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Abstract

:

Cimicifuga racemosa (CR) extracts contain diverse constituents such as saponins. These saponins, which act as a defense against herbivores and pathogens also show promise in treating human conditions such as heart failure, pain, hypercholesterolemia, cancer, and inflammation. Some of these effects are mediated by activating AMP-dependent protein kinase (AMPK). Therefore, comprehensive screening for activating constituents in a CR extract is highly desirable. Employing machine learning (ML) techniques such as Deep Neural Networks (DNN), Logistic Regression Classification (LRC), and Random Forest Classification (RFC) with molecular fingerprint MACCS descriptors, 95 CR constituents were classified. Calibration involved 50 randomly chosen positive and negative controls. LRC achieved the highest overall test accuracy (90.2%), but DNN and RFC surpassed it in precision, sensitivity, specificity, and ROC AUC. All CR constituents were predicted as activators, except for three non-triterpene compounds. The validity of these classifications was supported by good calibration, with misclassifications ranging from 3% to 17% across the various models. High sensitivity (84.5–87.2%) and specificity (84.1–91.4%) suggest suitability for screening. The results demonstrate the potential of triterpene saponins and aglycones in activating AMP-dependent protein kinase (AMPK), providing the rationale for further clinical exploration of CR extracts in metabolic pathway-related conditions.
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1. Introduction


Extracts of Cimicifuga racemosa L., NUTT. (also known as Actaea racemosa L. or black cohosh) are widely accepted [1,2,3,4] and have been granted “well-established use” status in the treatment of postmenopausal (i.e., climacteric) complaints by the European Medicines Agency [5]. This monograph predominantly includes vasomotor symptoms such as hot flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although characteristic postmenopausal complaints have been known for a very long time and the beneficial effects of Cimicifuga extracts on climacteric symptoms are well accepted [3,4], the mechanism of actions has not yet been fully elucidated.



As well as clinical studies involving female patients, Seidlova-Wuttke et al. (2012) [6] undertook a comprehensive investigation aimed at delving into the beneficial impacts of a CR extract on postmenopausal symptoms in ovariectomized rats. In addition to the commonly reported climacteric effects, the authors were able to discern noteworthy reductions in fat accumulation and a decrease in the manifestations of metabolic syndrome in these animals. As AMP-activated protein kinase (AMPK) plays a pivotal role in regulating cellular metabolism [7], Moser et al. [8] investigated the effect of a CR extract Ze 450 and three of its isolated components (23-epi-26-deoxyactein, protopine, and Cimiracemoside C) on AMPK activity and carbohydrate metabolism in HepaRG cells and male ob/ob mice.



The extract and its components activated AMPK to the same extent as the AMPK activator metformin. The results also showed the extract led to significant reductions in body weight and plasma glucose levels, while improving glucose metabolism and insulin sensitivity in male diabetic ob/ob mice [8]. These findings broadened the mechanism of action of Cimicifuga in various domains to include the activation of AMPK and the subsequent effect on cellular metabolism, as indicated by a recent review discussion [9]. This new perspective brings new areas of application such as metabolic disorders, cardiovascular diseases, obesity, anti-aging, antioxidative, and supportive antiproliferative therapy into the focus of future clinical developments.



When examining the literature on published AMPK activators, the substantial chemical and pharmacological heterogeneity of the activators becomes evident. While only a handful of these (naturally occurring) activators directly target the enzyme itself, such as salicylate or AMP, the majority exert their effects indirectly. They achieve this by either influencing upstream kinases that subsequently phosphorylate AMPK or by reducing cellular ATP levels, leading to AMPK phosphorylation and subsequent activation. In particular, a variety of plant extracts or isolated plant constituents have been described in the literature to activate the enzyme [10,11,12].



The primary class of naturally occurring metabolites that may activate AMPK is the class of triterpene saponins and polyphenols such as flavonoids, courcumin, stilbenes, and others may also do so [13,14,15]. The class of triterpene saponins is widely distributed throughout the plant kingdom and constitutes a large and diverse group of secondary metabolites. They consist of a hydrophobic (water-repelling) aglycone, which can be steroidal or triterpenoid in nature, and one or more hydrophilic sugar moieties known as glycosides. These sugar moieties can be either monosaccharides or oligosaccharides and exhibit variations in their structure, size, and composition. The most common sugar moieties in steroidal saponins include glucose, galactose, rhamnose, xylose, and arabinose, which can undergo further metabolic processes. The type and number of sugar moieties attached to the steroid or triterpenoid aglycone affect the physicochemical properties and biological activities of the saponins, such as their solubility, stability, and bioavailability [16]. Saponins usually have unfavorable physiochemical properties for oral absorption due to their large molecular mass and hydrophilicity, which hinders enteral absorption and cellular uptake [17]. Hence, biotransformation to aglycones by cleavage of the glycosidic sugars may significantly alter cellular availability and consequently affect their pharmacological effects. Notably, certain saponins undergo deglycosidation by colonic microflora leading to enhanced intestinal absorption of the lipophilic aglycones. This is observed in the cases of certain ginsenosides and soybean saponins [18,19,20]. These compounds may also have a higher probability of entering their target cells.



When investigating herbal remedies, experiments can be challenging. The herbal extracts are complex and often contain multiple substances. Additionally, obtaining pure isolated compounds from these extracts can be difficult.



This presents an opportunity where machine learning models can significantly enhance the classification of activator constituents. Machine learning offers the possibility of thorough screening of these complex mixtures so that key compounds can be accurately identified, thereby streamlining subsequent detailed analysis and testing.



Recently, we have published research about sensitive and accurate machine learning models for the classification of AMPK activators [12]. In the present study, an extended and updated version of this applied database of known activators and controls has been used to classify all chemically characterized constituents of the Cimicifuga extract Ze 450 to estimate its ability to activate AMPK.




2. Materials and Methods


The flow and structure of experiments are illustrated in the following Figure 1:



2.1. Data


A highly detailed AMPK dataset was compiled in 2021 [13] and recently updated in August 2023. It was compiled by a thorough literature review of AMPK activators and inhibitors, conducted on PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 4 April 2024) using the search terms “AMPK AND activation” and “AMPK AND inhibition”. Compounds were included if they were confirmed activators or inhibitors by at least one publication listed on PubMed. Additionally, the Bioassay database of PubChem Substance and Compound databases (https://pubchem.ncbi.nlm.nih.gov/, accessed on 4 April 2024) was consulted, particularly when compounds exhibited an EC50 of ≤0.1 µM, indicating activation. Conversely, compounds that were tested and found to be inactive for AMPK activation or exhibited inhibitory activity were used as the control group for this analysis. In total, the database comprised N = 1120 and N = 815 active compounds or controls, respectively.



To comprehensively characterize the power of Cimicifuga racemosa, 95 chemically defined compounds from the rhizome were included for analysis [21] (see Table A1, Appendix B).




2.2. Data Preprocessing


Chemical structures were coded using the simplified molecular-input line-entry system (isomeric SMILES taken from PubChem). Data were used to calculate MACCS fingerprint descriptors (Molecular ACCess System, [22]). MACCS fingerprint descriptors are binary representations encoding the presence or absence of specific structural features or substructures within a molecule. They are represented by a fixed-length vector of 166 bits with “0” values indicating absence and “1” values indicating presence. They do not encode information about bond order, stereochemistry, or spatial arrangement of atoms. Despite these limitations, fingerprint descriptors are commonly used in cheminformatics and computational chemistry. Since MACCS fingerprints focus on specific structural features, they are effective at capturing chemical diversity in a dataset [23].



Finally, data preprocessing (curation) entailed eliminating duplicate entries, salts, mixtures, smaller fragments, and proteins from SMILES structures, with a focus on low molecular weight drug-like compounds (molecular weight < 1000). Lastly, tautomers were not standardized during this process.



To reduce computational effort and noise, the VarianceThreshold feature selection method was used to remove features with low variance (<0.01%).



The unbalanced distribution of activators and controls was compensated for by the Synthetic Minority Oversampling Technique (SMOTE, [24]), which generates synthetic samples for the minority class by interpolating between existing samples. It creates new samples that are combinations of neighboring samples, resulting in an even class distribution (1122 members for each class). SMOTE was only applied in the training and not in the test phase.




2.3. Validation


Validation of models was based on OECD Principles for (Q)SAR Validation [25] using the 2:1 random split of the 2244 total data into 1570 training and 674 test data. These training data were further split (5:1 ratio) into a validation training dataset (N = 1258) and a validation test dataset (N = 314) to optimize model hyperparameters and train the models (using the sklearn train-test split method). After completion of training, the test data served as an external control using 5-fold cross-validation. Furthermore, the training was repeated after randomization of the response variable (Y-randomization [26]).



The high-dimensional data of activators and controls were transformed into a two-dimensional space using the t-distributed stochastic neighbor embedding technique (tSNE). This method offers a visual representation of the structural relationship between various compounds, aiding in the interpretation of the database’s applicability domain [27].




2.4. Machine Learning Models


The following three machine learning techniques were applied: Deep Neural Networks, Logistic Regression Classification, and Random Forest Classification.



All calculations were performed using Python 3.11.2 (https://www.python.org/, accessed on 4 April 2024). Graphical analysis was carried out using OriginPro, version 2023, OriginLab Corporation, Northampton, MA, USA, or Matplotlib, version 3.3.3 (https://matplotlib.org/#, accessed on 5 April 2024).



2.4.1. Deep Neural Network (DNN)


DNNs are sophisticated computational models with multiple interconnected layers, allowing them to automatically learn hierarchical representations of complex patterns from data [28]. Their depth enables effective feature extraction and is a key factor in their success across various machine learning tasks.



The data were assessed using a sequential DNN model, featuring a variable number of dense, hidden, and dropout layers, with HeNormal as the kernel initializer and Constant (value = 0) as the bias initializer. The activation functions employed were the exponential linear unit (ELU) for positive values and sigmoid for the output layers. Binary cross-entropy was utilized as the loss function. Details of the model are given in Appendix A.




2.4.2. Logistic Regression Classification (LRC)


LRC [29] is a powerful and widely used statistical method for modeling the probability of a binary outcome based on one or more independent variables.



LRC is used to estimate the probability     p  ^    that an instance belongs to a class:


    p  ^  =   h   θ     x   = σ     θ   T   · x   ,  



(1)




using the logistic function:


  σ   t   =   1   1 +   e   − t     .  



(2)







Binary classification for two classes denoted with 0 and 1 was obtained by


    y  ^  = σ   t   =       0 ,       p  ^  < 0.5       1 ,       p  ^  ≥ 0.5        



(3)







The scikit-learn procedure was used (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html, accessed on 4 April 2024).




2.4.3. Random Forest Classification (RFC)


RFC, an ensemble method (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html, accessed on 4 April 2024), enhances generalizability and robustness by aggregating multiple base estimators, surpassing the performance of individual estimators such as decision trees. Each base estimator in the sequence aims to minimize the bias of the combined estimator. Renowned for classification tasks, RFCs are adept decision tree algorithms. Hyperparameters were optimized through grid search analysis, covering the number of estimators, maximum features utilized, maximum tree depth, minimum samples for split and leaf, and impurity criterion. Notably, no bootstrap sampling was employed in the process.





2.5. Hyperparameter Tuning


The hyperparameter tuning was performed on both the validation training dataset (N = 1258) and a validation test dataset (N = 314), which was derived with a 5:1 split using the train-test split method to optimize model hyperparameters and train the models.



Some of the adjustable hyperparameters of the investigated models were tuned by grid search, which was coupled with a 5-fold cross-validation (using sklearn GridSearchCV module), the others were kept in their default settings. Specifically for logistic regression, we focused on two key hyperparameters: the inverse of the regularization strength, denoted as “C”, and the penalty functions, which could be either “l1” (Lasso), “l2” (Ridge) regression, or “elasticnet” (a combination of “l1” (Lasso) and “l2” (Ridge)). These penalty functions help to control the impact of large coefficients in the model, thereby discouraging it from fitting noise into the data. Additionally, we determined the optimal solver among various options, which included the Newton-conjugate gradient optimization method (“Newton-cg”), the Limited-memory Broyden–Fletcher–Goldfarb–Shanno optimization method (“lbfgs”), a linear programming approach (“liblinear”).



For DNN, a grid search was performed on learning rate, batch size, number of hidden layers, and dropout layers.




2.6. Model Evaluation


The dataset underwent partitioning using the sklearn.model_selection preprocessing method train_test_split, allocating 30% for testing and 70% for training. Subsequently, a 5-fold cross-validation (CV) was performed.



To compare data distributions and assess the application domain, t-distributed stochastic neighbor embedding analysis was conducted via the sklearn.manifold.TSNE procedure. This technique transforms high-dimensional data into a 2-dimensional representation, facilitating graphical evaluation of applicability domains.



Machine learning model performance was evaluated using the following metrics:




	
Accuracy: (TP + TN)/(TP + TN + FP + FN);



	
Precision: TP/(TP + FP);



	
Sensitivity: TP/(TP + FN);



	
Specificity: TN/(TN + FP).








Here, TP represents true positives (correctly predicted activators), FP denotes false positives (incorrectly predicted activators), TN signifies true negatives (correctly predicted controls), and FN stands for false negatives (incorrectly predicted controls).




2.7. Prevention of Overfitting


Overfitting is a common problem in machine learning and statistical modeling, and it occurs when a model learns to perform very well on the training data but fails to generalize its predictions to new, unseen data.



One important risk factor is an unbalanced distribution of activators and controls in our database. This is an inherent problem in AMPK activation. Due to the importance of this activation, many potential activator compounds have been tested experimentally, whereas a much smaller number of negative controls (often inhibitors) have been investigated. This leads to a bias in the reported results within the literature. To significantly minimize the risk of overfitting, various methodical precautions were undertaken.



2.7.1. Feature Selection


Since more complex models have a greater risk of model noise and are prone to overfitting, we simplified our models by eliminating those features that contribute information only marginally (e.g., have a variance threshold below 0.01).




2.7.2. Cross-Validation


Cross-validation, especially the 5-fold variant during hyperparameter tuning followed by a 10-fold variant coupled to the ROC analysis (see below), is a machine learning technique that gauges predictive model performance and generalization. It does this by splitting the dataset into ten roughly equal parts or “folds”. The model is trained on nine of these parts and tested on the remaining one. This process is repeated ten times, with each fold serving as the test set once.



The performance metrics (in our case accuracy) from these ten rounds were then averaged to judge the model’s overall performance. It is a powerful method for comprehensively evaluating a model’s capabilities. It is more robust than a single train-test split because it examines how well the model generalizes different subsets of data.




2.7.3. Regularization


For logistic regression: an application of regularization techniques like L1 (Lasso) or L2 (Ridge) regression or elastic net option was used to penalize large coefficients in the model. This discourages the model from fitting noise into the data. The parameter C denotes the inverse of the regularization strength. The choice between these techniques was made in the tuning of hyperparameters by the grid search procedure. For DNN, dropout layers were evaluated.




2.7.4. Early Stopping


For DNN training, an early stopping procedure (keras.callbacks module EarlyStopping, https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping, accessed on 4 April 2024) was applied to monitor the training loss and halt training if there was no improvement for five consecutive epochs.





2.8. Receiver Operating Characteristic (ROC)


To assess the performance of a binary classifier regardless of thresholds, the receiver operating characteristic (ROC) curve and its corresponding area under the curve (AUC) scores were computed [30]. This evaluation was complemented with a 10-fold cross-validation to ensure the robustness and generalizability of the results.




2.9. y-Randomization


A final aspect of method validation is y-randomization. In this step, the DNN was applied to the molecular descriptors (denoted by X) unchanged, while the target y was randomized (null model). The performance was then measured. If the original model significantly outperformed the null model, it suggested a meaningful relationship between the molecular descriptors (X) and biological activity (denoted by y) in our dataset. In such a scenario, it provided confidence in the predictive power of our model. To enhance confidence further, this process was repeated 50 times.




2.10. Classification of Cimicifuga racemosa (CR) Constituents


Using the SMILES of the CR constituents, the same molecular descriptors were calculated for the database. While the database was fitted to a standardizer and transformed, the CR descriptors were only transformed using the same standardizer. Using the best-performing model of the training, the CR constituents were predicted as either AMPK activators or controls.



To calibrate these classifications, 50 randomly chosen samples of the positive and negative controls of the database were each also classified in the same run. The models were ranked by the number of misclassifications.



2.10.1. Comparison of Cimicifuga racemosa (CR) Metabolites with Database


The best-performing model from the analysis was then employed to classify the transformed CR constituent descriptors. For each CR constituent, the five most similar members of the database were determined through pairwise calculation of cosine similarity scores (k) using scikit-learn (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html, accessed on 4 April 2024):


  k ( x , v ) =   < x , y >     x   ·   y     ,  








where     ·     denotes the Euclidian norm and <x,y> denotes the dot product of vectors x and y. It ranges from −1 to 1. Values of k > 0.8 were regarded as similar.




2.10.2. Comparison of Cimicifuga racemosa (CR) Saponins with Their Estimated Aglycones


In total, 46 of the CR constituents were identified as saponins. Their original SMILES codes were theoretically deglycosylated, following the approach suggested by SwissADME [31], to generate new SMILES codes for their corresponding aglycones. These new SMILES codes were then used to generate descriptors from the estimated aglycones for classification.




2.10.3. Assessment of Markers for Oral Absorption


A comparison between triterpene saponin constituents and their aglycones was conducted using the web tool SwissADME [31] available at http://www.swissadme.ch, accessed on 4 April 2024. This tool utilizes robust and predictive models for physicochemical properties, pharmacokinetics, and drug-likeness. It allowed us to estimate several parameters considered as indicators for the oral bioavailability of drugs, including molecular weight (MW), water solubility [32], topological polar surface area (TPSA; [33]), distribution coefficient XlogP [34], the number of violations of Lipinski’s rule of five [35], and the estimated lead-likeness [31].






3. Results


3.1. t-SNE Analysis


The t-SNE graphical analysis indicates a clear separation between the two classes, namely activators and controls, across the MACCS fingerprint descriptors (Figure 2):



For illustration, the distribution of four important parameters between activators and controls is displayed in Figure 3:




3.2. Feature Reduction


Variance threshold reduction simplified the models by reducing the number of features to 139 for the MACCS fingerprint descriptors from their initial counts of 166.




3.3. Hyperparameter Tuning


For the MACCS fingerprint descriptors a batch size of 16, no dropout layers, a learning rate of 0.001, and three hidden layers were found to be optimal for the DNN model. As a solver, the Adam optimizer and the binary cross-entropy as loss functions were used.



For the LRC model, a regularization strength C of 0.5, a L2 penalty, and the liblinear solver were selected, and “newton-cg” for the solver was estimated to be optimal parameters. For RFC, the gini criterion was chosen, the maximum features were set to log2 (number of features), the min_samples_leaf and min_samples_split were set to 1 and 4, respectively, and the number of estimators was set to 110.



All other parameters were left at their default settings.




3.4. Test Performances


In evaluating the performance of various machine learning techniques, all models demonstrated a commendable accuracy level of approximately 90%. Notably, the DNN model exhibited superior performance compared with other models by minimizing the number of misclassifications on the calibration data. With DNN, there were only three misclassifications, in contrast to 17 for LRC and 9 for the RFC model.



While the LRC model achieved the highest overall test accuracy at 90.2%, both the DNN and RFC models surpassed it in terms of precision, sensitivity, specificity, and ROC AUC, as summarized in Table 1.



All models utilized the MinMax Scaler for data scaling prior to modeling. As a side note, the RFC model was also evaluated without prior scaling, producing identical results to those obtained with scaled data.



The area under the receiver operating characteristic curve (ROC AUC) assesses a model’s capacity to differentiate between activator and control classes across various thresholds. These curves (Figure 4) were combined using a 10-fold cross-validation. A higher ROC AUC value indicates better class discrimination, with the optimal value being 1.0 or −1.0.




3.5. y-Randomization


Notably, in none of the 50 shuffled models could a distinction be made between activators and controls (see Table 1). The mean accuracy ranged from 57.6% ± 1.8% to 57.8% ± 1.8%. These results suggest that the unchanged models are statistically significant and are unlikely to have arisen by chance. This provides confidence in the predictive power of our models.




3.6. Classification of Cimicifuga racemosa (CR) Constituents


For classification, 103 chemically defined CR root compounds were identified [21] and checked for isomeric SMILES codes by using the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 4 April 2024). In total, 95 distinct compounds with all information available were used for analysis (see Table A1, Appendix B).



All compounds with triterpene and triterpenoid structures were classified as active. This classification is supported by the literature for 23-Epi-26-deoxyactein and cimiracemoside C [8]. From the non-triterpene compounds, the cinnamic, benzoic, or fukiic acid derivatives were clearly classified as active. A literature search supported this classification for synaptic acid [36], P-coumaric acid [11], isoferulic acid [37], protocatechuic acid [37], and protocatechuic aldehyde [38]. Compounds such as cimiracemates, cimiphenones, cimifugic acid derivatives, and actealactone were likewise classified as active. Among the chromones—angelicain, cimifugin, and visnagin—only angelicain and cimifugin were classified as active, whereas visnagin was classified as inactive, possibly due to the absence of a propan-2-ol group. Interestingly, the glycoside cimidahurin was classified as active. However, its aglycone hydroxytyrosol, and not the compound itself, was identified in the literature as an activator of AMPK [39]. For the chemical structures, see Appendix B: Table A1.



Further support for these classifications came from a similarity comparison of the CR constituents against our database. The constituents demonstrated high similarity to database compounds, with median similarity scores descending from 0.94 to 0.91. However, five compounds—cimipromidine (0.78), cimipromidine methyl ester (0.74), dopargine (0.77), and N-methylcytisine (0.797)—recorded the lowest similarity scores, aligning with their lower probability estimates of AMPK activation, as indicated in Figure 5. These findings, including individual similarity scores, are detailed in Table A2 in Appendix B, underscoring the data supporting the classification outcomes.




3.7. Comparison of Saponins with Their Aglycones


The 46 theoretical aglycones showed no systematic and significant differences in their probability compared with the saponins from which they were derived [31].



Saponins and their corresponding aglycones were analyzed for several markers indicative of oral bioavailabilities and drug-likeness (Figure 6). Data were applied to open source Webtool SwissADME [31], available at http://www.swissadme.ch, accessed on 4 April 2014.



As constructed, the molecular weight of aglycones was consistently lower than their corresponding saponins. While water solubility exhibited a significant decrease, on average (p = 0.02, paired two-sided t-test), compared with the solubility of saponins, there was a notable overlap between the two groups. In contrast, the topological polar surface area showed minimal overlap and a highly significant difference (p < 0.0001, paired two-sided t-test) between aglycones and saponins. An increase in lipophilicity, as indicated by the significant elevation of XLogP (p < 0.0001, paired two-sided t-test), was evident.



Assessing oral bioavailability using Lipinski’s rule of five [35], which indicates improved bioavailability if all five conditions are met, revealed significantly fewer violations for the aglycones (p = 0.01, Wilcoxon signed-rank test). Despite expectations that the observed effects on topological polar surface area (TPSA) and XLogP would manifest as clear differences in water solubility, the substantial overlap in solubility suggests that various physicochemical parameters exert opposing effects. This phenomenon cannot be solely explained by lipophilicity in a monocausal manner. Concerning drugability (lead-likeness), no clear advantage of the aglycones over the saponins could be demonstrated (p = 0.09, Wilcoxon signed-rank test).





4. Discussion


Herbal preparations encompass complex mixtures of potentially active chemical compounds. Nevertheless, comprehensive in vitro experiments often necessitate pure, isolated substances for each identified constituent. Regrettably, such isolated constituents are frequently insufficiently available. Hence, our extended approach uses machine learning tools, offering novel opportunities to screen these multi-substance preparations and identify promising lead compounds. These can then undergo rigorous subsequent testing.



Even when availability problems are set to one side, directly assessing each ingredient in vitro is a resource-intensive and time-consuming endeavor. A swifter, more cost-effective solution could be employing diverse machine learning models. These models, based on an established structure–activity database, can predict the AMPK activation potential of numerous so far uncharacterized substances “in a single run”.



All models investigated showed very good performance in discriminating AMPK activators from controls. Surprisingly, with the exception of three compounds (cyclocimipronidine, dopargine, and N-methylcytisine), all of the 95 investigated CR constituents were clearly predicted activators. It was therefore necessary to rule out a technical artifact caused by the overfitting of the model. Overfitting is a common problem in machine learning and statistical modeling, and it occurs when a model learns to perform very well on the training data but fails to generalize its predictions to new, yet unseen data. In other words, an overfitted model has focused on capturing the noise or random fluctuations in the training data instead of accurately capturing the underlying patterns or relationships.



A risk factor for overfitting is an unbalanced distribution of activators and controls in our database. This is an inherent problem in pharmacology. Due to the importance of AMPK activation, many potential activator compounds have been experimentally tested, whereas a much smaller number of negative controls (often inhibitors) have been investigated. This leads to a bias in the reported results within the literature.



In mitigating the challenge of overfitting, various methodological measures have been implemented to minimize this risk:




	
Balancing unevenly distributed dataset classes;



	
Employing simpler models;



	
Implementing cross-validation;



	
Utilizing regularization techniques;



	
Employing early stopping techniques.








All of these precautions were rigorously applied to ensure that technical and methodological safeguards had been implemented.



As we have previously demonstrated [12], the positive controls within our dataset, which serve as activators, exhibit a notable structural diversity. This diversity arises from the fact that a significant proportion of activators exert their effects indirectly. They interact with regulatory sites upstream in the biological pathways. When these sites are activated, they, in turn, trigger the phosphorylation and activation of AMP-activated protein kinase (AMPK). AMPK is a critical enzyme responsible for sensing and regulating energy supply, as well as various cellular functions. These functions include controlling carbohydrate entry and metabolism, generating reactive oxygen species (ROS), regulating apoptosis, modulating cellular growth, and influencing processes like mitochondrial biogenesis and autophagy.



While we achieved an excellent predictive performance on our unseen test dataset, it is important to acknowledge that the presence of unaccounted-for mechanisms cannot be ruled out. It is also worth noting that machine learning models have inherent limitations. They provide classification probabilities that ideally should be validated through direct in vitro or in vivo experiments or by other evidence. Another limitation is the research process itself. It focuses on AMPK activators rather than inhibitors or inactive substances. As a result, significantly fewer substances have been identified that inhibit AMPK, or, perhaps even more importantly, are confirmed not to interact with it. This leads to a selection bias in our database and unbalanced distribution and thus poses a theoretical risk of over-identifying active substances. This suggests that external evidence should also be sought.



A point that clearly supports the validity of the classifications is the calibration of the data, each consisting of 50 randomly selected positive and negative controls. Their classifications were clearly separated, with only 3% to 17% misclassifications across the three models under investigation. Another point to consider is the high sensitivity (84.5–87.2%) and specificity (84.1–91.4%), which provide strong indications for suitability as a screening tool.



To further substantiate our model’s predictive accuracy regarding the classification of the 95 CR constituents as either activators or controls, a comprehensive similarity analysis against all compounds in our database was performed. This involved computing the structural similarities of the CR constituents to every database entry and identifying the five most closely matching compounds for each metabolite (details provided in Table A2 in Appendix B). Notably, each of the CR constituents displayed considerable structural similarity to the positive control compounds within our database. The constituents showed high similarity to compounds in the database, with median similarity scores ranging from 0.94 down to 0.91. Nonetheless, a subset of compounds—specifically, cimipromidine (0.78), cimipromidine methyl ester (0.74), dopargine (0.77), and N-methylcytisine (0.797)—registered the lowest similarity scores. This correlates with their diminished likelihood of activating AMPK, as reflected in the probability estimates presented in Figure 4. These observations, including individual similarity scores, are thoroughly documented in Table A2 in Appendix B, providing a robust data foundation supporting our classification results.



Studying herbal drugs presents a unique set of challenges due to the complexity of herbal extracts, which consist of multiple substances. Additionally, obtaining pure substances from these extracts is often a challenging task, resulting in limited availability. Consequently, our improved method offers exciting new prospects for conducting thorough analyses of these complex mixtures. It enables the examination of multi-component herbal extracts to identify particular compounds of interest. Subsequently, these compounds can undergo more extensive assessments and evaluations, followed by further refinement of the extracts to enhance the concentration of the desired components.



Our results indicate that the models clearly classified all constituents of Cimicifuga racemosa as activators apart from three non-triterpenes. This suggests a high probability of their ability to activate AMPK. However, we cannot determine the strength of this activation from our findings. Moreover, it is plausible that this activation is a collaborative or even synergistic effect, considering that many constituents were classified as active. The overall effect is certainly influenced by the concentrations of these active compounds at the site of action, which is hard to predict.



It is perplexing that the models made no distinction between triterpene saponins and their aglycones in terms of the probability of classifying the compounds as activators. Although it is conceivable that aglycones, due to their higher lipophilicity, have a greater likelihood of being absorbed into tissues and reaching the site of action [40], our model merely predicts whether the compounds are capable of activating AMPK at all. It does not take into account the dose–response relationship and kinetics.



Triterpene saponins, known for their high hydrophilicity, exhibit limited oral absorption from the gastrointestinal tract, especially when compared to their respective lipophilic aglycones (for a review, see [40]). In our experiments, the range of water solubility values of CR triterpene saponins significantly overlapped the range of the values of their corresponding aglycones, suggesting that this statement likely needs to be assessed individually for each saponin and aglycone. Consequently, it is difficult to predict the overall oral absorption of a multicomponent mixture as an herbal extract.



In current Cimicifuga racemosa extracts, the aglycone content is relatively low. Nevertheless, research has demonstrated that a significant portion of the dose of triterpene saponin, as observed with 23-epi-26 dihydroxyactein, is orally absorbed in both rats [41] and humans [42]. Nonetheless, following oral administration, certain triterpene saponins have the potential to reach the large intestine, where they might undergo degradation by the colonic microbiome. This process, similar to what has been observed for other triterpene saponins [40]), could also contribute to the overall effect.



This study has some limitations: While MACCS (Molecular Access System) descriptors are widely utilized in cheminformatics and machine learning for representing chemical compounds [23], it is essential to acknowledge their inherent limitations and potential biases. Being rooted in predefined substructures, there is a possibility of bias towards specific compound types or functional groups, potentially overlooking less common or innovative structural motifs. The reliance on a fixed set of molecular features may impede the generalizability of machine learning models across diverse chemical datasets. Furthermore, some MACCS descriptors may exhibit high correlation or redundancy, leading to multicollinearity in the feature space. Addressing such issues is crucial as it can impact the stability and interpretability of machine learning models, often necessitating feature selection or dimensionality reduction techniques, as we applied in our study.



Moreover, MACCS descriptors are primarily tailored for small organic molecules and may not adequately represent complex biomolecules or materials. Hence, to ensure compatibility with the descriptor’s scope, we constrained our dataset to small compounds (molecular weight ≤ 1000).



A PubMed search using the terms “AMPK” and “QSAR” reveals that various QSAR models for predicting AMPK activation have been documented [43,44]. These models predominantly rely on pharmacophore docking, homology modeling, and structure-, ligand-, or fragment-based design strategies, focusing solely on compounds that activate AMPK directly. Diverging from these methodologies, our research appears to be the first to comprehensively incorporate compounds that activate AMPK, regardless of whether the activation is direct or indirect. This inclusive approach enables a broader understanding and captures the diverse mechanisms of AMPK activation more effectively, addressing the enzyme’s activation heterogeneity.




5. Conclusions


The results of this study confirm that all triterpene saponins, as well as their aglycones, tested may contribute to activating the AMP-dependent protein kinase (AMPK). With regard to the mechanism, this may suggest a collaborative or even synergistic action on the enzyme. Since AMPK plays a pivotal role in various interconnected metabolic pathways, our results further underscore the rationale for clinically investigating the therapeutic benefits of Cimicifuga racemosa extracts in conditions associated with disturbances in these metabolic pathways.








Supplementary Materials


The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/pharmaceutics16040511/s1; Table S1: DB_descript_MACCS; Table S2: Cimi_descript_MACCS; Table S3. Experiments.





Author Contributions


Conceptualization, J.D., V.S. and G.B.; methodology, V.S.; software and validation, J.D., V.S. and O.D.; formal analysis, J.D.; data curation, J.D.; writing—original draft preparation, J.D.; writing—review and editing, V.S., G.B., O.D. and A.S.; supervision, J.D. and G.B.; funding acquisition, G.B. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Institutional Review Board Statement


Not applicable, since the studies did not involve humans or animals.




Informed Consent Statement


Not applicable, since the studies did not involve humans or animals.




Data Availability Statement


A complete list of used activators and controls is given in Supplementary Materials as Tables S1–S3, and source codes of all models are given in Table A1 and Table A2.




Conflicts of Interest


J.D., O.D., A.S. and G.B. work at Max Zeller Söhne AG, a phytopharmaceutical company. V.S. declares no conflicts of interest. The design of this study was the sole responsibility of the authors. The funders/company had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.





Appendix A. Details of the Deep Neural Networks Model


	
Details of the Deep Neural Networks model;



	
Python code: Model.ipynb;



	
Database: database.csv.








	from sklearn.model_selection import KFold



	from sklearn.metrics import make_scorer, accuracy_score



	from keras.models import Sequential



	from keras.callbacks import ModelCheckpoint



	from keras.models import load_model



	from sklearn.model_selection import GridSearchCV



	from sklearn.model_selection import cross_val_score



	n_features = X_train.shape [1]



	n_targets = 1



	learning_rate = 0.01



	n_hidden = 4



	batch_size = 32



	epochs = 10



	def  create_model (n_features: int, learning_rate: float, n_hidden: int, batch_size: int,



	        dropout: float) -> Sequential:inputs = Input (shape = (number of features))



	x = Dense (1_500, kernel_initializer = init_w, bias_initializer = init_b) (inputs)



	   x = Activation (“elu”)(x)



	   x = Dropout (dropout)(x)



	   for i in range (0,n_hidden):



	        (x) = Dense (1_500-i*300, kernel_initializer = init_w, bias_initializer = init_b) (x)



	        (x) = Activation (“elu”) (x)



	        (x) = Dropout (dropout) (x)



	   outputs = Dense (n_targets, activation = “sigmoid”) (x)



	model = Model (inputs = inputs, outputs = outputs)



	model.compile (loss = ‘binary_crossentropy’, optimizer = Adam(learning_rate = learning_rate), metrics = [‘accuracy’])



	return model
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Table A1. Major constituents of Cimicifuga racemosa extracts.






Table A1. Major constituents of Cimicifuga racemosa extracts.





	
Shengmanol type (16-ketone type)

[image: Pharmaceutics 16 00511 i001]




	
Compounds

	
R1

	
R2

	
R3

	
R4

	
R5

	
R6

	
Δ7,8

	
CID




	
23-O-Acetylshengmanol

	
OH

	
H

	
H

	
OH

	
O-Ac

	
Epoxy

	
-

	
91827092




	
23-O-Acetylshengmanol-3-

O-β-D-xylopyranoside

	
O-Xyl

	
H

	
H

	
OH

	
O-Ac

	
Epoxy

	
-

	
56962372




	
23-O-Acetylshengmanol-3-O-α-L-

arabinopyranoside

	
O-Ara

	
H

	
H

	
OH

	
O-Ac

	
Epoxy

	
-

	
10865257




	
Bugbanoside C

	
O-Ara

	
H

	
O-Ac

	
OH

	
=O

	
OH/OH

	
+

	
15894670




	
Bugbanoside D

	
O-Ara

	
H

	
O-Ac

	
OH

	
=O

	
Epoxy

	
+

	
15894671




	
Bugbanoside E

	
O-Ara

	
H

	
O-Ac

	
H

	
=O

	
Epoxy

	
+

	
15894672




	
Cimicifugoside H-1

	
O-Xyl

	
OH

	
H

	
H

	
=O

	
Epoxy

	
+

	
15241163




	
Cimicifugoside H-3

	
O-Xyl

	
OH

	
H

	
H

	
=O

	
CH2OH

	
+

	
15241164




	
Cimiracemoside L

	
4′-O-Ac-Xyl

	
H

	
H

	
OH

	
O-Ac

	
Epoxy

	
-

	
10952624




	
Cimicidanol

	
OH

	
OH

	
H

	
H

	
=O

	
Epoxy

	
+

	
10413064











	
Hydroxyshengmanol type

[image: Pharmaceutics 16 00511 i002]




	
Compounds

	
R1

	
R2

	
R3

	
R4

	
R5

	
16

	
23

	
24

	
CID




	
24-Acetylhydroshengmanol-3-O-β-D-

xylopyranoside

	
O-Xyl

	
OH

	
OH

	
CH3

	
O-Ac/OH

	
S

	
S

	
S

	
157168




	
Cimiracemoside E

	
O-Xyl

	
=O

	
H

	
CH2OH

	
O-Ac/OH

	
R

	
R

	
S

	
91827210




	
Shengmanol

	
OH

	
OH

	
OH

	
CH3

	
Epoxy

	
S

	
R

	
S

	
101133349




	
Shengmanol-3-O-β-D-xylopyranoside

	
O-Xyl

	
OH

	
OH

	
CH3

	
Epoxy

	
S

	
R

	
S

	
158275









	
Cimigenol type (A)

[image: Pharmaceutics 16 00511 i003]




	
Compounds

	
R1

	
R2

	
R3

	
R4

	
Δ7,8

	
15

	
24

	
CID




	
Cimigenol

	
OH

	
H

	
CH3

	
OH

	
-

	
R

	
S

	
16020000




	
Cimigol

	
OH

	
H

	
CH3

	
OH

	
-

	
S

	
R

	
101596828




	
25-O-Acetylcimigenol

	
OH

	
H

	
CH3

	
O-Ac

	
-

	
R

	
S

	
46881255




	
25-O-Acetylcimigenol 3-O-α-L-

arabinopyranoside

	
O-Xyl

	
H

	
CH3

	
O-Ac

	
-

	
R

	
S

	
24721386




	
25-O-Methylcimigenol

	
OH

	
H

	
CH3

	
O-CH3

	
-

	
R

	
S

	
146027510




	
25-O-Methylcimigenol-3-O-β-D-

xylopyranoside

	
O-Xyl

	
H

	
CH3

	
O-CH3

	
-

	
R

	
S

	
146027510




	
25-O-Ethylcimigenol-3-O-β-D-

xylopyranoside

	
O-Xyl

	
H

	
CH3

	
O-CH2CH3

	
-

	
R

	
S

	
16091662




	
12-β-Acetoxycimigenol

	
OH

	
O-Ac

	
CH3

	
OH

	
-

	
R

	
S

	
16104912




	
12-β-Acetylcimigenol-3-O-β-D-

xylopyranoside

	
O-Xyl

	
O-Ac

	
CH3

	
OH

	
-

	
R

	
S

	
44418831




	
12-β-Hydroxycimigenol

	
OH

	
OH

	
CH3

	
OH

	
-

	
R

	
S

	
10006332




	
Bugbanoside F

	
O-Ara

	
OH

	
CH3

	
OH

	
+

	
R

	
S

	
101096469




	
Cimiracemoside B

	
O-Xyl

	
H

	
CH2OH

	
OH

	
-

	
R

	
S

	
91826883




	
Cimiracemoside C (=Cimifugoside M)

	
O-Ara

	
H

	
CH3

	
OH

	
-

	
R

	
S

	
15541911




	
Cimiracemoside D

	
O-Ara

	
O-Ac

	
CH3

	
OH

	
-

	
R

	
S

	
70698290




	
Cimiside A

	
O-Xyl

	
OH

	
CH3

	
OH

	
-

	
R

	
S

	
91827183




	
Cimiside B

	
3′-O-Xyl-3-O-Xyl

	
H

	
CH3

	
OH

	
-

	
R

	
S

	
10054869









	
Cimigenol type (B)

[image: Pharmaceutics 16 00511 i004]




	
Compounds

	
R1

	
R2

	
24

	
CID




	
25-AnhydroCimigenol-3-O-α-L-

arabinopyranoside

	
O-Ara

	
H

	
R

	
70698285




	
Cimiracemoside J

	
O-Ara

	
O-Ac

	
S

	
10952455




	
Cimiracemoside K

	
O-Xyl

	
O-Ac

	
S

	
10930352




	
Cimiside E

	
O-Xyl

	
H

	
S

	
102147078









	
Acteol type

[image: Pharmaceutics 16 00511 i005]




	
Compounds

	
R1

	
R2

	
R3

	
Δ7,8

	
24

	
25

	
CID




	
Acteol

	
OH

	
OH

	
OH

	
-

	
S

	
R

	
59595161




	
Actein

	
O-Xyl

	
O-Ac

	
OH

	
-

	
R

	
S

	
10032468




	
23-Epi-26-deoxyactein

	
O-Xyl

	
O-Ac

	
H

	
-

	
R

	
R

	
10974362




	
Cimiracemoside N

	
O-Ara

	
O-Ac

	
H

	
-

	
S

	
S

	
21591918




	
Cimiracemoside P

	
O-Xyl

	
O-Ac

	
=O

	
-

	
S

	
R

	
91827183




	
12-O-Acetylacteol

	
OH

	
O-Ac

	
OH

	
-

	
S

	
S

	
23640137









	
Cimiracemoside type

[image: Pharmaceutics 16 00511 i006]




	
Compounds

	
R1

	
Δ7,8

	
CID




	
Cimiracemoside A (=F)

	
O-Xyl

	
+

	
21606551




	
Cimiracemoside H

	
O-Xyl

	
-

	
21606553









	
Neocimigenoside type

[image: Pharmaceutics 16 00511 i007]




	
Compounds

	
R1

	
CID




	
Neocimicigenoside A

	
O-Ara

	
44583839




	
Neocimicigenoside B

	
O-Xyl

	
44583840









	
Cimilactone type

[image: Pharmaceutics 16 00511 i008]




	
Compounds

	
R1

	
Δ7,8

	
CID




	
Cimilactone A

	
O-Xyl

	
-

	
10908062









	
Podocarpaside type

[image: Pharmaceutics 16 00511 i009]




	
Compounds

	
R1

	
R2

	
R3

	
R4

	
R5

	
R6

	
Δ5,6

	
Δ5,11

	
Δ10,11

	
5

	
11

	
CID




	
Podocarpaside A

	
O-Ara

	
OH

	
-

	
H

	
H

	
H

	
-

	
+

	
-

	
-

	
-

	
16110015




	
Podocarpaside B

	
O-Ara

	
H

	
H

	
OH

	
H

	
H

	
-

	
-

	
-

	
R

	
S

	
16110011




	
Podocarpaside C

	
O-Ara

	
H

	
H

	
OH

	
H

	
OH

	
-

	
-

	
-

	
R

	
S

	
16110016




	
Podocarpaside D

	
O-Ara

	
H

	
OH

	
H

	
H

	
H

	
-

	
-

	
-

	
S

	
S

	
16110012




	
Podocarpaside E

	
O-Ara

	
H

	
-

	
OH

	
OH

	
OH

	
-

	
+

	
-

	
-

	
-

	
139071967




	
Podocarpaside F

	
O-Ara

	
H

	
-

	
-

	
H

	
OH

	
-

	
-

	
+

	
R

	
-

	
16110017




	
Podocarpaside G

	
O-Ara

	
H

	
-

	
-

	
-

	
OH

	
+

	
-

	
+

	
-

	
-

	
16110014









	
Podocarpaside type

[image: Pharmaceutics 16 00511 i010]




	
Compounds

	
R1

	
R2

	
R3

	
R4

	
R5

	
R6

	
Δ5,6

	
Δ5,11

	
Δ10,11

	
5

	
11

	
CID




	
Podocarpaside A

	
O-Ara

	
OH

	
-

	
H

	
H

	
H

	
-

	
+

	
-

	
-

	
-

	
16110015




	
Podocarpaside B

	
O-Ara

	
H

	
H

	
OH

	
H

	
H

	
-

	
-

	
-

	
R

	
S

	
16110011




	
Podocarpaside C

	
O-Ara

	
H

	
H

	
OH

	
H

	
OH

	
-

	
-

	
-

	
R

	
S

	
16110016




	
Podocarpaside D

	
O-Ara

	
H

	
OH

	
H

	
H

	
H

	
-

	
-

	
-

	
S

	
S

	
16110012




	
Podocarpaside E

	
O-Ara

	
H

	
-

	
OH

	
OH

	
OH

	
-

	
+

	
-

	
-

	
-

	
139071967




	
Podocarpaside F

	
O-Ara

	
H

	
-

	
-

	
H

	
OH

	
-

	
-

	
+

	
R

	
-

	
16110017




	
Podocarpaside G

	
O-Ara

	
H

	
-

	
-

	
-

	
OH

	
+

	
-

	
+

	
-

	
-

	
16110014









	
Acerinol type

[image: Pharmaceutics 16 00511 i011]




	
Compounds

	
R1

	
CID




	
24-O-Acetylacerionol

	
O-Ac

	
101596791




	
Acerinol

	
OH

	
73347277









	
Cimicinol

[image: Pharmaceutics 16 00511 i012]




	
Compound

	
CID




	
Cimicinol

	
102146755









	
Actaeaepoxide-3-O-beta-D-xylopyranoside

[image: Pharmaceutics 16 00511 i013]




	
Compound

	
CID




	
Actaeaepoxide-3-O--D-xylopyranoside

	
15515494









	
Friedelin

[image: Pharmaceutics 16 00511 i014]




	
Compound

	
CID




	
Friedelin

	
91472









	
Cinnamic acid derivatives

[image: Pharmaceutics 16 00511 i015]




	
Compounds

	
R1

	
R2

	
R3

	
CID




	
Sinapic acid

	
O-Me

	
OH

	
O-Me

	
637775




	
p-Coumaric acid

	
H

	
OH

	
H

	
637542




	
Isoferulic acid

	
OH

	
O-Me

	
H

	
736186




	
3,4-Dimethoxycinnamic acid

	
O-Me

	
O-Me

	
H

	
717531









	
Cimiracemate type

[image: Pharmaceutics 16 00511 i016]




	
Compounds

	
R1

	
R2

	
R3

	
CID




	
Cimiracemate A

	
OH

	
O-Me

	
H

	
5315874




	
Cimiracemate B

	
O-Me

	
OH

	
H

	
5315876




	
Cimiracemate C

	
OH

	
O-Me

	
O-Me *

	
5315877




	
Cimiracemate D

	
O-Me

	
OH

	
O-Me *

	
5315878




	
* Stereochemistry not known.









	
Cimiciphenone type

[image: Pharmaceutics 16 00511 i017]




	
Compounds

	
R

	
CID




	
Cimiciphenone

	
O-Me

	
71487912




	
Petasiphenone

	
OH

	
16066851









	
Protocatechuic acid type

[image: Pharmaceutics 16 00511 i018]




	
Compounds

	
R1

	
CID




	
Protocatechuic acid

	
OH

	
72




	
Protocatechuic aldehyde

	
H

	
637542









	
Fukiic acid derivatives

[image: Pharmaceutics 16 00511 i019]




	
Compounds

	
R1

	
CID




	
Fukiic acid

	
OH

	
161871




	
Piscidic acid

	
H

	
120693









	
Cimicifugic acid derivatives

[image: Pharmaceutics 16 00511 i020]




	
Compounds

	
R1

	
R2

	
R3

	
R4

	
CID




	
Cimicifugic acid A (2-Feruloyl fukinolic acid)

	
OH

	
OH

	
O-Me

	
OH

	
6449879




	
Cimicifugic acid B (2-Isoferuloyl piscidic acid)

	
OH

	
OH

	
OH

	
O-Me

	
6449880




	
Cimicifugic acid C (2-p Coumaric fukinolic acid)

	
OH

	
OH

	
H

	
OH

	
6401178




	
Cimicifugic acid D (2-Caffeoyl piscidic acid)

	
OH

	
H

	
OH

	
OH

	
11742743




	
Cimicifugic acid E (2-Feruloyl piscidic acid)

	
OH

	
H

	
O-Me

	
OH

	
10002902




	
Cimicifugic acid F (2-Isoferuloyl piscidic acid)

	
OH

	
H

	
OH

	
O-Me

	
6450179




	
Cimicifugic acid G (2-Feruloyl piscidic acid)

	
OH

	
OH

	
O-Me

	
O-Me

	
11655574




	
Fukinolic acid

	
OH

	
OH

	
OH

	
OH

	
6441059









	
Actealactone

[image: Pharmaceutics 16 00511 i021]




	
Compound

	
CID




	
Actealactone

	
11537736









	
Astilbin

[image: Pharmaceutics 16 00511 i022]




	
Compound

	
CID




	
Astilbin

	
119258









	
Chromones

[image: Pharmaceutics 16 00511 i023]




	
Compound

	
R1

	
R2

	
R3

	
Δ7a−7b

	
7b

	
CID




	
Angelicain

	
CH2-OH

	
propan-2-ol

	
OH

	
-

	
S

	
46240156




	
Cimifugin

	
O-Me

	
propan-2-ol

	
O-Me

	
-

	
S

	
4411960




	
Visnagin

	
Me

	
H

	
O-Me

	
+

	
-

	
6716









	
Cimidahurine

[image: Pharmaceutics 16 00511 i024]




	
Compound

	
CID




	
Cimidahurine

	
5315870









	
Cimipronidine

[image: Pharmaceutics 16 00511 i025]




	
Compounds

	
R1

	
CID




	
Cimipronidine

	
OH

	
21594000




	
Cimipronidine methylester

	
O-Me

	
101467166









	
Dopargine

[image: Pharmaceutics 16 00511 i026]




	
Compound

	
CID




	
Dopargine

	
10357001









	
Cyclocimipronidine

[image: Pharmaceutics 16 00511 i027]




	
Compound

	
CID




	
Cyclocimipronidine

	
101467165









	
N-Methycytisine

[image: Pharmaceutics 16 00511 i028]




	
Compound

	
CID




	
N-Methycytisine

	
670971









 





Table A2. Support of classification: similarity of Cimicifuga constituents to database elements.
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(Cosine-Similarity Score)




	
No

	
Generic Name

	
Top 1

	
Score

	
Top 2

	
Sore

	
Top 3

	
Score

	
Top 4

	
Score

	
Top 5

	
Score






	
Cimi_1

	
12-beta-Acetoxy-Cimigenol

	
DMAT

	
0.902

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899




	
Cimi_2

	
12-beta-Acetyl-Cimigenol-3-O-beta-D-xylopyranoside

	
CHEMBL3393133

	
0.951

	
CHEMBL3133762

	
0.951

	
CHEMBL196759

	
0.951

	
2-Hydroxyestradiol

	
0.951

	
Ezetimibe

	
0.940




	
Cimi_3

	
12-beta-Hydroxy-Cimigenol

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_4

	
12-O-Acetylacteol

	
DMAT

	
0.903

	
CHEMBL3133762

	
0.900

	
CHEMBL196759

	
0.900

	
CHEMBL3393133

	
0.900

	
2-Hydroxyestradiol

	
0.900




	
Cimi_5

	
15-O-Methyl-Cimigenol

	
CHEMBL3393133

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899

	
CHEMBL3361128

	
0.887




	
Cimi_6

	
23-epi-26-Deoxyactein=27-Deoxyactein

	
CHEMBL3393133

	
0.952

	
CHEMBL196759

	
0.952

	
CHEMBL3133762

	
0.952

	
2-Hydroxyestradiol

	
0.952

	
CHEMBL2325901

	
0.931




	
Cimi_7

	
23-O-Acetylshengmanol

	
Compound C2

	
0.909

	
CHEMBL2017214

	
0.899

	
CHEMBL383246

	
0.895

	
CHEMBL3963444

	
0.894

	
6 Paradol

	
0.894




	
Cimi_8

	
23-O-Acetylshengmanol 3-O-beta-D-xylopyranoside

	
CHEMBL2325901

	
0.951

	
CHEMBL371968

	
0.934

	
CHEMBL2420899

	
0.934

	
Polydatin

	
0.934

	
Teneligliptin

	
0.934




	
Cimi_9

	
23-O-Acetylshengmanol xyloside

	
CHEMBL2325901

	
0.951

	
CHEMBL371968

	
0.934

	
CHEMBL2420899

	
0.934

	
Polydatin

	
0.934

	
Teneligliptin

	
0.934




	
Cimi_10

	
24-Acetylhydroshengmanol xyloside

	
CHEMBL196759

	
0.941

	
CHEMBL3393133

	
0.941

	
CHEMBL3133762

	
0.941

	
2-Hydroxyestradiol

	
0.941

	
CHEMBL2325901

	
0.939




	
Cimi_11

	
24-O-Acetylacerionol

	
CHEMBL3746293

	
0.923

	
GW275944X

	
0.921

	
Theasinensis A

	
0.917

	
CHEMBL1078665

	
0.901

	
Mogrol

	
0.897




	
Cimi_12

	
25-AnhydroCimigenol-3-O-alpha-L-arabinoside

	
6-O-Cinnamoyl-D-glucopyranose

	
0.952

	
GW290597X

	
0.952

	
GW458787A

	
0.952

	
delphinidin-3-glucoside

	
0.952

	
Ezetimibe

	
0.952




	
Cimi_13

	
25-O-AcetylCimigenol

	
CHEMBL383246

	
0.901

	
CHEMBL3963444

	
0.900

	
6 Paradol

	
0.900

	
CHEMBL4112013

	
0.900

	
Ascofuranone

	
0.878




	
Cimi_14

	
25-O-AcetylCimigenol 3-o-alpha-L-arabinoside

	
CHEMBL3393133

	
0.951

	
CHEMBL3133762

	
0.951

	
CHEMBL196759

	
0.951

	
2-Hydroxyestradiol

	
0.951

	
Ezetimibe

	
0.940




	
Cimi_15

	
25-O-Acetyl-cimigenol xyloside

	
CHEMBL3393133

	
0.951

	
CHEMBL3133762

	
0.951

	
CHEMBL196759

	
0.951

	
2-Hydroxyestradiol

	
0.951

	
Ezetimibe

	
0.940




	
Cimi_16

	
25-O-Ethyl-cimigenol-3-O-beta-D-xylopyranoside

	
2-Hydroxyestradiol

	
0.951

	
CHEMBL3393133

	
0.951

	
CHEMBL3133762

	
0.951

	
CHEMBL196759

	
0.951

	
GYY4137

	
0.928




	
Cimi_17

	
25-O-Methyl-cimigenol

	
CHEMBL3393133

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899

	
CHEMBL3361128

	
0.887




	
Cimi_18

	
25-O-Methyl-cimigenol-3-O-beta-D-xyloside

	
2-Hydroxyestradiol

	
0.951

	
CHEMBL3393133

	
0.951

	
CHEMBL3133762

	
0.951

	
CHEMBL196759

	
0.951

	
GYY4137

	
0.928




	
Cimi_20

	
3,4-Dimethoxycinnamic acid

	
4a-Isoalantolactone

	
0.958

	
Nootkatone

	
0.958

	
Gemcitabine

	
0.957

	
Fenoldopam

	
0.936

	
GW439255X

	
0.913




	
Cimi_22

	
Acerinol

	
Theasinensis A

	
0.917

	
GW275944X

	
0.895

	
Folic caid

	
0.892

	
6-O-cinnamoyl-D-glucopyranose

	
0.890

	
Karaviloside X

	
0.886




	
Cimi_23

	
Actaeaepoxide 3-O-beta-D-xylopyranoside

	
GSK978744A

	
0.945

	
CHEMBL2338231

	
0.943

	
LCZ696

	
0.943

	
Tadalafil

	
0.943

	
Berteroin

	
0.943




	
Cimi_24

	
Actaealactone

	
C129

	
0.859

	
GW644007X

	
0.827

	
Clozapin

	
0.827

	
CHEMBL1081678

	
0.813

	
CHEMBL4092508

	
0.812




	
Cimi_25

	
Actein

	
CHEMBL196759

	
0.941

	
CHEMBL3133762

	
0.941

	
2-Hydroxyestradiol

	
0.941

	
CHEMBL3393133

	
0.941

	
Ezetimibe

	
0.931




	
Cimi_26

	
Acteol

	
DMAT

	
0.902

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899

	
CHEMBL196759

	
0.899




	
Cimi_27

	
Angelicain

	
GW644007X

	
0.899

	
CHEMBL3730916

	
0.864

	
CHEMBL2338229

	
0.857

	
CHEMBL204420

	
0.838

	
CHEMBL4217199

	
0.834




	
Cimi_28

	
Bugbanoside E

	
CHEMBL2420899

	
0.954

	
Teneligliptin

	
0.954

	
Polydatin

	
0.954

	
CHEMBL371968

	
0.954

	
Cinacalcet

	
0.954




	
Cimi_29

	
Bugbanoside F

	
Folic acid

	
0.961

	
GSK978744A

	
0.954

	
GW290597X

	
0.952

	
SC4

	
0.952

	
6-O-cinnamoyl-D-glucopyranose

	
0.952




	
Cimi_30

	
Caffeic acid

	
3-O-methylquercetin

	
1.000

	
CHEMBL208286

	
0.977

	
CHEMBL2408232

	
0.934

	
4a-Isoalantolactone

	
0.914

	
Nootkatone

	
0.914




	
Cimi_31

	
Caffeic methyl ester

	
Nootkatone

	
0.980

	
4a-Isoalantolactone

	
0.980

	
Fenoldopam

	
0.959

	
3-O-methylquercetin

	
0.938

	
CHEMBL208286

	
0.917




	
Cimi_32

	
Cimicfugoside M

	
CHEMBL196759

	
0.961

	
2-Hydroxyestradiol

	
0.961

	
CHEMBL3133762

	
0.961

	
CHEMBL3393133

	
0.961

	
GYY4137

	
0.938




	
Cimi_33

	
Cimicidanol

	
Gamma linolenic acid

	
0.924

	
Fluvastatin

	
0.923

	
CHEMBL1078665

	
0.913

	
CHEMBL4114120

	
0.912

	
Compound C2

	
0.912




	
Cimi_34

	
Cimicifugic acid C

	
Glyceolin

	
0.957

	
GW780056X

	
0.926

	
Oligomycin

	
0.926

	
Ibuprofen

	
0.926

	
CHEMBL4092508

	
0.878




	
Cimi_35

	
Cimicifugic acid D

	
Glyceolin

	
0.957

	
GW780056X

	
0.926

	
Oligomycin

	
0.926

	
Ibuprofen

	
0.926

	
CHEMBL4092508

	
0.878




	
Cimi_36

	
Cimicifugic acid E

	
Glyceolin

	
0.930

	
GW780056X

	
0.900

	
Oligomycin

	
0.900

	
Ibuprofen

	
0.900

	
Melatonin

	
0.885




	
Cimi_37

	
Cimicifugic acid F

	
Glyceolin

	
0.930

	
GW780056X

	
0.900

	
Oligomycin

	
0.900

	
Ibuprofen

	
0.900

	
Melatonin

	
0.885




	
Cimi_38

	
Cimicifugoside H-1

	
CHEMBL2420899

	
0.954

	
Teneligliptin

	
0.954

	
Polydatin

	
0.954

	
CHEMBL371968

	
0.954

	
Cinacalcet

	
0.954




	
Cimi_39

	
Cimicifugoside H-2

	
CHEMBL1230171

	
0.962

	
Meriolin 1

	
0.962

	
CHEMBL2420899

	
0.953

	
Polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_40

	
Cimicifugoside H-3

	
CHEMBL1230171

	
0.982

	
Polydatin

	
0.973

	
Teneligliptin

	
0.973

	
CHEMBL371968

	
0.973

	
GW576924A

	
0.973




	
Cimi_41

	
Cimicinol

	
Folic acid

	
0.939

	
GSK978744A

	
0.934

	
SC4

	
0.932

	
GW290597X

	
0.932

	
6-O-cinnamoyl-D-glucopyranose

	
0.932




	
Cimi_42

	
Cimiciphenone

	
Paroxetine

	
0.969

	
CHEMBL4112741

	
0.921

	
Melatonin

	
0.919

	
CHEMBL4066628

	
0.904

	
Ibuprofen

	
0.904




	
Cimi_43

	
Cimidahurine

	
Gamma-oryzanol

	
0.973

	
Atractylenolide III

	
0.960

	
Sirtinol

	
0.937

	
Zidovudine

	
0.933

	
Compound 59

	
0.926




	
Cimi_44

	
Cimifugin

	
CHEMBL3930006

	
0.858

	
GW644007X

	
0.858

	
GW708336X

	
0.852

	
Palbociclib

	
0.849

	
CHEMBL204420

	
0.844




	
Cimi_45

	
Cimigenol

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_46

	
Cimigenol xyloside

	
CHEMBL196759

	
0.961

	
2-Hydroxyestradiol

	
0.961

	
CHEMBL3133762

	
0.961

	
CHEMBL3393133

	
0.961

	
GYY4137

	
0.938




	
Cimi_47

	
Cimigol

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_48

	
Cimilactone B

	
GW576924A

	
0.953

	
Teneligliptin

	
0.953

	
CHEMBL2420899

	
0.953

	
polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_49

	
Cimipronidine

	
CHEMBL1933279

	
0.778

	
Cheletyrine

	
0.764

	
Pinosylvin

	
0.758

	
Nordihydroguaiaretic acid

	
0.755

	
CHEMBL3730146

	
0.723




	
Cimi_50

	
Cimipronidine methyl ester

	
CHEMBL1933279

	
0.743

	
Pinosylvin

	
0.741

	
GSK182497A

	
0.713

	
Cheletyrine

	
0.710

	
BDE-209

	
0.705




	
Cimi_51

	
Cimiracemate A

	
Paroxetine

	
0.954

	
Oligomycin

	
0.922

	
GW780056X

	
0.922

	
Ibuprofen

	
0.922

	
CHEMBL4112741

	
0.907




	
Cimi_52

	
Cimiracemate B

	
Paroxetine

	
0.954

	
Oligomycin

	
0.922

	
GW780056X

	
0.922

	
Ibuprofen

	
0.922

	
CHEMBL4112741

	
0.907




	
Cimi_53

	
Cimiracemate C

	
Paroxetine

	
0.956

	
CHEMBL4066628

	
0.926

	
Melatonin

	
0.910

	
CHEMBL4112741

	
0.880

	
CHEMBL4092508

	
0.878




	
Cimi_54

	
Cimiracemate D

	
Paroxetine

	
0.956

	
CHEMBL4066628

	
0.926

	
Melatonin

	
0.910

	
CHEMBL4112741

	
0.880

	
CHEMBL4092508

	
0.878




	
Cimi_55

	
Cimiracemoside A (=F)

	
GSK978744A

	
0.963

	
Ezetimibe

	
0.962

	
Monensin

	
0.952

	
Folic acid

	
0.952

	
GSK192082A

	
0.945




	
Cimi_56

	
Cimiracemoside B

	
CHEMBL3393133

	
0.990

	
CHEMBL3133762

	
0.990

	
CHEMBL196759

	
0.990

	
2-Hydroxyestradiol

	
0.990

	
GYY4137

	
0.970




	
Cimi_57

	
Cimiracemoside C

	
CHEMBL196759

	
0.961

	
2-Hydroxyestradiol

	
0.961

	
CHEMBL3133762

	
0.961

	
CHEMBL3393133

	
0.961

	
GYY4137

	
0.938




	
Cimi_58

	
Cimiracemoside D

	
CHEMBL3393133

	
0.951

	
CHEMBL3133762

	
0.951

	
CHEMBL196759

	
0.951

	
2-Hydroxyestradiol

	
0.951

	
Ezetimibe

	
0.940




	
Cimi_59

	
Cimiracemoside E

	
CHEMBL2325901

	
0.981

	
Cinacalcet

	
0.962

	
Teneligliptin

	
0.962

	
Polydatin

	
0.962

	
CHEMBL371968

	
0.962




	
Cimi_60

	
Cimiracemoside G

	
GSK978744A

	
0.963

	
Ezetimibe

	
0.962

	
Monensin

	
0.952

	
Folic acid

	
0.952

	
GSK192082A

	
0.945




	
Cimi_61

	
Cimiracemoside H

	
CHEMBL3393133

	
0.951

	
CHEMBL3133762

	
0.951

	
CHEMBL196759

	
0.951

	
2-Hydroxyestradiol

	
0.951

	
Ezetimibe

	
0.940




	
Cimi_62

	
Cimiracemoside J

	
Ezetimibe

	
0.962

	
Monensin

	
0.952

	
CHEMBL3975011

	
0.952

	
CHEMBL4246000

	
0.952

	
GSK978744A

	
0.945




	
Cimi_63

	
Cimiracemoside K

	
Ezetimibe

	
0.962

	
Monensin

	
0.952

	
CHEMBL3975011

	
0.952

	
CHEMBL4246000

	
0.952

	
GSK978744A

	
0.945




	
Cimi_64

	
Cimiracemoside L

	
CHEMBL2325901

	
0.929

	
CDN1163

	
0.918

	
Cinacalcet

	
0.914

	
CHEMBL2420899

	
0.914

	
polydatin

	
0.914




	
Cimi_65

	
Cimiracemoside N

	
CHEMBL3393133

	
0.952

	
CHEMBL196759

	
0.952

	
CHEMBL3133762

	
0.952

	
2-Hydroxyestradiol

	
0.952

	
CHEMBL2325901

	
0.931




	
Cimi_66

	
Cimiracemoside P

	
CHEMBL3133762

	
0.932

	
CHEMBL196759

	
0.932

	
2-Hydroxyestradiol

	
0.932

	
CHEMBL3393133

	
0.932

	
CHEMBL2325901

	
0.931




	
Cimi_67

	
Cimiside A

	
CHEMBL196759

	
0.961

	
2-Hydroxyestradiol

	
0.961

	
CHEMBL3133762

	
0.961

	
CHEMBL3393133

	
0.961

	
GYY4137

	
0.938




	
Cimi_68

	
Cimiside B

	
CHEMBL196759

	
0.971

	
2-Hydroxyestradiol

	
0.971

	
CHEMBL3133762

	
0.971

	
CHEMBL3393133

	
0.971

	
GYY4137

	
0.949




	
Cimi_69

	
Cimiside E

	
6-O-Cinnamoyl-D-glucopyranose

	
0.952

	
GW290597X

	
0.952

	
GW458787A

	
0.952

	
delphinidin-3-glucoside

	
0.952

	
Ezetimibe

	
0.952




	
Cimi_70

	
Cyclocmipronidine

	
Cheletyrine

	
0.801

	
15,16-dihydrotanshinone I

	
0.800

	
CHEMBL3730933

	
0.800

	
Nordihydroguaiaretic acid

	
0.791

	
CHEMBL188282

	
0.757




	
Cimi_71

	
Dahurinol

	
CHEMBL383246

	
0.901

	
CHEMBL4094080

	
0.897

	
2G11

	
0.897

	
Gamma linolenic acid

	
0.884

	
CHEMBL3735890

	
0.884




	
Cimi_72

	
Dopargine

	
Tangeretin

	
0.768

	
GSK182497A

	
0.751

	
SC-202671

	
0.748

	
CHEMBL3927465

	
0.748

	
Oleic acid

	
0.747




	
Cimi_73

	
Ferulic acid methyl ester

	
4a-Isoalantolactone

	
0.958

	
Nootkatone

	
0.958

	
Gemcitabine

	
0.957

	
Fenoldopam

	
0.936

	
GW439255X

	
0.913




	
Cimi_74

	
Formononetin

	
CHEMBL3774632

	
1.000

	
SB-409514

	
0.984

	
PP487

	
0.969

	
CHEMBL3393131

	
0.969

	
CHEMBL207674

	
0.969




	
Cimi_75

	
Friedelin

	
Procyanidin B2

	
0.891

	
CHEMBL4112013

	
0.857

	
GSK635416A

	
0.857

	
CHEMBL3727865

	
0.850

	
CHEMBL3859268

	
0.840




	
Cimi_76

	
Fukiic acid

	
Glyceolin

	
0.924

	
Adenine

	
0.861

	
CHEMBL2408232

	
0.861

	
Icaritin

	
0.859

	
Oligomycin

	
0.853




	
Cimi_77

	
Fukinolic acid

	
Glyceolin

	
0.957

	
GW780056X

	
0.926

	
Oligomycin

	
0.926

	
Ibuprofen

	
0.926

	
CHEMBL4092508

	
0.878




	
Cimi_78

	
IsoCimicifugamide

	
Compound 59

	
0.869

	
Nummularic acid

	
0.858

	
Sirtinol

	
0.858

	
Bupivacaine

	
0.849

	
CHEMBL3931350

	
0.837




	
Cimi_79

	
Isoferulic acid

	
Nootkatone

	
1.000

	
4a-Isoalantolactone

	
1.000

	
fenoldopam

	
0.979

	
3-O-methylquercetin

	
0.914

	
Gemcitabine

	
0.914




	
Cimi_80

	
Neocimicigenoside A

	
CHEMBL196759

	
0.941

	
CHEMBL3393133

	
0.941

	
CHEMBL3133762

	
0.941

	
2-Hydroxyestradiol

	
0.941

	
CHEMBL2325901

	
0.939




	
Cimi_81

	
Neocimicigenoside B

	
CHEMBL196759

	
0.941

	
CHEMBL3393133

	
0.941

	
CHEMBL3133762

	
0.941

	
2-Hydroxyestradiol

	
0.941

	
CHEMBL2325901

	
0.939




	
Cimi_82

	
N-Methylcytisine

	
TBB

	
0.797

	
CHEMBL3967075

	
0.784

	
Soyasapogenol C

	
0.780

	
Momordicoside Q

	
0.780

	
GW827396X

	
0.738




	
Cimi_83

	
p-Coumaric acid

	
Sulforaphane

	
1.000

	
3-O-Methylquercetin

	
0.879

	
GW782612X

	
0.868

	
CHEMBL3736320

	
0.849

	
CHEMBL208286

	
0.847




	
Cimi_84

	
Petasiphenone

	
CHEMBL4112741

	
0.951

	
Paroxetine

	
0.936

	
Ibuprofen

	
0.933

	
GW780056X

	
0.933

	
Oligomycin

	
0.933




	
Cimi_85

	
Piscidic acid

	
Glyceolin

	
0.892

	
Adenine

	
0.891

	
Icaritin

	
0.831

	
Ibuprofen

	
0.814

	
Oligomycin

	
0.814




	
Cimi_86

	
Podocarpaside A

	
CHEMBL1230171

	
0.962

	
Meriolin

	
0.962

	
CHEMBL2420899

	
0.953

	
Polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_87

	
Podocarpaside B

	
CHEMBL1230171

	
0.962

	
Meriolin

	
0.962

	
CHEMBL2420899

	
0.953

	
Polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_88

	
Podocarpaside C

	
CHEMBL1230171

	
0.962

	
Meriolin

	
0.962

	
CHEMBL2420899

	
0.953

	
Polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_89

	
Podocarpaside D

	
CHEMBL1230171

	
0.962

	
Meriolin

	
0.962

	
CHEMBL2420899

	
0.953

	
Polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_90

	
Podocarpaside F

	
CHEMBL1230171

	
0.962

	
Meriolin

	
0.962

	
CHEMBL2420899

	
0.953

	
Polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_91

	
Podocarpaside G

	
CHEMBL1230171

	
0.952

	
Meriolin

	
0.952

	
Teneligliptin

	
0.944

	
Polydatin

	
0.944

	
CHEMBL371968

	
0.944




	
Cimi_92

	
Protocatechualdehyde

	
CHEMBL208286

	
0.951

	
3-O-Methylquercetin

	
0.929

	
Belinostat

	
0.923

	
CHEMBL2408232

	
0.909

	
GW782612X

	
0.872




	
Cimi_93

	
Protocatechuic acid

	
CHEMBL208286

	
1.000

	
3-O-Methylquercetin

	
0.977

	
CHEMBL2408232

	
0.956

	
Fenoldopam

	
0.910

	
Nootkatone

	
0.891




	
Cimi_94

	
Shengmanol

	
CHEMBL196759

	
0.910

	
DMAT

	
0.892

	
CHEMBL3133762

	
0.889

	
CHEMBL3393133

	
0.889

	
2-Hydroxyestradiol

	
0.889




	
Cimi_95

	
Shengmanol xyloside

	
CHEMBL196759

	
0.951

	
CHEMBL3133762

	
0.931

	
2-Hydroxyestradiol

	
0.931

	
CHEMBL3393133

	
0.931

	
Ezetimibe

	
0.920




	
Cimi_96

	
Sinapic acid

	
Nootkatone

	
0.961

	
4a-Isoalantolactone

	
0.961

	
Fenoldopam

	
0.941

	
Gemcitabine

	
0.920

	
CHEMBL4066628

	
0.895




	
Cimi_97

	
Visnagin

	
Prednisolone

	
0.938

	
CHEMBL3976646

	
0.889

	
Rifampicin

	
0.889

	
CHEMBL208118

	
0.889

	
Monascus

	
0.889




	
Cimi_2_

metab

	
12-beta-Acetoxycimigenol

	
DMAT

	
0.902

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899




	
Cimi_6_

metab

	
Cimi_6_metab

	
CHEMBL3393133

	
0.910

	
CHEMBL196759

	
0.910

	
2-Hydroxyestradiol

	
0.910

	
CHEMBL3133762

	
0.910

	
Monensin

	
0.908




	
Cimi_8_

metab

	
23-O-Acetylshengmanol

	
Compound C2

	
0.909

	
CHEMBL2017214

	
0.899

	
CHEMBL383246

	
0.895

	
CHEMBL3963444

	
0.894

	
6 Paradol

	
0.894




	
Cimi_9_

metab

	
Cimi_9_metab

	
Compound C2

	
0.909

	
CHEMBL2017214

	
0.899

	
CHEMBL383246

	
0.895

	
CHEMBL3963444

	
0.894

	
6 Paradol

	
0.894




	
Cimi_10_

metab

	
Cimi_10_metab

	
CHEMBL196759

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL3393133

	
0.899

	
CHEMBL4094080

	
0.899




	
Cimi_12_

metab

	
Cimi_12_metab

	
Ascofuranone

	
0.919

	
AKOS007865932

	
0.907

	
CHEMBL4246000

	
0.907

	
CHEMBL3975011

	
0.907

	
delphinidin-3-glucoside

	
0.898




	
Cimi_14_

metab

	
Cimi_14_metab

	
DMAT

	
0.902

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899




	
Cimi_15_

metab

	
Cimi_15_metab

	
DMAT

	
0.902

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899




	
Cimi_16_

metab

	
25- O-Methylcimigenol

	
CHEMBL3393133

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899

	
CHEMBL3361128

	
0.887




	
Cimi_18_

metab

	
25-O-Methylcimigenol

	
CHEMBL3393133

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899

	
CHEMBL3361128

	
0.887




	
Cimi_19_

metab

	
Cimi_19_metab

	
DMAT

	
0.903

	
CHEMBL3133762

	
0.900

	
CHEMBL196759

	
0.900

	
CHEMBL3393133

	
0.900

	
2-Hydroxyestradiol

	
0.900




	
Cimi_22_

metab

	
Cimi_22_metab

	
Monensin

	
0.909

	
GSK978744A

	
0.905

	
CHEMBL2338231

	
0.903

	
Berteroin

	
0.903

	
LCZ696

	
0.903




	
Cimi_23_

metab

	
Cimi_23_metab

	
Monensin

	
0.909

	
GSK978744A

	
0.905

	
CHEMBL2338231

	
0.903

	
Berteroin

	
0.903

	
LCZ696

	
0.903




	
Cimi_25_

metab

	
Cimi_25_metab

	
DMAT

	
0.903

	
CHEMBL3133762

	
0.900

	
CHEMBL196759

	
0.900

	
CHEMBL3393133

	
0.900

	
2-Hydroxyestradiol

	
0.900




	
Cimi_28_

metab

	
Cimi_28_metab

	
CHEMBL3746293

	
0.925

	
CHEMBL1078665

	
0.925

	
Compound C2

	
0.924

	
CHEMBL4114120

	
0.902

	
GW275944X

	
0.902




	
Cimi_29_

metab

	
Cimi_29_metab

	
CHEMBL2376144

	
0.899

	
CHEMBL2041962

	
0.898

	
CHEMBL3427184

	
0.898

	
Epiberberine

	
0.898

	
GW275944X

	
0.898




	
Cimi_32_

metab

	
Cimi_32_metab

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_38_

metab

	
Cimicidanol

	
Gamma linolenic acid

	
0.924

	
Fluvastatin

	
0.923

	
CHEMBL1078665

	
0.913

	
CHEMBL4114120

	
0.912

	
Compound C2

	
0.912




	
Cimi_39_

metab

	
Cimi_39_metab

	
Gamma linolenic acid

	
0.966

	
Fluvastatin

	
0.966

	
CHEMBL2337767

	
0.955

	
Epiberberine

	
0.955

	
CHEMBL1078665

	
0.933




	
Cimi_40_

metab

	
Cimi_40_metab

	
C128

	
0.956

	
Pitavastatin

	
0.955

	
Xanthohumol

	
0.928

	
Fluvastatin

	
0.920

	
CHEMBL4114120

	
0.909




	
Cimi_41_

metab

	
Cimi_41_metab

	
GW631581B

	
0.894

	
Theasinensis A

	
0.884

	
Compound C2

	
0.884

	
GW275944X

	
0.881

	
Folic acid

	
0.880




	
Cimi_43_

metab

	
Hydroxytyrosol

	
CHEMBL1233881

	
1.000

	
CHEMBL4112741

	
0.830

	
CHEMBL3909286

	
0.823

	
gamma-oryzanol

	
0.802

	
CHEMBL4215572

	
0.793




	
Cimi_46_

metab

	
Cimigenol

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_56_

metab

	
Cimi_56_metab

	
CHEMBL3393133

	
0.941

	
2-Hydroxyestradiol

	
0.941

	
CHEMBL3133762

	
0.941

	
CHEMBL196759

	
0.941

	
CHEMBL4278763

	
0.917




	
Cimi_57_

metab

	
Cimigenol

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_58_

metab

	
12beta-acetoxycimigenol

	
DMAT

	
0.902

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899

	
CHEMBL3133762

	
0.899

	
CHEMBL196759

	
0.899




	
Cimi_59_

metab

	
Cimi_59_metab

	
CHEMBL2325901

	
0.939

	
CHEMBL2420899

	
0.923

	
CHEMBL371968

	
0.923

	
Teneligliptin

	
0.923

	
Polydatin

	
0.923




	
Cimi_61_

metab

	
Cimi_61_metab

	
CHEMBL3393133

	
0.920

	
CHEMBL3133762

	
0.920

	
CHEMBL196759

	
0.920

	
2-Hydroxyestradiol

	
0.920

	
Monensin

	
0.917




	
Cimi_62_

metab

	
Cimi_62_metab

	
Ascofuranone

	
0.923

	
AKOS007865932

	
0.911

	
Monensin

	
0.908

	
CHEMBL3975011

	
0.908

	
CHEMBL4246000

	
0.908




	
Cimi_63_

metab

	
Cimi_63_metab

	
Ascofuranone

	
0.923

	
AKOS007865932

	
0.911

	
Monensin

	
0.908

	
CHEMBL3975011

	
0.908

	
CHEMBL4246000

	
0.908




	
Cimi_64_

metab

	
23-O-Acetylshengmanol

	
Compound C2

	
0.909

	
CHEMBL2017214

	
0.899

	
CHEMBL383246

	
0.895

	
CHEMBL3963444

	
0.894

	
6 Paradol

	
0.894




	
Cimi_65_

metab

	
Cimi_65_metab

	
CHEMBL3393133

	
0.910

	
CHEMBL196759

	
0.910

	
2-Hydroxyestradiol

	
0.910

	
CHEMBL3133762

	
0.910

	
Monensin

	
0.908




	
Cimi_66_

metab

	
Cimi_66_metab

	
CHEMBL2017214

	
0.911

	
DMAT

	
0.903

	
CHEMBL3735890

	
0.889

	
CHEMBL383246

	
0.885

	
CHEMBL3393133

	
0.879




	
Cimi_67_

metab

	
12beta-Hydroxycimigenol

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_68_

metab

	
Cimigenol

	
DMAT

	
0.900

	
CHEMBL196759

	
0.899

	
CHEMBL3133762

	
0.899

	
2-Hydroxyestradiol

	
0.899

	
CHEMBL3393133

	
0.899




	
Cimi_69_

metab

	
Cimi_69_metab

	
Ascofuranone

	
0.919

	
AKOS007865932

	
0.907

	
CHEMBL4246000

	
0.907

	
CHEMBL3975011

	
0.907

	
delphinidin-3-glucoside

	
0.898




	
Cimi_78_

metab

	
Cimi_78_metab

	
SB-732941

	
0.924

	
CHEMBL3933251

	
0.875

	
CHEMBL3728128

	
0.870

	
Corosolic acid

	
0.852

	
Hernandezine

	
0.800




	
Cimi_80_

metab

	
Cimi_80_metab

	
Urolithin A

	
0.907

	
CHEMBL2017214

	
0.897

	
CHEMBL383246

	
0.891

	
DMAT

	
0.890

	
CHEMBL3963444

	
0.890




	
Cimi_81_

metab

	
Cimi_81_metab

	
Urolithin A

	
0.907

	
CHEMBL2017214

	
0.897

	
CHEMBL383246

	
0.891

	
DMAT

	
0.890

	
CHEMBL3963444

	
0.890




	
Cimi_86_

metab

	
Cimi_86_metab

	
Gamma linolenic acid

	
0.955

	
CHEMBL1078665

	
0.944

	
CHEMBL4114120

	
0.943

	
GW780159X

	
0.942

	
Crocin

	
0.941




	
Cimi_87_

metab

	
Cimi_87_metab

	
CHEMBL4114120

	
0.953

	
Crocin

	
0.952

	
Gamma linolenic acid

	
0.943

	
Fluvastatin

	
0.941

	
Fucoxanthin

	
0.940




	
Cimi_88_

metab

	
Cimi_88_metab

	
Gamma linolenic acid

	
0.955

	
Fluvastatin

	
0.954

	
CHEMBL1078665

	
0.944

	
CHEMBL4114120

	
0.943

	
Epiberberine

	
0.942




	
Cimi_89_

metab

	
Cimi_89_metab

	
CHEMBL4114120

	
0.953

	
Crocin

	
0.952

	
Gamma linolenic acid

	
0.943

	
Fluvastatin

	
0.941

	
Fucoxanthin

	
0.940




	
Cimi_90_

metab

	
Cimi_90_metab

	
CHEMBL1230171

	
0.962

	
Meriolin 1

	
0.962

	
CHEMBL2420899

	
0.953

	
polydatin

	
0.953

	
Cinacalcet

	
0.953




	
Cimi_91_

metab

	
Cimi_91_metab

	
Gamma linolenic acid

	
0.943

	
Fluvastatin

	
0.941

	
CHEMBL1078665

	
0.932

	
CHEMBL4114120

	
0.930

	
Epiberberine

	
0.929




	
Cimi_92_

metab

	
Cimi_92_metab

	
CHEMBL196759

	
0.910

	
DMAT

	
0.892

	
CHEMBL3133762

	
0.889

	
CHEMBL3393133

	
0.889

	
2-Hydroxyestradiol

	
0.889




	
Median

	

	

	
0.941

	

	
0.923

	

	
0.922

	

	
0.912

	

	
0.907








Highlighted in blue are the constituents for which no comparison molecule was found in the database with a cosine similarity score > 0.8.
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Figure 1. Flow and structure of experiments. 
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Figure 2. tSNE analysis: AMPK activators and controls. MACCS fingerprint descriptors (N = 2242, perplexity = 100, number of iterations = 5000). 
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Figure 3. Distribution of four important physicochemical parameters between activators and controls: (A) Molecular Weight, (B) Total Polar Surface Area (TPSA), (C) Number of Rings in the Molecules, and (D) Predicted Octanol/Water Partition Coefficients (XLogP). Significant differences in the distributions of these parameters were observed (Mann–Whitney test): Activators had lower molecular weights (p < 0.0001), higher lipophilicity (median XLogP 2.4 for activators vs. 1.5 for controls; p < 0.0001), lower Total Polar Surface Area (TPSA) (p < 0.009), and fewer rings in the molecules, on average (3.6 for activators vs. 4.1 for controls; p < 0.0001), than controls. 
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Figure 4. (ROC) analysis coupled with 10-fold cross-validation: (A) Deep Neural Network (DNN); (B) Logistic Regression Classification (LRC); and (C) Random Forest Classification (RFC). 
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Figure 5. Classification of Cimicifuga racemosa root constituents was performed using three different methods: (A) Deep Neural Network (DNN); (B) Logistic Regression Classification (LRC); and (C) Random Forest Classification (RFC). Saponins and their aglycones are clearly classified as activators of AMPK. Saponins and their aglycones were unequivocally identified as activators of AMPK. While other constituents were also categorized similarly, albeit with lower probabilities. Among these constituents, cyclocimipronidine and dopargine were classified with uncertainty, along with N-methylcytisine, which the DNN model classified as inactive. 
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Figure 6. Comparison of triterpene saponin constituents with their theoretically derived aglycones (applied from open source SwissAMDE Webtool, [31]): (A) molecular weight of aglycones was significantly smaller than that of saponins (p < 0.0001, paired two-sided t-test); (B) water solubility surprisingly showed high overlap but was significantly smaller (p = 0.02); (C) topological polar surface area (TPSA) was clearly significantly smaller in the aglycones (p < 0.0001; paired two-sided t-test); (D) lipophilicity, as expressed by XLogP, increased significantly (p < 0.0001; paired two-sided t-test); (E) Lipinski’s rule of five violations was significantly differently distributed (p = 0.01; Wilcoxon signed-rank test), with aglycones having a smaller number of violations; and (F) estimation of the lead-likeness score was not significantly different. 
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Table 1. Summary of results of classification of different machine learning methods.
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	Method
	Training Accuracy (%)
	Test

Accuracy

(%)
	Y-Randomization (**)
	Precision (%)
	Sensitivity (%)
	Specificity

(%)
	ROC AUC (*)
	TN
	FN
	FP
	TP





	Deep

Neural

Network

(DNN)
	96.9
	86.2
	57.6 ± 1.8
	89.8
	86.0
	86.5
	97.6 ± 4.2
	50
	3
	0
	47



	Logistic

Regression Classification

(LRC)
	90.2
	90.2
	57.7 ± 1.5
	87.9
	84.5
	84.1
	90.2 ± 4.2
	43
	10
	7
	40



	Random Forest Classification

(RFC)
	99.7
	89.0
	57.8 ± 1.8
	93.3
	87.2
	91.4
	95.0 ± 2.5
	49
	8
	1
	42







Dataset (number): activators (1120), controls (815, after SMOTE oversampling 1122). (*) ROC AUC = area under the receiver operating characteristics curve. (**) N = 50 permutations, TN = number of correctly classified controls, FN = number of falsely classified positive controls, FP = number of falsely classified negative controls, and TP = number of correctly classified positive controls.
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