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Abstract: Previous studies have shown that complexly shaped nanoparticles (NPs) have their in-
trinsic radiothermal emission in the millimeter range. This article presents a method for controlling
the quality of nanodrugs—immunobiological preparations (IBPs)—based on the detection of their
intrinsic radiothermal emissions. The emissivity of interferon (IFN) medicals, determined with-
out opening the primary package, is as follows (µW/m2): IFN-α2b—80 ± 9 (105 IU per package),
IFN-β1a—40 ± 5 (24 × 106 IU per package), IFN-γ—30 ± 4 (105 IU per package). The emissivity of
virus-like particles (VLP), determined using vaccines Gam-VLP-multivac (120 µg) in an injection
bottle (crimp cap vials), was as follows: 12 ± 1 µW/m2, Gam-VLP—rota vaccines—9 ± 1 µW/m2.
This study shows the reproducibility of emissivity over the course of a year, subject to the storage
conditions of the immunobiological products. It has been shown that accelerated aging and a longer
shelf life are accompanied by the coagulation of active NPs, and lead to a manyfold drop in emissivity.
The dependence of radiothermal emission on temperature has a complex, non-monotonic nature.
The emission intensity depends on the form of dosage, but remains within the order of magnitude for
IFN-α2b for intranasal aqueous solution, ointments, and suppositories. The possibility of the remote
quantitative control of the first phases of the immune response (increased synthesis of IFNs) to the
intranasal administration of VLP vaccines has been demonstrated in experimental animals.

Keywords: nanodrugs; interferon-α2b; interferon-β; interferon-γ; VLP vaccines; virus-like particles;
SARS CoV-2; radiothermal emission; quality control; nanoparticles

1. Introduction

This Special Issue was conceived by the editors to publish fundamental and practical
results on the study of the characteristics of drugs based on NPs: this is the subject of a
kind of editorial article [1]. The idea of the Guest Editors was to reveal a fundamental
property of biologically active NPs. In contrast to the classical multi-point Coulomb
interaction of a ligand with a receptor [2–4], the binding of a NP to a receptor involves a
significant contribution from the Deryagin interaction—the mutual adjustment of flickering
dipoles during the electromagnetic radiation of sticking surfaces [5,6]. As it turns out,
if a biologically active NP has a non-spherical shape (non-convex polyhedron), then the
formation of an unstable dipole with electron plasma-like inhomogeneity is possible [1]. In
this case, the NP acts as a kind of “nano antenna-emitter”, the function of which, when a
“nano antenna-receiver” appears, is to adjust the frequency and localization of the flickering
dipoles to the energetically optimal adhesion of the surfaces [1,7,8]. In the general case, the
radiation of a nanoantenna should be isotropic or with weakly expressed anisotropy [9,10].
The isotropy of radiation from “medicinal” NPs opens up for pharmaceutical chemistry
an amazing opportunity to control the presence of NPs and their concentration in finished
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dosage forms and in the human body, including without opening the packaging [11]. A
new chemical–analytical method for the remote monitoring of the quality of medicines
was created.

In this paper, the following finished dosage forms were chosen for study: VLPs and
IFNs. VLP formation can occur either naturally or synthetically, due to the individual
expression of viral structural proteins, forming a virus-like structure during self-assembly
without nucleic acids, which ensures the optimal presentation of the antigen in the vac-
cine [12,13]. In VLP, there are conformational viral epitopes that cause a strong T- and
B-cell immune response [14]. The radiuses of VLPs range from 20 to 200 nm [1,15], which
provides the best efficiency for penetration into the body’s lymphoid system. Recent expe-
rience in the development of VLP SARS-CoV-2 and rotavirus VLPs has demonstrated their
high immunogenicity and their absence of side effects [16–18].

IFNs are a group of cytokines, which are glycoproteins that function as multifunctional
broad-spectrum bioregulators [19,20]. Modern IFN medicines are genetically engineered
by growing recombinant strains of E. coli bacteria with IFN genes, which are obtained from
leukocytes or connective tissue—human fibroblasts, built into bacterial DNA [21,22]. Phar-
macologically, there are two types of IFNs: type I includes groups α and β, with sub-groups
α2b, β1a and β1b, and type II includes the group of IFNs-γ [23,24]. IFNs-α2b are proteins
with structures of 165 amino acids, with molecular weights of 19.3 kDa [25]. IFNs-β are
NPs—proteins consisting of 165 amino acids with molecular weights of 18.5 kDa. Patients
with multiple sclerosis are prescribed groups β in various dosages from 8 to 24 × 106 IU,
depending on the age and complexity of the disease (cursus morbi) [26,27]. IFNs-γ is a dimer-
izated cytokine, the structure of which includes 143 amino acids with a molecular weight
from 17 to 25 kDa. A distinctive characteristic of IFNs-γ among other IFN medicines is
their use in the combination of supportive immunotherapy and anti-retroviral therapeutics
for human immunodeficiency virus [28].

In this article, the millimeter emissions from finished dosage forms of IFNs and VLPs
without opening the packaging were recorded. The stability of this radiothermal emission
has been demonstrated throughout the year. Researchers have thoroughly studied how
the flux density of radiothermal emission decreases when storage periods are violated
and during artificial aging. It has been established that the decrease in the radiothermal
emission of biologically active NPs during drug aging is associated with their coagulation.
Bearing in mind the fact that IFNs are cytokines, it has been demonstrated that in experi-
mental animals it is possible to remotely monitor the development of the cytokine response
after vaccination using the intensity of the millimeter emission. Thus, the proposed arti-
cle illustrates how the main idea of this Special Issue is being introduced into practical
pharmaceutical chemistry—through controlling the stability of biologically active NPs.

2. Materials and Methods
2.1. IFN Pharmaceuticals

To carry out research in the field of intrinsic radiothermal emission, pharmaceuticals
of three different groups of IFNs were selected: α–α2b; β–β1a and γ. To detect microwave
emission from APIs, therapeutics with various dosage forms were used (registration num-
bers in the State Pharmacopoeia of the Russian Federation are indicated in brackets), and
the following IFN-α2b pharmaceuticals were selected: Grippferon in the form of intranasal
drops, 104 IU (LP-001503), Viferon suppositories, 3 × 106 IU (P N000017/01), and Viferon
ointment 40 × 104 IU (P N001142/01). Also included was IFN- β1a, contained in the Teberif
solution for subcutaneous injection, in the amount of 24 × 106 IU (LP-004137). IFN-γ in
the Ingaron, as lyophilisate for preparing a solution for intranasal administration with a
dosage of 105 IU (LS-001330) were also included.

2.2. VLP Vaccines

The production and purification of recombinant VLPs formed via nucleocapsid pro-
teins (VP2, VP6) and surface proteins VP4 or VP7 of rotavirus type A, synthesized in the
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baculovirus expression system, are described in [29]. Standard molecular genetic and cyto-
logical methods were used: gene synthesis; the cloning of transfer plasmids; recombinant
baculoviruses’ production in Bac-to-Bac expression system; VLP production in insect cells;
centrifugation in sucrose solution; enzyme-linked immunosorbent assay (ELISA); electron
microscopy; polyacrylamide gel electrophoresis, and Western blot analysis.

The production and purification of recombinant VLPs consisting of four structural
proteins, S, M, N, and E, of the SARS-CoV-2 virus, synthesized in the baculovirus expression
system, are described in [1].

2.3. The Measurement of Intrinsic Radiothermal Emission

The flux density of radiothermal emission in the microwave range was determined
using a TES—92 instrument (TES Electrical Electronic Corp., Taipei, Taiwan) with a sensor
configured for anisotropic measurement along the Z axis. The measurement results are the
maximum average flux density value with increments averaging every 300 ms. The mea-
surements were carried out both without opening the primary package and with opening
the package. The medicines were heated to 37 ◦C using a solid-state thermostat with Peltier
elements (Termo 24-15 Biokom, Moscow, Russia). The temperature of the specimens was
controlled by a remote laser infrared thermometer (Benetech GM320, Shenzhen Jumaoyuan
Science And Tecchnology Co., Ltd., Shenzhen, China). To maintain the temperature range
of 2–8 ◦C, refrigerant elements were used. In case of VLP vaccines, activation was carried
out using new-generation LEDs with a power of up to 50 mW/cm2 in the region of 412 nm
with a spectral line width of up to 2–4 nm (including model AA3528LVBS/D, type C503B-
BCN-CV0Z0461, CreeLED, Durham, NC, USA) [15]. The installation geometry did not
change and was strictly observed for each specimen. The spatiotemporal distribution of
microwave background emission was controlled before each measurement with height,
width, and length increments of 50 cm. The background emission did not exceed 1 µW/m2.
Aqueous solutions were applied in drops of 100 µL to the center of sterile 10 cm Petri dishes.
Drops were applied in the axial direction along the Z axis at a distance of 10 mm from the
measuring sensor of the device. The measurement of intrinsic radiothermal emission with-
out opening the package was carried out with the same geometry as for aqueous solutions;
the primary package was placed on a stand in the form of a 40 mm Petri dish horizontally
in the axial direction along the Z axis at a distance of 10 mm from the measuring sensor.
Dosage forms such as ointments and suppositories were placed in the center of the Petri
dish in the axial direction along the Z axis at a distance of 10 mm from the measuring
sensor. The integrity of the suppositories was intact, and their weight (1.2 g) was taken as
the reference weight for measuring the radiothermal emission of dosage forms. To assess
the validation characteristics of in-lab precision, all measurements were performed at least
seven times.

2.4. Nanoparticle Size Determination

The dispersed phase of the studied specimens was controlled using the Zetasizer
Nano ZSP dynamic light scattering (DLS) spectrometer (MALVERN Instruments, Malvern,
UK). Using this method involves analyzing diluted specimens. NP sizing is available in
the range of 1 nm to 10 µm using proprietary non-invasive backscatter technology. The
measurement principle is based on photon correlation spectroscopy, which is based on the
analysis of the Brownian motion of particles of the dispersed phase in a dispersion medium,
which leads to fluctuations in the local concentration of particles, local heterogeneities of
the refractive index, and the intensity of scattered light. The characteristic relaxation time
of intensity fluctuations is inversely proportional to the diffusion coefficient. Particle size
was calculated using the Stokes–Einstein equation:

D=
kB T
6πηr

(1)
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where D is the diffusion coefficient, kB is the Boltzmann constant, T—absolute temperature,
η—viscosity, and r is the radius of the particle.

Each specimen was measured at least 7 times. The results were processed using the
OriginPro Lab (USA) software package 21.

2.5. The Application of the Technique in Preclinical Trials (Measurements of the T-Cell Response)

The possibility of using the technique in the laboratory analysis of finished VLP vac-
cines against SARS-CoV-2 at the stage of preclinical studies was investigated. The studies
were conducted using the relevant animal species of Mesocricetus auratus. Two groups of
4 animals in each one were formed. This scheme was reproduced three times. Twenty
four hamsters (Mesocricetus auratus) (females, 35–45 g body weight) were purchased from
Stolbovaya breeding and nursery laboratory (Research Center for Biomedical Technologies
of FMBA, Stolbovaya, Moscow Region).

All the in vivo animal experiments were carried out in accordance with the Order
199n of the Ministry of Health of the Russian Federation No. 43,232 and with the “Regula-
tions on the Ethical Attitude to Laboratory Animals of Testing Center of N.F. Gamaleya
NRCEM (Moscow, Russia)”, approval code No. 04/23, approval date 27 February 2023,
and according to the guidelines of the Declaration of Helsinki.

The choice of doses was based on the previously obtained results of preclinical stud-
ies conducted in coordination with the Scientific Center for the Examination of Medical
Products of the Ministry of Health of the Russian Federation.

Euthanasia of animals was carried out using the method of cervical dislocation (with
preliminary euthanasia with medical ether).

The first group was immunized three times with a vaccine dosage of 120 µg/dose of
total protein. The vaccine was administered intranasally by instillation. The second group
of animals was administered saline solution according to the scheme similar to the first
group. The volume of administered material was taken into account, so it was equivalent
for both groups. The intrinsic radiothermal emission was controlled on days 1, 5, 8 and
12 after each immunization. Background values in laboratory conditions were equal to
~0.1 µW/m2.

Cellular Response

The cellular response was assessed by the proliferation of lymphocytes in the lympho-
cyte blast transformation response (LBTR). All manipulations were performed under sterile
conditions. Spleens were removed from hamsters and homogenized in 3 mL of pure RPMI-
1640 medium in a sterile homogenizer. The cell suspension was centrifuged on a one-step
Ficoll density gradient (PanEco, Moscow, Russia), and the fraction of mononuclear cells was
isolated and washed twice in pure RPMI-1640 medium and placed in 96-well culture panels
at a concentration of 105 cells in 100 µL per well. A total of 100 µL per well of stimulator
antigens was added to the cells for the final concentrations. Splenocytes activated with
Concanavalin A (ConA, 12.5 mg, PanEco, Moscow, Russia) served as a positive control.
The following cultures were used as negative controls: cell cultures from the spleens of
non-immunized hamsters; unstimulated cell cultures from hamster spleens; and cultures
stimulated with a nonspecific antigen—CCHF antigen (Crimean-Congo hemorrhagic fever,
lat. febris haemorrhagica crimiana). The SARS-CoV-2 virus was used as a specific stimulant.
Cells were cultured in RPMI-1640 Complete Medium with 20% fetal bovine serum (FBS),
2 mM glutamine, 4.5 g/L glucose, 50 µg/mL gentamicin, and 0.2 U/mL insulin at 37 ◦C
in the atmosphere of 5% CO2. The proliferation of splenocytes was assessed in the blast
transformation reaction after 4–5 days using an inverted microscope (magnification ×400).
LBTR results were expressed as the proliferation stimulation index (PSI)—the ratio of the
average number of blasts in the presence of stimulants to the average number of blasts in
the absence of stimulants. The result was considered positive if the PSI was above 2.
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2.6. Metrological Support

The statistical processing of the results, plotting, and the determination of averages
and standard deviations was carried out using the OriginPro Lab 21 software (Origin Lab
Corporation, Northampton, MA, USA).

3. Results and Discussion

Earlier, the possibility of detecting radiothermal emissions in the microwave range
for medicines consisting of complex-shaped NPs was discovered. This discovery assumed
that it is the microwave range that plays a key role in the “tuning” of flickering dipoles
in the process of the dispersion interaction of the surfaces of supramolecular assemblies.
The phenomenon of plasmon resonance at the interaction of these NPs with substrates
should not be excluded. If two such molecules come close to a sufficiently small distance
(up to 100 nm), the flickering dipoles act on each other in such a way that at each moment
in time, unlike with the charges in different molecules, they are closer to each other than
like ones, which causes the emergence of attractive forces. At this moment, the excitation of
plasma-like regions occurs, which will emit electromagnetic waves in the microwave range.
This mechanism allows for the interpreting of many phenomena related to the biological
activity of NPs. In this regard, it was suggested that it would be possible to detect intrinsic
radiothermal emission from biologically active NPs upon their direct activation. This was
proposed to activate the emission of IFNs by heating the medicines. High-resistivity water
was used as a control specimen to exclude random interference (Figure 1).
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Figure 1. Dependence of the intrinsic radiothermal emission on temperature for the IFN—α2b
medicines (1) in comparison with control values (2). Milli-Q high-resistivity water served as control
(n = 7).

Indeed, the recorded radiothermal emission of activated pharmaceuticals (30–35 ◦C)
was 2.5 times higher than that at 5 ◦C, which corresponds with the temperature regime of
the storage of the therapeutics at 2–8 ◦C. Under storage conditions, the therapeutics also
exceeded the background values (1 µW/m2).

3.1. The Radiothermal Emission of IBPs
3.1.1. In-Lab Precision

An important aspect for any experimental method for therapeutic quality control is
the reproducibility of the results. In this paper, we describe a year-long study of a collection
of pharmaceuticals without opening the primary package. Each of the medicines had
its intrinsic range of radiothermal emission (Figure 2). Based on the presented average
maximum values for the annual period, it is clear that each of the studied medicines exceeds
the background values (1 µW/m2) dozens of times, and the fluctuation of radiothermal
emission from month to month varies by ±5 µW/m2. A Petri dish of 10cm in diameter
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with a drop of high-resistivity water, with a volume of 100 µL, applied strictly in the center
of the dish, served as a control specimen (6).
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Figure 2. Annual time curve for assessing the repeatability of the results obtained when measuring
intrinsic radiothermal emission of IBPs, where 1—IFN α-2b, 2—IFN-β-1a, 3—IFN-γ, 4—Gam-VLP-
multivac, 5—Gam-VLP-rota, 6—control. All measurements were performed without opening the
primary package (n = 7).

3.1.2. Specificity

IBPs are thermodynamically unstable protein structures by nature. There are special
requirements for the storage of such pharmaceuticals, mainly the temperature storage
conditions (2–8 ◦C). Also, IFNs have a shorter shelf life compared to other medicines after
opening the packaging. The possibility of distinguishing IFN and VLP vaccines with
the following qualitative characteristics using their intrinsic radiothermal emissions was
investigated: the proper shelf life (the preparation was not opened and was produced
no longer than 3 months ago); a preparation with an expired shelf life (the preparation
was opened and stored for more than one and a half months under certain temperature
conditions; a preparation which was not opened and was stored under certain temperature
conditions for more than one and a half years); a preparation of an inadequate quality
(where the preparation was artificially aged by heating it at a temperature of 50 ◦C for an
hour; and a preparation that was stored for a month at an average temperature of 25 ◦C)
(Table 1).

Table 1. Comparison of the intrinsic radiothermal emissions of IBPs with various quality characteris-
tics: proper shelf life, expired, and artificially aged therapeutics.

Specimens IFN-α2b IFN-β1a IFN-γ VLP-SARS

F ± Sr, µW/m2

Proper shelf life 89 ± 4 41 ± 3 31 ± 3 13 ± 1
Expired 55 ± 3 21 ± 3 19 ± 3 9 ± 2
Artificially aged 31 ± 4 19 ± 3 20 ± 3 4 ± 1

The theoretical analysis preceding the experimental data was based on the idea of
changing the conformational transitions of protein structures. When the shelf life expires,
the protein molecules constituting the base of medicines and IBPs lose their mobility due to
a decrease in the amount of API per dose of the pharmaceuticals, due to possible protein
denaturation. During accelerated aging, protein structures will coagulate due to exposure
to temperatures unusual for their storage (above 42 ◦C), which is confirmed by the results
of particle size control using the DLS method. VLPs, compared to IFNs, are more stable
with respect to changes in environmental conditions, so the artificial aging technique for
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them differed from the technique described above—heating at 100 ◦C for 5 min. More
stable particle-size indicators were observed compared to the situation with IFN (Table 2).

Table 2. Comparison of size spectra of IBPs with various quality characteristics: proper shelf life and
artificially aged pharmaceuticals.

Specimens IFN-α2b IFN-β1a IFN-γ VLP-SARS

D ± Sr, nm

Proper shelf life 190 ± 37 220 ± 40 295 ± 65 190 ± 22
Artificially aged 615 ± 71 531 ± 68 712 ± 60 220 ± 31

It is worth noting the dependence of the radiothermal signal on the particle size; the
smaller the particle diameter is, the higher the emission detected, and vice versa. This can
be explained by the same interpretation of a change in protein conformation, as well as a
change in the strength of the dielectric field observed on the surface of the particles.

To determine the possibility of an unambiguous assessment of the analyte in the
presence of various excipients, the intrinsic radiothermal emission was measured for three
different dosage forms of IFN-α2b: solution, suppositories, and ointments for external use
(Figure 3).
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Figure 3. Comparison of the results of the intrinsic radiothermal emission of various dosage forms of
IFN-α2b, where 1 is solution, 2 is ointment for external use, 3 is rectal suppositories, and 4 is control
(n = 7).

In liquid dosage forms, the particles are in a more mobile state compared to soft
forms, due to the high viscosity of vaselinum, anhydrous lanolin in the case of ointments,
and cocoa butter in the case of suppositories [30]. This leads to a diffusion obstacle: the
mutual attraction of charged particles [31]. It is also worth noting that in the case of a
liquid dosage form, the dispersion medium is purified water, and the excipients are sodium
and potassium salts (sodium chloride, sodium hydrogen phosphate dodecahydrate, and
potassium dihydrogen phosphate), which can affect improved radio wave conductivity.

To determine the sensitivity of this method, different aliquots of the studied pharma-
ceuticals were measured. High-resistivity water (Milli-Q) served as a control for random
electromagnetic interference. When adding a volume of 1 µL of the pharmaceutical to a
Petri dish, a 20-fold difference vs. the control measurement is noticeable. With an increase
in the volume and concentration of medicines, the signal of radiothermal emissions from
them naturally increases (Figure 4).
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((A), 1—IFN-α2b, 2—control) (n = 7), and VLP concentration at a fixed aliquot of 100 µL (B).

When studying the dependence of radiothermal emission on the specific volume and
concentration of IBPs, it was revealed that with increasing the volume, the emitting activity
also increased. This can be explained by the fact that as the volume of the studied IFN-α2b
preparation increases, the number of charged NPs will also increase, thereby causing an
increase in the number of nanoantennas emitting in the microwave range (Figure 4A). This
was confirmed by investigating the emissivity of the VLP vaccine at a constant aliquot
volume and a different concentration of the active substance (Figure 4B).

3.2. The Application of the Method in Preclinical Trials

Due to the ease of use, the method significantly accelerates the analysis of pharma-
ceuticals at different stages of development and production. A significant aspect of the
research into the intrinsic microwave emission of IBPs and medicines is the possibility of
determining the formation of the body’s immune response to the administered vaccine
in vivo. In case of measuring the emission from living objects, it is worth taking into
account the direction of the installation geometry (Figure 5), since adipose and epithelial
tissues, as well as undercoat hair, are factors blocking the emission [1]; therefore, it is
necessary to direct the detector to open areas of the animal’s body such as mucous tissue
and areas of the body not covered with hair (paws, ears). The results of the measurements
of intrinsic radiothermal emission of the experimental groups are shown in Figure 6.
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Figure 6. Control of the formation of an immune response in golden hamsters in response to the
administration of a VLP vaccine by detecting radiothermal emission. The arrows indicate the days of
vaccine administration (1st—01.03.23, 2nd—15.03.23, 3rd—29.03.23) (n = 7).

On days 1 and 5 after the first immunization, there was a slight fluctuation in ra-
diothermal emission results compared to the control group, which were slightly higher
than the background value. A sharp spike occurs on day 8 after the first immunization,
which may signal the beginning of the formation of an immune response in the bodies
of the immunized animals. The second immunization resulted in a spike in radiothermal
emission on day 5. The third immunization had no effect on the emissivity.

An assay of the cellular immune response to the administration of the Gam-VLP-
multivac vaccine, 120 µg/dose, was carried out. The LBTR reaction was carried out on day
10 after the first, second and third immunizations (Figure 7).
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The mean PSI was shown to exceed the threshold value after the first immunization
with an intranasal administration of the Gam-VLP-multivac vaccine, using a 120 µg/dose
(2.2 ± 0.3). After the second intranasal immunization, the average PSI value in the case
of immunization with the vaccine (2.3 ± 0.4) was significantly higher than the PSI of the
control group (1.3 ± 0.5), but did not increase statistically significantly when compared to
similar PSI data after the first immunization. It is noteworthy that the average PSI value in
the case of an intranasal administration of the Gam-VLP-multivac vaccine decreases after
the third immunization (1.3 ± 0.1).

The results obtained indicate that hamsters receiving an intranasal Gam-VLP-Multivac
vaccine, for the prevention of COVID-19, are potentially capable of a quantitatively effective
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cell-mediated immune response. Moreover, the maximum increase in a T-cell response was
observed after the second immunization.

The results obtained can be interpreted as follows: the formation of an immune
response in experimental subjects took from 5 to 7 days, characteristic symptoms were
observed in the form of decreased activity in vaccinated individuals and decreased interest
in food during these periods of time. At the moment of the formation of cell-mediated
immunity, namely, the release of IFNs [32,33] in response to a foreign agent, both their
intrinsic radiothermal emission and the behavior of the experimental subjects changed;
the activity of individuals increased, and more aggressive behavior of the vaccinated
individuals was observed. Re-vaccination led to the final formation of the IFN response
and the launch of adaptive humoral immunity, and the administration of the third dose was
necessary to maintain the further formation of acquired immunity [34–36]. In the following
days before re-vaccination, a decrease in radiothermal emission was observed, which was
expected, since the re-vaccination procedure was aimed at maintaining and strengthening
the post-vaccination immune response due to a decrease in the activity of the immune
system: the intrinsic radiothermal emission would naturally decrease, since the formation
of the IFN response was near completion [37,38].

An active study of the immunogenic role of IFN and VLPs took place in the 1960s [39,40].
Research carried out in this area opened not only a new chapter in the understanding of
human immune system processes, but in the also latest approaches to the treatment of viral
infections and autoimmune diseases. Currently, IFNs are highly effective in the treatment of
viral diseases, such as acute respiratory viral infection, influenza, herpes virus, and SARS-
CoV-2 [41–45]. Despite the canonical role attributed to IFNs, their use is much broader than
just antiviral medicines. IFN-β is widely used in supporting therapy for the treatment of the
autoimmune disease MS [46–48], and IFN-γ is used in immunotherapy for cancers [49,50].
Present-day developments in the field of virology and genetic engineering suggest taking
the experience of vaccination to a new level. The latest VLP vaccines, due to the absence of
genetic material, the DNA/RNA of the virus, demonstrate greater effectiveness and safety
compared to their predecessors [51]. Many VLP vaccines are currently in preclinical and
clinical trials [52,53].

This study proposes a new method for the quality control of IBPs based on their
intrinsic radiothermal emission. As described earlier, oppositely charged molecules at fairly
short distances (to 100 nm) tend towards mutual attraction, thereby forming a dipole–dipole
interaction [5,54–56]. Their feature is the Coulomb superstructure of flickering dipoles
due to mutual electromagnetic emission being formed on the surface of NPs (including its
polarization) [2]. The polarization of irregular-shaped particles leads to the appearance of a
potential of up to 200 mV, which leads to the formation of an electric field strength exceeding
2 × 106 V/cm and promotes the formation of quasi-plasma objects from supramolecular
electrons [1,57]. These objects are capable of emitting in a wide range of frequencies,
including the microwave region of the spectrum [58].

Under different temperature conditions, a natural dependence of the radiothermal
emission signal of medicines on temperature is observed (Figure 1). It is believed that the
“activation” of a medicine occurs when it enters the human body, while, before that moment,
it is in an inactivated state. The experimental temperature range of IFN-α2b “activation”
is 36–37.5 ◦C, this interval corresponds to the internal temperature of the human body. It
is also worth taking into account the following factor: in the range of 2–8 ◦C, which is
characteristic of the storage conditions of the pharmaceutical, its emissivity is preserved.
The speed of molecular motion at low temperatures will be lower than at high temperatures,
but under these conditions it will slow down insignificantly [30,59]. When the medicines
are heated to human body temperature, an increase in the radiothermal signal is observed,
which can also be associated with an increase in the speed of molecular motion.

In the case of the VLP vaccine, activation was carried out using CreeLED-emitting
LEDs with wavelengths of 412 nm. Some NPs are characterized by the induction of their
properties through photocatalysis [60,61]. In the case of protein structure, the nitrogenous
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bases of nucleic acids are able to absorb blue light, which can lead to a change in the
conformation of the protein structure. The influence of conformational changes on the
emissivity is shown in Figure 2.

The ability to distinguish between medicines with different expiration dates and
quality conditions plays an important role in the quality control of medications. Returning
to Table 1 allows us to see how radiothermal emission results change for different IFNs
and intranasal VLP vaccines for the prevention of COVID-19. It is quite difficult to visually
identify an expired medicine; difficulties also arise in identifying spoiled pharmaceuticals.
Modern pharmaceutical companies carry out expensive research in the area of calculating
the approximate shelf life of medicines, but this does not prevent errors from occurring at
the stage of their production or transportation [62]. Paying attention to the results obtained,
it can be claimed that the obtained values are different. In the case of expired medicines,
their intrinsic radiothermal emission is approximately twice reduced compared to the same
medicine of appropriate quality, and for artificially aged pharmaceuticals, the indicators
differ ~three–four times. The coagulation of the selected pharmaceuticals was confirmed by
determining the size of the spectrum of NPs using the DLS method (Table 2). Despite the
important difference between the emission values, there is no complete absence of emission,
which may indicate the presence of activity in medicines that have expired [15]. The
problem of the activity of pharmaceutical substances in preparations after the expiration
date is open and currently being studied [63].

The main pharmacodynamic and pharmacokinetic parameters of any medication
will depend on the choice of dosage form. The present-day pharmaceutical market for
immunomodulatory pharmaceuticals, using IFNs as an example, offers various types
of dosage forms: liquid, solid, soft, and gaseous [64]. When developing a method for
controlling the quality of medications, an important goal was to understand the effect of
different forms of the pharmaceutical on the conductivity of electromagnetic emission.
Figure 3 shows the comparison of three different dosage forms of IFN-α2b. Despite the
different dosages of the presented pharmaceuticals, the key difference in the detected
radiothermal emission was their dosage forms. In the case of the liquid form, the highest
emissivity was observed, while, for soft forms, the results were four times lower. It is
assumed that the attraction of molecules in soft forms will be greater than in liquid forms;
the particles are located more densely, which makes the process of molecule repulsion more
difficult [30,31]. Describing this interaction between molecules, one can assume that the
possibility of forming an electromagnetic field is not universal, but does not tend towards
its complete absence either.

For each quality control method, it is necessary to detect the minimum possible
concentration of the analyte. The limit of detection in the presented study was determined
by measuring the intrinsic radiothermal emission from different volumes of IFN-α2b
and different concentrations of VLP vaccines. The API content was recalculated for each
selected volume. Starting from the first minimum possible detection volume of 1 µL
(10IU), the emission values exceeded the control ones 20 times. The natural increase in
the radiothermal signal from the measured volume can be explained by an increase in
the interacting molecules of active substances, distributed throughout the thickness of the
studied specimen. The mechanism of intermolecular interaction leading to the formation
of plasma-like regions was described earlier. Interestingly, the kinetics of resonance energy
transfer caused by plasmons is an open area for study [65]. The results of the study of
the intra- and intermolecular transfer of vibrational energy in supramolecular structures
state that the transfer of this energy occurs in a picosecond time scale [66]. The data
obtained plays an important role both for the systematic view of the processes of intra- and
intermolecular interactions, and for the scientific community in general.

The ability to study the intrinsic radiothermal emission not only in the laboratory using
commercial IFNs, but also at the stages of preclinical studies of VLP vaccines, became the
key focus in this presented study. Figure 6 shows the curve of the formation of the immune
response in experimental individuals at different time stages of the study, based on the data
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obtained from their intrinsic radiothermal emission. The formation of an immune response
to the administered vaccine, that is, the production of antibodies by the immune system,
begins approximately on days 5–7 after vaccination [67,68]. Taking this fact into account,
the results obtained can be interpreted as follows: on day 10, after the administration of the
first component of the vaccine, a sharp spike in radiothermal emission is observed, which
can be explained by the active response of the immune systems of the individuals. Literally
a few days after re-vaccination, a sharp spike in radiothermal emission is observed, which
may characterize the peak responses of the immune systems of the test subjects to the
second component of the vaccine. The third stage of re-vaccination does not cause a visible
increase in radiothermal emission, but rather, on the contrary, equalizes the parameters
with the control group. Thus, the presented method for recording microwave radiothermal
emission can be used not only for the quantitative quality control of IBPs in vitro, but also
in detecting the activation of IFN synthesis in vivo.

4. Conclusions

Summarizing the results obtained, the main points can be highlighted. The described
method provides an opportunity to control the radiothermal emission of medicines and
IBPs without opening the primary packaging. There is a clear dependence of the radio
signal on the selected dosage form of the pharmaceuticals (Figure 3). We have shown
that it is possible to distinguish pharmaceuticals with different shelf lives using their
intrinsic radiothermal emissions (proper shelf life, expired (more than 6 months ago), and
artificially aged pharmaceuticals) (Table 1). The sensitivity of the proposed method makes
it possible to identify IFNs in various volumes of aliquots and VLP vaccines with different
concentrations (Figure 4). It is possible to use this method not only for the laboratory
quality control of pharmaceuticals, but also at the preclinical trials to detect an immune
response in living organisms in real time (Figure 6).

This study of the intrinsic radiothermal emission of medicines and IBPs is a promising
area for the development of the latest express method for the quality control of medications.
The method allows for the studying of pharmaceuticals without opening the primary
package at any stage of their “life” and can also be further used in preclinical and clinical
trials for the purpose of monitoring their effectiveness.
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