 4

Level 5

(e) SIPHT

Figure  2.  Examples  of  workflows  after  horizontal  grouping.  (a)  Montage;  (b)  CyberShake;  (c) 

Epigenomics; (d) LIGO Inspiral Analysis; (e) SIPHT. 

Table 2. Characteristics of the benchmark workflows. CU: Compute Unit.   

Workflow 
Number of 

Nodes 

Number of

Edges 

Mean Data Size

(MB) 

Mean Runtime

(CU = 1) 

Montage_1000  1000  4485  3.21  11.36s 

CyberShake_1000  1000  3988  102.29  22.71s 

Epigenomics_997  997  3228  388.59  3858.67s 

LIGO_1000  1000  3246  8.90  2227.25s 

SIPHT_1000  1000  3528  5.91  179.05s 

4.4.3. Deadline Distribution 

The third step of the proposed algorithm is called deadline distribution. First, the cheapest VM 

type  (݉௦௘௟ )  is determined  among  all  the  available VM  instances  such  that,  if  assigned  to  all  the 

workflow tasks, their estimated makespan (calculated by using Equation (10)) would be lower than 

the user‐defined deadline (ܮܦௐ). If the estimated makespan exceeds deadline, then the next cheapest 

VM type (݉௦௘௟) is selected until the estimated execution time of the workflow on ݉௦௘௟  is lower than 

 ௐ. The elapsed time between the deadline and the estimated makespan, denoted as the availableܮܦ

spare time   ௐܵܣ is calculated according to Equation (11).   ௐܵܣ is distributed proportionally over all 
levels of  the workflow on  the basis of  runtime of  tasks according  to Equation  (12). Then,  ܣ ௟ܵ௩  is 

distributed among all tasks of each level proportional to the number of tasks in the corresponding 

level according to Equation (13). Afterwards, an estimated sub‐deadline   ௜ܦܵ is computed for each 

task of the workflow under the determined VM type ݉௦௘௟, by using Equation (14). This sub‐deadline 

will be a guiding factor for taking decisions at runtime about whether to reuse existing VM or rent a 

new one. It is larger for the BoTs with longer running tasks. The sub‐deadline of each BoT is assumed 

to be the maximum finish time of its tasks corresponding to ݉௦௘௟  (Equation (15)). In other words, the 

tasks within a BoT are assigned the same sub‐deadline which would be equal to the estimated start 

time of the successor task. The algorithm for distributing deadlines to the BoTs is given in Algorithm 

1. 

   

Figure 2. Examples of workflows after horizontal grouping. (a) Montage; (b) CyberShake; (c) Epigenomics;
(d) LIGO Inspiral Analysis; (e) SIPHT.



Future Internet 2018, 10, 5 11 of 23

Table 2. Characteristics of the benchmark workflows. CU: Compute Unit.

Workflow Number of
Nodes

Number of
Edges

Mean Data Size
(MB)

Mean Runtime
(CU = 1)

Montage_1000 1000 4485 3.21 11.36 s
CyberShake_1000 1000 3988 102.29 22.71 s
Epigenomics_997 997 3228 388.59 3858.67 s

LIGO_1000 1000 3246 8.90 2227.25 s
SIPHT_1000 1000 3528 5.91 179.05 s

4.4.3. Deadline Distribution

The third step of the proposed algorithm is called deadline distribution. First, the cheapest
VM type (msel) is determined among all the available VM instances such that, if assigned to all the
workflow tasks, their estimated makespan (calculated by using Equation (10)) would be lower than the
user-defined deadline (DLW). If the estimated makespan exceeds deadline, then the next cheapest VM
type (msel) is selected until the estimated execution time of the workflow on msel is lower than DLW .
The elapsed time between the deadline and the estimated makespan, denoted as the available spare
time ASW is calculated according to Equation (11). ASW is distributed proportionally over all levels of
the workflow on the basis of runtime of tasks according to Equation (12). Then, ASlv is distributed
among all tasks of each level proportional to the number of tasks in the corresponding level according
to Equation (13). Afterwards, an estimated sub-deadline SDi is computed for each task of the workflow
under the determined VM type msel , by using Equation (14). This sub-deadline will be a guiding factor
for taking decisions at runtime about whether to reuse existing VM or rent a new one. It is larger for
the BoTs with longer running tasks. The sub-deadline of each BoT is assumed to be the maximum
finish time of its tasks corresponding to msel (Equation (15)). In other words, the tasks within a BoT are
assigned the same sub-deadline which would be equal to the estimated start time of the successor task.
The algorithm for distributing deadlines to the BoTs is given in Algorithm 1.

Algorithm 1 Deadline Distribution

procedure DD(Workflow W, Deadline DLW , Runtime of tasks on VMs RTr
i )

1: msel ← Find cheapest VM type such that MPW < DLW
2: if msel = null then
3: while msel 6= null do
4: msel ← Next cheapest VM type such that MPW < DLW
5: end while
6:end if
7: Calculate available spare time of workflow ASW //according to Equation (11)
8: Distribute ASW proportionally over all levels //according to Equation (12)
9: Distribute ASW proportionally over all tasks in each level lv //according to Equation (13)
10: Calculate estimated sub-deadline SDi for each task //according to Equation (14)
11: Update sub-deadline of each BoT as the maximum finish time of its tasks

4.4.4. Task Selection

The set of tasks ready for execution are put in the execution queue. A task is considered as ready
after all of its predecessors are already scheduled. The tasks in each BoT can be executed in parallel
because they have no dependency constraints as well as sequentially to improve the utilization of
leased billing intervals. However, there may exist dependency constraints between BoTs at the upper
or lower levels. In order to exploit parallelism of such BoTs, the currently running tasks can send the
data to their dependent tasks as soon as it is prepared, so that the dependent tasks at the consequent
level can start their execution. Consequently, more tasks will execute in less time resulting in faster



Future Internet 2018, 10, 5 12 of 23

schedules. All the tasks in a BoT are homogeneous and share the same predecessor, therefore they
become ready at the same time and have identical VM performance requirements.

4.4.5. Elastic Resource Provisioning

The resource provisioning phase is based on the optimization of a QoS metric cost and used to
dynamically adjust the number of required VM instances to ensure the completion of workflow within
the deadline. Its primary purpose is to prioritize the reuse of already leased VMs by utilizing idle times
on previous rented intervals when possible instead of renting a new VM instance. When all the tasks
in a BoT are ready for execution, they are put in the execution queue from the priority queue. Tasks
in a BoT can be scheduled one by one to an elastic number of VMs for parallel, or serial executions.
Scheduling plan is created based on tasks in the same BoT to decide the number and type of VM
instances that can be launched to schedule the BoT. The plan needs to be made once for all the tasks
in each BoT using MIP. The MIP problem was formulated to provide an estimate of the number and
types of VMs that can optimize total cost of the workflow execution with the given deadline. It can be
formally modeled as follows:

minimize ∑
vi∈V

∑
mr∈VM

ECr
i (17)

subject to:
xr

i = 1, xr
i ∈ {0, 1}, ∀vi ∈ V, ∀mr ∈ VM (18)

FTr
i ≤ FTr

j − ETr
j , ∀

(
vi, vj

)
∈ V, i < j (19)

∑
mr∈VM,u∈mr

yr,u = nr,u
bot, ∀bot ∈ BoT (20)

DLbot∈BoT ≤ DLW (21)

FTr
sink ≤ DLW (22)

Constraint (18) is a binary variable and ensures that each task is assigned to one and only one
VM type. Constraint (19) ensures the precedence constraint. Constraint (20) ensures that the number
of tasks of a BoT assigned to the uth VM of type r process all the tasks. Constraint (21) guarantees that
the sum of sub-deadlines of all BoTs is not greater than the workflow deadline. Constraint (22) ensures
that the deadline is met.

The problem is solved in CPLEX solver and a scheduling plan SP r
q = (mr, nr

q, kmr
botq

) is obtained for
each BoT to obtain VMs that can process the BoTs while meeting the deadline and with minimum cost.
nr

q corresponds to the maximum number of tasks in the BoT botq that can be executed by the VM type
mr without exceeding the deadline and kmr

botq
is the number of VMs of type mr to use.

The VM selection for the task vi ∈ BoT requires the estimation of its actual execution time which is
computed by taking the sum of execution time and provisioning delay. Then each ready task is checked
to available times of rented intervals on existing VMs. The execution cost is calculated by Equation (5).
Since, each partial hour consumed is billed as a full hour, therefore the execution cost of other tasks
submitted to the same VM during the available partial hour is zero. If such VMs exist that incur no
execution cost for the remaining intervals as well as satisfy the sub-deadline, then the scheduler selects
the VM msel , that can execute the running task with the estimated earliest finish time (according to
Equation (16)). The number of tasks allotted to current billing interval of msel depends on the number
of tasks that can meet their sub-deadline. It can improve resource utilization by minimizing wastage
of already leased intervals without affecting the execution time of the workflow. The total execution
time of assigned tasks to VM mr is updated dynamically after every task assignment. If no such VMs
exist with remaining available billing intervals, all the tasks in the BoT from the execution queue are
scheduled to subsequent billing interval of existing VMs only if the BoT still meets the sub-deadline.
If none of the existing active VMs can satisfy the BoT sub-deadline, the resource scaling-up strategy
will be triggered to create a new VM type with the minimum execution cost among others and that



Future Internet 2018, 10, 5 13 of 23

can meet the BoT’s sub-deadline. In extreme cases in which no such VM type exist that can complete
the tasks within deadline, a fastest VM type can be rented. Whenever a BoT completes its execution,
the sub-deadline of all the remaining BoTs is updated dynamically. Since all the tasks within a BoT are
homogeneous, so they have the same VM type preference. Therefore, the current VM type msel can be
assigned to all tasks in BoT. The algorithms for this phase are given in Algorithms 2–4.

Algorithm 2 Elastic Resource Provisioning

procedure ERP(Execution queue containing set of ready BoTs ExeQ, Set of VM types VM)
1 ExeQnew ← null
2 for all botq ∈ ExeQ
3 if botq.count(tasks) > 1 then
4 Solve the MIP problem by CPLEX and get SP r

bot
5 for all SP r

q = (mr, nr
q, kmr

botq
) do

6 for all mr ∈ SP r
q do

7 ExeQ ← nr
q

8 VM ← kmr
botq

9 ExeQnew ← Call LFI(ExeQ, VM)
10 if ExeQnew 6= null then
11 Call RSU(ExeQnew, VM)
12 end if
13 end for
14 end for
15 else if botq.count(tasks) = 1 then
16 vrun ← botq
17 msel ← select cheapest VM that can run task within deadline
18 Schedule vrun to msel
19 ExeQ← ExeQ− {vrun}
20 CPTsel ← CPTsel + ETrun

sel
21 Update next available time of msel
22 end if
23 end for

Algorithm 3 Lease Free Interval

procedure LFI(Set of ready tasks of BoT ExeQ, Set of VMs VM)
1 vrun ← Get the next ready task with highest priority from ExeQ
2 msel ← null
3 Msel ← null
4 m← null
5 f reeInterval ← f alse
6 for all mr ∈ VM do
7 Calculate ECr

run //according to Equation (5)
8 Calculate FTr

run //according to Equation (9)
9 if ECr

run < SDrun and FTr
run < SDrun then

10 f reeInterval ← true
11 Msel ← Msel ∪ {mr}
12 end if
13 end for
14 msel ← mr ∈ Msel such that EFTsel

run is minimum
15 if msel 6= null then
16 m← msel
17 end if
18 if freeInterval = true then
19 Schedule vrun to msel
20 ExeQ← ExeQ− {vrun}
21 CPTsel ← CPTsel + ETsel

run
22 Update next available time of msel
23 else
24 ExeQnew ← ExeQnew ∪ {vrun}
25 end if



Future Internet 2018, 10, 5 14 of 23

Algorithm 4 Resource Scaling Up

procedure RSU(Set of ready BoTs ExeQnew, Set of VMs VM)
1 vrun ← next ready task with highest priority
2 msel ← null
3 Msel ← null
4 newVM← f alse
5 for all mr ∈ VM do
6 Calculate ECr

run //according to Equation (5)
7 Calculate FTr

run //according to Equation (9)
8 if FTr

run < SDrun then
9 newVM← true
10 Msel ← Msel ∪ {mr}
11 end if
12 end for
13 msel ← mr ∈ Msel such that EFTsel

run is minimum
14 if msel = null then
15 msel ← mr ∈ Msel such that ETsel

run is maximum
16 end if
17 if newVM = true then
18 Lease new interval msel and schedule task vrun on it
19 ExeQnew ← ExeQnew − {vrun}
20 STsel ← CurrentTime()
21 end if

In order to adapt to unexpected delays such as variations in task runtime estimations, network
congestion and resource provisioning delays, the sub-deadline of remaining workflow tasks is adjusted
whenever a task finishes either earlier or later than expected. In this way, if a task finishes earlier,
the remaining tasks will have more time to run and hence they can either be assigned to a cheaper VM
or delayed, to be scheduled in subsequent cycles. If a task finishes later than expected, adjusting the
deadline of the remaining tasks may prevent the deadline from being missed. The VM scaling-down
strategy is used by the scheduler during execution to shut down any leased VMs that are idle for a
long time and approaching their subsequent billing interval. An overview of resource scaling down
technique is shown in Algorithm 6.

The algorithm of the proposed method is shown in Algorithm 5.

Algorithm 5 The Proposed DSB

Input: Workflow W, Deadline DLW , Runtime of tasks on VMs RTr
i

1 Add ventry and vexit and their corresponding edges to the workflow W
2 for all vi ∈ V do
3 Calculate upward rank uranki //according to Equation (6)
4 Calculate degree of dependency ddi //according to Equation (7)
5 end for
6 Sort the tasks in descending order of priorities
7 Calculate level of each task lv(vi) //according to Equation (8)
8 Identify all the BoTs in the workflow
9 Call DD(W, DLW , RTr

i )
10 for all botq ∈ BoT do
11 Put BoTs in priority queue and sort them based on the rules mentioned in Section 4.4.4
12 end for
13 Put ready BoTs in execution queue ExeQ
14 Call ERP(ExeQ, VM)



Future Internet 2018, 10, 5 15 of 23

Algorithm 6 Resource Scaling Down

procedure RSD(Set of leased VMs Mlease)
1 Mlease ← Set of all leased VMs
2 for each mr ∈ Mlease do
3 if mr is currently idle then
4 if mr has no waiting tasks then
5 if mr is currently approaching the next pricing interval then
6 Mlease ← Mlease − {mr}
7 Shut down mr
8 end if
9 end if
10 end if
11 end for

4.5. Computational Complexity

Consider n as the total number of workflow tasks, m as the number of BoTs, k as the total number
of available VMs, d as the number of dependency constraints and e as the number of directed edges.
The time complexity of this scheduling algorithm requires the computation of some basic operations.
Calculating priority, dependency constraints and sub-deadline of all tasks have complexity O(n.k).
Sorting groups based on their priority O(m). Computing start time, completion time and solving
the MIP for all VMs O(k). Mapping tasks on VMs O(n.k). The total time is O(n.k + n(m + k + nk)),
therefore complexity of the proposed algorithm is O

(
n2.k

)
.

5. Performance Analysis and Discussion

5.1. Experiment Environment

WorkflowSim is a Java-based open source discrete event workflow engine that has been
used to model a cloud execution environment for executing scientific workflow applications [32].
This trace-based framework is an extension of CloudSim [33]. WorkflowSim offers support for
workflow DAGs and provides execution environment for workflow level resource provisioning,
resource management, task clustering and task scheduling. For our experiments, WorkflowSim
was adopted to evaluate the performance of the proposed method on real traces under dynamically
provisioned on-demand cloud VMs and a pay-per-use model derived from Amazon EC2 pricing model
(http://aws.amazon.com/ec2). The correctness of WorkflowSim has been proved in [32]. Moreover,
it supports the analysis of various scheduling overheads and failures.

An IaaS provider offering a single data center and six types of VMs was modelled. Table 3 lists
the configurations of the VM types based on EC2.

Table 3. VM types specifications. ECU: EC2 Compute Unit.

VM Type ECU Memory Price ($/h)

m3.medium 1 3.75 0.067
c3.xlarge 4 3.75 0.21
m3.xlarge 4 15 0.266
c3.2xlarge 8 15 0.42
m3.2xlarge 16 30 0.532
c3.4xlarge 16 30 0.84

The workflow generator toolkit, Pegasus, was used to generate synthetic workflows of various
sizes for each workflow application in terms of total number of nodes. Five real-world scientific
applications were chosen, namely: Cybershake (data-intensive, memory-intensive, resource-intensive),

http://aws.amazon.com/ec2


Future Internet 2018, 10, 5 16 of 23

Epigenomics (CPU-bound), LIGO Inspiral Analysis (memory-intensive, resource-intensive), Montage
(I/O bound) and SIPHT [30].

5.2. Performance Metric

The goal of scheduling algorithm considered here is to find a schedule map in such a way that the
cost is optimized under user-defined deadline constraint. The performance metrics used to evaluate
the proposed DSB algorithm are given below.

5.2.1. Normalized Deadline (ND)

To investigate the quality of results and for the purpose of comparison, deadline is normalized, called
ND (Normalized Deadline). MPW is the minimum makespan or schedule length of the workflow DAG.
It can be obtained by computing the makespan of the workflow on fastest VM types with a maximum
level of parallelism and ignoring delays. With these values, the normalized user-defined deadline
constraint is computed by Equation (23):

ND =
DLW

min(MPW)
(23)

For successful schedule map that meet the deadline constraint, the value of ND could not be less
than 1.

5.2.2. Improvement Rate (IR)

It is defined as the percentage improvement obtained in the performance of the proposed
algorithm in the overall execution of workflow DAG with respect to other algorithms. Reduction in
the cost of the proposed algorithm over other considered algorithms can be calculated by IR(%).

IR(%) =
cost(other)− cost(proposed)

cost(proposed)
× 100. (24)

5.2.3. Success Rate (SR)

It is defined as the success rate of finding a cost optimized schedule while satisfying the
user-defined deadline, as given by Equation (25):

SR =
Number o f simulation runs that success f ully meet deadline

Total number o f simulation runs
× 100 (25)

5.3. Evaluation Results

We implemented WRPS [34], SCS [9] and HEFT [29] algorithms. Then, we evaluated these
scheduling methods and our proposed DSB scheduling algorithm on a standard and real set of
scientific workflow applications. Finally, we compared their results with our scheduling model.

The workflows were executed by changing the deadline. The experiments were repeated 30 times
for each workload instance and the average value of output metrics are reported in this section.
The effect of varying deadline over the cost was evaluated, as shown in Figures 3 and 4. The proposed
DSB scheduling algorithm successfully scheduled maximum number of tasks while meeting the
deadline constraint with the average success rate of 97.93% compared to the success rates of WRPS,
SCS and HEFT which are 92.68%, 82.86% and 66.93% respectively. Figures 3 and 4 shows the average
cost of Montage and CyberShake workflow respectively for 1000 tasks. The structure of Montage and
CyberShake consists of many small-sized tasks in each level with almost same priorities, dependency
constraints and deadline. It can be seen that the average cost of the proposed DSB is lower because the
workflow tasks are ordered on the basis of their priorities, dependency constraints and sub-deadlines
and afterwards partitioned into horizontal BoTs. The cost of SCS and HEFT are comparatively high



Future Internet 2018, 10, 5 17 of 23

because these methods take longer to process tasks of large size. Similarly, it can be seen that the
cost of the proposed DSB was comparatively lower than the other algorithms which shows that the
proposed DSB exhibits better performance than its counterparts. Figure 5 shows that SCS and HEFT
missed the deadline when it is minimum for executing Epigenomics workflow, while in all other cases,
the deadline was successfully met. The proposed method not only execute maximum number of tasks
successfully without violating the deadline but also achieves lowest cost for Epigenomics workflows.
Figure 6 illustrates that the proposed DSB shows best performance under hard deadline. This is due to
the fact that LIGO Inspiral Analysis workflow consists of blocks of tasks and each block create specific
results on a portion of data. These results must be created with minimum makespan. Our proposed
method can execute the blocks in each level in parallel by partitioning them in horizontal groups
while taking care of the deadline and dependency constraints. The SIPHT workflow has different
parts and their intermediate output is required as input to the last node to achieve the final output.
Our proposed algorithm prioritizes reuse of rented intervals and schedule the different parts of the
SIPHT by considering priority and sub-deadline of each task and map it with the VM that leads to
minimum cost of the task on the assigned VM, as shown in Figure 7.

Future Internet 2018, 10, x FOR PEER REVIEW    18 of 23 

 

The SIPHT workflow has different parts and their intermediate output is required as input to the last 

node to achieve the final output. Our proposed algorithm prioritizes reuse of rented intervals and 

schedule the different parts of the SIPHT by considering priority and sub‐deadline of each task and 

map it with the VM that leads to minimum cost of the task on the assigned VM, as shown in Figure 

7. 

 

Figure 3. Average cost of Montage under varied normalized deadlines. 

 

Figure 4. Average cost of CyberShake under varied normalized deadline. 

 

Figure 5. Average cost of Epigenomics under varied normalized deadline. 

Figure 3. Average cost of Montage under varied normalized deadlines.

Future Internet 2018, 10, x FOR PEER REVIEW    18 of 23 

 

The SIPHT workflow has different parts and their intermediate output is required as input to the last 

node to achieve the final output. Our proposed algorithm prioritizes reuse of rented intervals and 

schedule the different parts of the SIPHT by considering priority and sub‐deadline of each task and 

map it with the VM that leads to minimum cost of the task on the assigned VM, as shown in Figure 

7. 

 

Figure 3. Average cost of Montage under varied normalized deadlines. 

 

Figure 4. Average cost of CyberShake under varied normalized deadline. 

 

Figure 5. Average cost of Epigenomics under varied normalized deadline. 

Figure 4. Average cost of CyberShake under varied normalized deadline.



Future Internet 2018, 10, 5 18 of 23

Future Internet 2018, 10, x FOR PEER REVIEW    18 of 23 

 

The SIPHT workflow has different parts and their intermediate output is required as input to the last 

node to achieve the final output. Our proposed algorithm prioritizes reuse of rented intervals and 

schedule the different parts of the SIPHT by considering priority and sub‐deadline of each task and 

map it with the VM that leads to minimum cost of the task on the assigned VM, as shown in Figure 

7. 

 

Figure 3. Average cost of Montage under varied normalized deadlines. 

 

Figure 4. Average cost of CyberShake under varied normalized deadline. 

 

Figure 5. Average cost of Epigenomics under varied normalized deadline. Figure 5. Average cost of Epigenomics under varied normalized deadline.
Future Internet 2018, 10, x FOR PEER REVIEW    19 of 23 

 

 

Figure 6. Average cost of LIGO Inspiral Analysis under varied normalized deadline. 

 

Figure 7. Average cost of SIPHT under varied normalized deadline. 

It can be seen from the results that the proposed method DSB shows significant improvement in 

cost  when  the  deadline  was  minimum.  Moreover,  it  showed  better  resource  management  by 

exploiting efficient level of parallelism. 

Figure 8 shows the normalized deadline obtained for each workflow with different scheduling 

algorithms. In the proposed DSB, the greater value of ND represents that it could achieve an efficient 

schedule map with  lowest  cost under  the user‐defined deadline  constraint.  Its value  less  than  1 

denotes  that  the algorithm was unable  to generate a  schedule map while  satisfying  the deadline 

constraint. Moreover, the proposed DSB achieves lower cost with workflows having longer deadlines 

because they are scheduled on least expensive VMs. 

 

Figure 8. Normalized Deadline (ND) for each workflow with different methods. 

Figure 6. Average cost of LIGO Inspiral Analysis under varied normalized deadline.

Future Internet 2018, 10, x FOR PEER REVIEW    19 of 23 

 

 

Figure 6. Average cost of LIGO Inspiral Analysis under varied normalized deadline. 

 

Figure 7. Average cost of SIPHT under varied normalized deadline. 

It can be seen from the results that the proposed method DSB shows significant improvement in 

cost  when  the  deadline  was  minimum.  Moreover,  it  showed  better  resource  management  by 

exploiting efficient level of parallelism. 

Figure 8 shows the normalized deadline obtained for each workflow with different scheduling 

algorithms. In the proposed DSB, the greater value of ND represents that it could achieve an efficient 

schedule map with  lowest  cost under  the user‐defined deadline  constraint.  Its value  less  than  1 

denotes  that  the algorithm was unable  to generate a  schedule map while  satisfying  the deadline 

constraint. Moreover, the proposed DSB achieves lower cost with workflows having longer deadlines 

because they are scheduled on least expensive VMs. 

 

Figure 8. Normalized Deadline (ND) for each workflow with different methods. 

Figure 7. Average cost of SIPHT under varied normalized deadline.

It can be seen from the results that the proposed method DSB shows significant improvement in
cost when the deadline was minimum. Moreover, it showed better resource management by exploiting
efficient level of parallelism.

Figure 8 shows the normalized deadline obtained for each workflow with different scheduling
algorithms. In the proposed DSB, the greater value of ND represents that it could achieve an efficient
schedule map with lowest cost under the user-defined deadline constraint. Its value less than 1 denotes



Future Internet 2018, 10, 5 19 of 23

that the algorithm was unable to generate a schedule map while satisfying the deadline constraint.
Moreover, the proposed DSB achieves lower cost with workflows having longer deadlines because
they are scheduled on least expensive VMs.

Future Internet 2018, 10, x FOR PEER REVIEW    19 of 23 

 

 

Figure 6. Average cost of LIGO Inspiral Analysis under varied normalized deadline. 

 

Figure 7. Average cost of SIPHT under varied normalized deadline. 

It can be seen from the results that the proposed method DSB shows significant improvement in 

cost  when  the  deadline  was  minimum.  Moreover,  it  showed  better  resource  management  by 

exploiting efficient level of parallelism. 

Figure 8 shows the normalized deadline obtained for each workflow with different scheduling 

algorithms. In the proposed DSB, the greater value of ND represents that it could achieve an efficient 

schedule map with  lowest  cost under  the user‐defined deadline  constraint.  Its value  less  than  1 

denotes  that  the algorithm was unable  to generate a  schedule map while  satisfying  the deadline 

constraint. Moreover, the proposed DSB achieves lower cost with workflows having longer deadlines 

because they are scheduled on least expensive VMs. 

 

Figure 8. Normalized Deadline (ND) for each workflow with different methods. Figure 8. Normalized Deadline (ND) for each workflow with different methods.

The average success rate achieved for the workflows are shown in Figure 9. It can be seen that the
performance of the proposed DSB is better in terms of cost achieved under user-defined deadline as
compared to the other baseline algorithms.

Future Internet 2018, 10, x FOR PEER REVIEW    20 of 23 

 

The average success rate achieved for the workflows are shown in Figure 9. It can be seen that 

the performance of the proposed DSB is better in terms of cost achieved under user‐defined deadline 

as compared to the other baseline algorithms. 

 

Figure 9. Valid Schedule Rate (VSR) versus Normalized Deadline (ND). 

5.4. Sensitivity of Overheads, VM Performance Variations and Task Failures 

In  real  cloud environment, unexpected delays, VM provisioning delays,  inaccuracies  in  task 

runtime  estimations  and  VM  performance  variations  can  cause  failures.  The  sensitivity  of  our 

mechanism to overheads, delays and performance variations was evaluated. It was modeled using a 

normal distribution around the real value with 30% provisioning delay and task failure probability. 

The loss in VM performance was considered based on a normal distribution with mean of 15% and 

standard deviation of 10%. The relative performance of our method is given in Figure 10. It shows 

four  curves, each  representing  (i) accurate  estimations and no delays and  failures;  (ii)  inaccurate 

estimations of VM performance variation; (iii) inaccurate estimations of provisioning delays and (iv) 

task failures respectively. These results demonstrate the algorithm’s good sensitivity to  inaccurate 

estimations.  It  is  also  found  that  the  proposed mechanism  is  successful  in meeting  its  deadline 

constraint in most of the cases. However, task failure has a larger impact on performance due to its 

direct effect on overall makespan. 

 

Figure 10. Sensitivity to inaccurate estimations and task execution failure. 

5.5. Analysis of Variance (ANOVA) Test 

In this section, the statistical significance of the obtained experimental results is checked by the 

one‐way ANOVA test [35]. Table 4 shows that most of the variation  in the obtained results  is the 

variation between and not  the variation within.  It  is evident  that  the ANOVA  test  is  statistically 

Figure 9. Valid Schedule Rate (VSR) versus Normalized Deadline (ND).

5.4. Sensitivity of Overheads, VM Performance Variations and Task Failures

In real cloud environment, unexpected delays, VM provisioning delays, inaccuracies in task
runtime estimations and VM performance variations can cause failures. The sensitivity of our
mechanism to overheads, delays and performance variations was evaluated. It was modeled using a
normal distribution around the real value with 30% provisioning delay and task failure probability.
The loss in VM performance was considered based on a normal distribution with mean of 15% and
standard deviation of 10%. The relative performance of our method is given in Figure 10. It shows four
curves, each representing (i) accurate estimations and no delays and failures; (ii) inaccurate estimations
of VM performance variation; (iii) inaccurate estimations of provisioning delays and (iv) task failures



Future Internet 2018, 10, 5 20 of 23

respectively. These results demonstrate the algorithm’s good sensitivity to inaccurate estimations.
It is also found that the proposed mechanism is successful in meeting its deadline constraint in most
of the cases. However, task failure has a larger impact on performance due to its direct effect on
overall makespan.

Future Internet 2018, 10, x FOR PEER REVIEW    20 of 23 

 

The average success rate achieved for the workflows are shown in Figure 9. It can be seen that 

the performance of the proposed DSB is better in terms of cost achieved under user‐defined deadline 

as compared to the other baseline algorithms. 

 

Figure 9. Valid Schedule Rate (VSR) versus Normalized Deadline (ND). 

5.4. Sensitivity of Overheads, VM Performance Variations and Task Failures 

In  real  cloud environment, unexpected delays, VM provisioning delays,  inaccuracies  in  task 

runtime  estimations  and  VM  performance  variations  can  cause  failures.  The  sensitivity  of  our 

mechanism to overheads, delays and performance variations was evaluated. It was modeled using a 

normal distribution around the real value with 30% provisioning delay and task failure probability. 

The loss in VM performance was considered based on a normal distribution with mean of 15% and 

standard deviation of 10%. The relative performance of our method is given in Figure 10. It shows 

four  curves, each  representing  (i) accurate  estimations and no delays and  failures;  (ii)  inaccurate 

estimations of VM performance variation; (iii) inaccurate estimations of provisioning delays and (iv) 

task failures respectively. These results demonstrate the algorithm’s good sensitivity to  inaccurate 

estimations.  It  is  also  found  that  the  proposed mechanism  is  successful  in meeting  its  deadline 

constraint in most of the cases. However, task failure has a larger impact on performance due to its 

direct effect on overall makespan. 

 

Figure 10. Sensitivity to inaccurate estimations and task execution failure. 

5.5. Analysis of Variance (ANOVA) Test 

In this section, the statistical significance of the obtained experimental results is checked by the 

one‐way ANOVA test [35]. Table 4 shows that most of the variation  in the obtained results  is the 

variation between and not  the variation within.  It  is evident  that  the ANOVA  test  is  statistically 

Figure 10. Sensitivity to inaccurate estimations and task execution failure.

5.5. Analysis of Variance (ANOVA) Test

In this section, the statistical significance of the obtained experimental results is checked by the
one-way ANOVA test [35]. Table 4 shows that most of the variation in the obtained results is the
variation between and not the variation within. It is evident that the ANOVA test is statistically
significant due to the greater F-statistic and lower p-value. In other words, there is statistically
significant difference between the two algorithms. Therefore, the null hypothesis (H0) which states
that the mean of all the algorithms are equal, can be rejected.

Table 4. One-way ANOVA test result.

Workflow Source of Variation SS df MS F p-Value

Montage_1000
Between groups 561,231.4 2 280615.7 35.683 3.04 × 10−8

Within groups 212,330 27 7864.074
Total 773,561.4 29

Between groups 1,519,506.153 2 759,753.076 21.027 3.12× 10−6

CyberShake_1000 Within groups 975,550.9 27 36,131.515
Total 2,495,057.053 29

Between groups 1,630,867.799 2 815,433.8995 60.632 0.0
Epigenomics_997 Within groups 363,117.4 27 13,448.792

Total 1,993,985.199 29

LIGO_1000
Between groups 1,000,549.365 2 500,274.682 63.815 0.0
Within groups 211,665.6 27 7839.467

Total 1,212,214.965 29

SIPHT_1000
Between groups 4,717,007.744 2 2,358,503.872 24.935 7.3 × 10−7

Within groups 2,553,788 27 94,584.741
Total 7,270,795.744 29

Note: SS = Sum of Squares, MS = Mean Sum of Squares, df = Degree of Freedom.

6. Conclusions

In this paper, a BoT based workflow scheduling algorithm has been proposed for the dynamic and
elastic provisioning of VM instances, that considers resource renting cost minimization constrained to
user-defined deadline. The proposed model groups the workflow into BoTs based on data dependency



Future Internet 2018, 10, 5 21 of 23

and priority constraints and thereafter optimizes the allocation and scheduling of BoTs on elastic,
heterogeneous and dynamically provisioned cloud resources called VMs in order to attain the
proposed method’s objectives. The proposed approach considers pay-as-you-go IaaS clouds having
inherent features such as elasticity, abundance, heterogeneity, VM performance variation and VM
provisioning delays. Mathematical model was successfully used for the dynamic provisioning of
resources. The traces for the experiments were taken from real-world scientific workflow applications.
Experimental results demonstrate that our proposed DSB increases the chance of deadline being
satisfied and minimizes the execution cost compared to other approaches for the real-world scientific
workflow applications considered.

The future work is intended to investigate more accurate models to predict potential failures,
uncertainties and performance variations of time critical applications in the real IaaS environment.
Another future direction is to extend the proposed model to implement fault tolerant energy efficient
elastic resource provisioning and scheduling. Moreover, future research will also evaluate the proposed
model on VMs with different lengths of pricing intervals. Finally, the algorithms will be implemented
in a workflow execution engine for their effective utilization in real life.

Author Contributions: Nazia Anwar carried out the conception and design of the study, performed the
experiments, analyzed and interpret the data and contributed in drafting and revising the manuscript. Huifang
Deng made substantial contributions to the design of the study, the analysis and interpretation of the data, and
critically review the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rodriguez, M.A.; Buyya, R. A taxonomy and survey on scheduling algorithms for scientific workflows in
IaaS cloud computing environments. Concurr. Comput. Pract. Exp. 2017, 29, 1–32. [CrossRef]

2. Ullman, J.D. Np-complete scheduling problems. J. Comput. Syst. Sci. 1975, 10, 384–393. [CrossRef]
3. Ostrowski, K.; Birman, K.; Dolev, D. Extensible architecture for high-performance, scalable, reliable

publish-subscribe eventing and notification. Int. J. Web Serv. Res. 2007, 4, 18–58. [CrossRef]
4. Chen, W.; Deelman, E. Workflow overhead analysis and optimizations. In Proceedings of the 6th Workshop

on Workflows in Support of Large-Scale Science, Seattle, Washington, DC, USA, 14 November 2011; ACM:
New York, NY, USA, 2011; pp. 11–20. [CrossRef]

5. Chen, W.; Silva, R.F.; Deelman, E.; Sakellariou, R. Using imbalance metrics to optimize task clustering in
scientific workflow executions. Future Gener. Comput. Syst. 2015, 46, 69–84. [CrossRef]

6. Verma, A.; Kaushal, S. Cost-time efficient scheduling plan for executing workflows flows in the cloud.
J. Grid Comput. 2015, 13, 495–506. [CrossRef]

7. Arabnejad, H.; Barbosa, J.G.; Prodan, R. Low-time complexity budget deadline constrained workflow
scheduling on heterogeneous resources. Future Gener. Comput. Syst. 2016, 55, 29–40. [CrossRef]

8. Malawski, M.; Juve, J.; Deelman, E.; Nabrzyski, J. Algorithms for cost- and deadline-constrained provisioning
for scientific workflow ensembles in iaas clouds. Future Gener. Comput. Syst. 2015, 48, 1–18. [CrossRef]

9. Mao, M.; Humphrey, M. Auto-scaling to minimize cost and meet application deadlines in cloud workflows.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, Seatle, WA, USA, 12–18 November 2011. [CrossRef]

10. Byun, E.-K.; Kee, Y.-S.; Kim, J.-S.; Maeng, S. Cost optimized provisioning of elastic resources for application
workflows. Future Gener. Comput. Syst. 2011, 27, 1011–1026. [CrossRef]

11. Tang, Z.; Liu, M.; Ammar, A.; Li, K.; Li, K. An optimized MapReduce workflow scheduling algorithm for
heterogeneous computing. J. Supercomput. 2014, 72, 1–21. [CrossRef]

12. Silva, R.F.; Glatard, T.; Desprez, F. On-Line, non-clairvoyant optimization of workflow activity granularity on
grids. In Proceedings of the 19th International Conference on Parallel Processing, Aachen, Germany, 26–30 August
2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8097,
pp. 255–266. [CrossRef]

http://dx.doi.org/10.1002/cpe.4041
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.4018/jwsr.2007100102
http://dx.doi.org/10.1145/2110497.2110500
http://dx.doi.org/10.1016/j.future.2014.09.014
http://dx.doi.org/10.1007/s10723-015-9344-9
http://dx.doi.org/10.1016/j.future.2015.07.021
http://dx.doi.org/10.1016/j.future.2015.01.004
http://dx.doi.org/10.1145/2063384.2063449
http://dx.doi.org/10.1016/j.future.2011.05.001
http://dx.doi.org/10.1007/s11227-014-1335-2
http://dx.doi.org/10.1007/978-3-642-40047-6_28


Future Internet 2018, 10, 5 22 of 23

13. Zuo, X.; Zhang, G.; Tan, W. Self-adaptive learning PSO-based deadline constrained task scheduling for
hybrid IaaS cloud. IEEE Trans. Autom. Sci. Eng. 2014, 11, 564–573. [CrossRef]

14. Moschakis, I.A.; Karatza, H.D. Multi-criteria scheduling of bag-of-tasks applications on heterogeneous
interlinked clouds with simulated annealing. J. Syst. Softw. 2015, 101, 1–14. [CrossRef]

15. Abrishami, S.; Naghibzadeh, M.; Epema, D.H. Deadline-constrained workflow scheduling algorithms for
infrastructure as a service clouds. Future Gener. Comput. Syst. 2013, 29, 158–169. [CrossRef]

16. Cai, Z.; Li, X.; Ruiz, R. Resource provisioning for task-batch based workflows with deadlines in public clouds.
IEEE Trans. Cloud Comput. 2017, PP, 1-1. [CrossRef]

17. Singh, V.; Gupta, I.; Jana, P.K. A novel cost-efficient approach for deadline-constrained workflow scheduling
by dynamic provisioning of resources. Future Gener. Comput. Syst. 2018, 79, 95–110. [CrossRef]

18. Rodriguez, M.A.; Buyya, R. Scheduling dynamic workloads in multi-tenant scientific workflow as a service
platforms. Future Gener. Comput. Syst. 2018, 79, 739–750. [CrossRef]

19. Rodriguez, M.A.; Buyya, R. Budget-Driven Scheduling of Scientific Workflows in IaaS Clouds with
Fine-Grained Billing Periods. ACM Trans. Auton. Adapt. Syst. 2017, 12, 5. [CrossRef]

20. Dziok, T.; Figiela, K.; Malawski, M. Adaptive multi-level workflow scheduling with uncertain task estimates.
In Parallel Processing and Applied Mathematics; Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2016; Volume 9574, pp. 90–100. [CrossRef]

21. Muthuvelu, N.; Vecchiola, C.; Chai, I.; Chikkannan, E.; Buyya, R. Task granularity policies for deploying
bag-of-task applications on global grids. Future Gener. Comput. Syst. 2012, 29, 170–181. [CrossRef]

22. Malawski, M.; Juve, G.; Deelman, E.; Nabrzyski, J. Cost- and deadline-constrained provisioning for scientific
workflow ensembles in IaaS clouds. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, Salt Lake City, UT, USA, 10–16 November 2012; pp. 1–11.

23. Deelman, E.; Singh, G.; Su, M.H.; Blythe, J.; Gil, Y.; Kesselman, C.; Laity, A. Pegasus: A framework for
mapping complex scientific workflows onto distributed systems. Sci. Programm. 2005, 13, 219–237. [CrossRef]

24. Abouelhoda, M.; Issa, S.A.; Ghanem, M. Tavaxy: Integrating Taverna and Galaxy workflows with cloud
computing support. BMC Bioinform. 2012, 13, 77. [CrossRef] [PubMed]

25. Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Wenger, K. Pegasus, a workflow
management system for science automation. Future Gener. Comput. Syst. 2015, 46, 17–35. [CrossRef]

26. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Zaharia, M. A view of cloud
computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

27. Ostermann, S.; Iosup, A.; Yigibasi, N.; Prodan, R.; Fahringer, T.; Epema, D. A performance analysis of EC2
cloud computing services for scientific computing. In Cloud Computing; Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering; Springer: Berlin/Heidelberg,
Germany, 2010; Volume 34. [CrossRef]

28. Jackson, K.R.; Ramakrishnan, L.; Muriki, K.; Canon, S.; Cholia, S.; Shalf, J.; Wright, N.J. Performance analysis
of high performance computing applications on the Amazon Web Services cloud. In Proceedings of the 2nd
International Conference on Cloud Computing Technology and Science (CloudCom), Indianapolis, IN, USA,
30 November–3 December 2010. [CrossRef]

29. Topcuoglu, H.; Hariri, S.; Wu, M. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

30. Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.; Vahi, K. Characterizing and profiling scientific
workflows. Future Gener. Comput. Syst. 2013, 29, 682–692. [CrossRef]

31. Zhu, Z.; Zhang, G.; Li, M.; Liu, X. Evolutionary Multi-Objective Workflow Scheduling in Cloud. IEEE Trans.
Parallel Distrib. Syst. 2016, 27, 1344–1357. [CrossRef]

32. Chen, W.; Deelman, E. WorkflowSim: A toolkit for simulating scientific workflows in distributed
environments. In Proceedings of the IEEE 8th International Conference on E-Science (e-Science), Chicago, IL,
USA, 8–12 October 2012; pp. 1–8. [CrossRef]

33. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

http://dx.doi.org/10.1109/TASE.2013.2272758
http://dx.doi.org/10.1016/j.jss.2014.11.014
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1109/TCC.2017.2663426
http://dx.doi.org/10.1016/j.future.2017.09.054
http://dx.doi.org/10.1016/j.future.2017.05.009
http://dx.doi.org/10.1145/3041036
http://dx.doi.org/10.1007/978-3-319-32152-3_9
http://dx.doi.org/10.1016/j.future.2012.03.022
http://dx.doi.org/10.1155/2005/128026
http://dx.doi.org/10.1186/1471-2105-13-77
http://www.ncbi.nlm.nih.gov/pubmed/22559942
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://dx.doi.org/10.1109/CloudCom.2010.69
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1109/TPDS.2015.2446459
http://dx.doi.org/10.1109/eScience.2012.6404430
http://dx.doi.org/10.1002/spe.995


Future Internet 2018, 10, 5 23 of 23

34. Rodriguez, M.A.; Buyya, R. A Responsive Knapsack-based Algorithm for Resource Provisioning and
Scheduling of Scientific Workflows in Clouds. In Proceedings of the IEEE 44th International Conference on
Parallel Processing (ICPP), Beijing, China, 1–4 September 2015. [CrossRef]

35. Muller, K.E.; Fetterman, B.A. Regression and ANOVA: An Integrated Approach Using SAS Software; SAS Institute:
Cary, NC, USA, 2002.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICPP.2015.93
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	System Model 
	Scientific Workflow Application Model 
	Cloud Resource Model 
	Workflow Execution Model 

	The Proposed DSB Workflow Scheduling Algorithm 
	Assumptions 
	Problem Statement 
	Basic Definitions 
	Proposed Algorithm 
	Task Prioritization 
	Task Grouping 
	Deadline Distribution 
	Task Selection 
	Elastic Resource Provisioning 

	Computational Complexity 

	Performance Analysis and Discussion 
	Experiment Environment 
	Performance Metric 
	Normalized Deadline (ND) 
	Improvement Rate (IR) 
	Success Rate (SR) 

	Evaluation Results 
	Sensitivity of Overheads, VM Performance Variations and Task Failures 
	Analysis of Variance (ANOVA) Test 

	Conclusions 
	References

